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A Robust and Efficient Federated Learning
Algorithm against Adaptive Model Poisoning

Attacks
Han Yang, Dongbing Gu, Jianhua He

Abstract—With the undetectable characteristic, adaptive model
poisoning attacks can combine with any other attacks, bypassing
the detection and violating the availability of federated learning
systems. Existing defences are vulnerable to adaptive model
poisoning attacks, as model poisoning-related features are tai-
lored to these methods and compromise the accuracy of the
FL model. We first present a unified reformulation of existing
adaptive model poisoning attacks. Analyzing the reformulated
attacks, we find that the detectors should reduce the attacker’s
optimization cost functions to defeat adaptive attacks. However,
existing defences do not consider the causes of model parameters’
high dimensionality and data heterogeneity. We propose a novel
robust FL algorithm, FedDet, to tackle the problems. By splitting
the local models into layers for robust aggregation, FedDet can
overcome the issue with high dimensionality while keeping the
functionality of layers. During the robust aggregation, FedDet
normalizes every slice of local models by the median norm value
instead of excluding some clients, which can avoid deviation from
the optimal model. Furthermore, we conduct a comprehensive
security analysis of FedDet and an existing robust aggregation
method. We propose the upper bounds on the perturbations
disturbed by these adaptive attacks. It is found that FedDet can
be more robust than Krum with a smaller perturbation upper
bound under attacks. We evaluate the performance of FedDet
and four baseline methods against these attacks under two classic
datasets. It demonstrates that FedDet significantly outperforms
the existing compared methods against adaptive attacks. FedDet
can achieve 60.72% accuracy against min-max attacks.

Index Terms—Federated Learning, Model poisoning attacks,
Deep Learning

I. INTRODUCTION

The Internet of Things (IoT) plays an important role in our
daily lives as it provides intelligent services and applications
empowered by artificial intelligence (AI) [1] [2] [3]. AI
techniques such as deep learning (DL) processes raw data gen-
erated from ubiquitous IoT devices and train data models for
enabling intelligent services or infrastructures, such as smart
healthcare, smart transportation, and smart city. Traditionally,
AI functions are placed in a cloud server for data collecting
and modeling [4] [5]. However, With such an explosive growth
of IoT data at the network edge, the offloading of massive IoT
data to remote servers may be infeasible due to the constrained
network resources, bandwidth and incurred latency. Besides,
the use of third-party servers for AI training also raises privacy
concerns such as leakage of sensitive information (e.g., user
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addresses or personal preferences). Thus, it may not be feasible
to apply centralized AI techniques in realistic scenarios. To
address the above issues, a novel distributed training regime,
federated learning (FL), has been proposed for building intel-
ligent and privacy-enhanced IoT systems. FL is an efficient
and scalable distributed machine learning paradigm that pro-
vides excellent privacy to clients [6]. With the application of
federated learning, resource-constrained node devices (e.g.,
Internet of Things (IoT) devices and sensors) can build a
knowledge-shared model while keeping the raw data local [7].
Hence, federated learning plays a critical role in bringing AI to
IoT systems and applications in terms of training AI models,
online model fine-tuning and preserving data privacy [4] [5].
However, due to its distributed characteristic, FL leaves the
door open for adversaries as they can send poisoned local
models to the central server without being checked. Hence, an
FL system can be vulnerable to model poisoning attacks [8] [9]
[10] [11]. Poisoning attacks consist of backdoor attacks [12]
[13] [14] and model poisoning attacks [15] [16] [17] [18].
Backdoor attacks aim to insert a backdoor into the trained
global model and make the global model mislabel a small
group of samples with chosen triggers into targeted labels
[16] [18] [19]. Model poisoning attacks attempt to hamper
the global model’s main accuracy. In this work, we focus on
model poisoning attacks in FL as model poisoning attacks
can cause denial-of-service among a large population of end
services in FL deployments [20] [21] [22]. In this work,
we investigate the model poisoning attacks against federated
learning systems, which can be transferred into some resource-
constrained scenarios (e.g., Multi-UAV Systems [23] and cause
denial-of-service (DoS) in IoT systems). And we propose a
robust algorithm to defend against such attacks.

The Byzantine-robust algorithms [24] [25] [26] [27] [11]
[25] [26] [27] [28] have been discussed widely in the literature
and perform well against general model poisoning attacks
such as label-flipping attacks [16]. However, the adversary
can optimize poisoning strategies when the adversary has
knowledge of the aggregation methods [16] [17]. Such types of
attacks are called adaptive model poisoning attacks. During the
FL training, malicious clients can adaptively manipulate local
model parameters tailored to the aggregation rule. By being
well-designed, these local model parameters could bypass the
defence methods like Krum [26] and compromise the FL
training model.

In view of the above research issues, we are motivated
to design an efficient, robust aggregation method and defeat
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adaptive attacks. We first reformulate adaptive attacks and
discuss their main characteristics. We found that the defender
should reduce the attacker’s optimization cost functions to
defeat adaptive attacks. However, some existing defence meth-
ods like Krum or Muti-Krum [26] do not consider the strong
impact of the curse of model parameters’ high dimensionality.
The attacker may update partial parameters or infrequent
parameters. The attackers can cause negative effects when
the value of the cost function is not large. Therefore, the
adaptive attacks can bypass existing methods. On the other
hand, some methods [27] ignore the data heterogeneity. They
exclude potential malicious parameters or misclassified honest
parameters, which cause deviation from the optimal global
model. In this paper, we propose a Byzantine-robust FL
method, FedDet, which consists of two main steps. In the
first step, FedDet splits and groups local models by layers.
Then, the sliced parameters in one group are normalized by the
median of the norms. The first step, splitting, can decrease the
high dimensionality of parameters. Besides, splitting by layers
rather than random splitting [29] can keep the functionality of
different layers. The second step, normalization, considers all
parameters in the same group. We also discuss the certified
robustness of FedDet based on an existing certified radius
proposed by [30]. As an extension, we provide a detailed
security analysis of FedDet and give the upper bounds of
the perturbations given by the adaptive attacks. We evaluate
the performance of FedDet against six types of attacks. Ex-
periment results demonstrate that FedDet outperforms other
baseline works against adaptive attacks.

The main contributions of our work are summarized as
follows:

• We present a unified reformulation of existing adaptive
model poisoning attacks. The summary of the refor-
mulation can be used for related works to verify the
efficiency of their methods against adaptive attacks. To
the best of our knowledge, no existing works give such
a comprehensive discussion of state-of-the-art adaptive
model poisoning attacks.

• Based on our discussion of the main characteristics of
adaptive model poisoning attacks, we reveal the two main
causes of why existing defence methods are not efficient:
model parameters’ high dimensionality and data hetero-
geneity. Then we propose FedDet, consisting of two
steps, with the first step splitting overcoming the issue
of high dimensionality and the second step normalizing
overcoming the issue of heterogeneity.

