
Applications of Deep Learning Models in

Financial Forecasting

Ahoora Rostamian

A thesis submitted for the degree of Doctor of Philosophy

Centre for Computational Finance and Economic Agents

School of Computer Science and Electronic Engineering

University of Essex

September 2023

Abstract

In financial markets, deep learning techniques sparked a revolution, reshaping conventional ap-

proaches and amplifying predictive capabilities. This thesis explored the applications of deep

learning models to unravel insights and methodologies aimed at advancing financial forecasting.

The crux of the research problem lies in the applications of predictive models within financial do-

mains, characterised by high volatility and uncertainty. This thesis investigated the application

of advanced deep-learning methodologies in the context of financial forecasting, addressing the

challenges posed by the dynamic nature of financial markets. These challenges were tackled by

exploring a range of techniques, including convolutional neural networks (CNNs), long short-term

memory networks (LSTMs), autoencoders (AEs), and variational autoencoders (VAEs), along with

approaches such as encoding financial time series into images. Through analysis, methodologies

such as transfer learning, convolutional neural networks, long short-term memory networks, gen-

erative modelling, and image encoding of time series data were examined. These methodologies

collectively offered a comprehensive toolkit for extracting meaningful insights from financial data.

The present work investigated the practicality of a deep learning CNN-LSTM model within the Di-

rectional Change framework to predict significant DC events—a task crucial for timely decision-

making in financial markets. Furthermore, the potential of autoencoders and variational autoen-

coders to enhance financial forecasting accuracy and remove noise from financial time series data

was explored. Leveraging their capacity within financial time series, these models offered promis-

ing avenues for improved data representation and subsequent forecasting. To further contribute to

financial prediction capabilities, a deep multi-model was developed that harnessed the power of

pre-trained computer vision models. This innovative approach aimed to predict the VVIX, utilising

the cross-disciplinary synergy between computer vision and financial forecasting. By integrating

knowledge from these domains, novel insights into the prediction of market volatility were pro-

vided.

i

Dedication

To my mom and dad, Zari and Mansour

My sisters Atash and Aseman

and my brother Hoormazd

for their endless love, support, and devotion.

ii

Acknowledgements

I would like to express my gratitude and appreciation for

my supervisor Dr. John O’Hara whose guidance and

support have been invaluable throughout my Ph.D.

iii

Contents

1 Introduction 1

1.1 Research Background . 3

1.2 Research Motivation and Objectives . 9

1.3 Publications . 10

1.4 Roadmap . 10

2 Background and Literature Review 12

2.1 Machine Learning and Deep Learning in Finance . 12

2.2 Time Series and Forecasting . 17

2.3 Deep Learning Applications in Financial Forecasting . 18

2.4 Directional Change Framework . 19

2.5 Long Short-Term Memory . 22

2.6 Convolutional Neural Networks . 25

2.7 Generative Modelling . 27

2.8 Residual Networks . 37

2.9 Transfer Learning . 40

2.10 Gramian Angular Fields . 44

2.11 Markov Chain . 45

2.12 Markov Transition Fields . 46

3 Event Prediction within Directional Change Framework using a CNN-LSTM Model 48

3.1 Introduction . 48

3.2 Methodology and Experimentation . 48

3.3 Results . 61

4 Deep-learning Driven Forecasting with Autoencoders and Variational Autoencoders 63

4.1 Introduction . 63

4.2 Methodology and Experimentation . 64

iv

v

4.3 Results . 76

5 Transfer Learning in Financial Forecasting, Encoding Time-series to Images 77

5.1 Introduction . 77

5.2 Methodology and Experimentation . 78

5.3 Results . 84

6 Conclusion and Future Work 86

6.1 Summary of Findings . 86

6.2 Synthesis of Findings . 88

6.3 Contribution and Broader Significance . 88

6.4 Future Research . 88

List of Figures

2.1 A share price and the corresponding intrinsic time curve for θ = 0.05%, for a selected

time period . 21

2.2 LSTM Block Architecture . 24

2.3 Max pooling . 27

2.4 Autoencoder Architecture . 32

2.5 Residual Skip Connection. 38

2.6 Transfer learning in machine learning . 43

2.7 Contributions of transfer learning to improved learning 43

2.8 GAF and MTF Images . 47

3.1 The first 100 observations of GBPUSD with a predefined number of tick prices. 52

3.2 CNN-LSTM model . 53

3.3 GBPUSD generated tick bars. 56

3.4 CNN-LSTM results within DC framework and on raw tick bars for GBPUSD 57

3.5 CNN-LSTM results within DC framework and on raw tick bars for EURUSD 58

3.6 CNN-LSTM results within DC framework and on raw tick bars for USDCHF 59

3.7 CNN-LSTM results within DC framework and on raw tick bars for USDCAD 60

4.1 Proposed Model . 65

4.2 Denoising LSTM-VAE encoder . 68

4.3 Denoising LSTM-VAE decoder . 69

4.4 LSTM-AE forecasting model . 72

4.5 BiLSTM-AE forecasting model . 73

4.6 CNN-LSTM forecasting model . 74

4.7 CNN-BiLSTM forecasting model . 75

5.1 VIX Volatility . 79

5.2 ResNet-18 Architecture. 80

vi

vii

5.3 Proposed ResNet-LSTM Model . 83

5.4 GAF, MTF Images of VVIX . 84

List of Tables

3.1 Average True Range Calculation . 52

3.2 CNN-LSTM Parameters . 54

3.3 Durbin-Watson Statistic of the Currency Pairs . 56

3.4 Prediction Accuracy Results . 61

4.1 Prediction Accuracy Results (Test set) . 76

5.1 Recurrent Pathway LSTM dimensions. 82

5.2 Image Pathway kernel dimensions. 82

5.3 ResNet-LSTM results for different image sizes and LSTM lag lengths. 84

viii

Chapter 1

Introduction

In 1955 at Dartmouth College in Hanover, New Hampshire, John McCarthy, a maths professor, first

coined the term artificial intelligence. Two years later, prominent economist Herbert Simon pre-

dicted that computers would beat humans at chess within ten years. Artificial Intelligence (AI) is

a broad topic today, and its popularity is on the rise thanks to the emergence of innovative tech-

nologies. Artificial intelligence alludes to computers’ ability to execute tasks associated with the

characteristics of human beings, such as reasoning, discovering meaning, generalising, and learn-

ing from experience [58]. Human intelligence is not characterised by just one trait but rather by

a combination of diverse abilities. With that said, AI research focuses mainly on the aspects of

intelligence: learning, reasoning, problem-solving, perception and using language [45].

Improvements in perception and cognition are the most significant advances. Within the category

of perception, practical advances have been made in the area related to speech. Millions of people

worldwide use the voice recognition of Google Assistant, Alexa, and Siri. Image recognition, on the

other hand, has come a long way. Facebook and many other apps now recognise faces in photos

and prompt users to tag them with their names. Self-driving cars used to misidentify pedestrians

once in 30 frames: now, less than once in 30 million frames. The error rate of recognising images

from the ImageNet dataset with several million images decreased from above 30% in 2010 to nearly

4% in 2016 [138]. Another significant improvement has been in cognition and problem-solving. AI

has beaten humans at poker and Go, yet another achievement experts had predicted would take

another decade.

Deep Mind machine learning improved the cooling efficiencies of Google’s data centres by 15%

[101]. Intelligent agents are being used to prevent money laundering, and cyber-attacks and auto-

mate claims processes. Many companies use machine learning to execute trades, credit scoring,

fraud detection, and quantitative trading. Machine learning systems are ubiquitous and not only

1

2

surpass older algorithms in many applications but are now better at many tasks that were once

done best by humans [16].

Machine learning puts forward a fundamentally different approach to problem-solving: learning

from examples rather than being explicitly programmed to obtain a particular outcome. For many

years, information technology has focused on embedding existing human knowledge into ma-

chines. The principal shortcoming of this approach is the tacit nature of our knowledge, in many

ways, it is not explainable. We recognise our friend’s face but writing the instruction to that is nearly

impossible. This noteworthy fact, Polanyi’s Paradox, explains the cognitive phenomenon that there

exist tasks we understand how to perform intuitively, although we cannot verbalise their rules and

procedures [36, 17].

We are overcoming that limitation by building machines capable of learning from examples and

using feedback to solve problems such as recognising faces. There are different flavours of artificial

intelligence and machine learning. Machine learning is a statistical approach to learning from data.

It is an umbrella term with various algorithms to understand relationships within data and make

predictions and decisions on that data. Three main branches of machine learning are supervised,

unsupervised, and reinforcement learning. However, most of the successes have been achieved in

supervised learning [111]. In supervised learning, a machine is fed with many examples of correct

answers to a problem, aiming to map from a set of inputs to a set of outputs. The training process of

such a model almost always contains thousands, if not millions, of examples, labelled with correct

answers. Following the training, the model can predict with a high accuracy rate.

