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Ab Initio Thermodynamics Calculation of Beta Decay Rates

Michael C. Parker* and Christopher Jeynes

Beta-decay half-lives for the free neutron, for 6He and 8He, and for 8Li are
calculated ab initio from geometrical thermodynamics arguments,
independently of any quantum mechanics. Half-lives for the decay of 8Be to
two alphas and for the disintegration of the tetraneutron are also calculated.
The calculated values are close to those experimentally observed.

1. Introduction

We develop our previous quantitative geometrical thermodynam-
ics (QGT) description of the key geometric features associated
with the halo isotopes of helium[1] to show how the beta decay
rates of these and related nuclear isotopes are also determined
by the entropic geometry. Previously we showed that the proton
radius, as the appropriate characteristic length scale, determines
the holographic calculation of the entropy of both the halo iso-
topes of helium (6He, 8He) and also the A = 4n series of nu-
clei (4He, 8Be, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca), and
that given this characteristic length (and the QGT formalism) the
sizes of these nuclei can be accurately calculated ab initio (that is,
without any quantum mechanics). Previously we also remarked,
without elaboration, that the 6He→6Li beta decay could be inter-
preted as adding an extra integer “degree of freedom” (DoF; not-
ing that the QGT treatment depends on understanding the num-
ber of DoFs appropriate for each system considered). Here we
give the details of this entropic interpretation of beta decay.
In QGT the alpha particle (in its ground state) is treated as a

unitary entity (than which exists nothing simpler: that is, at the
scale considered, the entity has no internal degrees of freedom).
In other words, using Henry More’s 17th century terminology[2]

in QGT the alpha is considered to be an “atom”: not strictly “indi-
visible” of course, but “indiscerpible”, that is, “not easily torn asun-
der”; which is to say that although its binding energy is finite, it is
also very high. QGT emphasizes the wholeness of Maximum En-
tropy entities since it is based on the properties of holomorphism
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(“holomorphic” is literally “the shape
of wholeness”). In the modern (rather
restricted) usage, “unitary operator” is
taken to mean that the operator’s recip-
rocal is given by its adjoint. But here
we employ an older and wider usage of
unitary, applied now to real entities, not
mathematical objects; a usage which (as
we showed previously in Parker et al.[1])

promotes accurate calculations not only of the matter (and
charge) radii of 6He and 8He, but also of the matter radii of the A
= 4n series of nuclei (4He … 40Ca).
This previous QGT treatment (whose formalism was intro-

duced in 2019[3]) was entirely geometrical, describing stable sys-
tems (that is, not changing in time), with examples of both DNA
and spiral galaxies[3], atomic nuclei[1], fullerenes[4] and black
holes[5] Black holes are an interesting case since although they
are Maximum Entropy, their entropy production (that is, the rate
of change of entropy which is a Noether-conserved quantity[5]) is
non-zero: that is, a black hole continues to be the same unitary en-
tity even though it is growing. All black holes are self-similar and
very simple, being completely determined by only four scalars:
mass, spin, charge, and a scaling factor which for all black holes
is the Planck length: Frank Wilczek (2021[6] ch.3 p.73) omits this
factor.
These examples underline the scale independence that a valid

thermodynamics must have; as is to be expected from its essen-
tially logarithmic nature, which in turn is in accordance with the
hyperbolic spacetime of our universe).[3] In addition, we empha-
size the application of the holographic principle[7] (and see refs.
[1, 3]) to QGT as a means to determine the entropy of a system:
the length scale and associated surface area both contributing to
the overall scale-independent formulation of QGT. We now start to
address the case of temporally changing systems, in particular,
three systems undergoing beta-decay: i) the free neutron (with a
half-life of 608 s); ii) 6He (with a half-life of 807ms); and 8He (with
a half-life of 119 ms). We will show how an ab initio QGT treat-
ment recovers these lifetimes. Until now such temporal quanti-
ties have never been obtained from a QGT treatment. We remark
that measuring the lifetime of the free neutron turns out to be
surprisingly non-trivial: significant experimental effort has been
required.
For completeness, we will also sketch a possible QGT treat-

ment of the 8Li and 8Be lifetimes—the latter being a disintegra-
tion event, not a beta decay one.Moreover, since in ourQGT treat-
ment, we could represent the 8He nucleus as being treated as a
clathrate compound of a “tetraneutron” with an alpha guest, and
since the (unbound) tetraneutron has recently been observed[8]

we also sketch a possible QGT calculation of the free tetraneu-
tron disintegration half-life.
Beta decay is currently being intensively investigated since

it is central to the rapid neutron-capture process in stellar
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nucleosynthesis[9] (the so-called “r process”) which accounts for
about half of the heavy elements (Fe-U) in the solar system.
The problem is that this process is not understood in detail,
and although there are systematic measurements of beta-decay
rates[10,11] many isotopes currently defy measurement (underlin-
ing the importance of reliable modeling), and anyway the inter-
pretation of such data is difficult so there are various different ap-
proaches in the literature. Nuclear density functional theory (and
in particular the “deformed quasiparticle random-phase approxima-
tion”) was used to calculate 𝛽-decay properties of neutron-rich
Ge, Se, Kr, Sr, Ru, and Pd isotopes[12] specifically with the r-
process in mind and recognizing the importance of the nuclear
deformations intrinsic to the process[13] Deformed geometries
are expected to be amenable to a QGT approach: so far only
the simplest case of the spherically symmetrical Buckminster-
fullerene (we have already mentioned the scale independence of
thermodynamics) has been explicitly treated by QGT[14] but other
fullerenes should also be amenable to QGT even though most
are aspherical. Mustonen & Engel[15] underline the importance
of treating deformation, noting that “Computational barriers have
thus far prevented the production of a beta-decay table for the entire
nuclear chart in a fully self-consistent Skyrme mean-field approach
that allows deformation.” Recently Ravlíc et al.[16] have used com-
parable (but extended) methods to include temperature effects,
which clearly suggests that a thermodynamics approach would
be appropriate (if feasible). Helpfully for us, they point out that
“nuclear 𝛽-decay is a fundamental process in atomic nuclei” play-
ing “a decisive role in nuclear astrophysics [the r-process] and particle
physics as well as for the properties and structure of nuclei.”
The extensive work cited heremakes it very clear that the num-

ber of nucleons (odd or even) strongly influences the 𝛽-decay pro-
cess: this is also plain from QGT (including the present work:
see Table C1 for example) since the QGT treatment of probabil-
ity itself distinguishes odd and even terms (see §5.4 of Parker
& Jeynes 2023[17]). The practical aim of the quantum mechan-
ics work is to understand the r-process, and the nuclear “shell
models” have been drivers for understanding these phenomena.
In their extensive review of the shell model, Caurier et al.[18] ap-
proach it “as a unified view of nuclear structure”, and they conclude:
“The shell model has been craft and science: one invented model spaces
and interactions and forced them on the spectra. Sometimes it worked
very well.” Systematic shell model calculations of specific cases
have notably beenmade by the RIKEN group[19,20] Finally, Ferretti
et al.[21] address the 𝛽-decay of specific (odd-numbered) isotopes
of Rh analytically, using an extension of the Interacting Boson
Model, a model that has strong resonances with the Maximum
Entropy (QGT) treatment of the neutron halos of 6He and 8He
ref. [1]. Nomura[22] uses all the techniques we have mentioned
(tied together in a shell model) to analytically investigate the be-
haviour of the many isotopes of Ge and As (systematically differ-
ent for the odd- and even-numbered isotopes). This whole field
is very active (if rather heuristic), and we expect that QGT will be
able to contribute a firm thermodynamics basis for it.