• We evaluate FedDet against six designed adaptive attacks
tailored to it. From the results, FedDet significantly
outperforms baseline works against adaptive attacks. Be-
sides, we discuss the certified radius of FedDet. As an
extension, we provide a detailed security analysis of
FedDet and an existing robust aggregation method, Krum.
By comparing the upper bounds of the perturbations
caused by DNY-OPT attacks corresponding to these two
robust methods, we can see that FedDet outperforms
Krum according to the upper bounds.

II. RELATED WORKS

The principle of existing Byzantine-robust defences [26]
[27] is to train a global model with high performance, even if
there are some malicious clients.

Krum [26] attempts to select a representative as the aggre-
gated model update for every training round. Suppose there
are n chosen local clients in every training round. And m
clients among local clients are malicious. The score for the
ith client is calculated as si =

∑
wj∈Γi,n−m−2

∥wj − wi∥22,
where Γi,n−m−2 is the set of n−m−2 local clients that have
the smallest Euclidean distance to wi (clienti’s parameters).
So, the client with the smallest score will be selected as the
representative. This representative model update will be the
global model for the next training round.

Multi-Krum [26] is a variant of Krum. Multi-Krum collects
a set of clients with the smallest scores using Krum and repeats
this process for the remaining updates until the set has c
updates, such as n − c > 2m + 2. Then, it takes the average
among this set of clients.

Median [27] is a coordinate-wise aggregation rule. The
coordinate-wise median of sorted local models is selected
as the aggregated global model update. Instead of using
the mean value among local clients, this aggregation rule
considers the coordinate median value of the parameters as
the corresponding parameter in the global model for the next
iteration. The coordinate-wise median is agnostic to the actual
malicious rates.

Trimmed-mean [27] is another coordinate-wise aggregation
rule. Suppose the trimmed parameter is k < n

2 . The server
removes the k maximum and minimum coordinates in the
model updates and then uses FedAvg to aggregate the re-
maining parameters for the next training round. Trimmed-
mean relies on the assumption that the coordinate of the
attacker would either be the minimum or the maximum value
of the corresponding parameters. However, this assumption
does not hold for model poisoning attacks [30]. Therefore,
even a single attacker can compromise the trimmed mean.
Unlike the coordinate-wise median, the Trimmed-median uses
exact knowledge of the malicious rates.

III. REFORMULATION OF PREVIOUS ADAPTIVE ATTACKS

This section introduces four state-of-the-art adaptive attacks
that can optimize local model poisoning attacks for any given
aggregation rules. Although these adaptive attacks are pro-
posed in [16] [17], they do not have an identical formulation.
Out of convenience, We reformulate these adaptive attacks
and list a table I to describe the optimization formulations of
these attacks. In the following paragraphs, we give a detailed
description of the formulations. They can be used for any
work focusing on robust aggregation methods to verify the
robustness of their methods against adaptive attacks.

Static Optimization (STAT-OPT) Attack [16]: STAT-OPT
attacks consider the attacker’s objective to deviate global
model parameters the most towards the inverse of the direction
along which the global parameters would change without
attacks. Suppose that in one global training process, G denotes
a set of the aggregated global parameters without attacks,
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Adaptive attacks Optimization cost functions Constraints

STAT-OPT attacks max
w′
1,..,w

′
m

sT (G−G
′
)

s.t. G = fagr(w1, ..,wm,wm+1, ..,wn)

G
′
= fagr(w

′
1, ..,w

′
m,wm+1, ..,wn)

DNY-OPT attacks max
γ,∇p

∥G−G
′
∥2

s.t. G = favg(w1, ..,wm,wm+1, ..,wn)

G
′
= fagr(w

′
1, ..,w

′
m,wm+1, ..,wn)

w
′

i∈[m] = G+ γ∇p

Min-max attacks max
γ,i∈[m+1,n]

∥w
′
− wi∥2

s.t. w
′

i∈[m] = G+ γ∇p

∥w
′
− wi∥2 ≤ maximum

i,j∈[m+1,n]
∥wi − wj∥2

Min-sum attacks max
γ

∑
i∈[m+1,n] ∥w

′
− wi∥22

s.t. w
′

i∈[m] = G+ γ∇p∑
i∈[m+1,n] ∥w

′
− wi∥22 ≤ maximum

∑
i,j∈[m+1,n] ∥wi − wj∥22

TABLE I: Summary of reformulation of existing adaptive attacks

and G
′

denotes the compromised global parameters. sT is the
column vector of changing directions of all global parameters
without attacks. Then, the cost function sT (G − G

′
) (see

table I) measures the direction deviation. The attacker’s goal is
to maximize the value of sT (G−G

′
). w1, ..,wn denotes a set

of the model parameters shared by the clients in one training
process and fagr denotes the robust aggregation method,
which the attacker aims to compromise. The first m clients
w

′

1, ..,w
′

m are assumed to be compromised. The attacker aims
to find an optimal set of values for w

′

1, ..,w
′

m and substitute
for the benign parameters w1, ..,wm. After replacing these
benign parameters with malicious parameters w

′

1, ..,w
′

m, the
deviation between the compromised global parameters and the
benign global parameters in the directions can be maximized.

Dynamic Optimization (DYN-OPT) Attack [17]: DYN-
OPT attacks aim to decrease the similarity between compro-
mised and benign global models. The cost function is ∥G −
G

′∥2, where ∥∥2 is the L2-norm value. The attacker aims to
maximize the ∥G−G

′∥2 value (see table I). Unlike STAT-OPT
Attack, it restricts malicious models as w

′

i∈[m] = G + γ∇p,
where γ is the scaling factor and ∇p is the perturbation vector.
[17] introduces three types of perturbation vectors: Inverse
unit vector, Inverse standard deviation and Inverse sign. In
this work, we consider the Inverse sign. Other perturbation
vectors will be discussed in further works.

AGR-agnostic Attacks [17], Min-Max: Previous robust FL
algorithms attempt to distinguish malicious parameters from
benign ones based on two main criteria: 1) distances between
malicious and benign parameters such as cosine similarities
[31] [32], 2) difference in Lp-norms of malicious and benign
parameters. To bypass these robust FL algorithms, the attacker
must ensure that the malicious parameters lie close to the
cluster of benign parameters while maximizing the distance
or difference in Lp-norm from benign parameters. The cost
function is ∥w

′ − wi∥2 (see table I). The attacker aims
to maximize the distance of the malicious parameters from
benign parameters. The constraint is the distance from benign
parameters should be smaller than the maximum of benign
parameter distances.