Much of the success in supervised learning results from deep learning developments that employ

neural networks [116, 81]. Neural networks have proven to have the upper hand compared to con-

ventional machine learning algorithms. Training models with larger training examples would im-

prove machine learning and deep learning models’ performance. However, in the case of machine

learning models, accuracy plateaus at a point, i.e., additional training data, will not lead to more

accurate predictions. Although data labelling is a resource-expensive endeavour, it is a relatively

straightforward task; hence making supervised machine learning systems more prevalent. Regres-

sion and classification models are the two common types of supervised learning algorithms.

Unsupervised learning is another common type of machine learning. It differs from supervised

learning because it aims to extract information from unlabelled datasets. Developing such models

is extremely difficult; not surprising that Yann LeCun compared supervised learning to the icing on

the cake and unsupervised learning to the cake itself. The main branches of unsupervised learning

are clustering, dimensionality reduction, and generative learning.

Reinforcement learning, inspired by behavioural psychology, is another growing and exciting area

3

within the field of machine learning in which no data is given to the model. The machine performs

tasks using an environment and an agent that tries to navigate in this environment. The agent

has a goal or a set of goals, while the environment has rewards to help the agent reach its goal

[94]. Systems trained to play Atari video games, and the game of Go use reinforcement learning

techniques. Deep learning, which derives from machine learning, is a broad class of approaches

and algorithms that are used to achieve human-like intelligence. Deep learning implies that the

approaches attempt to solve problems in a general way—like spatial reasoning, computer vision,

and speech recognition. Deep learning also concerns itself with supervised learning, unsupervised

learning, and reinforcement learning. Deep learning approaches typically use multiple layers of

artificial neural networks.

The use cases for artificial intelligence are not limited. Where there are data and problems to solve,

AI can be applied innovatively to real-world problems. These techniques have been used in various

domains, such as health care, cybersecurity, logistics, and telecommunications. One specific do-

main is finance and financial markets. With the growth of machine-readable data throughout the

financial system and computing power, financial modelling has more than ever been affected. The

financial crises of 2007-2008 resulted in regulatory bodies adopting data-based regulations. The

collection and analysis of bank loan contractual terms and trading book stress-testing programs in

the US and Europe are among the prominent examples of such data-driven regulations [41].

1.1 Research Background

Financial Markets and Data

Contrary to the conjured-up image of the bustling New York Stock Exchange floor, financial markets

broadly refer to a marketplace where the trading of financial products takes place. These markets

come in many forms, functioning in different ways, and whether formal or informal, they serve

essential functions that are fundamental to the operation of modern economies. Some of these

crucial functions include price setting, asset valuation, capital raising, investment, and risk man-

agement.

Financial markets provide price discovery, which involves the process of determining the relative

price at which individuals’ expectations and valuations align. These market prices, driven by the

forces of supply and demand, offer valuable insights into the perceived value of assets, allowing in-

vestors and market participants to make informed decisions. Corporations utilise various financial

instruments such as equities, bonds, and other securities to attract new funding, earn returns, and

accumulate assets that will generate income in the future.

4

Equities, commonly known as stocks, represent ownership stakes in a company, providing in-

vestors with a claim on the company’s profits and assets. Bonds, on the other hand, are debt in-

struments issued by corporations or governments to raise capital. Bondholders receive periodic

interest payments and the return of their principal amount upon maturity. These financial prod-

ucts offer diverse investment opportunities and cater to the preferences and risk appetites of a wide

range of investors.

Financial markets play an essential role in facilitating economies by efficiently allocating resources

and generating liquidity for companies. When businesses need to raise capital for expansion or

investment in new projects, they can issue stocks or bonds to the public through the primary mar-

ket. Investors, in turn, purchase these securities, providing the necessary funds for the businesses’

growth initiatives. Moreover, secondary markets enable investors to buy and sell previously issued

securities, adding liquidity and fostering continuous trading and price discovery.

These markets are vital for both established enterprises and start-ups, providing them with access

to the necessary funds for growth and expansion. For example, established companies may issue

additional shares through rights offerings or public offerings to finance mergers and acquisitions or

research and development projects. Start-up companies, with innovative ideas but limited capital,

often turn to venture capital or IPOs1 to attract investors and gain access to the financial markets.

Furthermore, it is important to highlight that financial securities play a crucial role in the modern

economy, offering an array of investment opportunities. This intricate system not only enables in-

dividuals to accrue returns on their investments but also plays a pivotal role in channelling vital

funds to businesses that require capital infusion for growth and development. This symbiotic re-

lationship between investors and businesses underscores the significance of financial securities in

fostering economic prosperity.

Savvy investors adeptly leverage financial markets to assemble portfolios finely tuned to their risk

tolerance levels and overarching financial goals. This strategic diversification across a spectrum of

assets, ranging from stocks and bonds to commodities, serves as a vital mechanism for risk man-

agement. By dispersing investments across various avenues, investors can mitigate the potential

downsides associated with market fluctuations while simultaneously enhancing the prospects for

favourable returns. This prudent approach to portfolio construction epitomises the sophisticated

understanding of investors who appreciate the delicate balance between risk and reward.

In addition to traditional investment, derivatives are an important avenue of investing within the

financial landscape. These intricate financial instruments, including futures, options, and other

1Initial Public Offering

5

derivative contracts, assume a dual role as tools for risk mitigation and speculative endeavours.

Derivatives offer investors an opportunity to not only safeguard their portfolios from the impact

of adverse price movements but also to venture into informed speculations regarding future asset

prices. This dual functionality emphasises the versatility and relevance of derivatives in a dynamic

and ever-evolving market environment.

To illustrate the practicality of derivatives, consider the case of a farmer relying on futures contracts

to secure a stable income amidst market volatility. By locking in a predetermined price for the sale

of their crops, the farmer shields themselves from the uncertainties that could erode profitability.

This real-world application exemplifies the inherent power of derivatives in promoting stability and

predictability for market participants across diverse sectors.

In essence, financial markets play a pivotal role in the smooth operation of capitalist economies,

serving as the backbone of resource allocation, liquidity generation, and asset trading. They enable

businesses and entrepreneurs to thrive, foster economic growth, and encourage investments in

various sectors, thereby driving the progress of the entire economy. By ensuring efficient capital

allocation and risk management, financial markets contribute significantly to the overall stability

and prosperity of nations and global financial systems.

Financial Data

Trading opportunities are significantly influenced by the data that uncovers them. The frequency

of the data plays a pivotal role in the number of arbitrage opportunities that come to light. In the

pursuit of identifying profitable prospects, it is crucial to utilise data that offers the highest level of

detail. Recent developments in micro-structure analysis and advancements in econometric mod-

elling have fostered a common understanding of the unique attributes of tick data. Unlike regularly

spaced low-frequency data, tick data comes in irregular, short intervals. These observed irregular-

ities grant researchers and traders access to a trove of insights not accessible within low-frequency

datasets. The time gaps between trades could potentially indicate shifts in market volatility, liquid-

ity, and other pertinent factors. Moreover, the substantial data volume empowers researchers to

generate statistically accurate conclusions.

Emphasised by Gençay et al. [42], larger datasets contain significantly wider ranges of input vari-

ables due to the expanded number of permissible degrees of freedom. The abundant amounts

of tick data provide researchers with the opportunity to draw statistically meaningful conclusions

about recent market changes using brief data snapshots. While a monthly collection of daily data

might typically be considered too limited to yield statistically reliable forecasts, substantial vol-

umes of tick data within the same monthly period can render such short-term predictions feasible.

6

However, it’s important to consider frequency-related factors like intra-day seasonality when de-

termining the necessary quantity of observations for assessment.

In a nutshell, finding good trading chances relies on having the right information. Getting data

often and in detail is like having a treasure map. And recent improvements in understanding that

kind of data, the tick data, help us read the map better. It’s like solving a mystery where every little

clue counts. The more clues we have, the better we can solve the puzzle of the financial markets.

Tick Data

Tick data, the highest-frequency data [3], is a collection of sequential ticks, the latest quote, trade,

price, and volume information and usually with the following properties:

• A timestamp: This shows the exact time and date when the data was recorded.

• A financial security identification code.

• An indicator of what information tick carries:

– Bid price: The highest price someone is willing to pay for the security.

– Ask price: The lowest price at which someone is willing to sell the security.

– Available bid volume: The amount of the security that people want to buy at the bid

price.

– Available ask volume: The amount of the security that people want to sell at the ask

price.

– Last trade price: The price at which the most recent trade took place.

– Last trade size: The amount of the security traded in the most recent trade.

– Option-specific data, such as implied volatility.

• Information about the market value, such as the actual numerical value of the price, avail-

able volume, or size of the security.

The timestamp signifies when a quote originated, either when released by the exchange, broker-

dealer, or received by the trading system. This travel time can be as short as 20 milliseconds. Com-

plex systems incorporate milliseconds for precision. Quoted data includes an identifier for finan-

cial security, often a ticker symbol or ticker with an exchange symbol for multi-exchange tickers.

