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Abstract—Advances in semiconductor technology have made
it possible to have high processing powers in cheap microcon-
trollers, which is spawning off a revolution in the range of
applications of the Internet-of-Things (IoT) and its underwater
counterpart, the Internet-of-Underwater-Things (IoUT). As a
result, it has now become possible and cost effective to implement
powerful data processing algorithms on very cheap microcon-
trollers and achieve network intelligence on edge devices. In this
paper, we evaluate the impact of implementing an unsupervised
machine learning technique based on the k-means algorithm,
as well as data aggregation, on the performance of a wireless
underwater sensor network. A clustering algorithm based on
the k-means algorithm is used to divide the network into
clusters and to select cluster heads based on network topology
and residual energy. Each cluster head collects and aggregates
data from nodes within its cluster’s coverage and forwards
the data to the sink. The network is deployed in a shallow
seabed, and it is assumed that the nodes can reach the sink
using their full transmission powers. Hence, the performance
evaluation compares the sum-throughput, energy efficiency and
coverage probability for direct transmissions to the sink against
transmissions using the cluster heads. We also propose a special
consideration for disaster early warning data, which packets are
assigned priority delivery and handled with minimum delay. The
evaluation is performed through computer simulations and the
results show over a 100% improvement in throughput for cluster-
based transmissions compared to direct transmissions.

I. INTRODUCTION

There is an ever-growing reliance on the oceans for life
on earth. As the global population continues to grow and the
energy requirements of modern life skyrockets, the oceans
play a vital role in the supply of oxygen, food, mineral and
energy resources to support human activities on earth and to
clean the atmosphere of excess carbon and regulate global
temperatures. However, climate change continues to threaten
the oceans and life on land. To understand the mechanism of
marine climate change and proffer suitable solutions, there is
a need to monitor ocean climatic conditions (as a predictor
of atmospheric conditions on land) and marine life. As more
resources are deployed offshore to produce energy, there is
also a need to monitor and control such offshore assets.
Wireless sensor networks are the cheapest and most robust
solution for gathering high-quality and quantity of marine data
without interruption.

However, wireless underwater communication is fraught
with difficulties, which makes gathering data from underwater
networks very challenging. Acoustic communication, which
is the primary technology used for this purpose, is slow,
prone to errors, have very limited bandwidth and consumes
a lot of power. Radio and optical waves are heavily ab-
sorbed by water molecules, severely limiting their transmis-
sion ranges. Magnetic induction also have very poor range
and low bandwidth. Despite these technological limitations,
power consumption is the biggest threat facing wireless sensor
networks deployed underwater and in terrestrial applications
as battery technology has not kept pace with developments in
sensing, processing and communications technologies. As a
result, energy consumption is the most important concern for
Internet-of-Underwater-Things (IoUTs) networks, especially
those deployed long-term due to the difficulty of replacing
sensor batteries underwater.

Some major schemes for improving energy efficiency in
IoUTs include clustering, data aggregation and use of relays
to reduce transmission distances for collected data. Clustering
divides the network into clusters so that each node sends its
collected data to the cluster head, which is usually closer
than the sink, thereby minimising the power used for data
transmissions [1]. Data aggregation is an intermediate pro-
cessing stage whereby redundancies in the data collected from
each cluster is removed before sending them to the sink. This
significantly improves the energy efficiency of the network
because the power required for data processing is far less
than the power required for packet transmissions. Finally,
relaying reduces transmission distances by using intermediate
nodes between the data source and sink to forward data. The
data source forwards packets containing collected data to its
nearest neighbour in the direction of the sink, which in turn
forwards it to its nearest neighbour until it gets to the sink.
Since the nearest neighbours are usually closer to the source
than the sink, lower transmission powers can be used, thereby
improving energy efficiency as well as network performance
through spatial diversity.

Data aggregation is often performed at intermediate nodes
such as cluster heads. It involves combining spatially corre-
lated data generated by different sources within a region of
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interest to avoid redundancies or duplicates in the collected
information so as to reduce the amount of data transmitted to
the sink, thereby improving the energy efficiency of the net-
work. Strong correlation exists between the data collected by
IoUT nodes deployed within the same region, so sending all
the generated packets back to the sink wastes resources. Data
aggregation is an important tool in practical wireless sensor
networks because of their energy-limited nature. It has been
shown that effective data aggregation improves the network
energy efficiency and prolongs the network lifetime [2].