2. QGT Formalism

We first exploit the fact that the entropy production Π is a
Noether-conserved quantity[5] (just as is the energy E), together
with the isomorphism[3] between the (kinematic) Planck con-

stant h and the (entropic) Boltzmann constant kB. The appropri-
ate relation for the change in entropy production ΔΠ isomorphic
to the Planck–Einstein relation ΔE = hf for the change in energy
ΔE (where f is the frequency of the emitted radiation) is:

ΔΠ = Π1 − Π2 = kBf =
kBc
𝜆

(1)

where c is the speed of light, and we invoke the (entropic) length
scale 𝜆 associated with the phenomenon being described, such
that c = f𝜆 as usual. Appendix A (Equation (A7)) shows how the
Entropy Production Π is related to the exponential-decay time
constant 𝜏 of a process together with the change in the number
of DoFs of the system Δ:

Π = e−Δ

𝜏
S0 (2)

where S0 is the initial (or background) entropy of the system, and
we use “degrees of freedom” (DoFs) in the same way as explained
previously.[1] From Equation (2) we see that the entropy produc-
tion is inversely proportional to the temporal decay constant 𝜏
(as might be expected), but also varies according to the negative
exponential of the change in the number of degrees of freedom
Δ. This second aspect is interesting (and perhaps non-intuitive)
since it implies that the larger the increase in Δ due to a decay
event (in effect, the larger the increase in entropy), the lower the
associated entropy productionΠ. That is, an increase in the num-
ber of DoFs is analogous to the “energy barrier” seen in quantum-
mechanical tunneling (equivalent to the Arrhenius activation en-
ergy).
Previously,[1] using the example of the decay of 6He to the sta-

ble 6Li, we noted that the observed nuclear radius change after a
beta decay event (interpreted by QGT) indicates that the entropy
increases by a single degree of freedom when a nuclear neutron dis-
integrates; that is for beta decay the change in the number of de-
grees of freedom is Δ=+1.
The quantity Δ represents the change in the number of DoFs,

but as a physical quantity (quantized by the Boltzmann constant,
see Equation (A2)) is closely related to the entropy. The term e−Δ

in Equation (2) looks formally like a probability term of the par-
tition function, and we have previously demonstrated[7] that the
Schrödinger Equation is isomorphic to a probability term of the
entropic Partition Function (defined by path integrals obeying the
stationary principle).
More specifically, while the Principle of Least Action allows

the argument of the exponential associated with the Schrödinger
Equation formalism to be interpreted as a stationary sum-over-
histories solution to the physical phenomenon under consider-
ation; so too, for the entropic Partition Function, the integral of
the entropic Hamiltonian also represents a stationary sum-over-
histories solution according to the Principle of Least Exertion
(isomorphic to the Principle of Least Action[3]). This is a conse-
quence of the Planck constant (the quantum of action) being iso-
morphic to the Boltzmann constant (the quantum of entropy).
Note also that the “exertion” quantity in QGT is equivalent to the
quantity that Edwin Jaynes calls “caliber”.[23]

Therefore, the quantity Δ can also be interpreted as represent-
ing the appropriate entropic sum-over-histories that achieves a
particular change in the number of DoFs over the course of a
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Table 1. Half-lives of various systems, measured (Gonzales et al.[28] Audi et al.[29] Duer et al.[8]), and calculated by QGT. Gonzales et al. and Duer et al.
give “lifetimes”: these are converted to half-lives here. The neutron and tetraneutron (“tn”) measurements may have a significantly larger uncertainty
than the estimates given (see text). These values are all obtained using a proton radius of rp = 0.84087 fm (Carlson, 2015[30]).

System Measured half-life [s] Reference half-life Calculated half-life [s] Characteristic length 𝜆

n 608.4 ± 0.4 Gonzales et al. 2021 605.6 Hyperbolic radius rp/ln 2
6He 0.80692 ± 0.00024 Audi et al. 2017 0.766 Proton diameter 2rp
8He 0.1191 ± 0.0012 Audi et al. 2017 0.1125 Proton diameter 2rp
8Li 0.83940 ± 0.00036 Audi et al. 2017 0.766 Proton diameter 2rp
8Be (8.2 ± 0.4) × 10−17 Audi et al. 2017 7.9 × 10−17 Proton diameter 2rp
tn ≡ 4n (2.6 ± 0.6) × 10−22 Duer et al. 2022 2.4 × 10−22 Hyperbolic radius rp/ln 2

physical process. For the “simple” beta-decay process, the overall
change in the number of DoFs is only a single unit and Δ = 1.
However, for other processes where the associated energy land-
scape ismore complex, and where the overall change in the num-
ber of DoFs is larger, then the number of different pathways is
correspondingly larger such that Δ > 1.
Parenthetically, we emphasize that the dimensionless Δ is not

conserved, just as action (with units of energy-time) is not a con-
served quantity; rather it is the temporal differential either of en-
tropy or of action (that is, either the entropy production or the en-
ergy) that is conserved. Thus, although we are interested in the
change in the number of degrees of freedomΔ, this does not arise
from needing to account for the appearance or disappearance of
DoFs. Rather, we recognize that as a physical process proceeds Δ
is not conserved, but can be interpreted as representing the num-
ber of pathways for the DoF-change (a “sum-over-histories”) for
the process to proceed. Appendix B indicates how thismightwork
for the case of the decay of the tetraneutron.
Recapitulating, Equation (1) relies on the isomorphism be-

tween the energy quantum hf (representing a photon) and the
entropy-production quantum kBf (where in this case f ≡ c/𝜆).
It seems that the physical significance of the quantity kBc/𝜆 on
the RHS of Equation (1) should be regarded (isomorphically to
the photon energy) as a quantized particle of entropy production
which we will call the tropon (a neologism sharing its etymology
with “entropy”: both coming from 𝜏𝜌ο𝜋ή, “transformation”). The
tropon is closely related to the “degrees of freedom” of the sys-
tem, contributing to the structural (geometrical) properties em-
phasized by Prigogine in ref. [24].
Just as the photon follows a kinematic pathway that minimizes

the action, so the tropon follows an entropy pathway that maxi-
mizes the entropy (or in QGT terms, minimizes the exertion).[3]

It seems that the quantum of entropy should be the Degree of
Freedom (DoF), which can only exist as an integer unit; or, per-
haps, half-integer—see Appendix C for a discussion of this point
using a comparison of the measured charge radii (from the com-
pilation of Angeli 1999 (ref. [25])) with the values calculated by
QGT. That is, the DoF should be considered as some kind of
“entropic particle” (and of course, particles are not conserved in
general). We have already shown that the energy and entropy
production of a system are two sides of the same coin, being
Hilbert transforms of each other[26] (see Appendix D for more
background on this.)

