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Abstract
This paper describes the effects of running in-network quality adaption by trimming the packets of layered video streams at
the edge. The video stream is transmitted using the BPP transport protocol, which is like UDP, but has been designed to be
both amenable to trimming and to provide low-latency and high reliability. The traffic adaption uses the Packet Wash process
of Big Packet Protocol (BPP) on the transmitted Scalable Video Coding (SVC) video streams as they pass through a network
function which is BPP-aware and embedded at the edge. Our previous work has either demonstrated the use of Software
Defined Networking (SDN) controllers to implement Packet Wash directly, or the use of a network function in the core of the
network to do the same task. This paper presents our effort to deploy and evaluate such a process at the edge, highlighting
the packet trimming algorithm and showing the packet trimming effects on the streams. We compare the performance of
transmitting video using BPP and the Packet Wash trimming, against alternative transmission schemes, namely UDP and
HTTP adaptive streaming (HAS), presenting a number of quality parameters. The results demonstrate that providing traffic
engineering using in-network quality adaption using packet trimming, provides high quality at the receiver.

Keywords Edge computing · High-speed packet processors · Packet trimming · Traffic engineering · SVC Video

1 Introduction

Recent emerging technologies in networking such as the
use of softwarized and virtualized network functions and
edge computing, together with new protocols, provides a
flexible infrastructure which can be tailored to the various
requirements specific to Internet applications. Multimedia
applications, being one of the most popular applications on
the Internet, have become demanding of resources. This is
amplifiedwith the growth in user expectations and the charac-
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teristics of challenging applications such as remote surgery,
AR/VR, and mobile broadcasting. Therefore, although cur-
rent video streaming applications and standards achieve a
good performance today, those future applications will con-
tinue to force network and service operators to evolve towards
applications providing lower latency, higher reliability, and
more adaptivity.

The high traffic volume created by video streaming appli-
cations can cause an increase in packet losses, which results
in increased latency due to the retransmissions. Although
there are a number of techniques for addressing this in the
server and the client, Packet Trimming is a promising tech-
nique that can be used to reduce the number of packets lost
[1]. Packet Trimming is a relatively new idea which relies
on very fast hardware to adjust the size of a packet during
its transmission over the network [2] [3]. When the net-
work becomes limited, the packets are trimmed according to
the bottleneck link capacity rather then dropping the whole
packet, and the packets are transferred without the cost of
any retransmission.

Currently, none of the standard protocols support packet
trimming directly. Big Packet Protocol (BPP) is a protocol
that can utilize trimming in its design [4]. BPP has been
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designed as one of the protocols used for the low latency
and high reliability applications in future networks. From its
introduction in 2018 [4], there are a number of studies related
toBPP,which show its usage. The use of thePacketWashpro-
cess,where chunks in packets are trimmed, has been shown to
reduce latency in [2]. However, such a processes of trimming
packets does have an impact on the receiving application, as
not all the data arrives, therefore the application has to adapt
to such behaviour.

In this paper, we propose an architecture, which utilizes
PacketTrimming and theBPPprotocol to provide low latency
with high Quality of Experience (QoE) for video stream-
ing applications. We consider a scenario, where there are
clients having different resolutions and rendering capabil-
ities, hence, the quality of the video should be adapted.
Although, video streaming, using HTTP Adaptive Video
Streaming (HAS), is the most prevalent and successful appli-
cation inwhich the clients adapt the video quality on the basis
of observed network parameters, in this study, we implement
in-network video quality adaption with the packet trimming
approach. An H264 SVC encoder [5] has been chosen as
it allows us to create layered videos necessary for use with
BPP. We have demonstrated that the combination of SVC
and BPP is an effective way to enhance the performance
of video streaming applications [6]. Our approach provides
continuous delivery, with low latency, while still maintain-
ing guaranteed quality at the receiver [7]. Although there are
more modern codecs than H264 SVC, such as H266 [8], it is
currently not possible to find any publically available H266
SVC implementations.

In general,Wide Area Networks (WAN) have the capacity
to transfer video with high quality; however, the bottleneck
links are at the edge where the clients connect to the network.
As each client is different, their network attributes are dif-
ferent, and the rendering capabilities of each device can be
different. We need to be able to handle this, so a streaming
system has many aspects to factor in. By considering these,
in our architecture the server always transfers the video at
the highest quality, and we rely on the edge to address these
client aspects. We utilize the Packet Wash facilities in BPP
to implement packet trimming, and we virtualize the BPP-
aware network functions at the edge.When the packets arrive
to the edge, the BPP-aware function handles them by imple-
menting packet trimming based on the characteristics of each
client, and then sends the potentially trimmed packets to the
client. The video transmitted is encoded by using a layered
codec, namely H.264 Scalable Video Coding (SVC) which
makes video packet trimming suitable because of its charac-
teristics that allows quality adaptation by extracting layers.