An IoUT node comprises a suite of different sensors, such
as those used for monitoring temperature, dissolved oxygen,
pH, salinity and pressure sensors, etc, depending on the
application. The sensors are all connected to and controlled
by a processor, such as a microcontroller that serves as the
brain of the node. The data generated by each sensor is
tagged with the sensor’s identity (ID) to differentiate data
generated by different types of sensors within the node. In
addition, each node in a cluster is also tagged with the node
ID. In some applications, it is also possible to geo-tag the
data if location information is available. At the cluster head,
a data aggregation function is used to filter out duplicates
using the IDs from the packets collected by individual nodes.
Data aggregation functions can be linear or non-linear and
use statistics in the collected data to enhance data quality,
remove redundancies and reduce the size of packets sent to
the sink [3]. For instance, the mean, minimum, maximum,
etc observations can be used to obtain a simple average for
each sensed parameter, which is then sent to the sink. Other
techniques, such as principal component analysis, analysis of
variance (ANOVA), Gaussian Processes (GP), self-organising
maps (SOM), adaptive learning vector quantization (ALVQ),
etc. can also be used to perform data aggregation to obtain
accurate information about the sensed parameter. The reader
is referred to the literature in [4]–[6] for a more in-depth cov-
erage of data aggregation techniques, including information
security considerations. For underwater sensor networks, a
tree-based data aggregation scheme was presented in [7] while
a review of data aggregation techniques can be found in [8].

A key question in data aggregation is how to structure it
in order to achieve the best results. The approaches that have
been proposed include cluster-based aggregation, tree-based,
centralised and in-network aggregation [3]. In the cluster-
based approach, data aggregation is performed at cluster
heads. The tree-based approach is a hierarchical structure
that uses spanning trees, with data aggregation performed at
parent nodes (any node that other nodes connect to in order
to reach the sink) all the way up to the root (sink) of the tree.
In the centralised approach, a designated aggregator (a node
equipped with more computing and battery resources) is used
to collect data from other nodes in the network, aggregate
them and forward the result to the sink. In-network data ag-

gregation involves processing at intermediate nodes for multi-
hop sensor networks; it can be lossy aggregation, leading to
packet size reduction or lossless aggregation without packet
size reduction. We have summarised the merits and limitations
of each approach based on common data aggregation metrics
in Table I. A more in-depth review can be found in [3].

TABLE I
COMPARISON DATA AGGREGATION TECHNIQUES

Approach/ Parameters Centralized In Network Tree Cluster
Delay Moderate Moderate Low Low

Redundancy Moderate Moderate Low Low
Accuracy Moderate Low Moderate High

Traffic High High Moderate Low
Energy Consumption High Moderate Low Low

In addition to routine sensing and monitoring operations, we
propose using the IoUTs network as an early warning system
for natural disasters in the ocean. The network monitors
spikes in temperature and pressure that could suggest an
earthquake, similar to the Deep-ocean Assessment and Re-
porting of Tsunami (DART) system deployed by the National
Oceanic and Atmospheric Administration. As a result, packets
generated due to spikes from the temperature and pressure
sensors are not aggregated but tagged as priority packets and
sent immediately to the sink to avoid delays in reporting
potential disasters.

This paper introduces a dynamic protocol for clustering
wireless sensor nodes in an IoUTs network and performing
data aggregation to reduce data redundancies to enhance the
network lifetime. The protocol (called DYCADA for dynamic
clustering and data aggregation) takes into account the net-
work distribution and the residual energy of nodes before
selecting them as potential cluster heads. The selected cluster
head is responsible for data collection from nodes within its
cluster, performing data aggregation to remove redundancies
in the data and forwarding clean copies of the data to the
sink. The overarching aim of the paper is to achieve efficient
monitoring of underwater assets and offshore energy facilities
in an energy-efficient manner. The contributions of this paper
include;

• We propose a joint dynamic clustering and data aggre-
gation (DYCADA) scheme to improve energy efficiency
in wireless underwater sensor networks.

• An in-depth analysis of throughput and coverage prob-
ability is provided as a function of energy efficiency of
the network considering direct transmissions to the sink
and using cluster heads to perform data aggregation and
forwarding of data from individual clusters.

• We propose tagging packets originating from early dis-
aster warning systems as priority packets to minimise
delay in forwarding them to the sink. Such packets
are not aggregated but sent immediately to the sink to
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reduce delays in warning of potential disasters such as
earthquakes and tsunamis.