AGR-agnostic Attacks [17], Min-Sum: Min-Max attack

maximises the distance of malicious updates from benign
model updates while ensuring the maximum distance from
other benign updates is upper bounded by the maximum
distance between any two benign updates. Like Min-Max,
Min-sum ensures that the sum of squared distances of mali-
cious gradients from all the benign updates is upper bound
by the sum of the squared distances of any benign up-
dates from the other benign updates. The cost function is
max
γ

∑
i∈[m+1,n] ∥w

′ − wi∥22 (see table I). The constraint is∑
i∈[m+1,n] ∥w

′ − wi∥22 ≤ maximum
∑

i,j∈[m+1,n] ∥wi −
wj∥22.

IV. PROPOSED DEFENCE APPROACHES

According to table I, the defender should reduce the opti-
mization objectives to defeat the adaptive attacks. For example,
the L2-norm distance of the robust aggregated G

′
should be

close to the benign G when the defender attempts to reduce the
negative impact of DNY-OPT attacks. As for Min-max or Min-
sum attacks, the defender should try to reduce the distance be-
tween the malicious and benign parameters ( max

γ,i∈[m+1,n]
∥w

′ −

wi∥2 or max
γ

∑
i∈[m+1,n] ∥w

′ −wi∥22). However, there are two

root causes why existing robust methods fail to defend: high
dimensional parameters and data heterogeneity.

(1) the High dimensional parameters. The attacker can
only choose partial parameters to alter or poison. In [33],
the attacker only poisons the unused or infrequently updated
parameters by benign clients. Such attack behaviours are more
stealthy when the training models contain many parameters.
The attacker can cause negative impacts when the value of
optimization objectives is not large. Therefore, the attacker
can bypass existing methods based on distance or similarity
comparisons of full model parameters, such as Krum [26],
Multi-Krum [26], Flame [31], FLtrust [32].

(2) the data heterogeneity. Some previous methods are
parameter-wise, like Median [27] and Trimmed-mean [27].
However, these methods may not consider the cause of data
heterogeneity. The Median selects a median value to rep-
resent the global parameter. On the other hand, Trimmed-
mean prunes a list of potential malicious parameters. Hence,
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the aggregated model may deviate from the optimal training
model. Therefore, robust methods should try to take all clients’
parameters into consideration.

Based on the above discussion, we propose FedDet, a novel
Byzantine-robust FL algorithm, FedDet. This robust method
groups the clients’ parameters by layers. Then, it normalizes
the layer-wise parameters by the median norms. Using this
layer-wise robust aggregation method, FedDet can avoid the
curse of high dimensions. Unlike [29] splitting the parameters
with random fragments, we choose to split the parameters
by layers. Our splitting skill can keep the functionality of
layers compared to random splitting. Besides, the layer-wise
normalization considers all clients’ corresponding parameters
rather than filtering potential malicious or misclassified honest
parameters.

Now, we describe the details of FedDet. Suppose that the
local model is a neural network with l layers.

(1) Splitting and Grouping the model parameters
w{1,...,n} by layers.

The server collects a list of parameters of ith layer from all
clients w{1,...,n}, i.e.,

Gi∈[l] = {w1,i,w2,i, ...,wn,i}, (1)

The server collects all the groups of the split parameters
G{1,...,l}.

(2) Normalizing the ith layer clients’ parameters
w{1,...,n},i by the median L2-norm value.

Firstly, the server collects a list of the L2-norm values of
every layer Li from all clients w{1,...,n}, i.e.,

Li∈[l] = {∥w1,i∥2, ∥w2,i∥2, ..., ∥wn,i∥2}, (2)

where, wj,i denotes the i-th layer of wi ∈ w{1,...,n}, and
∥wj,i∥2 denotes the L2-norm values of the corresponding wj,i.
And Li∈[l] is the set containing all the L2-norm values. Then,
it sorts out all the clients by their L2-norm in ascending order,
i.e.,

Li∈[l] = {∥ws1,i∥2, ∥ws2,i∥2, ..., ∥wsn,i∥2}. (3)

Here, ∥ws1,i∥2 ≤ ∥ws2,i∥2 ≤ ... ≤ ∥wsn,i∥2. Then, the
server selects the median value med(Li∈[l]) of Li∈[l]. The
server collects all the median values corresponding to each
layer. The collection of med(Li∈[l]) is represented as follows,

H
′
= {med(L1),med(L2), ...,med(Ll)}. (4)

Then, the server scales the L2-norm values of all layer’s
parameters L{1,...,l} of clients by H

′
. The scaled L2-norm

values of the ith layer’s updates can be represented as follows,

L̃i∈[l] =

{
med(Li)

∥w1,i∥2
,
med(Li)

∥w2,i∥2
, ...,

med(Li)

∥wn,i∥2

}
. (5)

Then, the weighted updates of the ith layer can be repre-
sented as follows,

{
med(Li)

∥w1,i∥2
w1,i,

med(Li)

∥w2,i∥2
w2,i, ...,

med(Li)

∥wn,i∥2
wn,i

}
. (6)

We repeat the same process for all l layers. Then, the server
executes the FedAvg algorithm on each layer to obtain the new
global model.

V. ADAPTIVE ATTACKS

In this section, we leverage the adaptive attacks discussed
in III to design adaptive untargeted attacks for the proposed
defence method.

A. STAT-OPT tailored to FedDet

The idea is to instantiate the aggregation rule fagr with our
proposed aggregation rule, FedDet in the poisoning frame-
work. So we formulate a specific optimization problem using
table. I (STAT-OPT attacks) as follows:

l∑
i=1

max
w′

1,i,...,w
′
m,i

sTi (Gi −G
′

i). (7)

As the proposed aggregation rule is layer-wise, unlike Krum
[26] or Median [27], we solve the optimization layer by layer
and optimize w

′

1,i, ...,w
′

m,i, where i denotes the ith layer. Then
we concatenate all w

′

1,i, ...,w
′

m,i by layers and get the final
solutions w

′

1, ...,w
′

m.
In IV, the proposed aggregation rule for ith layer can be

written as follows:

Gi =
1

n

(
med(Li)

∥w1,i∥
w1,i +

med(Li)

∥w2,i∥
w2,i+, ...,+

med(Li)

∥wn,i∥
wn,i

)
.