No one had previously tested sendingmedia streams using
packet trimming, but we designed and built an implemen-
tation of such a system, and provided some preliminary

evaluations in our previous work [9] and [10]. Those ini-
tial results showed that in-network video quality adaption
can be a promising technique that can meet the require-
ments of emerging and future video streaming applications.
In those studies, we used an SDN controller that implements
the BPP functions. However, those studies also showed that
the implementation architecture has a remarkable impact on
QoE. Processing in the core network creates more load at the
center when handling multiple streams, it is also far from the
client, and it is harder to deal with the various client differ-
ences. Hence, we propose a new architecture that provides
higher QoE, is able spread the processing load, and is closer
to the clients. The contributions of this paper are threefold.
First, we show the potential advantages of in-network quality
adaptation by comparing it to HAS. The next contribution is
an architecture that uses the edge and virtualized BPP func-
tions for delivery, showing thepacket trimming algorithmand
the effects of packet trimming on the streams. We compare
various protocols, and provide experimental results show-
ing the QoE obtained, and we also discuss the issues caused
by implementing the packet trimming process directly in an
ONOS SDN controller, showing that deep packet inspection
and packet updates in ONOS is highly CPU intensive and is
not scalable. This newarchitecture is compatiblewith 5G/6G
andNFV and provides scalability andwith optimized results.

This paper is an extension of our paper presented at the
26th Conference on Innovation in Clouds, Internet and Net-
works and Workshops (ICIN 2023) [11], and is structured
as follows: Background is next, with a description of the
BPP Process in Sect. 3, a comparison of in-network quality
adaptation versus HAS in Sect. 4, a description of doing BPP
processing at the edge in Sect. 5, and an evaluation of this in
Sect. 6. The conclusions and further work are in Sect. 7.

2 Background

Layered video codecs such as Scalable Video Coding (SVC)
enables video sequences with various qualities from one
encoded video file[5]. After the video is captured, the video
frames are encoded with various parameter settings, which
produces a number of quality alternatives within the video,
by taking advantage of the similarities between the different
versions of the same frame. Using SVC video can have a
beneficial impact on video transmission [12].

Currently, the majority of video transmission is usually
done in one of 2 ways: (i) as discrete packets using RTP over
UDP, which is unreliable and can have loss at the receiver, or
(ii) as data streams using HTTP over TCP, which is reliable,
but can have delay / latency at the receiver. There are advan-
tages and disadvantages to each approach. With UDP, there
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is a view of the network that presents loss at the receiver.
The receiving application has to deal with this packet loss
in the network, but the application does have direct control
over requests for resends, if they are needed. Using UDP
works well for interactive video, when low latency is impor-
tant. With TCP, there is a view of the network where there
is no loss; however, there is delay / latency. The receiver
application is responsible for dealing with this delay, and
is commonly done by using buffering techniques. However,
when using TCP the application is presented with a stream
of bytes, it has no control over requesting resends which is
directly implemented in the TCP stack of the kernel. Using
TCP works well for video playback, where there is no inter-
activity.

To support the transmission of media data, a number of
protocols have been defined for carrying audio and video.
The RTP /RTCP protocols provide a mechanism that allows
interacting media streaming entities to share information
[13] such as payload type, lost packet information, times-
tamps and sequence numbers. RTP [14] was devised to carry
media streams with a UDP transport, and is a protocol whose
approach is based onApplication Layer Framing (ALF) [15].
RTP packets have relative timestamps, and it supports both
Sender reports that have a mapping relative to NTP times-
tamp, which can be used this for syncing, and Receiver
reports which present packet loss/jitter. RTCP was devised
to provide out-of-band statistics and control information for
RTP sessions. RTSP is a presentation-layer protocol that
allows end-users to interact with media servers via pause
and play capabilities. RTSP is a stateful protocol used for
media delivery[16], using RTP.WebRTC is a combination of
standards, protocols, and JavaScript APIs that enables Real-
TimeCommunications via aweb browser [17], with a latency
of sub-500 milliseconds. WebRTC uses SRTP (Secure Real-
time Transport Protocol) to ensure that the exchanged data
is secure and authenticated.

The HTTP protocol sits over TCP [18], and is commonly
for transmitting video, such as those used by CDNs, include
HTTP adaptive video streaming (HAS) which is today’s
de-facto streaming technology. Dynamic adaptive streaming
over HTTP (DASH) [19] is a standard developed by MPEG,
for providing interoperability between the participants of
HTTP adaptive video streaming (HAS) deployments. As
DASH runs on top of HTTP, it is inherently a TCP-based
protocol. MPEG-DASH was devised in order to deal with
various network and TCP behaviours, due to packet loss
over time. The DASH server is designed to send segments
of video, of a few seconds length, at the requested quality.
Each client starts by requesting the lowest quality, and then
progressively goes to a higher quality if the client calculates
that there is low congestion and that network bandwidth is
available. The client can dynamically adapt the quality of the

video being sent by requesting segments of a different qual-
ity, and placing those video segments into the decoder for
viewing. To accommodate various bandwidths, the source
video is encoded multiple times with a range of qualities.
The higher the quality, the higher the data rate, the bigger
the file, and the more bandwidth used. A side-effect of using
numerous files of video together with TCP, is that the low
latency real-time behaviour of video delivery can be com-
promised by both the size of the video files and the built-in
retransmission mechanisms of TCP. A number of efforts are
looking at addressing this low latency issue [20], and some
results are already appearing [21] and [22].

One of the main benefits of DASH is that it can utilize
the caching capabilities of HTTP, allowing the use of large
distributed cache infrastructures spread across the network.
Specialized CDN companies provide such distribution and
caching facilities, often with embedded nodes close to the
users.

Another approach that has been evaluated for optimizing
the video delivery when there is congestion in the net-
work is video transcoding close to the user. In [23], the
authors present a system which reduces video streaming
costs in HTTP adaptive streaming by enabling lightweight
transcoding at the edge. Overall, there are a number of bitrate
adaptation schemes for streaming media over HTTP which
have been surveyed in [24].