For futures, the identifier encompasses the underlying security, futures expiration date, and ex-

change code. The last trade price reflects the price of the latest cleared trade, which can differ from

bid and ask prices. Differences arise when a customer’s favourable limit order is instantly matched

7

by the broker without broadcasting the customer’s quote. The last trade size indicates the size of

this executed trade. In the market, the bid quote is the highest available sale price, while the ask

quote is the lowest buying price at a given time. Market participants provide these through limit

orders. The highest bid from a yet-to-be-executed buy order and the lowest ask among sell orders

form the market bid and ask. Available bid and ask volumes reveal total demand and supply at

those prices.

High-frequency data is characterised by its large volume, with each tick generating a significant

amount of daily observations. This data’s sheer quantity doesn’t necessarily equate to quality. Cen-

tralised exchanges provide accurate bid, ask, and volume data along with timely timestamps for

transactions. However, detailed limit order book information is less accessible. In decentralised

markets like foreign exchange and inter-bank money markets, market-wide rates are often unavail-

able. Participants in such markets are aware of the current price level, but individual institutions set

prices based on purchase orders. Consequently, specific rates for financial instruments may differ

among traders. To enhance the efficiency of decentralised markets, entities like Reuters, Telerate,

and Knight-rider gather and distribute quotes from various traders. There are commonly perceived

anomalies in price differences between traders.

Trader quotes often mirror their own inventory. For instance, a dealer who recently sold $100 mil-

lion of USDCAD might seek to diversify risk and avoid further sales in USDCAD. Dealers typically

must transact based on tradable quotes. To prompt clients to place sell orders on USDCAD, a dealer

raises the bid quote temporarily. Simultaneously, the dealer increases the ask quote to discourage

clients from placing buy orders. Consequently, dealers adjust bid and ask prices when they are

short or long in a specific financial instrument. In anonymous marketplaces like dark pools, deal-

ers and market makers might use indicative quotes to gauge demand or supply, often deviating

significantly from previously quoted prices.

As observed by Gençay et al. [42], some trader quotes might lag behind actual market prices, with

delays varying from milliseconds to one minute. Certain traders quote moving averages of others’

quotes. Delayed quotes are sometimes used to enhance market presence in data feeds, particularly

relevant when contracts are negotiated over the phone. However, the fast-paced electronic market

discourages such delays, improving overall market quality.

The difference between the greatest price a buyer is willing to pay and the lowest price a seller is

ready to accept, or the bid-ask spread (representing the cost of immediate buying and selling), is

determined by several important elements in the financial markets. A key factor is liquidity; as-

sets with higher levels of liquidity usually have smaller spreads since there are more buyers and

sellers actively engaged in the market. Because assets with more frequent transactions typically

8

have lower spreads, this is strongly related to trading volume. Another important consideration

is volatility, with more volatile assets typically having larger spreads to offset the higher risk. The

spread is also influenced by information availability and market transparency, since better infor-

mation availability results in more aligned buying and selling prices. Another important factor is

the degree of competition among market makers; higher levels of competition typically translate

into narrower spreads. The spread may also be impacted by the asset’s intrinsic qualities, such as

the size and stability of the business in the case of equities. The bid-ask spread can also fluctu-

ate due to outside variables such as the time of day and general market conditions, which might

include times of economic duress. Lastly, by improving market efficiency, operational and tech-

nological developments, such as the switch to electronic trading, have typically served to lower

spreads. A higher bid-ask spread necessitates greater security profit to cover the spread and other

transaction costs. Bid-ask spreads are typically negligible during infrequent price changes. Con-

versely, with tick data, incremental price changes are smaller and equivalent to the bid squeeze

spread.

Financial markets constitute a high-dimensional, complex, and noisy ecosystem where multiple

factors interact to determine asset prices and investment outcomes. Recent technological ad-

vances have led to the creation of vast amounts of financial data. According to Jabbour et al. [69],

nearly three billion bytes of data are generated daily from sensors, mobile devices, social networks,

and online transactions. In the ever-changing financial landscape, accurate predictions of finan-

cial market movements enable participants to make informed trading and investment decisions.

However, due to the large scale of today’s financial data, innovative approaches and methodologies

that better reflect the dynamic nature of financial markets are required.

Traditional forecasting models often rely on statistical approaches [53, 66, 5, 73]. The shortcomings

of these conventional models lie in their unrealistic assumptions, which do not accurately capture

the non-linear nature of financial data. Given the promising results of computer vision and Natural

Language Processing algorithms in various fields, further investigation is needed to adapt these in-

novations to financial data. The pivotal role of the financial industry in global economies has given

rise to various forecasting techniques ranging from time series models to machine learning algo-

rithms [117, 91]. However, the complexity and dynamism of financial markets necessitate the use

of highly sophisticated methodologies capable of effectively modelling nonlinear trends, sudden

shifts, and intricate inter-dependencies among various variables.

9

1.2 Research Motivation and Objectives

Primarily, the objective of this research is to investigate the potential of deep learning models in

improving financial forecasting accuracy. Specifically, this study aims to achieve the following ob-

jectives:

• Examining the Suitability of Deep Learning Models in Directional Change Framework: Ex-

plore the utilisation of deep learning models within the Directional Change Framework using

high-frequency financial data. This will enable the model to capture rapid shifts in market

direction, a crucial aspect for timely decision-making.

• Evaluating Generative Models in Financial Forecasting: Evaluate the suitability of deep

generative models, i.e., Autoencoders and Variational Autoencoders, in forecasting financial

time-series data.

• Leveraging Computer Vision Models: Analyse the potential of pre-trained computer vision

models in financial prediction. Investigate how these models, originally designed for image

analysis, can be adapted to extract valuable insights from financial data.

The following research questions guide this study:

1. Directional Change Framework Performance: How does a deep learning CNN-LSTM model

perform within the Directional Change Framework for forecasting events, considering the

inherent volatility of high-frequency financial data?

2. Autoencoder and Variational Autoencoder Contribution: Can an Autoencoder and a Varia-

tional Autoencoder be employed for financial time-series forecasting? If so, how would they

perform compared to recurrent and convolutional models?

3. Computer Vision Adaptation: How can pre-trained computer vision models be harnessed

for financial prediction?

The potential for transformation of decision-making processes within the financial industry through

the utilisation of deep learning models in financial forecasting is significant. The provision of pre-

cise predictions, particularly during periods of instability, can result in the enhancement of risk

management, investment strategies, and the overall stability of financial systems. The present re-

search contributes to the progress of predictive analytics within the financial domain by addressing

the shortcomings of conventional forecasting models.

The present thesis aims to address the research problem of enhancing the accuracy and adapt-

ability of forecasting methods in the domain of finance. The conventional techniques of forecast-

ing may encounter difficulties in comprehending the intricacies of financial data, which can ul-

10

timately result in sub-optimal predictions, particularly during times of heightened volatility and

uncertainty. As the financial markets persist in their evolution, there is an escalating requirement

for models that can proficiently adjust to changing conditions and augment forecasting accuracy.

1.3 Publications

In our published work in the Journal for Neural Computing and Applications [104], we investigated

the effectiveness of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM)

within the Directional Change Framework. The main objective was to evaluate the predictive ability

of the CNN-LSTM model in forecasting directional change event prices. To prepare the input data,

we gathered tick prices for the currency pairs GBPUSD, EURUSD, USDCHF, and USDCAD, covering

the period from January to August 2019.

Subsequently, we derived tick bars/candles from the collected tick prices for each currency pair.

In addition to this, we generated DC-based summaries of the tick bars/candles. The summaries

provided input data for the CNN-LSTM model, which effectively combines the feature extraction

capabilities of CNN with the sequential data prediction capabilities of LSTM. To assess its per-

formance, the CNN-LSTM model was evaluated and compared to alternative regression models,

including Support Vector Regression and Random Forest Regression. The results demonstrated

that the CNN-LSTM model exhibited superior performance compared to other regression mod-

els within the DC framework, thereby highlighting its predictive abilities in forecasting directional

change event prices.

1.4 Roadmap

In the upcoming chapters, this study embarks on an exploration of deep learning’s application in fi-

nancial analysis and prediction. Chapter 2 gives the relevant literature review, summarising the key

research findings and insights from previous studies in financial forecasting. Chapter 3 introduces

the investigation of a CNN-LSTM model within the Directional Change framework for event predic-

tion in high-frequency financial data, emphasising the use of Average True Range (ATR) as a thresh-

old indicator. Chapter 4 delves into the challenges of financial market analysis, distinguishing be-

tween traditional statistical models and machine learning methods, particularly autoencoders, for

denoising and forecasting financial data. Chapter 5 shifts the focus to volatility forecasting, partic-

ularly the VVIX index, and explores innovative techniques like Gramian Angular Fields and Markov

Transition Fields alongside a hybrid ResNet-LSTM architecture to enhance accuracy. Finally, Chap-

ter 6 concludes with a summary of the findings, contribution and significance, and the prospects

11

of future research.

Chapter 2

Background and Literature Review

This chapter encompasses relevant background information. It commences with an overview of

the utilisation of machine learning and deep learning within the field of finance. This succeeded

by an introduction to the concept of financial times series forecasting and the subsequent introduc-

tion of the Directional Change framework. The narrative then proceeds to delve into the intricacies

of Long Short-term Memory and Convolutional Networks, followed by a discourse on generative

modelling and residual networks. Finally, it navigates through topics such as transfer learning,

Gramian Angular Fields, Markov Chain and Markov Transition Fields.