II. SYSTEM MODEL

A. Network Model

We consider a three-dimensional static underwater sensor
network comprising a set of underwater sensor nodes posi-
tioned at a depth of about 100 meters below the sea surface
to monitor marine life and other underwater assets. A buoy
positioned at the sea surface above the network serves as the
sink for data generated within the network. The seabed nodes
can serve as a data source, denoted S. Each underwater node
is equipped with a single half-duplex acoustic modem for
communication, while the sink is a more powerful node fitted
with a strong ocean-facing acoustic modem as well as RF links
for communicating with an onshore data centre. We assume
that it is possible for nodes in the network to transmit directly
to the sink instead of using their cluster heads, as shown in the
network model in Figure 1. Network instantiation, neighbour
discovery and clustering are performed following the method
in [1].

Fig. 1. Network model showing distribution of the nodes and clusters. Data is
collected in each cluster by the cluster head, which performs data aggregation
and sends only only clean copies of the data to the sink. When there is a
spike in temperature and vibration, the data generated are tagged as priority
packets and are not aggregated but sent immediately to the sink to warn of
potential dangers such as tsunamis.

B. Channel Model

Acoustic communication is considered for forwarding data
from sensor nodes to the cluster head and for transmitting
aggregated data from the cluster head to the sink buoy at
the sea surface. The final connection between the buoy and
the data centre uses RF links. The received acoustic power
from a source at a given range can be expressed by the
passive sonar equation as a function of acoustic losses and
modem characteristics. The signal-to-noise ratio (γ) depends

on the frequency of the acoustic signal, the transmitting power
and transmitter-receiver separation. For a narrowband acoustic
signal (represented by a single tone of frequency ∆f ), this can
be expressed as [9]

γ(d, f) =
Pt/A(d, f)

N0(f)∆f
, (1)

where Pt is the power of the acoustic projector, N0 is the noise
power, which is a function of frequency. A is the acoustic
pathloss, which is given by

A(d, f) = A0d
kα(f)d, (2)

where k is the channel spreading factor (equivalent to the
pathloss exponent in terrestrial communications). The values
of k ranges from 1–2; k = 1 is referred to as cylindrical
spreading which dominates when the operating depth is less
than the horizontal communication range, k = 2 is referred
to as spherical spreading while k = 1.5 is referred to as
practical spreading. The pathloss comprises a spreading loss
which depends on the distance of the receiver (hydrophone)
away from the acoustic projector (source/transmitter) and
an absorption loss that grows with frequency. Absorption
losses arise due to the chemical interactions between the
wireless signal and water molecules, often leading to some
of the propagating acoustic energy being converted to heat.
Spreading losses arise from the decreasing intensity of the
propagating waves away from the source. As the wavefront
increases, the intensity of the signal energy per unit area
decreases. The spreading loss can be expressed in dB re 1
µPa at 1m as [10]

L = k × 10log(d), (3)

whereas the absorption loss has been obtained empirically by
W.H. Thorp (the so-called Thorp formula) for kHz frequen-
cies [11] as

α(f) = 0.11
f2

1 + f2
+44

f2

4100 + f2
+2.75 · 10−4f2 +0.003.

(4)
Noise in underwater acoustic communication systems is a

function of frequency of propagation and include contributions
from shipping Ns, thermal noise Nth, noise due to water
waves, Nw and water turbulence, Nt. The power spectral
densities of the different noise sources can be expressed in
dB re 1 µPa at 1m per Hz [9] as

Nt(f) =17− 30 log(f), (5)
Ns(f) =40+20(s−0.5)+26 log(f)−60 log(f+0.03),

(6)

Nw(f) =50 + 7.5
√
w + 20 log(f)− 40 log(f + 0.4), (7)

Nth(f) =− 15 + 20 log(f), (8)

where w is the wind speed in m/s, s is the shipping activity
factor (0 for low activity and 1 for high activity) and f the
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frequency. As equations (5 – 8) show, these noise sources
are frequency-dependent. For instance, shipping activity noise
and noise due to ocean turbulence dominate at very low and
low frequencies. Thermal noise is predominant at very high
frequencies while noise due to surface waves is strongest
between 100 Hz – 100 kHz [10]. N0 from equation (1) is
the cumulative noise power from the different noise sources
and can be expressed as

N0 = 10
Nt(f)+Ns(f)+Nw(f)+Nth(f)

10 . (9)

III. DYNAMIC CLUSTERING AND DATA AGGREGATION

In addition to extracting similarities in data, it is also impor-
tant to be able to detect dissimilarities or anomalies/erroneous
readings, which could otherwise corrupt the aggregated data.
The clustering approach used in this work is based on that
proposed in [1] which was shown to lead to significant
improvement in network performance. We adopt the data
aggregation aggregation approach in [12]. To quantify the
results achieved, we analyse the network sum-throughput and
coverage probability as a function of the energy consumption
of the network.