The QUIC (Quick UDP Internet Connections) transport
protocol [25] was introduced to improve the QoE of web ser-
vices, and provides the HTTP protocol running over UDP
rather than over TCP. Although QUIC has been suggested as
a good candidate for video transmission, in [26], the authors
evaluated YouTube streaming and conclude that there is no
evidence of a QoE improvement when using QUIC, com-
pared to HTTP over TCP. In [27], the authors considered
real-time video traffic with QUIC, and found that QUIC was
still too reliable, sometimes performed worse than TCP for
video streaming, and that the ABR schemes utilized with
QUIC operated poorly compared to TCP. They concluded
that reliable transports are ill-suited for video streaming, and
suggest an unreliable version of QUIC.

The combined use of both SVC and QUIC has been eval-
uated in [28]. The authors reiterate that HTTP suffers from
Head-of-Line blocking, and three-way handshake delay due
to TCP, and that QUIC, which run over UDP can tackle these
issues. They have determined that with the fast recovery
and with the elimination of HOL blocking abilities, QUIC
can support multiple streams to provide better performance
where there is packet loss.

One of the design goals of BPP is the definition and imple-
mentation of application specific networking behaviour,
manifested at the level of an individual packet or a flow. This
is facilitated by new functions in enhanced network devices
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[4]. In BPP, each packet is grouped into a header and a set
of chunks rather than just a sequence of bytes. An important
feature of a BPP-aware network node is that given specific
commands, the node can drop particular chunks from the
payload, with the BPP header having particular fields con-
taining meta-data for indicating the commands. Depending
on the commands and the load on the network, some chunks
can be dropped during transmission.WithBPP, the strategy is
to reduce the load on the network by reducing the consumed
bandwidth, while keeping the flow of packets continuously
arriving at the receiver. BPP was devised as a new type of
transport layer protocol, which is more like UDP than TCP,
but provides partial reliability.

BPPwas designed to be used for low latency and high reli-
ability applications [4], where having retransmission makes
resending times too slow. It has been evaluated in a number
of studies to determine its effectiveness. In [29], combining
BPP with TSN (Time Sensitive Networking) was used to
overcome the limitations of TSN’s scalability and complex-
ity issues. In [30], BPP was used for computation offloading
inMobile Edge Networks. Neither of those papers addressed
multimedia over BPP. Although BPPwas designed for media
transmission, our previous work [9] and [10] was the first
actual implementation of video streaming using BPP, and
for determining the effects of sending video over BPP. We
demonstrated that BPP is better than TCP and UDP for
latency and outages, and that BPP is a reasonable alterna-
tive for streaming video, especially when taking into account
some of the high precision requirements. In [6] we demon-
strated that in-network adaption can be provided when using
SVC combined with BPP. A detailed description of the tech-
niques andmechanisms used for carrying the streams of SVC
video from servers to clients, using the BPP Packet Wash
mechanism is presented in our paper [7]. As there are no
BPP-aware devices, we send BPP payloads over UDP.

Work on Packet Trimming has become of interest as hard-
ware has become fast enough to do in-transit packet updates.
Handley et al. considered trimming for the Data Center [1].
They define NDP, a novel data-center transport that achieves
near-optimal completion times for short transfers and high
flow throughput in a wide range of scenarios. With NDP,
the switches trim the packets to just headers and then pri-
ority forward the headers. The authors observe that “Due to
packet trimming, it is very rare for a packet to be actually
lost”. To improve round trip times across the network, in
[3] the authors suggest that trimming the whole payload and
only keeping the header, can only work well in Data Cen-
ters where the dropped payload may be retransmitted fast
enough to the node that dropped the payload. Such a data cen-
ter approach does not generalize to full WANs. Selectively
trimming the packet, rather than the whole payload, offers a
less drastic mechanism that would work in the wide area net-
work. For enhancing end-to-end transport, a new transport

protocol QUCO is defined [31], which reacts to congestion
by selectively dropping parts of a payload packet, combined
with mitigation mechanisms to handle the loss of part of the
payload. Their packet trimming scheme reduces the varia-
tion in the number of packets going through the network,
and allows for tighter targets to be set on the number of
packets in transmission, and also on the size of the switch
buffers. QUCO has less delay and less delay variations than
TCP, with a resulting reduction in jitter. Very recent work for
implementing a hardware mechanism for packet trimming
has investigated how trimming can be implemented in pro-
grammable switcheswhichwere not specifically designed for
trimming [32]. That implementation uses P4 on the Tofino
switch ASIC, and shows that it is possible to undertake trim-
ming and demonstrates that trimming can be integrated into
a production-grade datacenter switch.

Edge Computing is considered an extension of cloud
computing, whereby additional computational, data han-
dling, and networking resources are placed closer to the end
systems. As a consequence, the processes for data process-
ing, networking, data management, and storage can occur
between the end systems and the cloud servers, not just
at the centralized cloud servers. Edge Computing can be
extremely useful for low-latency applications, as well as
applications that generate an enormous amount of data that
cannot be practically transferred to cloud servers in real-time,
due to proximity to the clients, or bandwidth or time lim-
itations [33]. In recent times, centralized applications have
evolved towards service-oriented architectures andmicroser-
vices, with small independent and loosely coupled systems
that deal with a very specific tasks being virtualized and exe-
cuted autonomously, especially at the edge.