2.1 Machine Learning and Deep Learning in Finance

Over the past two decades, the rapid evolution of information and communications technology has

ushered in an era defined by an overwhelming abundance of collected data, laying the foundation

for what is now commonly referred to as the era of Big Data [90]. This transformative landscape has

naturally propelled machine learning and data science to the forefront of modern innovation. The

surge in available Big Data and the increased affordability of computing power have synergistically

catalysed the ascendance of machine learning and data science in recent times.

Currently, a sweeping trend can be observed across the financial sector, encompassing entities

ranging from hedge funds and investment banks to retail banks and fintech companies, all of which

are fervently embracing and heavily investing in machine learning and data science technologies.

Below, a selection of the myriad applications of machine learning within the financial domain is

elucidated.

12

13

Elevating Portfolio Management and the Emergence of Robo-Advisors

Portfolio management, a careful process involving choosing and keeping an eye on a mix of invest-

ments that match specific risk and return goals over a certain time period, has gotten a boost from

the rise of artificial intelligence (AI). One significant outcome of AI in this area is the emergence of

robo-advisors [49]. These are like real-time digital platforms that offer automated investment man-

agement based on maths and algorithms. They also provide clients with various financial services,

adding a new layer to how portfolios are managed.

In this changing landscape, robo-advisors showcase how technology and finance can work to-

gether. By using the precision and efficiency of machine-guided decisions, robo-advisors com-

bine investment oversight with financial strategies. This not only improves how investments are

managed but also offers clients a range of financial services. This blend of technology and finance

reshapes portfolio management, making it more precise and engaging for clients. This mix of tech-

nology and finance opens the door to a new era, changing how investment management happens

[56].

Mitigating Fraud and Unveiling Money Laundering Patterns

The detection and prevention of fraudulent transactions or activities have been significantly strength-

ened by incorporating machine learning. Machine learning’s inherent ability to analyse large datasets

to uncover unusual patterns makes it especially effective in this context [107]. Another consider-

able challenge within the financial sector is the identification of indicators of money laundering.

Money laundering involves hiding illegally obtained funds, and machine learning models are adept

at examining transactional data to uncover signs of such illicit activities [99].

Enhancing Loans, Credit Card Services, and Insurance Underwriting

Underwriting processes can be significantly enhanced through the utilisation of machine learning,

leading to streamlined risk assessment and more informed decision-making. Machine learning

models possess the capability to analyse an array of data sources to evaluate clients’ risk profiles

systematically. This technological approach results in the provision of more precise pricing esti-

mates, expedited approval timelines, and a reduction in operational expenditures [13, 88].

Revolutionising Risk Management Paradigms

The risk management field, these days, is undergoing a significant transformation, driven by the

prevalent adoption of machine learning techniques. This domain encompasses a broad set of

activities, including the identification of the most suitable lending limits for specific customers,

14

the enhancement of regulatory compliance procedures, and the reduction of risks associated with

models. Yu et al. [137] proposed a measure for systematic risk, known as the Financial Risk Meter

(FRM) based on the penalisation parameter of a linear quantile lasso regression. It is calculated

by taking the average of the penalisation parameters over the 100 largest US publicly traded finan-

cial institutions. In another research, Swankie and Broby [120] examined the relationship between

Artificial Intelligence and banking risk management and concluded that the use of AI can add sig-

nificant economic value to banking operations involving credit, operational, and liquidity risk.

Pioneering Sentiment Analysis in Finance

Financial Sentiment Analysis emerges as a dynamic field that delves into the intricate interplay

between diverse financial resources and their profound influence on investment dynamics. At its

core, it seeks to augment forecasting precision by harnessing the potency of deep learning method-

ologies [32]. This domain finds its roots in the recognition that the sentiments encapsulated within

an array of sources, ranging from news articles to social media posts, wield tangible impact on stock

valuations and the reputations of companies.

The growing impact of emotions has increased the importance of financial sentiment analysis for

investors. By examining the emotional tone in news articles and tweets, investors gain a special

advantage in predicting and understanding market shifts more accurately. As a result, researchers

have tried using sentiment analysis on financial news to predict various financial events. This in-

cludes foreseeing changes in stock prices, predicting how companies will perform, and recognising

patterns in both the Forex market and the wider global financial landscape [31, 27, 29, 93].

Essentially, financial sentiment analysis elucidates the intricate ties binding sentiments to financial

outcomes, thereby furnishing investors with a dynamic toolset to navigate the complex and rapidly

evolving landscape of investments. This research frontier continues to illuminate new pathways

for the augmentation of forecasting accuracy, fostering a symbiotic interplay between sentiment

analysis and deep learning methodologies.

Predicting Asset Prices with Machine Learning

The field of asset pricing revolves around the effort to figure out the real value of financial as-

sets. Whether you’re trading stocks, bonds, derivatives, or other financial tools, understanding how

prices change is crucial. While various ways are used to value different assets, the main goal is

always to balance risk and expected profits. One popular tool for this is the Capital Asset Pricing

Model (CAPM), which is widely used to compare how risky an asset is and what returns it could

bring compared to the overall market portfolio. Chen et al. [22] employed deep neural networks

15

to estimate an asset pricing model for individual stock returns. They included that deep neural

networks outperform benchmark approaches in asset pricing. Gu et al. [52] demonstrated the po-

tential of machine learning in enhancing empirical asset pricing and identified the best-performing

approaches.

Revitalising Derivative Pricing Strategies

A derivative is a financial product whose value is connected to one or more underlying assets. The

process of determining the accurate value of a derivative is known as derivative pricing. Various

types of derivatives have distinct methods for calculating their values. These financial agreements

derive their worth from underlying assets, such as stocks, bonds, or commodities. The objective

of derivative pricing is to establish an unbiased measurement of a derivative’s actual value. This

calculation varies depending on the specific derivative. For instance, futures contracts are valued

by considering arbitrage opportunities, options are valued by using risk-neutral probabilities, and

swaps’ valuation relies on present values.

Traditional models for derivative pricing are constructed based on specific assumptions to replicate

the observed connections between factors like strike prices, time until maturity, option type, and

the market price of the derivative. The integration of machine learning techniques introduces novel

possibilities within the field of derivative pricing. This encompasses various applications, such

as creating datasets that incorporate product attributes, market trends, and model parameters to

estimate model-based values. Moreover, machine learning aids in calibrating asset price models to

real-world market data through simulations and regression analyses [136].

Furthermore, machine learning’s potential extends to reducing the computational time needed to

price complex derivatives and American options, employing advanced tree-based methodologies

[118]. Lastly, machine learning facilitates the comparative evaluation of different algorithms for

option pricing [68]. The advent of AI and machine learning in the domain of option pricing heralds

a new era of precision and efficiency. These technologies, by harnessing advanced data analytics

and pattern recognition capabilities, can dissect and interpret vast, multifaceted market data sets,

revealing critical insights into market dynamics and future trends.

This is especially pivotal in options pricing, where understanding future volatility and price move-

ments of underlying assets is crucial. AI/ML algorithms enhance traditional pricing models like

Black-Scholes, adapting them to better reflect real-world market conditions and irregularities, such

as changing volatility patterns and the unique features of different types of options, including

American options with their early exercise characteristics [14, 28]. In risk management, AI/ML of-

fers a more nuanced approach, providing deeper insights into the probability of diverse market sce-

16

narios, thus enabling more effective strategies for pricing and hedging options. For high-frequency

trading, the speed and efficiency of AI/ML algorithms are unmatched, allowing for rapid analysis

and execution of trades, capitalising on fleeting market opportunities. Beyond trading, these tech-

nologies streamline compliance and reporting processes in alignment with financial regulations,

ensuring accuracy and reducing operational costs. In essence, machine learning offers a versa-

tile toolkit for derivative pricing, encompassing the development of data-driven value estimates,

efficient computation strategies, and the assessment of algorithmic performance.

Pioneering Algorithmic Trading Frontiers

Algorithmic trading uses complex algorithms to carry out trades autonomously, according to pre-

defined directives for quick and objective decision-making. The incorporation of machine learning

(ML) has greatly improved this practice, pushing algorithmic trading into more complex domains

[26]. The implementation of increasingly complex and dynamic trading strategies is made possi-

ble by machine learning’s ability to adapt and use data in real-time. Additionally, machine learn-

ing (ML) techniques open up a wider range of possibilities for deriving in-depth understandings

of market dynamics, such as pattern recognition, predictive analytics, and adaptability to shifting

market conditions.

The ability of ML algorithms to process and analyse massive amounts of data—such as histori-

cal price trends, news feeds, and social media sentiment—at unprecedented speeds is one way in

which this advancement is most noticeable. With the help of these features, algorithms can antic-

ipate future market trends and enhance risk management plans, which increases the efficacy and

efficiency of trading decisions [18]. These technologies are essential for improving real-time trad-

ing tactics, even though many hedge funds and financial organisations keep their specific machine

learning algorithms proprietary. They help create a more complex trading environment where

judgements are made more quickly, based on more data, and less susceptible to biases and hu-

man mistakes.