Whereas the scale (the energy) of the photon is controlled by f
(its frequency), the scale of the isomorphic tropon (the “entropic
particle” related to the DoF) is controlled by 𝜆 (its “wavelength”).
That is to say, the quantum entity (the tropon) associated with
the entropy production has its scale controlled by the associated
scale length 𝜆. In QGT, the scale length determines the scale
of the physical process under investigation. Just as in relativity,
the frame of reference must be identified to correctly describe
the physics, so also in the context of scale relativity[27] the scale of
the physical process being described must also be identified. In
the particular cases described here (mostly involving beta decay),
we will show that the proton radius determines the appropriate
scale of these nucleonic phenomena.
As already discussed, an entity may be described as unitary

at a given scale. It is clear that the number of DoFs associated
with any physical entity is a function of the scale used to view
the entity: for a unitary entity the number of DoFs is minimum;
while at a smaller scale (in general, associated with higher ener-
gies) the number of DoFs will increase as the finer granularity
exposes the existence of additional entities (the alpha has four
nucleons for example). This again emphasizes that Δ (like en-
tropy) is not conserved but varies according to scale. Thus, adopt-
ing the proton radius as the length scale in this analysis intrinsi-
cally determines the number of DoFs appropriate to the systems
considered. Just as studying the energetic (kinematic) behavior
of an atomic system requires photons of appropriate frequencies
for effective spectroscopy; so, too, the “correct” length scale must
be adopted in order to achieve a useful analysis of the entropic
behavior of a given entity.
The half-life t½ of a radioactive process is related to the asso-

ciated (exponential) time constant 𝜏 via t½ = 𝜏 ln 2, so that from
Equation (2) the entropy production associated with a beta-decay
nuclear disintegration is simply given by:

Π = e−Δ𝛽

𝜏
S0 =

ln 2e−Δ𝛽

t1∕2
S0 (3)

where Δ𝛽 represents the (quantized) increase in entropy (+1;
Δ𝛽 = +1) due to the beta-decay.
For the radioactive system progressions that we consider

here, the initial number of (relative) degrees of freedom of a
system is given by Δ1, while for the neutron-based systems the
background (constant of integration) entropy is determined by
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Table 2. Entropy and degrees of freedom (DoFs) associated with various neutron-based radioactive systems.

System Relative
DoFs Δ1

S0 e−Δ1 S1 = S0 e
−Δ1 𝛽-decay and/or

disintegration DoFs Δ
S2 = S1 e

−Δ System
Product

Relative
DoFs Δ2

n −1 e8 e1 e9 +1 e8 p 0
6He 6 e8 e−6 e2 +1 e1 6Li 7
8He 7 e8 e−7 e1 +1 e0 8Li 8
8Li 8 e8 e−8 e0 = 1 +1, −2 e−1 + 2 = e1 2 × 𝛼 6
8Be 9 e8 e−9 e−1 +35.5 e−36.5 2 × 𝛼 N/A

tn ≡ 4n 4 e8 e−4 e4 +51.5 e−47.5 4 × n N/A

S0 (which is related, but not necessarily equal, to the background
entropy), and which has a number of degrees of freedom given
heuristically by Δ0≡−8, so that S0 is given by lnS0 = −Δ0 = 8.
The initial entropy state S1 is:

S1 = S0 e
−Δ1 (4a)

The end entropy of a system S2 obtained by a single beta-decay
process from initial system S1 is:

S2 = S1e
−Δ𝛽 = S0e

−(Δ1+Δ𝛽) = e−(Δ0+Δ1+Δ𝛽) (4b)

Table 1 shows a summary of the unstable systems that we ana-
lyze using QGT as the underlying theory to calculate the expected
half-lives. Table 2 collects the various parameters needed to cal-
culate the expected half-lives.

3. n→p

The simplest case is the decay of a free neutron to a proton: we
assume a (relative) initial number of degrees of freedomΔ1 = −1
(see Table 2). Since the resulting proton is unconditionally stable,
the entropy production associated with it is zero, Π2 = 0. Then
from Equation (1), the entropy production of the free neutron Πn
is:

Π1 ≡ Πn =
S2

t1∕2∕ ln 2
= e+8

tn∕ ln 2
=

kBc
𝜆

(5)

where t1∕2 is the half-life of the entity, tn is the half-life of the free
neutron, and where 𝜆 = rp/ln 2 with the proton radius given by
rp = 0.84087 fm[30] is in this case taken to be the proton radius ob-
tained from meson scattering (which is consistent with the new
value from the “proton charge radius experiment”[31]). Thus, tn
is:

tn = e8ln 2 𝜆

kBc
= 605 s (6)

which is within 0.5% of the half-life value of 608 s reported
recently (2021) by the UCN𝜏 collaboration.[28]

Interestingly, Wanpeng Tan’s 2023 review[32] of the various
measurements of the free neutron half-life concludes that its real
uncertainty is larger than might be expected from the claimed
uncertainty of the various experimental results. Even apparently
equivalent methods yield values that differ much more than

the estimated uncertainties. Tan calls this the “Neutron Life-
time Anomaly” and assigns an evaluated combined uncertainty
of ≈1% to the (nominally) high-precision measurements. In par-
ticular, he lists a wide variety ofmeasurements with hugely differ-
ing values, including a magnetic trap (“ultracold neutron”; UCN)
measurement of the lifetime 707 ± 20 s (equivalent to a half-life
of 490 ± 14 s) at NIST by Craig Huffer (see ref. [33]). This latter
used a Ioffe-type magnetic trap, but following these anomalously
low results the measurements were discontinued.

4. 6He→6Li

A similar analysis applies for the 6He→6Li beta decay, where 6Li
is absolutely stable (Π2 = 0). Previously,[1] we demonstrated that
for 6He the (relative) initial number of degrees of freedomΔ1 = 6
(see Table 2) and therefore the entropy production is:

Π1 ≡ Π6He =
S2

t1∕2∕ ln 2
= e+1

t6Li∕ ln 2
(7)

Again using Equation (1) and now taking 𝜆 as the proton
diameter (as for the QGT treatment of the helium isotopes in
ref. [1]), the calculated half-life of 6He is:

t6Li = e1ln 2 𝜆

kBc
= 765 ms (8)

which is within about 5% of the measured 807 ms (Tilley et al.,
2002[34]).