3 BPP processing

To execute the required BPP processing of packets, BPP
enabled network nodes are necessary. A server is responsi-
ble for constructing the BPP packets, by creating the header,
the chunks, and setting the significance value of each chunk.
Our paper [7] explains this packet filling process in detail.
The significance values are set for each chunk of each BPP
packet, and they show the importance of each chunk within
the packet. The significance value provides the network node
with the information needed when it is deciding to keep the
chunk, or trim it from the packet. When we use the Packet
Wash process of BPP to trim packets during their transmis-
sion over the network, the chunk removal is undertaken by
considering both the importance of the chunk to the video
content, indicated by the significance value, and the avail-
able bandwidth at the time of the calculation.
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Table 1 Significance values used for the transmitted video

Video Frame Temporal Significance
layer type layer value SIG

L0 I T0 1

L1 I T0 2

L2 I T0 3

L0 P T1 2

L1 P T1 7

L2 P T1 12

L0 P T2 3

L1 P T2 8

L2 P T2 13

L0 P T3 4

L1 P T3 9

L2 P T3 14

L0 P T4 5

L1 P T4 10

L2 P T4 15

For SVC video, we set the significance value embedded
into the chunks by taking into account both the impact of
each chunk on the decoding process and the resulting QoE.
The video chunks which have the highest importance are: (i)
all the chunks that consist the base layer, (ii) the chunks for
all layers of an I frame, and (iii) all meta-data chunks. These
are set with the lowest significance value, which indicates
such importance to the network node. This means that those
chunks should not removed during transmission.

The information about the video layers, the frame types,
and the temporal layers of the video, and the associated sig-
nificance value (SIG) is given in Table 1. By considering the
importance of each video layer, each frame type, and each
temporal layer, we allocate a significance value for each of
them. The significance value (SIG), shown in column 4 of
the table, is placed by the server into the SIGi field of each
chunk’s meta data. As all the I frames (which have a SIG
of 1,2, or 3) and the base layer of all frames (with a SIG of
1-5) always need to be received by the clients, in order to be
able to play the video with continuity, the server sets a trim-
ming threshold value of 5. This allows the network function
to trim the chunks where the significance value is above 5, in
the situation where there is not enough available bandwidth.

Figure 1 shows the steps of the PacketWash process in the
network node, whereby chunks can be trimmed if the total
amount of data transferred in a specific time period exceeds
the available bandwidth. 1 Packets are constructed with a
BPP header and a number of chunks, and transmitted across
the network. 2 When the packet arrives at a network node,

Programmable

Network Node

Packet is transmitted Modified Packet is Forwarded

1 5

Packet is sent

to the Node
Modified Packet is sent

back to the switch

2 4

3

Fig. 1 BPP processing

it is sent for processing. Each programmable network node
enumerates the number of bits transferred within each time
period, using the size of the packets. If the value exceeds the
available bandwidth, then it determines that trimming should
occur. 3 The node checks each packet to evaluate which
chunks should be trimming from the packet, according to
the available bandwidth measurements. Chunks are trimmed
one at a time, by considering the significance value field of
each chunk, such that the size of a packet should be reduced to
below the specified limit. Chunkswhose significance value is
lower than a threshold are not trimmed in any circumstances,
and so the packet sizemay not be reduced asmuch as desired.
This means later packets will need more trimming. 4 The
packet, modified or not, is sent back to the switch, and 5

forwarded onwards. The client is responsible for collecting
the chunks from the packets, and reconstructing a valid data
stream, as shown in step 3 of Fig. 2.

The effects of Packet Wash trimming ensures that the
client receives a continuous stream of packets, and so always
has some meaningful data to process. This approach of using
the bandwidth is clearly different from UDP, where packets
are dropped when there is congestion. Although there is no
more usable bandwidth when sending with BPP, our previ-
ous work has shown that it can be utilized andmanaged more
effectively.

Wepresentedworkon in-networkquality adaptation in our
paper [6]. That showed that itwas a promising approachwhen
compared to both TCP and UDP. In [34], we showed the full
effects of Packet Wash on SVC video in limited bandwidth
environments.

HTTP adaptive video streaming (HAS), being the one of
the most popular video streaming applications, provides an
efficient client driven adaptation when network conditions
change. HAS clients adapt the quality on the basis of both
the observed and the internal parameters, hence minimizing
the negative impacts of network condition changes on QoE.
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Fig. 2 ONOS controller for BPP processing

In this paper, we focus on the potential advantages of
in-network quality adaptation, at the edge, over quality adap-
tation at the client.

4 In-network quality adaption versus HAS

To show the potential advantages of in-network quality adap-
tion, we compare it to HTTP adaptive streaming (HAS) in
order to determine its effectiveness. Only by doing this, we
can determine if such an approach has the benefits we are
looking for.

The first approach, we considered, in [9] and [10], uti-
lized an ONOS SDN controller [35] to implement the BPP
packet wash process, as a function embedded in the ONOS
controller.

The video used in all the experiments is Big Buck Bunny.
The bitrate distribution for video qualities are slightly differ-
ent forHAS and other protocols, due to encoding aspects. For
the HAS experiments, we used the packetized video for HAS
systems given in [36]. The bitrates of the qualities of the pack-
etized encoded video used with HAS are 1 Mbps, 2 Mbps,
and 4.2 Mbps. In the other experiments, using BPP, UDP,

and TCP, the bitrates of the video layers are 1.1 Mbps, 1.9
Mbps, and 5.6 Mbps. However, these bitrates are increased
slightly after the packetization process. We also decreased
the bandwidth values in accordance with the bitrate of the
packetized video, in order to provide a fair comparison in
HAS experiments.