A. Clustering

The entire network is grouped into clusters for ease of data
processing and to save energy by reducing the communication
distance between a node and its cluster head. As a baseline,
we compare the performance of cluster-based communication
with direct transmissions to the sink in Section IV. The
clustering process is carried out in three stages, following the
method proposed in [1]. The first stage involves clustering
using the k-means clustering algorithm. In the second stage,
the residual energy of nodes is combined with the k-means
algorithm to select cluster heads. This is only relevant after
the first round of operation of the network (during the first
round, the k-means algorithm is used to select the centroid of
each cluster and the nearest node to the centroid is elected
as cluster head). The k-means algorithm ensures that the
selected cluster head is geometrically close to the centre of
the cluster while the residual energy condition ensures that the
node has sufficient battery power to perform data aggregation
and transmission operations. The final stage is the actual data
collection and aggregation stage whereby nodes in a cluster
forward their data to the cluster head using a TDMA-Based
format.

The k-means algorithm groups an unlabelled multidimen-
sional data set into a set of k distinct clusters, Ci =
{C1, C2, . . . , Ck} , where k is chosen beforehand. Given a
sensor network with N sensor nodes {n1, n2, . . . , ni}, the aim
of the k-means algorithm is to minimise the distance between
nodes in the same cluster and maximise the distance between
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Fig. 2. Initial cluster size selection is is achieved via the Elbow method
in Eq. (12). Following this, subsequent clustering is performed dynamically
according to changes in the network. That is, as the network size changes
due to removal of nodes from the network (due to battery depletion or
node failure), re-clustering is done to ensure uniform energy distribution and
continued connectivity for all nodes.

nodes in different clusters [13]. This is achieved using the
following minimisation function

Jmin =
k∑

j=1

∑
cn∈Ci

∥ni − µj∥2 , (10)

where each cluster, Ci contains Nj nodes, ni represents the i-
th node in the network; µj represents the geometric centroid of
the sensor nodes in a given cluster [14], which is determined
using

µj =

(
1

N

N∑
i=1

xi,
1

N

N∑
i=1

yi

)
. (11)

There are different ways to select the optimal number of
clusters based on the network size. One of the most accepted
techniques is using the Elbow method, which returns the
optimal number of clusters by calculating the intra-cluster sum
of squares, η for the data set, which is given by

η =
n∑

i=1

(ni − ci)
2
. (12)

If the cluster size is too large, nodes in each cluster spend more
energy to reach the cluster, leading to faster disconnection
of the network. However, if the cluster size is too small,
it leads to high inter-cluster interference, which reduces the
throughput and leads to energy wastage. A plot of the Elbow
method for a generic sensor network is shown in Figure 2.

B. Cluster-based data aggregation

Data aggregation is performed to average collected data at
the cluster head before forwarding it to the sink. This signifi-
cantly improves the quality of the data collected and reduces
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energy usage. The technique employed for data aggregation
is based on that proposed in [12]. Due to space limitation, we
do not reproduce the analysis here but refer the reader to [12]
and the references therein.

C. Throughput and Outage Probability

Here, we analyse the throughput and outage probability of
the system, assuming that the nodes use the cluster heads to
send data to the sink. Data transmission takes place in blocks
of T seconds, which is divided into two phases of T/2 seconds
each. In the first phase, the nodes transmit their data to the
cluster head while the cluster heads forward the data to the
sink in the second phase. The signal to noise ration (SNR),
γ(d, f)Ck

i between the ith node, ni and the kth cluster head,
Ck can be expressed as

γ(d, f)Ck
i =

Pi/A(d, f)i,Ck

N0i,Ck
(f)∆f

, (13)

where Pi is the transmitting power of the ith node, A(d, f)i,Ck

is the transmission loss for the ni–Ck link and N0i,Ck
is the

noise power. Similarly, the SNR, γ(d, f)Ck
i between the kth

cluster head and the sink S can be expressed as

γ(d, f)Si =
PCk

/A(d, f)Ck,S

N0Ck,S(f)∆f
, (14)

where PCk
is the transmitting power of the kth cluster head,

A(d, f)Ck,S is the transmission loss for the Ck–S link and
N0Ck,S(f) is the noise power.