5. 8He→8Li

For the 8He→8Li beta decay, the resulting entropy production
is non-zero (Π2 > 0) since the 8Li is not stable. Previously,[1]

we demonstrated that for 8He the (relative) initial number of
degrees of freedom is given by Δ1 = 7 (see Table 2). The number
of degrees of freedom associated with 8Li is less clear. One
measurement[35] of the 8Li nucleus determines a neutron radius
(i.e., matter radius) of 2.68 ± 0.09 fm which is consistent with
the 8Li nucleus having 8 degrees of freedom, Δ2 = 8, and with
beta decay causing a +1 increase in the nuclear DoFs. However,
further interpretation of these measurements[36] determine the
radius of the 8Li valence neutron as 2.58 ± 0.48 fm, correspond-
ing to Δ2 = 7.5 DoFs. Therefore, we assume that the resulting
8Li nucleus immediately after the decay of 8He has a radius of
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2.68 fm (Δ2 = 8) but that it quickly relaxes to a lower energy state
corresponding to a radius of 2.58 fm and also with a lower geo-
metrical entropy given by Δ2 = 7.5. That is to say, the 8Li nucleus
loses 0.5 DoF as it relaxes to a lower energy state, prior to decay-
ing to 8Be (see Appendix C on half-integer DoFs). In which case,
the entropy production of the 8He nucleus (as it decays to the
initially higher energy state 8Li nucleus with Δ2 = 8) is given by:

Π1 ≡ Π8He =
S2

t1∕2∕ ln 2
=

S0e
−(Δ1+Δ𝛽)

t8He∕ ln 2
= e0

t8He∕ ln 2
(9)

where

Δ2 = Δ1 + Δ𝛽 (10)

In order to calculate the entropy production associated with the
decay of 8Li (from its assumed lower energy state with DoFs given
by Δ2 = 7.5) we also need a clear understanding of the degrees
of freedom associated with the resulting product 8Be, in order to
calculate the change in DoFs during the decay process toward sta-
bility. In particular, in previous work[1] we have asserted that the
number of degrees of freedom associated with the 8Be nucleus
is Δ3 ≡ Δ8Be = 6; although QGT theory for beta decay suggests
that the DoFs of 8Be should be one more (+1) compared with the
DoFs of 8Li, (Δ8Be = 9,Δ8Li = 8, as given in Table 2). However, the
high instability of 8Be (which rapidly decays to two alphas, see fol-
lowing two sections §§6,7) suggests that its previously assigned[1]

value Δ3 ≡ Δ8Be = 6 DoFs is appropriate for when the 8Be nu-
cleus is essentially discernible as two (highly stable) alphas. This
means that when a 8Li nucleus (at the lower energy state with
assumed matter radius of 2.58 fm and Δ2 = 7.5) beta decays to
increase its DoFs to 8.5, then as part of the decay process toward
stability, 2.5 DoFs must be lost such that the resulting 8Be nu-
cleus (or, in effect, two alphas) ends up withΔ3 = 6 DoFs. For the
3rd stable product (8Be, or equivalently two alphas) of the decay
sequence 8He→8Li→8Be the resulting entropy is therefore given
by:

S3 = S0e
−(Δ2+Δ𝛽−2.5) (11)

where Δ2 = 7.5, and 2.5 DoFs (explicit in Equation (11)) are ad-
ditionally lost in the decay (disintegration) process. Then the en-
tropy production of 8Li is given by:

Π2 ≡ Π8Li =
S3

t1∕2∕ ln 2
=

S2e
−(Δ𝛽−2.5)

t8Li∕ ln 2
= e+1.5

t8Li∕ ln 2
(12)

Given the half-life of 8Li is known to be t8Li = 839 ms,[36] the
entropy production of 8Li is therefore:

Π2 = Π8Li =
e1.5

0.839∕ ln 2
(13)

and the half-life of the 8He nucleus can be calculated (using Equa-
tion (1)) via:

Π1 =
kBc
𝜆

+ Π2 →
e0

t8He∕ ln 2
=

kBc
𝜆

+ e1.5

0.839∕ ln 2
(14)

t8He =
(

kBc
𝜆 ln 2

+ e1.5

0.839

)−1

= 112 ms (15)

which is within about 6% of the measured 119 ms (Tilley et al.
2004[37]).

6. 8Li→2 × 𝜶

We analyze the decay of 8Li using QGT by ignoring the interme-
diate (highly excited) 8Be state. In this particular analysis, we do
not directly consider the issues that may be involved with an en-
tropic anti-Planck–Einstein process, where the end state of a pro-
cess may finish at a higher entropy production level than at the
outset. Rather, here we assume that, as a natural phenomenon,
the decay of 8Li describes the progression ofmoving from a lower
stability (high entropy production) to a greater stability (lower
entropy production) state according to the 2nd Law. From that
perspective, we make the approximation that the end-state of 8Li
is assumed to directly reach the two (highly stable) alpha parti-
cles, so that we ignore the intermediate (highly excited) 8Be state.
(We explicitly consider this more complex 8Be decay in the next
section.)
In this regard, it is also important to note that whereas the 8Be

(as the natural decay product from 8Li) is expected to have nine
DoFs, the two alpha particles (that we are assuming here to be
the end product of the decay of 8Li) between themselves consist
of only six DoFs (i.e., three DoFs each). Thus, in this approximate
analysis of the decay of 8Li we also need to take into account the
overall loss of three DoFs from the system. In which case, the
overall change in DoFs as 8Li decays to the two alphas is Δ =
+1 − 3 = −2: the first +1 due to the beta decay, and then the
“disintegration” loss of three DoFs in order to account for the six
DoFs associated with the two alphas.
In our previous work,[1] and as indicated in Table 2, we demon-

strated that for 8Li the (relative) initial number of degrees of free-
dom Δ1 = 8 so that its entropy production is:

Π1 = Π8Li =
S2

t1∕2∕ ln 2
= e+2

t8Li∕ ln 2
(16)

Again using Equation (1) and taking 𝜆 as the proton diameter,
and assuming the absolute stability of the resulting two alpha
such that Π2 ≡ Π𝛼 = 0 the calculated half-life of 8Li is therefore
approximately given by:

t8Li =
e2 ln 2(

kBc

𝜆
+ Π2

) ≈ e2ln 2 𝜆

kBc
= 2.080 s (17)

much higher than the observed value of 839 ms. But, if we take
account of excited states in the decay process and ascribe an ad-
ditional 0.5 DoF to each of the resultant alphas (such that each
alpha ends up with 3.5 DoFs in an excited state, which then sub-
sequently relaxes by the loss of a half-integer DoF into the stable
3 DoFs state) then for the decay rate of 8Li we only need to ac-
count for the loss of two DoFs from the system. In which case,
Δ = +1 − 2 = −1, such that:

t8Li ≈ e1ln 2 𝜆

kBc
= 0.765 s (18)
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which is the same half-life as determined for 6He. Equation (18)
gives a value much closer to the observed half-life for 8Li than
does Equation (17). Thus it is clear that, when it progresses di-
rectly to the two stable alphas, our approximate determination of
the half-life of 8Li is too large (with the 8Li calculated to be more
stable than it really is); whereas if additional intermediate excited
states are assumed in its decay progression, then the 8Li becomes
less stable and is calculated to have a shorter (and more realistic)
half-life.