4.1 On the performance of in-network quality
adaption

We conducted a set of experiments with a number of net-
work conditions, based on the architecture in Fig. 2, using
the ONOS SDN controller and Mininet. Mininet [37] is an
environment which creates virtual networks, running a real
kernel, switch, and application code. It allows for the evalu-
ation of SDN systems using OpenFlow and P4.

We compared the quality adaption usingBPP against qual-
ity adaptionwithHAS, aswell as having regular transmission
with UDP and TCP, where there is no quality adaption. In
these experiments, the bandwidth of the path between the
core network and the client is limited and set to different
values, namely 1.5 Mbps, 2 Mbps, 2.5 Mbps, and 3 Mbps.
There is also one set of experiments with dynamic network

Fig. 3 Quality parameters using
ONOS controller for BPP
processing
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conditions, where the bandwidth changes between 1 Mbps
and 3 Mbps over time.

The current implementations of the H264 SVC decoder
are rather primitive, limited, and fragile, compared to
the H264 AVC version. Even the available H264 SVC
encoder / decoders are still mostly experimental, so it is hard
to do full video decoding and full evaluation. For these exper-
iments the PSNR data comes as text debugging output from
the encoder and decoder, and therefore the collected PSNR
data is a best effort evaluation.

In Fig. 3, the different QoE parameters observed by dif-
ferent protocols are presented. In Fig. 3a, the average bitrate
of the played video on the client’s side are given. In terms of
this QoE parameter, TCP outperforms other approach since
TCP client always get the video at the highest quality. How-
ever, this behaviour has significant costs, with a high level
of duration of pauses, which is the one of the attributes that
has a huge negative impact on QoE, as seen in Fig. 3b. Due
to its design, the HAS client applies a conservative approach
to keep the duration of pauses at minimum, where the clients
always request the video at the lowest quality. As the TCP
and HAS implementations do not change the quality over
time, there is almost no observable quality changeswith these
experiments, in Fig. 3c, whereas BPP and UDP have many
changes. In Fig. 3d, the PSNR values observed for each pro-
tocol are given. We see that TCP has the highest PSNR value
since the server sends video at the highest quality during the
whole session. BPP and HAS values for PSNR are similar,
where the PSNR values obtained with BPP is slightly higher
than HAS.

Although the different QoE parameters observed in the
experiments provide some basic information about the nomi-
nal perceived quality on the client side, an overall QoE value
gives a better idea about the general perceived quality. To
calculate this overall QoE value, a linear function is defined
based on one devised in [38]. The importance of different
QoE parameters is specified by setting different weights to
the different terms, based on their effects on perceived qual-
ity.

The QoE value formula is given in Eq.1 and it calculates
the overall QoE for the segments numbered between k and
K . In the formula, α, β, and γ are the weights used for the
QoE parameters. Qk represents the video quality in terms of
PSNRor video bitrate for the kth segment. lk is the layer of the
kth segment, therefore the second term in the formula given
the quality change level between two consecutive segments.
dpk represents the duration of pauses experienced during the
playout of the kth segment, and it is calculated by the function
given in Eq.2. In that function, tsk and pk are the timestamp
value of the received time and the playout time of the kth

segment, respectively.

Table 2 Overall QoE values for different transmission schemes and
varying bandwidths

Bandwidth
1.5 Mbps 2 Mbps 2.5 Mbps 3 Mbps Dynamic

BPP 57.7 59.5 63.4 68.8 63.7

TCP 14.8 35.8 48.3 53.8 41.8

UDP 23.5 24.7 41.2 46.4 24.1

HAS 56.9 59 62.7 64.9 56.9

The overall QoE values calculated for this set of exper-
iments are given in Table 2. In the QoE calculation, the
PSNR value is used as the Qk values in Eq.1. The weights
in the equation, for α, β, and γ , are 2, 0.01, and 0.5,
respectively. These numbers are selected based on the pos-
itive / negative effects of the QoE parameters. The research
done on perceived quality [39] showed that the bitrate is the
most important parameter that affects QoE, and that users
prefer quality changes over a duration of pauses. The table
shows that the highest overall QoE values are observed with
BPP in fixed bandwidth experiments; however, HAS values
that are very close to the BPP values. With dynamic band-
width conditions, we observe that BPP outperforms other
approaches, giving an insight into how in-network quality
adaption can be beneficial compared to client-based adapta-
tion.

QoEK
1 = α.

K∑

k=1

Qk − β.

K−1∑

k=1

|lk+1 − lk | − γ.

K∑

k=1

dpk (1)

dpk =
{
tsk − pk tsk ≥ pk
0 otherwise

(2)

4.2 The effects of implementing bpp in the
controller

The performance results show that BPP adapts the quality in
an efficient way, as there is a lower total duration of pauses
and a higher received average bitrate, when compared to
HAS. However, HASmanaged to keep the number of quality
switches to a minimum, when compared to BPP.

The experiments given in the previous section were con-
ductedwith one server, one client, andoneOpenFlowenabled
switch. The controller sets flow rules in the switches, between
the server and client, at the beginning of the streaming ses-
sion, to forward the packets. We observe that if there is just
one client on the network, the SDNcontroller canmanage the
BPP processing for each packet of the stream.However, if the
number of clients increases, problems arise and the controller
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starts consuming a high level of CPU resource. Additionally,
sending a packet to the controller from a switch causes an
increase in the end-to-end delay due to an extended trans-
mission delay between the controller and the switch.