(8)
We denote by ej,i =

wj,i

∥wj,i∥ . So Eq. (8) can be rewritten as
follows:

Gi =
1

n

∑
j∈[1,n]

med(Li)ej,i. (9)

Let e
′

j,i(j ∈ [1,m]) denote the poisoned unit vector sent by
malicious clients. So, the poisoned aggregated parameters can
be rewritten as follows:

G
′

i =
1

n

 ∑
j∈[1,m]

med(L
′

i)e
′

j,i +
∑

j∈[m+1,n]

med(L
′

i)ej,i

 ,

(10)
where L

′

i is {∥w
′

1,i∥2, ..., ∥w
′

m,i∥2, ∥wm+1,i∥2..., ∥wn,i∥2}
and med(L

′

i) is the new median after poisoning.
We substitute Eq. (9) and (10) into (7) and get the following

optimization problem:

l∑
i=1

ℓ(e
′

1,i, ..., e
′

m,i) =

1

n

l∑
i=1

max
e′1,i,...,e

′
m,i

sTi (
∑

j∈[1,n]

med(Li)ej,i −
∑

j∈[1,m]

med(L
′

i)e
′

j,i

−
∑

j∈[m+1,n]

med(L
′

i)ej,i).

(11)
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We consider a strong attacker who knows ej∈[1,n],i∈[1,l],
e
′

j∈[1,m],i∈[1,l], and fagr. We use a standard gradient ascent
approach to solve the optimization problem 11. We optimize
e
′

1,i, ..., e
′

m,i one by one. When optimizing e
′

j,i, all other e
′

k ̸=j,i

are fixed. The steps are as follows:
1) : Computing the gradient ∇e

′
i
ℓ with respect to e

′

i: As
it is hard to compute this gradient directly, we use a standard
method, a zeroth-order method [34], to estimate this gradient
as follows:

∇e
′
j,i
ℓ ≈

ℓ(e
′

j,i + γu)− ℓ(e
′

j,i)

γ
· u, (12)

where ℓ denotes the eq. (11). Where u is a random vector
sampled from the multivariate Gaussian distribution N (0, σ2I)
and γ>0 is a smoothing parameter.

2) : Updating e
′

j,i: We multiply the estimated gradient by
a learning rate η and add it to e

′

j,i. Then we normalize e
′

j,i by
its L2 norm value to ensure it is a unit vector.

e
′

j,i = e
′

j,i + η∇e
′
j,i
ℓ. (13)

When estimating the gradient ∇e
′
j,i
ℓ and updating e

′

j,i, we

fix the value of med(L
′

i) for simplicity. The med(L
′

i) value
will be updated after e

′

j,i is updated.
3) : Repeating the above two steps for n iterations. The

w
′

j,i = med(L
′

i) · e
′

j,i after e
′

j,i is solved.
4) : Repeating the gradient ascent process over all

e
′

1,i, ..., e
′

m,i.
The procedure is summarized in Algorithm. (1). We initial-

ize w
′

1,i, ...,w
′

m,i using Trim attack in [16].

Algorithm 1: STAT-OPT tailored to FedDet

Input: w
′

1,i, ...,w
′

m,i, l, si
// w

′

1,i, ...,w
′

m,i are a list of initialized
malicious updates; l is the number
of layers; si is the direction
along which the global parameter
would change without attacks.

Output: w
′

1,i, ...,w
′

m,i

1 for i ∈ [0, l] // optimization per layer
2 do
3 for j ∈ [1,m] // optimization e

′

j,i one by
one

4 do
5 for iterations ∈ n do
6 Random sample u N (0, σ2I);

∇e
′
j,i
ℓ ≈ ℓ(e

′
j,i+γu)−ℓ(e

′
j,i)

γ · u;

e
′

j,i = e
′

j,i + η∇e
′
j,i
ℓ;

7 end
8 w

′

j,i = med(L
′

i) · e
′

j,i;
9 end

10 end

B. DYN-OPT tailored to FedDet

As discussed in III, DYN-OPT attacks restrict the malicious
clients as w

′

i∈[m] = G + γ∇p, where ∇p is the pertur-
bation vector. We instantiate the aggregation rule fagr in
table. I (DNY-OPT attacks) with our proposed aggregation
method. Unlike STAT-OPT attacks, DYN-OPT is a plug-in
adaptive attack framework for robust aggregation algorithms.
We use Algorithm.1 in [17] to solve the optimal γ value.

We assume a strong attacker who knows wi∈[1,n] and fagr.
Hence, the attackers can estimate the perturbation vectors
based on wi∈[1,n]. We also consider a weaker attacker who has
no knowledge of wi∈[1,n] and fagr. We compare the efficiency
of FedDet in these two different adversary models in the
experiment VIII-C.

C. AGR-agnostic attacks tailored to FedDet

AGR-agnostic attacks do not know the aggregation rules.
So, these agnostic attacks can be applied in various robust
aggregation algorithms. We use the attack methods in [17] to
test the proposed FedDet.

We assume a strong attacker who knows wi∈[1,n] and fagr.
We also consider a weaker attacker who has no knowledge
of wi∈[1,n] and fagr. We consider both adversary models for
evaluating FedDet’s efficiency.

VI. SECURITY ANALYSIS OF FEDDET

To conduct the security analysis of FedDet, we fit FedDet
into the theoretical framework of [30]. Firstly, we briefly
describe the definition of poisoning attacks and the certified
radius proposed by [30]. Here are the notation, definitions, and
assumptions.

Notation 1. Let Z be the data domain and Dt be the
data sampled (not necessarily i.i.d) from Z at iteration t.
Let L : Θ × Z∗ → R be a loss function and Θ be the
class of models with d dimensions. Let f = (G,A, λ(t))
be the federated learning protocol with update algorithm
A : wt ∈ Rd → Rd and G(G,D, t) → wt that takes a model
G and outputs the update wt. Gt+1 = Gt−λ(t)A(wt) is the
updates rule of the FL protocol. For the proposed FedDet,
A(wt) = wt.

Definition 1. (poisoning attacks) Let f∗ = (G′
,A, λ(t))

be the poisoned federated learning protocol with poisoned
G′
(G,D, t) → w

′t. We have G′
(G,D, t) = G(G,D, t) + ϵ

with ∥ϵ∥1 ≤ ρ (or ∥ϵ∥2 ≤ ρ).

Notation 2. We use (G0, ..., Gt) and (G
′0, ..., G

′t) to denote
the global model trained through a benign G and a poisoned
G

′
respectively. We use (w1, ...,wt+1) and (w

′1, ...,w
′t+1) to

denote the updates produced by a benign G belongs to global
models (G0, ..., Gt) and by a poisoned G

′
belongs to global

models (G
′0, ..., G

′t). We use (w∗1, ...,w∗t+1) to denote the
poisoned updates produced by a poisoned G

′
belongs to

models (G
′0, ..., G

′t).