It’s crucial to understand, though, that these sophisticated algorithmic trading strategies have a

unique set of drawbacks, such as the potential for over-fitting models to historical data and the re-

quirement for constant regulatory standard adaption. Notwithstanding these difficulties, algorith-

mic trading’s incorporation of machine learning marks a substantial advancement in the industry

and gives players in the financial markets new options.

17

2.2 Time Series and Forecasting

In many domains of science, variables are measured sequentially over time and finance is not an

exception. A series of data points that occur in successive order over a period. Historical or current

price of listed stock, quarterly or annual earnings of a company, daily sales of a product or service

and the monthly unemployment rate of a country are among some of the time series data. The

principal characteristics of many time series are trends and seasonal variations which can be mod-

elled deterministically with the mathematical functions of time. Another important characteristic

is that close observations in time tend to be serially correlated. Time series forecasting is a method

to predict future events or values based on time series data. Time series forecasting can help with

decision-making, planning, and strategy in various fields.

Changes in the price of the financial assets are at their core, the result of market participants’ per-

spective about the future. Biased and erroneous processes of human decision-making along with

other macro and micro factors cause a large amount of noise in the form of new information in

financial time series. In order to analyse financial time series, prices are recorded by sampling data

points at fixed time intervals (Daily, weekly, monthly). In this method, researchers first, decide how

often to sample the data, and then they take snapshots at the chosen frequency.

As a result of this convention, financial time series are unevenly spaced and discontinuous con-

cerning the flow of physical time [43] due to several reasons:

• Market Closure: The financial markets are not always open. Usually, they are closed on week-

ends and holidays and only open during predetermined hours each day. For example, no data

points are obtained while the market is closed when data is sampled daily. The time series

has gaps over weekends and holidays as a result [64].

• Non-Uniform Trading Activity: Even within trading hours, trading volume can fluctuate sig-

nificantly. Some trading hours or days can see an increase in trading volume due to economic

news, market news or other factors. However, this fluctuation in trading volume within the

interval will not be captured when sampling at fixed intervals. For example, at the end of the

day.

• Time Zone Differences and Global Markets: Financial assets are traded in several markets

across the globe, each operating in a different time zone. A daily sample in one time zone

might not match a trading day in another, resulting in differences in how the data portrays

market activity across different regions.

• Irregular Events: Events like stock splits, dividend payments, and earnings reports can cause

big price movements. These events don’t happen regularly and can introduce noise into a

18

time series that’s been sampled at fixed intervals.

• Discrete Nature of Sampling: The sampling process itself, in which data points are measured

at different time intervals, results in an inconsistent time representation. The constant flow

of time, and the constant change in prices within each time interval, are compressed into a

single point of data, resulting in a lack of information about price movements within a period.

• Heteroscedasticity: Heteroscedasticity is one of the most common characteristics of finan-

cial time series. This means that the variability of returns can vary over time. Fixed-interval

sampling, however, may not capture these variations, particularly during periods of high or

low market volatility.

Therefore, the interval-based summary of the price lacks realism since, in everyday life, history is

recorded by identifying key events. To address the aforementioned shortcomings of the traditional

approach of time series analysis, Guillaume et al. [54] proposed a new time scale. Intrinsic time

is an alternative approach that replaces the notion of “physical time scale” and looks beyond the

constraints of the physical time within financial data and constitutes an event-driven approach.

2.3 Deep Learning Applications in Financial Forecasting

Financial forecasting has always been an exciting research area in the financial industry. Many

studies have been published on machine learning models with relatively better performances than

classical time series forecasting techniques [113, 129, 38, 86, 123]. Artificial Neural Networks (ANNs),

a sub-class of machine learning models are widely used for predictive data mining tasks. The ap-

plicability of artificial neural networks to stock market predictions was first hypothesised by White

[133], with some indications of success by Saad et al. [106]. Artificial Neural Networks, in essence,

mimic the structure of biological neural networks where neurons are interconnected and learn

from experience. The architecture of ANNs consists of nodes or neurons, arranged in layers that

are interconnected through a system of weights.

Various architectures of neural networks have been developed, and the most popular type that has

been used to solve most of the problems is feed-forward neural networks. Such networks include

an input layer, one or more hidden layers and an output layer [15]. Researchers explored non-linear

neural networks and Support Vector Machines for time series prediction [85]. Zbikowski [139] en-

hanced classifier accuracy using Volume-Weighted Support Vector Machine for stock trading, while

Choudhury et al. [25] used k-means and Support Vector Regression for market volatility and price

prediction. Zhang [140] used neural networks and ARIMA for stock forecasting, highlighting the

advantage of neural networks in non-linear prediction. Abu Hammad and Hall [1] explored the Jor-

19

danian stock market with multi-layer BP networks. Zhang et al. [141] proposed an LM-BP neural

network for stock forecasting, and Wang et al. [130] introduced a wavelet neural network. Roondi-

wala et al. [103] achieved a root mean squared error of 0.0086 using LSTM for Nifty Index prediction.

A significant characteristic of feed-forward neural networks is that they have no memory mean-

ing that each input is processed independently, with no state kept in between inputs. With such

networks, a sequence or a temporal series of data points is treated as a single data point and pro-

cessed in one go. Recurrent Neural Networks (RNN) [109], which are a powerful type of artificial

neural network, process sequences by iterating through the sequence elements and maintaining a

state containing information relative to previous states. One limitation of RNNs is a problem called

vanishing/exploding gradient, which causes the model learning to slow down or stop altogether.

2.4 Directional Change Framework

Prediction of financial asset prices has long been a captivating pursuit for researchers and market

analysts. Unlocking the underlying patterns and dynamics in an effort to gain a competitive edge in

trading has led to extensive investigations into forecasting methodologies. However, this pursuit is

far from trivial due to the intricate nature of financial markets. Financial markets present a distinct

amalgamation of intricacies that differentiate them from conventional predictive domains. The

inherent volatility of markets, which is dictated by a plethora of factors such as economic indica-

tors, geopolitical events, investor sentiment, and even social media trends, engenders a constantly

evolving landscape. Additionally, the non-linear correlation between events and price fluctuations

poses a challenge to the efficacy of traditional linear predictive models [43].

Time-series analysis lies at the core of this endeavour to understand and forecast financial data

[54]. Researchers have conventionally resorted to sampling price data at fixed intervals, such as

daily, weekly, or monthly to uncover hidden trends and patterns hidden within the price fluctua-

tions [43]. However, this approach carries inherent limitations that can hinder the accuracy of pre-

dictions. Fixed-interval sampling, while providing a structured representation of market data, in-

advertently creates gaps in the timeline. These gaps can omit crucial events that occur between the

sampling points. Imagine a scenario where a significant market-moving announcement is made

just hours after the daily data has been captured. This announcement, which might drastically al-

ter the trajectory of prices, would go unnoticed until the next sampling point, potentially leading

to missed trading opportunities and flawed predictions.

Moreover, the interconnectedness of modern financial markets renders the concept of isolated, lin-

ear intervals inadequate. A market event occurring in one corner of the globe during non-trading

hours can trigger a domino effect that influences prices in markets that are actively trading. This

20

ripple effect transcends the confines of fixed intervals and necessitates an approach that acknowl-

edges the interplay of events across both temporal and spatial dimensions [43].

In financial analysis, addressing these challenges requires a transformative paradigm shift that ush-

ers in a new era of comprehending market dynamics. This shift is exemplified by the Directional

Change (DC) framework, a novel approach that disrupts the conventions of traditional time-series

analysis [54]. Departing from fixed intervals, the DC framework adopts an event-driven perspective

to pinpoint significant shifts in market conditions, providing a more dynamic and precise portrayal

of market trends.

Aiming to confront these challenges, a pioneering solution known as Directional Changes (DC)

emerged [54]. This method redefines the concept of "physical time scale" by embracing an event-

driven approach that transcends the temporal constraints of financial data. Instead of being con-

fined to predetermined time intervals, it adopts a viewpoint centred around market events. With

the surge in machine learning’s prominence, researchers have harnessed various algorithms for

predicting financial asset prices and movements [110]. Mehtab’s work [92] stands as a testament,

showcasing accurate CNN-based regression models tailored for predicting multivariate financial

time series. Building upon this momentum, the present study introduces a deep learning-based

regression model designed to predict currency pair prices within the dynamic Foreign Exchange

(FX) market. Leveraging the innovative Directional Change framework, this model’s performance

is rigorously evaluated, both within the framework’s scope and beyond.