Weassume that the networkoperator and the video stream-
ing company are in co-operation, so the controller gets
knowledge about the highest video bitrate from the server.
This informationhelps the controller to determine if the band-
width is enough to transfer the video with the highest quality.
If the available bandwidth of a link is too low to send the video
with the highest quality, then the packets should be trimmed
at that point. During the session, it periodically measures
available bandwidth.

In order to limit the computational complexity on ONOS
and reduce the end-to-end delay, we developed an approach
which would only send packets to the controller when a BPP
operation was needed, rather than sending every packet.

To support this, the controller removes the flow rule related
to the video stream from the switch, if the bandwidth becomes
limited. When a packet is received by the switch and there
are no flow rules, it sends a message to the controller to ask
for the flow information related to the video stream. As the
response, the controller sends the trimmed packet, coupled
with the output port information.

We then implemented this enhanced approach and per-
formed several experiments using Mininet. However, the
experiments show that the scalability of this approach is quite
limited since it requires Deep Packet Inspection (DPI) oper-
ations that trims the payload and headers.

Given the number of issues with processing BPP streams
in the controller, including having too much load with so few
streams, we investigated another potential solution. We pro-
ceeded to a new approach and evaluation, which is to provide
in-network quality adaption by implementing BPP functions
as a virtual network function. We replaced the ONOS con-
troller with a single virtual router implementing a BPP-aware
function, located between the server and the client. In our
paper [34] we show how well that approach works.

5 BPP processing at the edge

In this paper, we generalized the idea of the virtualized BPP
function implementation and propose a system for larger net-

works with more clients connected, where a virtualized BPP
function is used for the BPP operations.

5.1 Virtualized BPP function

In general, the bottleneck links are those links that connect
clients to the network. Therefore, in the proposed system,
the virtualized BPP-aware network functions are installed
at the edge routers. In our system, the edge network is an
SDN domain where the SDN controller is responsible for
managing the network. It periodically measures the avail-
able bandwidth of the links that clients use to connect to the
network. This available bandwidth information is fed into the
BPP function.

In this system, shown inFig. 4, the server sends the video at
the highest quality, considering there aremany clients having
different characteristics, such as different bandwidth con-
ditions, device resolutions, and rendering capabilities. The
packets, which carry all the layers of the video, are trans-
ferred through the network until they arrive to the edge. At
the edge, the packets are sent to the virtualized BPP function,
where the packets are trimmed according to the characteris-
tics of each client, such as the current link bandwidth between
the edge and the client, and then the function forwards the
potentially trimmed packets to the client.

When the virtualized BPP function receives a packet, it
determines whether the packet should be trimmed and if it is
to be trimmed, how many chunks should be removed from
the packet. The virtualized BPP function uses the available
bandwidth information of each client based on the informa-
tion received from the controller. Packet trimming is done by
using a simple volume checking mechanism, given in Algo-
rithm 1.

5.1.1 Packet trimming algorithm

For each packet that the function receives, it checks if the
number of bytes sent in the current second is greater or less
than the available bandwidth. If the number of bytes sent
is below the available bandwidth, then the packet can be
forwarded as-is; however, if it would be greater than the
available bandwidth, then it determines that bytes should
be trimmed from the packet. The trim operation is done by
removing some chunks from the packet, based on their signif-
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Fig. 4 Edge network deployment of VNFs
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Algorithm 1 Packet Trimming Algorithm

// Set timeStart as current time in
milliseconds

1 timeStart ← Clock()
2 bytesRecvThisSecond ← 0; bytesSentT hisSecond ← 0
3 for each packet received do
4 � Timing

// Get current time in milliseconds
5 now ← Clock()

// Millisecond offset between now and
timeStart

6 timeOffset ← now − timeStart
// What is the offset in this second

(as floating point)
7 secondOffset ← timeOffset / 1000
8 � Pre processing of packet
9 packet Length = length(packet)

10 bytesRecvThisSecond += packet Length
// The ideal no of bytes to send at

this offset into a second
11 idealSendT hisSec ←

availableBandwidth ∗ secondOffset
// How far below the ideal are we

12 below ← idealSendT hisSec − bytesSentT hisSecond
13 � Check current second
14 if (timeOffset >= 1000) then

// Crossed a second boundary. Reset
variables for new second

15 timeStart ← now
16 secondOffset ← 0
17 bytesRecvThisSecond ←

0; bytesSentT hisSecond ← 0
18 end
19 � Decision making and forwarding
20 if (below > 0) then

// Below ideal so there is capacity
so forward without trimming

21 bytesSentT hisSecond += packet Length
22 f orward(packet)
23 else

// We need to drop something, so
trim chunks from the content

24 (newPacket, dropped Amount) =
tr im(packet, idealSendT hisSec, below)

// droppedAmount is how much content
was actually trimmed

25 bytesSentT hisSecond += packet Length −
dropped Amount

26 f orward(newPacket)
27 end
28 end

icance value, as 3 step 3 . As the size of the chunks that can
be trimmedmay be different to the number of bytes that need
to be trimmed, the granularity of the process is not perfect.
Either more bytes maybe trimmed, if the chunks are large,
or it can take a number of packets to be trimmed in order to
match the correct bandwidth level.