Assumption 1. A protocol f(G,A, λ(t)) is a c-layerwise-
Lipschitz. Specifically, for any layer index i ∈ [L]

∥G(G
′t,D, t)[i]− G(Gt,D, t)[i]∥ ≤ c · ∥G

′t −Gt∥. (14)
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Theorem 1. Let FedDet be a c-layerwise-Lipschitz protocol
on a dataset D. Then R(ρ) = Λ(T )(1+dc)Λ(T )ρ is a certified
radius for f . [30] Namely,

∥G
′T −GT ∥ ≤ Λ(T )(1 + dc)Λ(T )ρ. (15)

From Equation. (15), it is not difficult to see the certified
radius R(ρ) relies on ρ when the Λ(T ), l and c are fixed. Now,
we analyze how these adaptive attacks can disturb FedDet with
maximum ρ. We attempt to give an upper bound on ρ in the
following subsections.

A. Security analysis for FedDet against STAT-OPT attacks

In subsection V-A, we discuss how STAT-OPT can be
adapted to FedDet. Based on Equation. (8), we have the benign
aggregated parameters per layer:

Gi =
1

n
(
med(Li)

∥w1,i∥
w1,i+

med(Li)

∥w2,i∥
w2,i+, ...,+

med(Li)

∥wn,i∥
wn,i),

(16)
with Li = {∥w1,i∥, ..., ∥wm,i∥, ..., ∥wn,i∥} and

med(Li) = l. The poisoned aggregated parameters per
layer are as follows:

G
′

i =
1

n
(
med(L

′

i)

∥w′
1,i∥

w
′

1,i+
med(L

′

i)

∥w′
2,i∥

w
′

2,i+, ...,+
med(L

′

i)

∥wn,i∥
wn,i),

(17)
with Li = {∥w′

1,i∥, ..., ∥w
′

m,i∥, ..., ∥wn,i∥} and
med(L

′

i) = l
′
.

Assumption 2. To avoid the impact of attack being re-
stricted, ∥w′

1,i∥, ..., ∥w
′

m,i∥ should be close to the median
value of {∥w′

1,i∥, ..., ∥w
′

m,i∥, ..., ∥wn,i∥}. Hence, we assume
that med(L

′

i) = ∥w′

1,i∥ = ∥w′

2,i∥ =, ...,= ∥w′

m,i∥ = l
′
.

Theorem 2. Suppose FedDet is a c-layerwise-Lipschitz pro-
tocol on dataset D and Assumption 2 holds. Suppose m
out of n clients are potentially malicious at one round. The
upper bound on perturbation ρ caused by STAT-OPT attack
on FedDet is given as

ρ ≤ n

n− cm
|w1,i −Gi−1|+

cm

n− cm
|Gi−1|

+
c

n− cm

∣∣∣∣∣
n∑

i=m+1

∥wi∥max

∥wi,i∥
wi,i −

n∑
i=1

l

∥wi,i∥
wi,i

∣∣∣∣∣ . (18)

For the proof of theorem. 2, please see appendix. X-A.

B. Security analysis for FedDet against DNY-OPT attacks

According to the definition of fedAvg [6], we have the
benign aggregated parameters per layer as follows:

Gi =
1

n

n∑
i=1

wi,i. (19)

Based on Equation. (8), we have the poisoned aggregated
parameters per layer as follows:

G
′

i =
1

n
(
med(L

′

i)

∥w′
1,i∥

w
′

1,i+
med(L

′

i)

∥w′
2,i∥

w
′

2,i+, ...,+
med(L

′

i)

∥wn,i∥
wn,i).

(20)

Theorem 3. Suppose FedDet is a c-layerwise-Lipschitz pro-
tocol on dataset D and Assumption 2 holds. Suppose m out
of n clients are potentially malicious at one round. The upper
bound on perturbation ρ caused by DNY-OPT attack (DPAs
and PGA attacks) on FedDet is given as

ρ ≤ ∥w1,i−Gi−1∥+
c

n− cm
·

n∑
i=m+1

∥( l
′

∥wi,i∥
wi,i−wi,i)∥.

(21)

For the proof of theorem 3, please see appendix. X-B.

C. Security analysis for FedDet against Agnostic attacks

In section III, we introduce AGR-agnostic attacks. Now, we
discuss the possible upper bound on ρ for the Min-max attacks.

Theorem 4. Suppose m out of n clients are potentially
malicious at one round. The upper bound on perturbation ρ
caused by Min-max attacks on FedAvg is given as

ρ ≤ ∥w1,i −Gi−1∥+ max
i,j∈[m+1,n]

∥wi −wj∥. (22)

The security analysis of the Min-sum attacks is similar to
that of the Min-max attacks.

Theorem 5. Suppose m out of n clients are potentially
malicious at one round. The upper bound on perturbation ρ
caused by Min-sum attacks on FedAvg is given as

ρ ≤
√

1

n−m
·√√√√(

n∑
i=m+1

∥w1,i −Gi−1∥2 +max
∑

i,j∈[m+1,n]

∥wi −wj∥2).

(23)

For the proof of theorem. 4 and theorem. 5, please see
appendix. X-C.

D. Security analysis of Krum against DNY-OPT attacks

As a comparison, we also establish the security analysis of
Krum [26]. In [16] [17], they design similar adaptive attack
strategies to compromise Krum. So, the discussion of the
security analysis of Krum does not need to be separated into
different situations.

According to the definition of Krum [26], malicious clients’
parameters w

′
should satisfy that the sum of the squared

distances to its closest n − m parameters is the smallest if
the malicious parameters w

′
could be selected as the next

representative global parameters. Namely,
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Fig. 1: Comparison between the real distance ∥G′T − GT ∥
and certified radius

∑
i∈Γn−m−2

w
′

∥w
′
−wi∥ ≤ min

j∈[m+1,n]

∑
i∈Γn−m−2

w

∥wj −wi∥, (24)

where i ∈ Γb
w′ denotes a set of parameters that are closest

to w
′
.

Theorem 6. Suppose m out of n clients are potentially
malicious at one round. The upper bound on perturbation ρ
caused by adaptive attacks on Krum is given as

ρ ≤ 1

n− 2m− 1
min

j∈[m+1,n]

∑
i∈Γn−m−2

w

∥wj,i −wi,i∥

+ max
i∈[m+1,n]

∥wi,i −Gi−1∥.
(25)

For the proof of theorem. 6, please see appendix. X-D.

E. Further analysis

We further analyse the robust aggregation methods’ upper
bounds on perturbation ρ under various adaptive attacks. We
give a table II that collects all the upper bounds on ρ.

1) FedDet versus Krum: We notice that the right side of
3 in table II can be further replaced as below:

≤ ∥w1,i −Gi−1∥+
cn

n− cm
max
i∈[1,n]

∥( l
′

∥wi,i∥
wi,i −wi,i)∥.