7. 8Be→2 × 𝜶

The unstable 8Be (which quickly decays into two alphas) can also
be analyzed using QGT. In this case, the final decay of 8Be to two
alphas is not a beta-decay process, but is rather a process result-
ing from it being particle-unstable, and where the final “prod-
uct” and “ejected” particles are indistinguishable. The conven-
tional kinematic (electronic–photonic) analog to this disintegra-
tion process is equivalent to a two-photon decay of an electron
from a high energy state to a low (stable) energy state, where
two identical photons are emitted. This so-called “spontaneous
parametric down-conversion in non-linear optics” has been ob-
served by Hayat et al.[38] and Ota et al.[39] Whether or not the two
photons are in reality created simultaneously, this process can be
represented as a sequential one in which the high energy electron
emits a first photon and enters a virtual (unstable) intermediate
state (exactly midway between the initial and final states), before
emitting a second (identical) photon and reaching its final low
energy state.
In the same way as the frequency of the emitted photons is

half that of the overall energy gap between the initial and fi-
nal states, so the entropic frequency of the associated entropic
Planck–Einstein relation must also be halved. Thus, we employ
the following equation:

Π8Be − Π𝛼 = 1
2
kBc
𝜆

(19)

whereΠ8Be is the entropy production of the
8Be nucleus, whileΠ𝛼

is the entropy production of a resulting alpha particle, which is
zero (being unconditionally stable): Π𝛼 = 0. As before, the wave-
length 𝜆 is taken as the proton diameter. Thus from Equation
(19):

Π8Be =
e−Δ

𝜏8Be
S1 =

1
2
kBc
𝜆

(20)

where 𝜏8Be is the time constant of the 8Be decay, the quantity Δ
represents as usual the change in the number of degrees of free-
dom associated with the decay event, while S1 is the initial en-
tropy of the 8Be nucleus.
From previous work[1] (see Table 2 here), we know that the

initial entropy of the 8Be nucleus following beta-decay from 8Li
means that it is associated with Δ1 = 9 DoFs. Thus, using the
same background entropy S0 =e8 the initial entropy of the 8Be
nucleus is given by:

S1 = e−Δ1S0 = e−1 (21)

However, an 8Be nucleus with nine DoFs is in a highly excited
and unstable state, and needs to shed DoFs in order to gain a
more stable configuration. We now consider the change in en-
tropy Δ associated with the decay of 8Be that we require in Equa-
tion (20). Considering Equation (19) we start with an 8Be nucleus
with nineDoFs and endwith two alpha particles (4He nuclei) with
three DoFs each. Thus Equation (19) is associated with the loss of
six DoFs. But to argue that only three DoFs in total are lost is false
reasoning. Rather, the process of Equation (19) indeed describes
the loss of six DoFs, andmoreover, there are also two different (and
indistinguishable) ways in which those six DoFs are lost, since the
two resulting alphas are identical and indistinguishable (see also
the discussion of symmetries and indistinguishabilities in Ap-
pendix B). Then, according to the required permutational logic
of the entropic process for the indistinguishable allowable path-
ways, the number of DoFs that are associated with the process
mustmultiply, so that the required overall effective change in the
number of DoFs is given by:

Δ = (−6) × (−6) = (−6)2 = 36 (22a)

Of course, this means that the total number of DoFs is nec-
essarily not a conserved quantity in the decay process; not sur-
prisingly, since it is the entropy production that is conserved.[5]

Due to the relative stability of the resulting alpha(s) system we
reduce the overall DoF change by a half DoF (the same adjust-
ment is made to account for the relaxation of the excited state of
8Li on the decay of 8He (§5), while we also discuss the existence
and significance of half-integer DoFs in Appendix C) such that:

Δ = 36 − 0.5 = 35.5 (22b)

Note, we also invoke such a “half DoF” for the tetraneutron cal-
culation of §8 and as discussed in Appendix B. Using the half-life
of 8Be given by t½ = 𝜏 ln 2, and substituting for S1 (Equation (21))
and Δ (Equation (22b)), Equation (20) yields:

t8Be = e−36.5ln 2 2𝜆
kBc

= 7.92 × 10−17 s (23)

This is indistinguishable from the empirically found half-life
of (8.2 ± 0.4) × 10−17 s for 8Be (see Table 1).

8. tn→4 × n (Tetraneutron Decay)

From the principle of holomorphic pairing as explained for the
case of 8He (see Parker et al. 2022[1]), we assume that a tetra-
neutron (tn) is composed of two dineutrons (dn), each of which
is composed, in turn, of two neutrons. Therefore, we assume
that when a tetraneutron disintegrates, it is via the intermediate
dineutrons:

tn → 2 × dn → 4 × n (24)

and consequently, that there are two sets of entropic Planck–
Einstein equations to consider, each using the same analogous
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“two-photon decay” argumentation as used in §7 for the disinte-
gration of 8Be:

Πtn − Πdn =
1
2
kBc
𝜆

(25)

Πdn − Πn =
1
2
kBc
𝜆

(26)

where we assume the same proton-based “entropic bandgap” be-
ing filled by a two-particle process, and hence the factor ½. From
the previous analysis of the beta-decay of a neutron (Equation (5)),
the entropy production of a neutron is given by Πn = kBc/𝜆, giv-
ing the entropy production of the dineutron (dn) from Equation
(26)

Πdn =
3
2
kBc
𝜆

(27)

Assuming the standard relations for the entropy production,
the half-life, and the change in DoFs (Equation (2)):

Πdn =
e−Δ

𝜏dn
S0e

−Δ1 = e−Δ

tdn∕ ln 2
S0e

−Δ1 (28)

In which case, for a dineutron with Δ1 ≡ Δdn = 3, the half-life
of the dineutron is given by:

tdn = ln 2S0e
−Δ1e−Δ 2

3
𝜆

kBc
(29)

We now only need to calculate the change in DoFsΔ associated
with the disintegration of a dineutron. Considering the entropy
production of a tetraneutron, we substitute Equation (27) into
Equation (25)

Πtn = 2
kBc
𝜆

(30)

Therefore, employing Equation (2) for the entropy production
we have:

Πtn =
e−Δ

𝜏tn
S0e

−Δ1 = e−Δ

ttn∕ ln 2
S0e

−Δ1 (31)

such that for a tetraneutron with Δ1 ≡ Δtn, the half-life of the
tetraneutron ttn is given by:

ttn = ln 2S0e
−Δtne−Δ 𝜆

2kBc
(32)

UsingΔtn = 4 andΔ = 51.5 (see Appendix B) for the change in
the number ofDoFs as a tetraneutron disintegrates, and reverting
back to the hyperbolic proton radius for the length scale of this
purely neutron-based system 𝜆 = rp/ln 2, its half-life is therefore:

ttn = e−47.5ln 2 𝜆

2kBc
= 2.39 × 10−22 s (33)

This is indistinguishable from the value (2.6 ± 0.6) × 10−22 s
recently quoted for the half-life of the tetraneutron[8] (see Table 1).