The BPP function runs the algorithm for each second dur-
ing video transmission. There are 4 main phases: (i) getting

Timing information when a packet arrives; (ii) doingPre pro-
cessing of packet to get the packet size and the determining
the ideal number of bytes to send at the particular offset into
a second; (iii) to Check the current second to see if a second
boundary has been crossed; and (iv) theDecisionmaking and
forwarding which processes each packet.

If the volume of the packets that are transmitted in the cur-
rent second is less than or equal to the available bandwidth,
i.e. the below value > 0, then the received packet is trans-
mitted to the client without implementing packet trimming.
Otherwise, some chunks need to be dropped from the packet,
so trimming occurs. The tr im() function considers the cur-
rent ideal send volume, the chunks, and their significance
values, and returns a packet and a dropped amount. These
packets, modified or not, are then forwarded to the clients.

5.1.2 Packet trimming effects

The effects of using the Packet Trimming Algorithm are
shown here. In Fig. 5 there are graphs showing the data flow
rates for different available bandwidths. In Fig. 5a we see
how the per second processing described in Algorithm 1
can visualized. The data is presented for the first 5 s of a
flow to highlight the behaviour. The magenta line shows the
ideal amount which could be sent, at a particular offset into a
second, which is correlated to the available bandwidth. The
green line shows howmuch is actually sent onwards. On each
second boundary, the values are reset for the new second.

The other 3 figures show the data flow rates, when the
bandwidth is set to 0.8 Mbps, 1.0 Mbps, and 1.2 Mbps. In
each figure, the y-axis shows Bytes/sec and the x-axis shows
Time in seconds, and the amount of data sent by the server
is green, the ideal amount which could be sent is magenta,
and the amount actually forwarded is in cyan.

The video used in these experiments is encoded at 1.1
Mbps, which equals 144000 bytes / second. In all three of
these figures, we can see that the the amount of data sent by
the server in green, averages that rate. The amount actually
forwarded in cyan, always averages bewlow the available
bandwidth, which is the ideal amount, in magenta. We can
see how the algorithm trims chunks as described, and that
as the bandwidth reduces, the more data is trimmed. For 1.2
Mbps, very little is trimmed, but for 0.8 Mbps there is a
considerable difference between the sent and the forwarded.

5.2 The performance of implementing BPP at the
edge

In Fig. 6, we present a comparison between the two different
approaches to process packet trimming. For this purpose, the
video is streamed between the server and 2 clients, with the
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Fig. 5 Data flow rates showing
trimmed chunks Bytes/sec
(y-axis) time in secs (x-axis)
Sent (green) - Ideal (magenta) -
Forward (cyan)

results for Client 1 and Client 2. The QoE parameters which
are measured on the client side are collected.

The darker bars labeled “ONOS Controller” represent the
results that are observed when using an ONOS controller
which has a module running the BPP process. On the lighter
bars labeled as “Virtualized BPP server”, the BPP processing
is done by a virtualized function at the edge.

In these experiments, the 2 clients are connected to the
network over different edge links, and the available band-

width on those links is 2.5 Mbps. When the packet trimming
operation is done by the virtualized BPP function, all of the
QoE parameters have better values, compared to the experi-
ments with theONOS controller, as seen in Fig. 6. In addition
to that, although the clients received the video at a higher
quality, the duration of pauses observed with the virtual-
ized BPP server is still less than ONOS controller due to the
latency added by the BPP process on the controller as seen in
Fig. 6b.

Fig. 6 Comparing BPP process performance – ONOS controller versus virtualized BPP server at the edge
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Overall, we see that theQoEobtained by trimming packets
at the edge is better than using the ONOS controller, as utiliz-
ing the virtualized BPP functions at the edge provides higher
QoE parameters than the those with the ONOS controller.

6 Performance evaluations

In this section, we give the performance evaluation of the
virtualized BPP function which is compared with the other
protocols, UDP and HAS. In the BPP and UDP experiments,
the server sends the video at the highest bitrate.

6.1 Experimental setup

The video used here is encodedwith slightly different param-
eters than those usedpreviously. Thebitrates of the base layer,
first enhancement layer, and second enhancement layers are
0.9 Mbps, 1.9 Mbps, and 4.4 Mbps, respectively. However,
once the overhead of packetization using BPP is added, we
obtain similar bitrates to the encoded video used in HAS
experiments.

As previously stated, the available H264 SVC encoder /
decoders are still experimental, so they cannot always do
full video decoding, and thus we cannot always recreate the
video stream. The tools we have do give some information;
however, it is limited. A consequence of this, newer QoE
video metrics such as VMAF, SSIM, or ITU-T rec. P. 1203
cannot be evaluated.

In the experiments, there are 6 clients connected to the
server, where runs are conducted using a fixed bandwidth
value with a range between 1 Mbps and 3 Mbps in fixed
bandwidth tests. We also run experiments with dynamic
bandwidth. In Dynamic Scenario 1, the bandwidth value
starts with 3 Mbps, then drops to 2 Mbps, and then drops to
1 Mbps. In Dynamic Scenario 2, the bandwidth value starts
again with 3 Mbps but then drops to 1 Mbps and increases
to 2 Mbps. Each bandwidth value change occurs with a 14s
interval. The total video duration is 42 s. Each experiment
is reconfigured for HAS and UDP using the same networks
conditions. HAS is inherently adaptive, but there is no quality
adaptation in the experiments with UDP. The initial buffering
time is set to 600 ms for all approaches, to provide a trans-
mission with low latency. The performance results observed
in these experiments follows, where the obtained parameters
are averaged and presented in the graphs with a 0.95 confi-
dence interval.