(26)
The coefficient of the right part of (26) cn

n−cm is always
less than one when c < 1. In table. II, the coefficient of
the right part of the right side of (6) n−m−2

n−2m−1 is greater than
one when m > 1. Besides, The left part of the right side of
(6) maxi∈[m+1,n] ∥wi,i − Gi−1∥ is larger than the left part
of (26) ∥w1,i − Gi−1∥, so the upper bound on ρ of Krum
is larger than the upper bound of FedDet against DNY-OPT
attacks. Therefore, theoretically, Krum is more likely to be
compromised than FedDet.

2) Min-max versus Min-sum: Agnostic attacks can be
performed in any robust aggregated FL system since these
attack strategies do not require knowledge of the aggregation
method. In Table.II, the right side of (5) can be further replaced
as
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Fig. 2: Performance of FedDet against STAT-OPT attacks,
PDAs and PGA attacks

ρ ≤√
( max
i∈[m+1,n]

∥w1,i −Gi−1∥2 + max
i,j∈[m+1,n]

∥wi −wj∥2),

(27)

then we have

ρ2 ≤ ( max
i∈[m+1,n]

∥w1,i −Gi−1∥2 + max
i,j∈[m+1,n]

∥wi −wj∥2).
(28)

In Table.II, 4 can be further converted to

ρ2 ≤ (∥w1,i −Gi−1∥+ max
i,j∈[m+1,n]

∥wi −wj∥)2

≤ ∥w1,i −Gi−1∥2 + max
i,j∈[m+1,n]

∥wi −wj∥2

+ 2 · ( max
i,j∈[m+1,n]

∥wi −wj∥ · ∥w1,i −Gi−1∥).

(29)

Compared to the right side of (28) and (29), Min-max
attacks may incur worse perturbation errors to aggregation
methods as the upper bound on perturbation ρ caused by Min-
max attacks has an extra item 2·( max

i,j∈[m+1,n]
∥wi−wj∥·∥w1,i−

Gi−1∥).
3) DNY-OPT attacks versus Agnostic attacks: In theorem

4, we propose the perturbation error caused by Min-max
attacks on FedAvg, which is not robust to malicious attacks.
This perturbation can be reduced when robust aggregation
methods are applied in FL training. It is not difficult to see
that the coefficient of the right part of the right side of (6)
is larger than the right side of (4) in the table. II. Therefore,
Krum is more vulnerable to DNY-OPT attacks than Min-max
attacks.

4) Analysis for the upper bound of DNY-OPT attacks
against FedDet: Now we analyse the real distance ∥G′t−Gt∥
and estimate the certified radius. The theorem 1 proposed by
[30] analyzes the certified radius. We combine the theorem 1
and the theorem 3. Then we get the certified radius of FedDet
against DNY-OPT attacks as follows:

∥G
′T −GT ∥ ≤ Λ(T )(1 + dc)Λ(T )(∥w1,i −Gi−1∥

+
c

n− cm
·

n∑
i=1

∥( l
′

∥wi,i∥
wi,i −wi,i)∥).

(30)
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Defense methods Adaptive attacks Upper bound on perturbation ρ

FedDet
STAT-OPT attacks ρ ≤ n

n−cm |w1,i −Gi−1|+ cm
n−cm |Gi−1|+ c

n−cm

∣∣∣∑n
i=m+1

∥wi∥max

∥wi,i∥ wi,i −
∑n

i=1
l

∥wi,i∥wi,i

∣∣∣ 2

DNY-OPT attacks ρ ≤ ∥w1,i −Gi−1∥+ c
n−cm ·

∑n
i=1 ∥(

l
′

∥wi,i∥wi,i −wi,i)∥ 3

Agnostic methods
Min-max attacks ρ ≤ ∥w1,i −Gi−1∥+ max

i,j∈[m+1,n]
∥wi −wj∥ 4

Min-sum attacks ρ ≤
√

1
n−m (

∑n
i=m+1 ∥w1,i −Gi−1∥2 +max

∑
i,j∈[m+1,n] ∥wi −wj∥2) 5

Krum DNY-OPT attacks ρ ≤ maxi∈[m+1,n] ∥wi,i −Gi−1∥+ 1
n−2m−1 minj∈[m+1,n]

∑
i∈Γn−m−2

w
∥wj,i −wi,i∥ 6

TABLE II: Comparison of perturbation ρ for adaptive attacks

We compare the real distance between G
′T and GT and

the certified radius at T iteration. To estimate this certified
radius, We set Λ(T ) = 0.001, which is the learning rate
of the FL training. (1 + dc)Λ(T ) is nearly 1 when Λ(T ) is
a very small number. We get the corresponding values for
calculating

∑n
i=1 ∥(

l
′

∥wi,i∥wi,i − wi,i)∥ at iteration T . We
record the benign GT and poisoned G

′T to calculate the real
distance ∥G′T −GT ∥. We assume a 30% malicious rate at one
iteration. This comparison is implemented in the FEMNIST
dataset. In figure 1, we can see that for T ∈ [0, 500] epoch,
the real distance is always under the estimated certified radius,
which means the certified radius 30 is a valid upper bound.
Besides, the real distance and the certified radius show similar
trends as the training epochs.

VII. EVALUATION SETUP

In this work, similar to other FL model poisoning or
defences-related works, we focus on image classification tasks.
It is noted that our design is general and can be applied to
other FL-based tasks. We use two natural image recognition
datasets, FEMNIST and CIFAR10. Natural image recognition
may require security guarantees. For example, in a federated
learning-based recommendation system, natural images on
social websites can be poisoned with sensitive labels, which
can cause wrong classification or unfairness.

FEMNIST [35] is a 62-class non-IID, class-imbalanced
classification task with 3400 clients and 671585 grey-scale
images. Each client has their own handwritten digits or letters
(52 for upper and lower case letters and ten classes for digits).
We select 24 out of 3400 clients for federated training; each
client has 1000 samples for local training. We use a four-layer
CNN as the local training model.

CIFAR10 [36] is a 10-class class-balanced classification task
with 60,000 RGB images, each of size 32 × 32. This class-
balanced dataset has the same number of samples per class.
Each class of CIFAR10 has 6,000 images. We use 25 clients,
each with 1,000 samples, use validation and test data of sizes
5,000. We use Alexnet [37] as the global model architecture.

We use a batch size of 250 and an SGD optimizer with
learning rates of 0.001 for FEMNIST. We use a batch size
of 250 and an SGD optimizer with learning rates 0.05 for
CIFAR10. We repeat the evaluation five times for each attack

scenario and use the average as the final result. We conducted
five repeated experiments for each attack scenario and took
the average value.

VIII. EVALUATION RESULTS

In this section, we test the efficiency of FedDet against all
six designed adaptive untargeted attacks and compare it with
other well-known baseline robust aggregation methods. We use
PyTorch to implement all evaluations.