9. Discussion

To date quantitative geometrical thermodynamics (QGT) has
been used to demonstrate the effect of the Second Law of Ther-
modynamics onMaximum Entropy systems, that is, systems sta-
ble in time. Normally onewould not think that a stable entity such
as the alpha particle would be subject to thermodynamics, but we
have demonstrated that it is the geometry of the entity that em-
bodies thermodynamics. Since Thermodynamics is fundamen-
tal it applies to everything. Curiously, the QGT treatment of al-
pha particles and of black holes is very similar: even though the
entropy production of alphas is zero (trivially reversible) and the
entropy production of black holes is positive (trivially irreversible)
they are both “Maximum Entropy” systems: and in QGT we have
demonstrated that reversibility may be treated commensurately
with irreversibility.[26]

We have now demonstrated that there exists a coherent QGT
account of beta decay, particularly the fact that beta decay is
associated with an increase in the number of system degrees
of freedom. We have already shown that the QGT formalism
can account for the chirality of both DNA (see Parker & Walker
2010[40] and Appendix A of Parker & Jeynes 2019[3]) and also the
fullerenes,[4] and therefore, we would also in the future expect
QGT to also provide a new description of the well-known chiral-
ity of beta decay.[41]

Bohr was able to deploy the Planck–Einstein relation in the
simplest electronic system represented by the hydrogen atom
to derive the Balmer series but calculations for heavier atoms
rapidly become intractable. This is not only because of the
difficulties of many-body systems as such, but also because the
possible number of energy states also rapidly increases. We ex-
pect similar considerations in these entropic calculations. Decay
paths are complicated in detail and our present very simplistic
approach is hardly likely to capture much of this complication.
The decay of 8He to 8Li is complex, as is the further decay of
8Li to 8Be (which is not particle-stable). Therefore, the half-lives
of 8He and 8Li are obtained here to within ≈5% of empirically
determined values (and that we have shown good reasons from
QGT to explain their similarity) seems encouraging.
It is worth emphasizing that the discussion of the “neutron

mass anomaly” by Tan[32] indicates that independent neutron
lifetime measurements differ by far more than the claimed un-
certainties of individual measurements. Recent work by Kegel
et al.[42] also cast doubt on the reliability of current theory even for
(relatively) low energies. This puts the experimental uncertainties
of Table 1 into a wider perspective. It may even be that our ab ini-
tio thermodynamics approach can contribute significantly to our
interpretation of the measurements themselves.
It is notable in Table 1 that different characteristic lengths are

required for the neutron systems (the free neutron and the tetra-
neutron) compared to the systems containing protons. The latter
use the same characteristic length as for the QGT calculation of
the sizes of the entities,[1] but the former use the corresponding
“hyperbolic radius”, so-called because the ln 2 factor involves the
exponential function which is central to the “hyperbolic space”
formalism of QGT.[3] We should also point out that 1/ln 2 is just
the ratio of the decay lifetime and the half-life.
Both energy and entropy production are quantized, with “degrees

of freedom” (DoFs) being associated with a quantum of entropy
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production and having properties of an entropic quantum object;
it seems clear that just as there is a particle that expresses the
energy quantization (the photon) there should be a particle that
expresses the entropy production quantization (which we have
called the “tropon”). Moreover, it has become clear that in a con-
sistent model the Hilbert transform of the energy representation
of the photon should be the entropy production representation
of the tropon (and vice versa, see Parker & Jeynes 2023[26] and
Appendix D). (Of course, in the energy representation there are
many particles other than photons: at present it is an open ques-
tion whether these also have their entropic counterparts.) DoFs
are key formal descriptors of any geometrical (QGT) entity, and
therefore intrinsic to issues of geometrical structure and order
(as pointed out powerfully by Ilya Prigogine[24]).
It is also worth commenting that the form of Equation (2), with

Δ appearing as an exponent, shows that this representation of
“degrees of freedom” can account for the extremely large (many
decades) dynamic range for observed decay rates that are seen in
radioactive phenomena. Thus, half-lives ranging from 10−24 s to
1030 s “only” require a range for Δ of ≈124. The rigorous calcu-
lation of Δ as an entropic quantity using a sum-of-histories for-
malism is the work of future research, but here we show explicitly
that an informal approach may be adequate for the simplest pro-
cesses (such as beta decay).
We have mentioned that scale invariance is a necessary prop-

erty of thermodynamics (see ref. [26]): this has also recently been
proved to be an intrinsic property of QGT.[43]

It is necessary to set up a sophisticated mathematical appara-
tus to implement QGT, and so far this has been used to give a
fundamental thermodynamics interpretation only of simple sys-
tems (without using any quantum mechanics or general relativ-
ity): various simple nuclei, DNA, Buckminsterfullerene, spiral
galaxies, and black holes. Black holes are examples of Maximum
Entropy entities with non-zero entropy production: as they grow
they (ontologically) remain black holes. Here for the first time we
now extend the QGT treatment to an ontological change: beta de-
cay changes one entity into another at a characteristic rate (al-
though we have no wish here to get into anymetaphysical discus-
sions: ontological and epistemological questions are addressed
elsewhere).[44] QGT certainly applies to everything in principle,
but has so far been applied only to very few things. We hope that
its development will be rapid.