6.2 Comparative performance evaluation

The QoE parameters are collected and averaged in this set
of experiments for each protocol. In Fig. 7a, the average
received video bitrate values are presented for each proto-
col. The clients with UDP do not adapt quality, so the bitrate
values of theUDP clients are higher thanHAS but this causes
UDP clients to experience high level of duration of pauses.
The clients using BPP play the video with a higher quality
compared to UDP and HAS clients. Although HAS clients

Fig. 7 Quality parameters in
fixed bandwidth conditions
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have the lowest bitrate, other QoE parameters observed with
HAS clients show that the ABR algorithm aims to keep dura-
tionof pauses and the number of quality changes atminimum.
The number of quality changes, in Fig. 7b, is high with BPP
since thequality can changeon a frame-by-framebasis, rather
than with HAS where the quality change is limited to a 2 s
segment. Clearly, there can be a very large number of packets
transmitted every 2 s.

In addition, theOverall QoE value is calculated by using a
modified version of Eq.1. We added a newQoE parameter to
the calculation, based on the number of interruptions which
are a direct cause of the duration of pauses. Because it is a
parameter that negatively affects the QoE, we subtract the
number of interruptions value in the formula. In the enumer-
ation of the QoE value, the average received video bitrate is
used as the Qk parameter.We normalized all QoE parameters
because the bitrate unit is in Kbps, which is higher than the
other parameters, namely the number of the quality switches
and the duration of pauses. In these QoE calculations, the α

parameter, which shows the importance of the video bitrate
is set to 5.We also change the penalty for the number of qual-
ity switches, the number of interruptions, and the duration of
pauses, and use the weights 0.01, 0.5, and 0.5, respectively.

When we examine the overall QoE values, Fig. 7c, we
see that BPP outperforms other approaches with the fixed
bandwidth experiments, expect in the tests with very limited
bandwidth, where it equals to 1 Mbps. In this highly limited
bandwidth test, HAS clients always keep the quality at the
lowest and this conservative approach helps to get higher
QoE value.

We also measure the QoE fairness value and give the
related graph in Fig. 7d. We see that the best QoE fairness
value is obtained with HAS, where the bandwidth equals to
1 Mpbs. In this test group, all clients requested the lowest
quality for all segments and get very similar QoE values. For
other bandwidth settings, we see that BPP and UDP provide
slightly higherQoE fairness thanHAS,where theQoEvalues
are higher with BPP than UDP as seen in Fig. 7c.

In Figs. 8a and Fig. 8b, we provide QoE related results for
the tests conductedwith dynamic environment. The observed

QoE values are higher with BPP than the other approaches.
We observe QoE fairness behaviour similar to those given in
fixed bandwidth tests. These results show that BPP perfor-
mance behaves similarly in different networks conditions by
providing higher QoE values than the other approach. But
there is still room to enhance the performance by taking into
account someQoE parameters, namely the number of quality
switches and the number of interruptions.

7 Conclusions

In this paper, we have shown the advantages of having
in-network quality adaptation by presenting a number of per-
formance results and comparing it to HAS. The comparative
experiments show that in-network video quality adaptation
is a promising approach that can meet the requirements of
future video streaming applications. The results show that
BPP adapts the quality in an efficient way, such that higher
average received bitrate can be obtained when compared to
HAS. However, HASmanaged to keep the number of quality
switches minimized, compared to BPP.

An architecture that utilizes virtualized BPP functions at
the edge, for video delivery, has been presented. We showed
the use of an ONOS controller as a solution to implement in-
network quality adaptation, but on the other hand, it does add
a huge burden to the controller since it also has the respon-
sibilities to manage the network. The experimental results
have shown that implementing in-network quality adapta-
tion at the edge, and by using a virtualized BPP function,
provides scalability and an improvement in QoE.

We compared a number of protocols in this paper, and
demonstrated good performance via the experimental results,
which has shown that the QoE obtained by trimming packets
at the edge is better than using an ONOS controller. In the
experiments utilizing the virtualized BPP functions, the aver-
age video bitrate is higher than those experiments utilizing
the ONOS controller. The insights observed from this study
show that in-network video quality adaption might provide
enhanced QoE. Overall, the QoE value could be even higher

Fig. 8 QoE related results in
dynamic network conditions
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if more refined approaches, which consider the number of
quality changes, are developed. Doing quality adaptation at
the client will always have the advantage of receiving infor-
mation about internal parameters, where one of the most
important among them being the buffer level.

For future work, we will consider a number of improve-
ments. We will adapt the algorithm that trims the chunks
from the packets, and make it more refined. Currently, it only
pays attention to the available bandwidth and the bandwidth
used, and does not consider the number of quality changes.
This number is quite high in our experiments, but for better
QoE values, and for perceptual reasons, it is ideal to reduce
the number of quality changes for smoother delivery. We
will also investigate the use of packet trimming using hard-
ware systems, if these become available, in order to provide
higher throughput. Furthermore, to overcome the limitation
of available working H264 SVC decoders, we will investi-
gate the availability ofH.266SVCorAV1SVCcodecswhich
can be connected to a BPP transport, in order that we may
evaluate a standardized QoE model, such as ITU-T rec. P.
1203, VMAF, or SSIM. With a working SVC decoder we
can also gather Mean Opinion Scores (MOS) data experi-
mentally from human subjects.
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