The directional Change (DC) is an approach to summarise price movement by transforming a time

series price curve into an intrinsic time curve [124]. Under the DC framework, a DC event is iden-

tified by a substantial change in the price of an asset, defined as a price change greater than a

pre-defined threshold value θ. Following a DC event, an overshoot (OS) event happens until the

next DC event in the opposite direction. Figure 2.1 illustrates a time series and the corresponding

intrinsic time series for a θ = 0.05%. Based on the DC approach, the market is broken down into an

alternating uptrend and downtrend. An upturn event indicates that the price change between the

current market price pt and the last low price pl is greater than a threshold θ:

pt ≥ pl (1+θ) (2.1)

As illustrated in Figure 2.1, the move from point A to B is an upturn DC event. By the same token,

a downturn event is defined as an event where the difference between the current price pt and the

last high price ph is lower than a fixed threshold θ [124]:

21

Figure 2.1: A share price and the corresponding intrinsic time curve for θ = 0.05%, for a selected
time period

pt ≤ ph(1−θ) (2.2)

A trend ends whenever a price change of the same threshold θ is observed in the opposite direction,

see [7]. It should be noted that different thresholds generate different series of events. The notion

of using different thresholds is that each threshold might be considered significant by a different

trader. Smaller thresholds create more directional changes compared to larger ones. As it was

mentioned above the value of the threshold needs to be predetermined when summarising price

movements using the DC. It represents how big of a price change the observer considers significant.

Bakhach et al. [6] proposed a forecasting model, under the DC context, which aims to answer the

question of whether the current trend will continue until a specific magnitude, expressed as a per-

centage, is reached before the trend ends. Golub et al. [46] suggested a novel approach to quantify

FX market liquidity based on the DC framework. Their new approach seeks to model market dy-

namics to predict stress in financial markets. Few studies sought to develop trading strategies based

on the DC framework.

In 2016, Bakhach et al. [7] introduced a DC-based trading strategy named “DBA”. The so-called

DBA strategy executes a trade when the magnitude of price change, during the OS event, reaches

a particular threshold. DBA closes the position at the DC confirmation point of the next DC event.

They applied DBA to three currency pairs. Experimental results showed that DBA earns enough

return to compensate for the risk it took over the trading period. The results also showed that

22

Algorithm 1: Defining directional-change (DC) and overshoot (OS) events.

Result: DC-based event summaries
Initialisation: (event=upturn, ph = pl = p0, θ ≥ 0, t dc

0 = t dc
1 = t os

0 = t os
1 = t0);

if event is upturn then
if pt ≤ ph ∗ (1−θ) then

event ← Downturn Event
pl ← pt

t dc
1 ← t ; // Downturn event end time

t os
0 ← t +1 ; // Downward OS event start time

else
if ph < pt then

ph ← pt

t dc
0 ← t ; // Downturn event start time

t os
1 ← t −1 ; // Downward OS event end time

end
end

else
if pt ≥ pl ∗ (1+θ) then

event ← Upturn Event
ph ← pt

t dc
1 ← t ; // Upturn event end time

t os
0 ← t +1 ; // Upward OS event start time

else
if pl > pt then

pl ← pt

t dc
0 ← t ; // Upturn event start time

t os
1 ← t −1 ; // Downward OS event end time

end
end

end

DBA could generate positive returns of up to 14% within seven months, after deducting the bid-ask

spread.

Kampouridis and Otero [72] proposed a trading strategy based on the DC framework, named “DC+GA”.

It runs multiple DC summaries and thresholds simultaneously. For each DC summary, DC+GA

tracks the identification of corresponding DC or OS events. It utilises these DC and OS events col-

lectively with some trading parameters to implement buy or sell recommendations. DC+GA em-

ploys a Genetic Algorithm (GA) module to optimise the selection of thresholds and the values of

the trading parameters of each threshold. This optimisation seeks to maximise the profits made,

by DC+GA.

2.5 Long Short-Term Memory

Recurrent Neural Networks (RNN), are a robust type of artificial neural network which processes

sequences by iterating through the sequence elements and maintaining a state containing infor-

mation relative to previous states. Unlike the Feed-Forward neural networks, RNNs models can

leverage the previous inputs’ sequential information through memory gates. The RNNs memory,

23

which is called recurrent hidden state, enables the network to predict the next item in the input

data sequence. Practically, however, the length of the sequential information is limited to only a

few steps back. Although RNNs should theoretically retain information from previous time steps,

such long-term dependencies are impossible to learn in practice.

A common problem among RNNs is vanishing gradient when the gradients’ information vanishes

while passing through a deep layered network. The gradient is the partial derivative of a function’s

output with respect to its inputs’ changes. This problem prevents the network from learning long-

term dependencies which causes the learning process to slow down or stop altogether. Conversely,

there is the exploding gradient problem in which the gradient’s information accumulates and re-

sults in a large gradient. In the “vanishing gradient” problem, the network assigns smaller values to

the weight matrix, and in the “exploding gradient” problem, the opposite is true.

As mentioned earlier, RNNs are not capable of learning long-term dependencies. Long short-term

memory architecture, was first proposed by Hochreiter and Schmidhuber [63] to address this prob-

lem. The LSTM models are an extension of RNNs and are designed to address the vanishing gradi-

ent problem. Generally, the LSTM model consists of three gates: forget, input, and output gates, as

shown in Figure 2.2. The forget gate is responsible for deciding to preserve or remove the existing

information. The input gate determines the extent to which the new information will be added to

the memory, and the output gate controls whether the current value in the cell contributes to the

output [63].

• Forget Gate: In the forget gate block of the LSTM layer, the information from the current

input xt and the previous hidden state ht−1 is passed through an activation function (e.g.

sigmoid). The gate output ft will be a value between 0 and 1, where zero implies removing

the learned value while one means preserving the value. The output is computed as:

ft =σ(W f .[ht−1, xt]+b f) (2.3)

where b f is called the bias value.

• Input Gate: This gate which determines the additions of new information to the LSTM mem-

ory has two layers. A sigmoid layer decides which values need to be updated and the hyper-

bolic tangent layer generates a vector of new values that will be added to the memory. The

output value of the input gate is computed through the following formulas:

it =σ(Wi .[ht−1, xt]+bi) (2.4)

C̃t = t anh(Wc .[ht−1, xt]+bc) (2.5)

24

Figure 2.2: LSTM Block Architecture

Together, these two layers update the LSTM memory, forgetting the current value by multi-

plying the old value and adding a new value it ∗ C̃t . The following represents its equation:

C̃t = ft ∗Ct−1 + it ∗ C̃t (2.6)

• Output Gate: Here the gate first uses a sigmoid function to determine which part of the LSTM

memory contributes to the output. Subsequently, through the non-linear tanh function, it

maps the values between -1 and 1.

ot =σ(Wo[ht−1, xt]+bo) (2.7)

ht = ot ∗ t anh(Ct) (2.8)

LSTM networks have also been used in the financial forecasting field. DiPersio and Honchar [37]

compared three different RNN models (basic RNN, LSTM, and GRU) to predict the movement of

Google stock prices. Hansson [57] used LSTM alongside other classical forecasting techniques to

predict the trend of stock prices. Karmiani et al. [75] compared LSTM’s performance to SVM, back-

propagation, and Kalman filter, showing high accuracy and low variance. Fischer and Krauss [40]

25

demonstrated LSTM’s superiority in predicting S&P500. Nelson et al. [95] combined LSTM with

technical indicators for stock movement prediction. Salis et al. [108] investigated LSTM’s appli-

cation in predicting gold price fluctuations. Zhuge et al. [142] predicted opening stock prices us-

ing LSTM. Hu [65] used CNN for time series prediction, showing moderate accuracy. Sezer and

Ozbayoglu [112] classified daily prices of Dow 301 stocks and ETFs2 using CNN.

2.6 Convolutional Neural Networks

Image data whether monochromatic or coloured is represented as a two-dimensional grid of pix-

els, where each pixel corresponds to one or multiple numerical values. The two-dimensionality

of images is overlooked when images are treated as vectors of numbers, irrespective of the spatial

relations of pixels. Flattening the images is a required procedure to prepare the data for a one-

dimensional fully connected network. As these networks are insensitive to the arrangement of

features, the outcomes remain consistent regardless of whether we maintain the order reflecting

the spatial organisation of pixels or if we rearrange the columns in the design matrix before ad-

justing the parameters of the Multi-layer Perceptron (MLP) network. Ideally, we would exploit our

prior understanding that neighbouring pixels often have a connection with each other to construct

effective models for learning from image data. Convolutional Neural Networks [84] are powerful

neural networks designed particularly to serve this purpose and are now ubiquitous in the com-

puter vision field.

Convolutional Neural Networks have been shaped by drawing inspiration from various sources,

including biology, group theory, and extensive experimentation. Apart from their effectiveness in

producing accurate models with fewer samples, CNNs also demonstrate computational efficiency

due to their reduced parameter requirements and the ease of parallelising convolutions across

GPU cores [24]. As a result, practitioners widely employ CNNs whenever possible, and they have

proven to be formidable contenders even in tasks with one-dimensional sequences like text [71]

and time series analysis where recurrent neural networks have traditionally been utilised. Fur-

thermore, clever adaptations of CNNs have enabled their application in handling graph-structured

data [80] and recommender systems. As the name of the network implies, it uses a mathematical

operation called convolution, a kind of linear operation. In other words, they use convolution at

least in one of their layers in place of general matrix multiplication.