A. Robustness of FedDet

In figure 2, we evaluate the effectiveness of FedDet under
different malicious rates. STAT-OPT attacks have minor im-
pacts on the performance of FedDet. Under STAT-OPT attacks,
the accuracy of FedDet decreases from 60.43% to 54.00%,
59.60% and 57.11% after 100 global epochs when 5%, 12.5%
and 20% malicious clients respectively. As discussed in V-A,
this optimization-based model poisoning attack starts from a
reference initialized w

′

1,i, ...,w
′

m,i and keeps updating. It is
cumbersome to find the optimal initialization for this attack.
Poor initialization might negatively affect the attack perfor-
mance.

B. Comparison with previous methods

We compare FedDet with other robust aggregation schemes,
Krum [26] , Multi-Krum [26], Trimmed-Mean [27] and Me-
dian [27].

In VI-B and VI-D, we proposed the upper bounds on
perturbation ρ with which the DNY-OPT attacks can disturb
the local updates. In VI-E, we compare these two upper bounds
of FedDet and Krum and draw a conclusion that Krum is
more vulnerable to DNY-OPT attacks than FedDet as ρ of
Krum is larger. Figure 3(a)(b)(c)(d) validate our discussion. In
figure 3(a), FedDet outperforms Krum under all situations. For
example, when the malicious rate is 20%, the main accuracy
of FedDet is 41%, but for Krum, the accuracy decreases to
30%. Krum fails the training when half of the clients are
malicious. Figure 3(b)(c)(d) shows similar results. FedDet is
still robust when the malicious clients’ rates are 12.5% and
20%, but Krum has poor accuracy. FedDet also performs better
than Krum with 30% malicious rates. The main accuracy of
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Fig. 3: Comparison of the robustness of FedDet and other well-known robust aggregation methods against DNY-OPT attacks
in two datasets.

Krum keeps below 20% with all malicious rates. Besides,
according to 26 in VI-E, it is not difficult to see that the
upper bound of ρ is larger when m is larger. Namely, larger
amounts of malicious clients may cause a worse impact on
FedDet. The results of figure 3(a)(b)(c)(d) are also in line with
this analysis. For example, in figure 3(a), when the malicious
rate increases from 12.5% to 20%, the main accuracy of
FedDet decreases from 52% to 41%. And in figure 3(b)(d),
the main accuracy decreases from 37% to 15% when the
malicious rate increases from 12.5% to 30%. In figure 3(e)-
(h), we can see that FedDet is competitive with Multi-Krum.
In figure 3(e), FedDet achieves better performance when the
malicious rate is 12.5%, but Multi-krum has higher accuracy
with 20% malicious rate. According to figure 3(j)(k)(l), FedDet
is also more robust than Trimmed-Mean, which uses perfect
knowledge of malicious client rates. From figure 3(n)(o)(p),
FedDet is a little more robust than another agnostic method,
Median, which is agnostic to the actual malicious clients’ rates.

Remark: According to 26 in VI-E, it is not difficult to
see that the upper bound of ρ is larger when m is larger.

Namely, larger amounts of malicious clients may cause a
worse impact on FedDet. Similar to other compared baseline
works (Krum, Multi-krum, Median and Trimmed-Mean), the
performance of FedDet is gradually degraded as the portion
of adversaries increases. However, Krum only satisfies the
resilience property under the assumption 2f+2 < n, where f
denotes the number of adversaries and n denotes the number
of all clients. When the portion of adversaries is above 50%,
Krum fails to work. On the other hand, FedDet can achieve a
reasonable performance (see Figure. 3(a) in the manuscript).
Besides, FedDet has a better performance compared to Median
and Trimmed-Mean with 12.5%, 20% and 30% portion of
adversaries.

Now, we compare the robustness of FedDet with other
aggregation methods against Min-max and Min-sum attack
situations. From figure 4, FedDet outperforms other robust
methods in most situations. According to the test results in
the femnist data set in figure 4, FedDet achieves the best
main accuracy compared to the other four robust aggregation
methods when the malicious rate of the agnostic attacks is
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Fig. 4: Comparison of the robustness of FedDet and other well-known robust aggregation methods against min-max and min-
sum attacks in two datasets.

12.5%. FedDet performs similarly to other methods with 30%
malicious rate in the femnist dataset. Further, in the aforemen-
tioned section VI-E3, we discuss Krum is more vulnerable to
DNY-OPT attacks than Min-max or Min-sum attacks. From
figure 3(a)(b) and figure 4(a)(b)(c)(d), the results validate our
points. For example, according to the results of figure 3(a) and
figure 4(a)(c), with the same malicious rate 12.5%, Krum can
still achieve a good main accuracy under the agnostic attacks,
but Krum fails to defend DNY-OPT attacks. Figure 3(b)(c)(d)
and figure 4(b)(d) show similar results. Krum fails to defend
against DNY-OPT attacks in all the situations, but it keeps a
27% accuracy under the Min-max attacks when the malicious
rate is 12.5%.

C. Situations when the adversary has no knowledge of benign
updates

In the sections above, we assume the malicious clients have
full knowledge of the benign clients, which is a strong adver-
sary model. However, the malicious clients rarely access be-
nign updates from clean clients or the central server. Therefore,

the malicious clients should store the historical benign updates
locally as alternatives when they attempt to attack. Now, we
discuss this weaker adversary model in which the benign
updates are agnostic to the adversary. In V, we mentioned
that in the six attack strategies, the strong attacker knows
wi∈[1,n]. But in the limited attack strategies, the attacker
only knows wi∈[m+1,n]. Hence, manipulating the Byzantine is
based on wi∈[m+1,n]. In figure 5, we evaluate the performance
of FedDet under the weaker adversary model. Roughly speak-
ing, FedDet is more vulnerable to strong adversary attacks.
For example, in figure 5(a), the main accuracy of FedDet
can achieve 60% with 12.5% malicious rates in the weaker
adversary model compared to 52% in the strong adversary
model. In figure 5(j), FedDet can have a 30% accuracy with
30% malicious rates in the weaker model compared to 15%
accuracy in the strong model.