Outage occurs when the received SNR falls below a pre-
defined threshold, γth. For ease of analysis, we assume the
same γth for decoding data at the cluster heads and at the sink.
Since the network is clustered, outage occurs either when the
SNR received from a sensor node at the cluster head is less
than γth OR the SNR at the cluster head is higher than γth
but that at the sink is less than γth. That is, outage occurs
under the following condition

Pout = Pr(γ(d, f)Ck
i < γth)+

Pr(γ(d, f)Ck
i > γth, γ(d, f)

S
i < γth). (15)

To evaluate the throughput per transmission block of the
network, we consider the transmission rate R (which is limited
by the available bandwidth). For ease of analysis, we assume
the same R for the node–cluster head links and the cluster
head–sink links. The block throughput of the network is
considered when the network is not in outage (i.e., 1− Pout)
and can be expressed as

τ =
(1− Pout)R(T/2)

T
, (16)

=
(1− Pout)R

2
(17)

TABLE II
TABLE OF PARAMETERS I

Parameter Value
Transmit power (Pt) 170 dB re 1 µPa @ 1m
Frequency, f 24 kHz
Bandwidth 4 kHz (22–26 kHz)
End-to-end reliability (α) 0.95
Link failure rate (pi) (random) 0.05 – 0.25
Network area, number of nodes 1km2, 100
Angle of curvature of multipath
components, θ[0, 1, 2] 0, 15, -15

Delay of the main path τ0 c/pathlength
τ [n](n = 0, 1, 2)

3.345×d(m)
500

+ 0.3345× n
Wind speed, (w) 10 m/s
Shipping activity factor, (s) 0.2
Spreading factor, (k) 1.5

where T is the total block transmission time. γth can be
obtained from the information rate using the following re-
lation [15]

R = B log2(1 + γth), (18)

where B is the transmission bandwidth, so that γth = 2R−1.

IV. PERFORMANCE EVALUATION

This section presents computer simulations used to evaluate
the dynamic clustering and data aggregation (DYCADA)
scheme proposed for cluster head selection and data aggre-
gation in an IoUTs network. Direct transmissions to the sink
from sensor nodes in the network is considered as benchmark
model and compared to the DYCADA approach. Due to
the shallow depth of deployment of the network, nodes can
send their data directly to the sink at the sea surface, hence
consideration of direct transmissions as a baseline is justified.

The sensors are deployed in a 2D plane at an operating
depth of 100m, from where they can transmit data directly to
the sink or to cluster heads that aggregate and forward the data
to the sink. The network covers an area of 1km2, with a node
distribution intensity of 100 nodes per area (Φn = 100), and
the height of the sink is 100m. Other parameters considered
in the analysis are summarised in Table II.

We begin by evaluating the achieved average throughput per
node as a function of the source power of the nodes. In the first
instance, each node transmits collected data with power Pt to
the sink via direct transmissions. The simulation considers
a range source powers normalised to a range between 0.1
to 1 (corresponding to a full source power of 170.8dB re
µPa). Under this setting, the achieved throughput per node
ranges between 1 to 4 kbps. For the same source powers but
using the DYCADA protocol, the average throughput per node
varies between 6 and 9.2 kbps, an improvement of over 100%
compared to direct transmissions. The results are shown in
Fig 3. The improvement in throughput is clearly due to the
proximity of the nodes to the cluster head in the DYCADA



6

scheme, which improves the SNR received at the cluster head
as channel effects are minimised due to the shorter distance
traversed by the packets compared to direct transmissions.
However, data aggregation introduces additional delays on
packets due to data processing at intermediate nodes (cluster
heads), thereby adding to the overall latency in the received
data and lowering their value of information (VoI).
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Fig. 3. Throughput per node for direct transmissions and transmissions using
cluster heads. By splitting the transmission distance between the node and
sink into two, data packets suffer less absoprtive losses when the cluster
heads are used to aggregate and relay data. As a result, they arrive with high
SNR at the cluster heads which fully decodes the data before forwarding it
(with other aggregated packets) to the sink, ensuring that they arrive with
high fidelity and significantly high SNR at the sink as well, thereby leading
to higher throughputs when cluster heads are used.