1Dow Jones Industrial Average (DJIA), commonly known as the Dow 30
2Exchange-Traded Fund

26

Convolution Operation

In mathematical terms, a convolution operation is derived from the integral of the product of two

functions which expresses how the shape of one function is modified by the other function. The

convolution is denoted by the asterisk symbol.

(f ∗ g)(t) :=
∫ +∞

−∞
f (τ)g (t −τ)dτ (2.9)

The central building block of a Convolutional Neural Network (CNN) is the convolutional layer.

Neurons in the first convolutional layer are connected only to pixels within their receptive field

rather than to every single one in the input image. The key distinction between a fully connected

layer and a convolutional layer is that the former learns global patterns in the input feature space,

while the latter discovers local patterns. This characteristic gives convolutional networks two im-

portant properties:

• Translation Invariance: CNNs recognize learned patterns anywhere in the input data, making

them robust to shifts or translations in the data.

• Learning Spatial Hierarchies: CNNs can learn complex patterns by building hierarchies of

features, capturing low-level features in early layers and higher-level abstractions in deeper

layers.

CNNs have shown high performance not only in image processing but also in natural language

processing [76]. The CNN architecture consists of convolution and pooling layers, where each con-

volution layer contains different kernels. After the convolutional operations, the high-dimensional

extracted features pass through a pooling layer to reduce dimensionality.

lt = t anh(xt ∗kt +bt) (2.10)

In Equation 2.10, lt represents the convolution’s output, xt is the input vector, kt is the convolution

kernel weights, and bt is the bias. Although a Convolutional Neural Network was initially designed

for image processing, it can be utilised for time series forecasting. The reduced number of param-

eters by the CNN improves the efficiency of the model [100].

Pooling and Down-sampling

In a neural network, a pooling layer serves to condense a group of neighbouring units from the

previous layer into a single value. This pooling process is similar to a convolution layer, utilising a

specific kernel size l and stride s, but unlike the convolution layer, the pooling operation remains

27

Figure 2.3: Max pooling

fixed and does not involve learning. Notably, pooling layers typically lack an associated activation

function. There are two common forms of pooling:

• Average-pooling is a technique for down-sampling an image or feature map by summarising

local regions into a single representative value. It helps reduce the spatial dimensions of the

data while retaining essential features, making the computation more efficient. The process

of average pooling involves moving a small window (often referred to as the "pooling win-

dow" or "kernel") across the input image or feature map. At each position, the average of the

values within the window is computed, and the result is stored in the corresponding output

position. The size of the pooling window and the stride (how far the window moves at each

step) are typically specified beforehand.

• Max-pooling computes the maximum value of its l inputs. It is commonly used for down-

sampling, but it differs somewhat in its semantics from average-pooling. For example, if

we applied max-pooling to the hidden layer [3,7,4], the result would be a 7, indicating the

presence of a darker dot somewhere in the input image that is detected by the kernel. In

other words, max-pooling acts as a type of logical disjunction, suggesting the existence of a

feature somewhere within the unit’s receptive field.

In Figure 2.3, a max-pooling operation is performed on a single channel image with a kernel size of

two. In this example, the stride is assumed to be the same size as the kernel.

2.7 Generative Modelling

A generative model, a powerful concept within the domain of artificial intelligence, describes how

a dataset is generated based on a probabilistic model. By discerning the underlying patterns and

28

structure from a given dataset, generative models facilitate the creation of new data samples that

closely resemble the original examples. This capability has unlocked exciting possibilities across

various fields, including computer vision, natural language processing, and even music composi-

tion. The application of generative models has garnered considerable attention in recent years due

to their potential in data augmentation, fostering creativity, and aiding in problem-solving [59].

Generative models have found diverse applications in numerous fields. In computer vision, they

are employed to generate realistic images of objects, faces, or even entire scenes. These synthetic

images prove beneficial in augmenting training datasets, leading to more robust and precise com-

puter vision systems. Additionally, in the realm of natural language processing, generative mod-

els are utilised to generate coherent and contextually relevant text, enabling applications such as

language translation, chatbots, creative writing assistance, and even code snippet generation for

programming tasks [20].

Beyond these traditional applications, generative models have shown promise in generating music

and art. Researchers have explored using generative models to compose music across various gen-

res, from classical symphonies to modern electronic beats. This technology has piqued the interest

of the entertainment industry, as composers and producers experiment with generative music for

video games and movies. Likewise, generative models have found application in the field of art,

contributing to the creation of stunning paintings and digital art pieces, and showcasing their po-

tential to inspire creativity among artists and designers [39].

Generative modelling has spearheaded a revolution in the finance industry, showcasing remark-

able versatility by generating new data samples through probabilistic models. These varied appli-

cations have successfully addressed a range of challenges, significantly enhancing financial pro-

cesses. A prominent achievement of generative models lies in fraud detection, as they glean in-

sights from historical data to identify patterns associated with fraudulent activities. Financial in-

stitutions leverage these models to effectively detect and prevent fraudulent transactions, thereby

safeguarding their customers and assets. Furthermore, generative models play a crucial role in

risk management, simulating potential market scenarios, stress-testing portfolios, and predicting

future risk exposures, facilitating prudent decision-making [61].

Investors have also experienced the benefits of generative models in portfolio optimisation. Draw-

ing on knowledge from historical market data, these models generate simulated future scenar-

ios, allowing investors to assess the potential performance of diverse investment portfolios un-

der various market conditions. This empowers them to make well-informed decisions, achieving

an optimal balance between risk and return. Credit risk assessment has witnessed substantial im-

provements through generative modelling. By scrutinising historical customer data and generating

29

synthetic data representing potential borrowers, these models enhance the precision of credit risk

evaluations [61].

Financial institutions can better assess creditworthiness and forecast default probabilities, improv-

ing the overall effectiveness of risk management processes. For instance, banks can use sophisti-

cated algorithms to analyse a borrower’s digital footprint, like online shopping habits or utility bill

payment history, to better forecast their likelihood of default than traditional methods. Generative

models also help to simulate financial market data, providing valuable insights into market trends

and potential scenarios.

Generative models can simulate extreme market events, such as a sharp decline in the stock mar-

ket or a sudden change in interest rates, to test how portfolios would respond. This helps to test

financial models, validate assumptions, and gain a better understanding of how external factors

influence market behaviour. For example, you can use generative models to simulate the impact of

geopolitical events or fiscal policy changes on currency and stock prices. This provides a more re-

liable framework for making decisions. Generative models have also shown their ability to analyse

customer transaction data to model behaviour patterns and preferences. By analysing transaction

data patterns, these models can detect trends such as higher spending in specific categories or

a shift to online transactions, allowing banks and financial services providers to provide person-

alised recommendations, products and services based on these behaviours. This model promotes

customer satisfaction and builds loyalty by providing solutions that align closely with customers’

evolving needs and preferences, for example, recommending savings plans or credit alternatives

based on individual spending patterns.

There are several challenges and limitations associated with generative modelling. One of the

biggest challenges is obtaining a sufficiently large and varied dataset to train the generative model

efficiently. Techniques such as data augmentation are used to artificially enlarge the dataset, in-

creasing its variability and quality. If there is insufficient or biased training data, the generated

samples may be of poor quality or the output may be biased. Generating high-resolution images,

or complex data samples, can also be computationally demanding and time-consuming. This is a

common challenge that is often solved by using distributed computing and specialised hardware,

such as GPUs, which speed up the training process.

Another important challenge is to ensure that the samples created are realistic and consistent. The

design of the model architecture and the loss function play an important role here, which directs

the model to learn to produce more realistic data. Generative models can suffer from mode col-

lapse, producing limited variation by ignoring certain states of the data distribution. Spatial search

algorithms are used to solve this. These algorithms modify the training process, especially for gen-

30

erative adversarial networks (GANs), by penalising the generator for producing similar samples,

thus encouraging diversity. Architectural improvements also have a significant impact. The qual-

ity and variety of results can be improved by, for example, innovations such as Progressive GANs,

which gradually increase the resolution of generated images, or StyleGAN, which differentiates be-

tween style and content.

Regularisation techniques such as adding noise to the inputs or using output layers are used to re-

duce spatial collapse while avoiding overturning. Furthermore, careful tuning of the hyper-parameters

is critical to achieve a balance between the diversity and realism of the generated samples. Through

a combination of these data strategies, computational techniques, architectural innovations, and

algorithmic changes, generative models can be improved to produce more versatile, high-quality,

and realistic results.

Several notable generative model architectures have been successful in different tasks. Autoen-

coders are unsupervised neural networks that aim to compress and reconstruct input data. By

encoding the data into a lower-dimensional latent space and then decoding it back into its origi-

nal form, autoencoders learn to represent data efficiently. They find applications in dimensionality

reduction, denoising, and feature learning. Variational Autoencoder (VAE), a variation of autoen-

coders, introduce probabilistic modelling to the latent space. This enables VAEs to learn a statisti-

cal distribution of the data, allowing for interpolation and sampling of new data points. VAEs have

been extensively used in image generation, data compression, and anomaly detection [4].