10. Conclusion

Treating the alpha particle as a unitary entity (than which exists
nothing simpler), and the neutron halos of the 6He and 8He nu-
clei also as unitary entities, and using the Noether-conservation
of entropy production: we show that the characteristic length 𝜆

associated with the holographic calculation of the entropy of the
decay products of these entities is (approximately) a function of
the size of the proton. This yields a decay rate accurate at about
½% for the free neutron beta-decay (n→p), for which 𝜆 is the hy-
perbolic proton radius; and rates close to those observed for the
beta-decay of both 6He (6He→6Li) and the more complicated 8He
(8He→8Li), for which 𝜆 is simply the proton diameter as before.
Just as energetic processes are mediated by quantummechan-

ical particles (like photons), entropic processes are mediated by
tropons (thermodynamic “particles”) whose entropy production is

determined by howmuch change is needed in the number of de-
grees of freedom to transform the start-state of the process into
the end-state. The quantum of energy is determined by Planck’s
constant, and the quantum of entropy production is determined
by Boltzmann’s constant; particles (of whatever kind) are not con-
served, but rather it is both energy and entropy production that are
Noether-conserved (and are very strongly related, being repre-
sentable as Hilbert transforms of each other[26]).
Characterizing the decay processes with a troponic (QGT) for-

malism, we obtain half-lives for six simple processes which are
close to the experimentally observed values (see Table 1): in the
simplest case of the free neutron decay the QGT values are very
close; that is, within the combined uncertainty of the experiments
(according to one evaluation). It may be that these analytical ther-
modynamic methods will prove able to aid the interpretation of
these (difficult) measurements.
TheQGT formalism initially[3] treated onlyMaximumEntropy

systems in thermal equilibrium (that is, with zero entropy pro-
duction): spiral galaxies were approximated as exemplars of the
double logarithmic spiral (which was treated rigorously showing
a necessarily non-zero entropy production). The rigorous QGT
formalism was only subsequently extended explicitly to black
holes[5] which are Maximum Entropy systems even though they
are not in thermal equilibrium since they necessarily have non-
zero (positive) entropy production.
Here for the first time, we analytically treat temporal processes

in which one system transforms into another. QGT is a general
theory capable in principle of interpreting any process; here we
start to show how this works in some simple cases. Previously,[1]

we gave an analytical treatment of the halo nuclei of helium (6He,
8He) as semi-unitary entities, deriving their nuclear sizes (and
ignoring their instability); here we show how to analytically treat
the processes of (for example) 6He→6Li and 8He→8Li to derive
the lifetimes of the initial state.
Even if the present simple treatment is clearly approximate in

parts, it is important to point out that QGT is i) rigorous, and
ii) independent of quantum mechanics. Furthermore, it is iii)
arguably more fundamental than quantum mechanics since it
manifestly also applies to cosmic phenomena, and there is not
yet any theory of quantum gravity that commands a consensus.

Appendix A

Relation of Entropy Production to DoFs

The entropy production Π is given by:

Π = 𝜕S
𝜕t

(A1)

where S is the system entropy and t is the time. The entropy itself can be
expressed using Boltzmann’s formula as:

S = kB lnW = ΔkB (A2)

where Δ ≡ ln W represents the system’s effective number of degrees of
freedom (DoFs) andW is the overall number of permutations. Taking the
time derivative of Equation (A2) we find:

𝜕S
𝜕t

= 𝜕W
𝜕t

1
W

kB = 𝜕W
𝜕t

e
− S

kB kB = 𝜕W
𝜕t

e−ΔkB (A3)
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Figure B1. Sum over pathways for tetraneutron decay. Left-hand side: Pathways for tetraneutron disintegration into constituent dineutrons and neutrons;
Right-hand side: Calculation of change in DoFs (Δ = 51.5) according to the disintegration pathways of a tetraneutron.

Thus, we can express the entropy production as:

Π = 𝜕W
𝜕t

kBe
−Δ (A4)

In the context of the radioactive decay of an individual particle we as-
sume that, in general, the entropy production is constant, both before and
after the decay event; that is to say, the quantity 𝜕W/𝜕t is a constant. In
which case, employing the exponential-decay time constant 𝜏 as part of
the definition of 𝜕W/𝜕t we write:

𝜕W
𝜕t

kB =
lnW0

𝜏
kB (A5)

We also need to understand the physical basis for the constant W0
which represents a system constant related to the size of the Hilbert space
(or the number of constituent parts of the system under consideration).
We define the entropic quantity:

S0 ≡ kB lnW0 (A6)

to be related to (but not necessarily the same as!) the background entropy,
which can be regarded as a constant of integration due to the logarithmic
nature of entropy, and whichmay take an arbitrary value. Then the entropic
version of the Planck–Einstein relation is:

Π = e−Δ

𝜏
S0 =

kBc
𝜆

(A7)

or:

ln
(
e−Δ

𝜏

)
+ ln S0 = ln

kBc
𝜆

(A8)

We note the analogy of Equation (A8) with the work function aspect of
the Planck–Einstein relation:

E −W = hf (A9)

such that the quantity lnS0 (related to the background entropy) is seen to
be equivalent to the work function and therefore varies for different sys-
tems. For the neutron-based systems we’re interested in, we empirically
assume that S0 =e8 J/K as before.

Returning to Equation (A7), we express the differences between initial
(A) and final (B) entropy productions following a decay (entropy increase)
event (taking the kinematic Planck–Einstein relation as our template) as:

ΠA − ΠB = e−ΔA

𝜏A
S0 −

e−ΔB

𝜏B
S0 =

kBc
𝜆

(A10)

(
e−ΔA

𝜏A
− e−ΔB

𝜏B

)
S0 =

kBc
𝜆

(A11)

Appendix B

𝚫 for Tetraneutron Decay to 4 × Neutrons

For the tetraneutron, we obtain the change Δ in the number of degrees of
freedom (DoFs) as Δ = 51.5 using the following calculation (see Figure
B1):

Δ = 2 ×
[
(1 + 4)2 + 1

]
− 0.5 = 51.5 (B1)

In QGT the tetraneutron is treated as Buckminsterfullerene (C60),
[4]

that is a (holomorphic) shell with an (empty) interior. It is well-known that
fullerenes may incorporate guest atoms or molecules in their hollow in-
teriors which often serve to stabilize them. Such cage-like structures are
called “clathrate” and have many applications. In particular, the neutron
halo of 8He is treated in QGT as a holomorphic pair of holomorphic neu-
tron pairs ref. [1], and here we simply treat the tetraneutron as an 8He
without the alpha guest. Previously,[1] we showed that a holomorphic pair
of (identical) entities have one extra DoF relative to that of the entity itself
(Δ = +1), and also that the clathrate structure has an extra three DoFs for
the guest entity, which entity may or may not be present: for 8He the guest
(the alpha) is present but for the tetraneutron it is not present. From this
perspective, it is clear that the number of DoFs associated with the tetra-
neutron is Δ1 ≡ Δtn = 4; this being three fewer than the DoFs associated
with 8He (which hasΔ1 ≡Δ8He = 7, as per Table 2). Likewise, the dineutron
(whose holomorphic pairing comprises a tetraneutron) should have one
less DoF as compared with the tetraneutron’s number of DoFs, such that
for the dineutron Δ1 ≡ Δdn = 3. This is again consistent with a clathrate
6He (with DoFs Δ1 ≡ Δ6He = 6) absent its alpha particle guest.

In Figure B1 we regard the disintegration process of the tetraneutron
as proceeding via the “dineutron”. The “dineutron” is regarded as a
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Table C1. Nuclear radii measured, and calculated holographically by quantitative geometrical thermodynamics (QGT).