Next, the energy efficiency (EE) is evaluated for both direct
transmissions and transmissions using the DYCADA protocol
as a function of source power. Naturally, the EE curve shows
a decreasing trend as the source power increases for both
methods, as can be seen in Fig 4. However, it can be seen
that for transmissions via the DYCADA protocol, the EE
is comparatively high for all ranges of the source power.
Similar to the case for throughput, the results indicate that it is
more energy efficient to break the transmission distances into
shorter distances where lower source powers can be used to
reach the receivers than to transmit over long distances using
high powers. This is amongst the most important benefits
of clustering and other routing schemes such as multi-hop
relaying. Since it is more beneficial to partition the network
into clusters so as to use lower transmission powers, how can
the ideal number of clusters be determined, since it is tempting
to keep breaking the clusters into ever smaller clusters? The
Elbow method described in Section III-A provides the answer
to this, as the algorithm yields the optimal number of clusters
that result in the optimal saving of network resources without
introducing new problems, as shown in Fig. 2. It can be seen
from Fig. 4 that as the value of the source power increases,

the two curves begin to converge, indicating that there is an
optimal power range in which the transmission of data through
the cluster head has an advantage over direct transmission.
A point is eventually reached when direct transmissions will
result in higher energy efficiency than the DYCADA protocol
if the source power keep increasing, which is intuitive because
using high powers for short range communications (as is the
case within clusters) is wasteful.
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Fig. 4. Energy efficiency for direct transmissions and cluster-based trans-
missions. Clustering clearly outperforms direct transmissions, especially at
low source powers. If there were unlimited power in the network (for e.g. if
the sensor nodes are connected to a mains supply), a point is reached where
direct transmissions is preferred to clustering in terms of energy efficiency,
as shown by the converging trend of the two curves in this figure. One of
the major gains of clustering is that lower transmission powers can be used
without the nodes falling into outage.

Figs. 5 and 6 illustrate the coverage probability while
varying the SNR thresholds (γth) for different source power
levels. Fig. 5 shows the coverage probability for a source
power of 163 dB re µPa. It demonstrates that as the SNR
threshold grows, the coverage probabilities for both direct
transmissions and transmissions via the DYCADA protocol
decrease. This is expected because as the minimum SNR
threshold required to successfully decode data increases, fewer
nodes can achieve γth unless the source power increases
commensurately. In addition, it can be observed from Fig. 5
that the coverage probability of direct transmission decreases
significantly compared to the DYCADA protocol. Again, this
is expected since the amount of power required to reach the
sink is higher for direct transmissions compared to transmis-
sions through the cluster heads which requires much lower
transmission powers due to their proximity. Similar to Fig. 5,
Fig. 6 shows the coverage probability for a source power of
168 dB re µPa. It also follows a decreasing trend for coverage
probability as the SNR threshold increases for both direct
transmissions and transmissions via cluster heads using the
DYCADA protocol, as fewer nodes are able to attain γth at
the fixed transmission power of 168 dB re µPa.
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Fig. 5. Coverage probability of direct transmissions and transmissions via
cluster head for a source power of 163 dB re µPa. For this fixed source power,
more nodes are forced into outage as the SNR threshold is raised, as fewer
nodes can achieve the higher demands for SNR demanded at the receiver.
This is more severe for direct transmissions, as shown by the steepness of
its curve here. Due to the proximity of the cluster heads to the nodes, they
show a more gentle degradation in coverage probability, which again shows
its super performance over direct transmissions.
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Fig. 6. Coverage probability of direct transmissions and transmissions via
cluster head for a source power of 168 dB re µPa. At higher source powers,
more sensor nodes are able to achieve the SNR threshold, which reflects in
better coverage probability compared to Fig. 5.

V. CONCLUSION

In this paper, we have studied the performance of a dynamic
clustering and data aggregation scheme (DYCADA) in a
wireless underwater sensor network, analysed the throughput
and derived the outage probability. Through simulations, we
evaluated the impact of different system parameters on overall
network performance. We showed that clustering and data
transmissions via the DYCADA protocol significantly im-
proves the network sum-throughput by over 100% compared
to direct transmissions, and enhances coverage probability

and energy efficiency, even when the sink is within the
transmission range of all the network nodes. Moreover, it was
demonstrated that the performance of the proposed scheme is
greatly affected by the source transmission power. Our future
work will consider the impact of clustering and relaying on
the packet delays and how energy efficiency and throughput
change when energy harvesting is implemented in the net-
work.
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