D. Remarks on Existing Robust Aggregation Algorithms

In this section, we discuss the pros and cons of FedDet
compared to other baseline works in terms of different char-



11

0 50 100 150 200 250 300
epoch

0
10
20
30
40
50
60

ac
cu

ra
cy

DNY-OPT attacks
12.5% mr_unknown
20% mr_unknown
30% mr_unknown
12.5% mr_known
20% mr_known
30% mr_known

(a) Feminst

0 50 100 150 200 250 300
epoch

0

20

40

60

80

ac
cu

ra
cy

min-max attacks

12.5% mr_unknown
20% mr_unknown
30% mr_unknown
12.5% mr_known
20% mr_known
30% mr_known

(b) Feminst

0 50 100 150 200 250 300
epoch

0

20

40

60

ac
cu

ra
cy

min-sum attacks

12.5% mr_unknown
20% mr_unknown
30% mr_unknown
12.5% mr_known
20% mr_known
30% mr_known

(c) Feminst

0 50 100 150 200 250 300
epoch

10
15
20
25
30
35
40

ac
cu

ra
cy

DNY-OPT attacks
12.5% mr_unknown
12.5% mr_known

(d) Cifar

0 50 100 150 200 250 300
epoch

10
15
20
25
30
35
40

ac
cu

ra
cy

min-max attacks
12.5% mr_unknown
12.5% mr_known

(e) Cifar

0 50 100 150 200 250 300
epoch

10
15
20
25
30
35
40

ac
cu

ra
cy

min-sum attacks
12.5% mr_unknown
12.5% mr_known

(f) Cifar

0 50 100 150 200 250 300
epoch

10
15
20
25
30
35
40

ac
cu

ra
cy

DNY-OPT attacks
20% mr_unknown
20% mr_known

(g) Cifar

0 50 100 150 200 250 300
epoch

10

15

20

25

30

ac
cu

ra
cy

min-max attacks
20% mr_unknown
20% mr_known

(h) Cifar

0 50 100 150 200 250 300
epoch

10
15
20
25
30
35

ac
cu

ra
cy

min-sum attacks
20% mr_unknown
20% mr_known

(i) Cifar

0 50 100 150 200 250 300
epoch

10
15
20
25
30
35

ac
cu

ra
cy

DNY-OPT attacks
30% mr_unknown
30% mr_known

(j) Cifar

0 50 100 150 200 250 300
epoch

10

15

20

25

30

ac
cu

ra
cy

min-max attacks
30% mr_unknown
30% mr_known

(k) Cifar

0 50 100 150 200 250 300
epoch

10

15

20

25

30

ac
cu

ra
cy

min-max attacks
30% mr_unknown
30% mr_known

(l) Cifar

Fig. 5: Performance of FedDet against DNY-OPT attacks, min-max attacks and min-sum attacks when the adversary has partial
knowledge of wi∈[1,n]

Agnostic to the actual corruption level Expected Time Complexity
Krum [26] No O(n2 · d)

Multi-krum [26] No O(mn2 · d)
Trimmed-Mean [27] No o(n · d)

Median [27] Yes o(n · d)
FedDet Yes O(n · n

l )

TABLE III: Comparison of Existing Robust Aggregation Algorithms

acteristics. Unlike Krum, Multi-krum, and Trimmed-Mean,
FedDet and Median do not require the exact knowledge of the
corruption level of FL systems, which are more realistic in the
real world as the defender has no access to know the attacker’s
actions. The expected time complexity of Krum is O(n2 · d),
where n is the number of selected clients in one training
iteration and d is the dimension of the parameter vectors.
The parameter server computes the squared distance between
a client’s vector with the resting parameters’ vectors (O(n ·d).
Then, the parameter server repeated this process for all se-
lected clients (O(n)). Thus, the square distance computing
time is O(n2 · d). After computing, the server selects the
first n − f − 1 of the distances for the clients (O(n) with
Quickselect) and repeats the process for all clients (O(n2)).
Therefore, the expected time complexity for Krum is O(n2 ·d).
For Multi-krum, a variant of Krum, selects the m ∈ {1, ..., n}
vectors with the smallest sum of distances. m varies between
1 and n. Thus, the expected time complexity of Multi-krum
is O(mn2 · d). Trimmed-Mean sorts (Quicksort) the values of
all clients’ vectors in dimension (O(n · d)). Similarly, Median

selects the median value of all client vectors in dimension with
Quickselect (O(n · d)). For FedDet, it computes the L2-norm
values of split client vectors (O(n· nl )). Then, FedDet sorts the
norm values (Quicksort) and selects the median value (O(n)).
Thus the expected time complexity of FedDet is O(n · n

l ).
From the above analysis, we can see that compared to Krum
and Multi-krum, Trimmed-Mean, Median and FedDet have
less expected time complexity. The summary of the remarks
is shown in the table. III.

IX. CONCLUDING REMARKS

Federated learning holds great potential in providing privacy
for large amounts of distributed end devices. However, it
is vulnerable to adaptive poisoning attacks. Existing defence
methods did not consider the causes of model parameters’ high
dimensionality and data heterogeneity. In this work, we pro-
posed a novel Byzantine-robust federated learning, FedDet to
solve the problem. FedDet can overcome this issue with high
dimensionality and keep the functionality of layers. During
the robust aggregation, FedDet normalizes every slice of local



12

models by the median norm value rather than excluding some
clients, which can avoid deviation from the optimal aggregated
model. In addition, we presented a theoretical security analysis
model and conducted an extensive security analysis of FedDet
and the state-of-the-art robust aggregation method, Krum. We
discussed why the proposed method outperforms the prior
method. It is noted that in this work, we do not discuss
how FedDet defends targeted model poisoning attacks that can
insert backdoors while keeping the trained model’s accuracy.
Future research will focus on combining the advantages of
the proposed method and other defence approaches to defeat
untargeted model poisoning and targeted model poisoning
attacks.
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V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

[36] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/
https://www.melloddy.eu/


13

X. APPENDIX

A. Proofs of Theorem 2
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Based on our Definition 1, we have
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B. Proofs of Theorem 3
Proof. We have
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C. Proofs of Theorem 4 and 5
Proof of theorem 4.

Proof. We have the triangle inequality,
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Proof of theorem 5

Proof. We have
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(45)
then we have

(n−m)ρ2 ≤
∑

i∈[m+1,n]

∥w1,i −Gi−1∥2

+max
∑

i,j∈[m+1,n]

∥wi −wj∥2.
(46)

So, the proof of the upper bound on ρ is completed.

D. Proofs of Theorem 6
Proof. We assume the compromised local models are the
same. Therefore, we have:

∑
i∈Γn−2m−1

w
′

∥w
′
−wi∥ ≤ min

j∈[m+1,n]

∑
i∈Γn−m−2

w

∥wj−wi∥, (47)

then, we get:

(n− 2m− 1) · ∥w
′

1,i −Gi−1∥

≤ min
j∈[m+1,n]

∑
i∈Γn−m−2

w

∥wj,i −wi,i∥+
∑

i∈Γn−2m−1

w
′

∥wi,i −Gi−1∥

≤ min
j∈[m+1,n]

∑
i∈Γn−m−2

w

∥wj,i −wi,i∥+ (n− 2m− 1) · max
i∈[m+1,n]

∥wi,i −Gi−1∥

(48)

Since we have ∥w′

1,i − Gi−1∥ = ρ. Then, the proof is
completed.
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