Isotope A QGT Measured Calculated Isotope A QGT Measured Calculated

DoF DoF

Δ fm fm Δ fm fm

4He 4 3 1.68 1.64 3H 3 2.5 1.76 1.50
8Be 8 6 (2.2) 2.32 7Li 7 5.5 2.40 2.23
12C 12 7 2.47 2.51 11B 11 6.5 2.41 2.42
16O 16 8 2.71 2.68 15N 15 7.5 2.61 2.60
20Ne 20 9 3.01 2.85 19F 19 8.5 2.90 2.77
24Mg 24 10 3.06 3.00 23Na 23 9.5 2.99 2.92
28Si 28 11 3.12 3.15 27Al 27 10.5 3.05 3.08
32S 32 12 3.25 3.29 31P 31 11.5 3.18 3.22
36Ar 36 13 3.39 3.42 35Cl 35 12.5 3.37 3.36
40Ca 40 14 3.48 3.55 39K 39 13.5 3.44 3.49

Left-hand side: Helium series from Parker et al. 2022[1] (Δ is “degrees of freedom” DoF); Right-hand side: Helium series less one proton with ΔRHS given by ΔLHS−0.5.
Measured RMS charge radii for both LHS and RHS from Angeli 1999.[25] Calculated radii from Equation (9a) of Parker et al. 2022[1] (see also ibid. Table 2).

holomorphic pair of neutrons and the neutron is regarded as having Δn
= −1 (see Table 2). Thus the “dineutron” has Δdn = 3 (= −1+1+3). Then
the tetraneutron is a holomorphic pair of “dineutrons”: Δtn = 4 (= 3+1).

The change in the number of DoFs associated with the disintegration
of the tetraneutron is calculated by consideration of the various potential
entropic pathways leading to the final four neutrons according to the prin-
ciple of least exertion. The calculus of overall change in DoFs has to con-
sider the fact that the product particles (two intermediate “dineutrons”,
and finally four neutrons) of the disintegration are essentially identical and
indistinguishable from each other.

The calculus of the DoF change is based on the indistinguishability
of the various product particles, and the resulting specific symmetries.
Then to count the pathways we sum partial Δs for the logical OR func-
tion, and take the product of the partial Δs for the logical AND function
(see Figure B1).

Then, referring to Figure B1, (i) notes that when a dineutron disinte-
grates into one of the neutrons the change in DoFs is 4, while (ii) notes
that the change in DoFs when the tetraneutron disintegrates into one of
the dineutrons is simply 1. Similarly (iii) extends (ii) for the single path-
way of a tetraneutron disintegrating into a neutron, there is a change in the
number of DoFs of 5 (= 1+4) for that pathway, as indicated. Then to count
pathways, (iv), we consider the full number of possibilities, given the var-
ious symmetries and indistinguishabilities. Finally, (v) taking the relative
stability of the overall tetraneutron structure into account, a half-integer
DoF is removed.

Appendix C

Half-Integer Degrees of Freedom

We have assumed that tropons and DoFs are closely related, and therefore
that DoFs should be quantized. Of course, DoFs are intrinsically quantized
since it seems tomake little sense to speak of “fractional DoFs”. Neverthe-
less, we have made use of “half-DoFs” in the main text. Thermodynamics
is scale-independent but specific DoFs only apply at a certain given scale
so that at different scales different DoFs come into play. Previously,[1] we
treated the alpha particle as a “unitary entity” (than which exists nothing
simpler) at a scale length given by the proton radius: at this scale the inter-
nal structure of the alpha (with four nucleons) is ignored. But on a smaller
scale more DoFs will come into play.

Often, a DoF is associated with the quantum of entropy, the Boltzmann
constant kB (in isomorphism to the quantum of kinematics being the re-
duced Planck constant ℏ), e.g., as discussed in ref. [1]. However, just as the
half-integer Planck constant ℏ/2 is frequently seen in quantummechanics
(e.g., the half-integer spin of fermions) so we also observe the presence of

the half-integer Boltzmann constant in QGT. In Appendix 2 of our previ-
ous work (Parker et al. 2022[1]) we discuss the application of the quantity
kB/2 in the context of DoFs; in which case, it becomes apparent that the
concept of a “half-integer DoF” also becomes appropriate. It is also in this
context that we see that the identification of a DoF with a tropon is per-
haps overly simplistic; particularly in the assignation of either integer kB
or half-integer kB/2 values to a DoF.

Here we show that, in effect, half-integer DoFs are also explicitly re-
quired to account plausibly for the radii of nuclei not in the “helium se-
ries” (A = 4n: 4He … 40Ca). Table C1 (left side) shows the results obtained
previously for the helium series[1] to be compared with the same nuclei
with one proton less (right side), where the nuclear radii are calculated
with QGT using a ½DoF less. Clearly, tritium’s location doesn’t fit well in
this series (although a calculated radius of 1.78 fm for DoF = 3.5 is note-
worthy), and 7Li also looks out of place, but the other nuclei seem to fit as
well as the corresponding nuclei in the helium series.

Appendix D

The Hilbert Transform Relation of Tropon to Photon

In our previous work ref. [26] we have shown that the spectral representa-
tions of the energy E (Hamiltonian) and entropy production (Π ≡ dS/dt)
of a system are Hilbert transforms of each other. That is to say, the spectral
representations of energy and entropy production are given by the Fourier
transform of the respective temporal variation of energy and entropy pro-
duction. The conservation of energy (1st Law) is axiomatic, while we have
shown that the conservation of entropy production[5] arises as a conse-
quence of Noether’s theorem and the associated entropic Euler–Lagrange
equation describing the principle of least exertion (or maximum entropy,
in its analogous and more familiar guise.) It’s also worth noting that Par-
seval’s theorem as applied to the real and imaginary components of the
Hilbert transform (in effect, the energy and entropy production of the sys-
tem) also implies the respective conservation of these physical quantities.

In the context of this present paper, we note that a temporal change
in the energy of a system, e.g., due to the emission or absorption of a
photon by an atom, intrinsically implies a finite (i.e., not a trivially zero)
Hilbert transform relationship between the spectral representations of the
system’s energy and entropy production. This in turn also implies that a
change in energy of a system (e.g., as represented by the addition or loss
of a quantum of energy, such as a photon, ΔE = hf) inevitably requires
an associated change ΔΠ in the entropy production of the system. It is
equally clear that the change in entropy production is associated with a
quantum of entropy production given by ΔΠ = kBf = kBc/𝜆, where 𝜆 de-
fines the length scale of the process. From this perspective, it is reasonable
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to associate the change in entropy production with an entropic quantum
particle that we call the tropon. As an entropic particle, a tropon can be
considered to contribute toward the structural or geometrical properties
of a system, particularly as the system evolves over time in structure and
shape.
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