The Generative Adversarial Network (GAN), proposed by Goodfellow et al. [48], on the other hand,

employ a unique adversarial framework, consisting of a generator and a discriminator. A generator

and a discriminator, compete continuously. The job of the generator is to produce data instances

that mimic real data as closely as possible. On the other hand, the Discriminator evaluates the

authenticity of the information and differentiates between the real information and the imitation

produced by the generator. This arrangement creates a dynamic competitive environment where

both networks are constantly improving their functionality - the Generator learns to generate more

convincing data and the Discriminator learns to better identify fakes [4].

During training, the goal of the Discriminator is to maximise the accuracy of distinguishing real

data from fakes, while the goal of the generator is to produce data so convincing that the discrim-

inator mistakenly considers it true. Training involves a back-and-forth process where the genera-

tor continuously tries to outsmart the discriminator. If the Discrimination becomes too good, the

Generator may fail to improve due to a lack of meaningful feedback (a problem known as vanishing

gradients). Conversely, if the generator is too powerful, the Discrimination can degenerate into a

guess, leading to unstable training dynamics.

31

One significant challenge in training GANs is “mode collapse” where the Generator starts generat-

ing limited outputs, losing the diversity of the real data. Ensuring that both networks improve at a

balanced rate is crucial to avoid this issue. Another challenge is maintaining stable training; due to

the adversarial setup, it’s common for GANs to experience oscillations in performance, where the

networks continually try to outdo each other without reaching an optimal state [21].

GANs have been utilised in a diverse range of domains, with a specific focus on the realm of im-

age generation. These models have played a crucial role in the production of exceedingly lifelike

images and artistic creations, thereby facilitating progress in many fields. In addition to their con-

tributions to visual representation, GANs have also been employed in various other areas such as

natural language processing, video generation, and the creation of music, thereby showcasing their

versatility and adaptability.

Autoencoders

Autoencoders are unsupervised learning techniques that employ neural networks for the task of

representation learning. An autoencoder aims to copy the inputs to the outputs. At its core, a

hidden layer h describes a code used to represent the output. This hidden layer acts as a bottleneck

that forces the compressed knowledge representation to the input features. If a pattern exists in

the data, i.e., the correlation between the input features, this pattern can be learned. Figure 2.4

illustrates the autoencoder architecture. Autoencoders are crafted to be unable to learn to copy

perfectly. If they did, they would act as an identity function, copying the input to the output without

learning. Usually, they are restricted in a way that allows them to copy only approximately and

only inputs that resemble the training data. To ensure the acquisition of meaningful knowledge

by autoencoders, it is conventional to impose limitations upon them in one or multiple aspects of

their operations:

• Reduced Dimensionality: The latent space, in which the encoder squeezes the data, fre-

quently has a dimensionality that is less than that of the input space. Consequently, the au-

toencoder is compelled to acquire a condensed representation of the data, encompassing

solely its most crucial characteristics.

• Regularisation: Autoencoders also incorporate regularisation techniques, such as imposing

sparsity constraints, to mitigate the risk of the network solely memorising the input data.

Consequently, the network is forced to assign priority to specific aspects of the data for en-

coding.

Due to these restrictions, autoencoders are incapable of copying the input to the output. Instead,

they need to find the most efficient way to represent the input data in a smaller, constrained form.

32

The autoencoders’ architecture 2.4 comprises two parts, an encoder h = f (x) and a decoder r =
g (x). Encoders and decoders are perhaps one of the basic architectures in the domain of deep

learning. Encoders and decoders are present in all the network structures. Hidden layers in a fully

connected layer can be regarded as an encoding from the encoder and the output layer as a decod-

ing from the hidden layer into the output.

Commonly, encoders encode the input into a vector of intermediate state and then the decoder

decodes the vector into the output. A sequence-to-sequence (seq2seq) network used in machine

translation is an established example of an encoder-decoder network. A sentence from a source

language will be encoded into an intermediate vector representation, and then the decoder de-

codes the output sequence into the target language using the intermediate vector.

Figure 2.4: Autoencoder Architecture

With the advent of modern autoencoders, the idea of encoder and decoder has been generalised

beyond deterministic functions to stochastic mappings. The training of autoencoders is a process

of minimising the reconstruction lossL (x, x̂). Reconstruction loss is defined as the difference be-

tween the original features and their corresponding reconstructions. Undercomplete autoencoder

is the one with a lesser code dimension. Undercomplete representation forces the model to capture

the most outstanding features of the training data. In the learning process, the network minimises

the loss function L(x, g (f (x))) where L penalises g (f (x)) dissimilarity to x such as the mean squared

error (MSE).

An autoencoder can be considered as the generalisation of the Principle Component Analysis (PCA),

whereas PCA attempts to discover a lower dimensional hyperplane which describes the original

data, autoencoders can learn non-linear manifolds. A manifold is a mathematical space that lo-

cally resembles Euclidean space like lines, planes, and other higher-dimensional spaces, but can

have a more complex, global structure. Essentially, a manifold is a space where, if we zoom in

closely enough at any point, the space looks like a flat Euclidean space, but the overall shape or

33

structure might be curved or twisted. The non-linearity implies that the manifold can bend, curve,

or have a more complex geometry. This non-linearity is in contrast to linear manifolds, where the

structure is flat and can be fully described using linear equations.

For high-dimensional data, autoencoders can learn a complex representation of the data manifold

which can be used to describe observations in a lower dimensionality and decoded into the original

inputs. Undercomplete autoencoders are capable of learning the most salient features in the data

distribution. Also, researchers observed that too much capacity for encoders and decoders pre-

vents the model from learning valuable patterns [23]. The same shortcoming occurs if the hidden

dimension is equal to the input, and in the overcomplete case with the hidden dimension larger

than the input. In such cases, even a linear encoder and decoder learn only to copy the inputs to

the outputs.

For optimal functionality in an autoencoder, a strategic selection of the code dimension and the

capacity of the encoder and decoder is crucial. This selection should be carefully tailored to match

the complexity of the data distribution that the model aims to represent. Instead of merely re-

stricting the network’s capacity through a shallow architecture and minimal code size, regularised

autoencoders adopt an innovative approach. They employ a specialised loss function designed to

encourage the model to learn beyond simple replication of the input. This loss function incen-

tivises the autoencoder to develop additional capabilities, such as achieving a sparse represen-

tation, minimising the derivatives of the representation for smoother transitions, and enhancing

robustness against noise or incomplete data [47]. These additional learning objectives enable the

regularised autoencoder to extract more profound and valuable insights from the data, notwith-

standing its nonlinear nature or overcomplete representation capabilities. This approach prevents

the autoencoder from falling into the trap of learning a mere identity function, which would ren-

der it ineffective for meaningful data analysis. By focusing on these aspects, the regularised au-

toencoder becomes adept at understanding and representing the underlying data distribution in a

more nuanced and detailed manner [47].

Generative and discriminative models represent two different approaches in the field of machine

learning for tasks such as pattern recognition and classification. Generative models focus on un-

derstanding and reproducing the creation of data, to model the joint probability distribution of

both input functions and output items. This approach facilitates learning the underlying distri-

bution of each class in the data, capturing P (X |Y) the probability of the inputs given the output

class and P (Y) the probability of each output class. By doing this, generative models such as naive

Bayesian models, and hidden Markov models can not only classify new data but also create new

data instances that resemble the training data. On the other hand, discriminant models, exem-

34

plified by logistic regression and support vector machines, go the other way. In the mentioned

approaches, the decision boundary between the classes is directly modelled by estimating P (Y |X)

the probability of the class given the input features. Consequently, they are more efficient in clas-

sification tasks, since the differences between classes are targeted without delving into how each

class’s data is generated. Both approaches have their merits and are valuable tools [82].

The same holds in other disciplines, e.g., chemistry, biology, and economics. Modelling is almost

always generative modelling. There are many reasons why generative modelling is essential. Many

underlying laws and constraints can be expressed through generative by treating nuisance variables

as noise. These resultant models are very intuitive and interpretable and can be tested against ob-

servations to confirm or reject our theories. Another reason to understand the generative process

of data is that the causal relations can be expressed through a generative process. The benefit of

causal relations is their generalisability to new situations.

The Bayes rule is needed to transform a generative model into a discriminator. Suppose there ex-

ists a generative model for events A and B. By comparing the capability of the two in describing

the data, we can compute a probability of whether A or B happened. In contrast to a generative

model, we directly learn a map in a direction we intend to make future predictions within discrim-

inative models. As an example, it can be argued that an image is generated by first identifying the

object, then generating it in three-dimensional space and subsequently projecting it into a pixel

grid. Unlike a generative model, a discriminative model treats pixel values as input and maps them

to labels. Generative models can better learn from data and make more robust hypotheses, causing

a higher asymptotic bias when a model is wrong [9].

Generative modelling can be advantageous more generally, and it can be thought of as an auxiliary

task. As an example, predicting the immediate may contribute to building valuable abstractions

of the world that can be used for multiple subsequent prediction tasks. The search for meaning-

ful, statistically independent and causal variation factors is known as unsupervised representation

learning, and the variational autoencoder has been comprehensively used for that specific reason.

On the contrary, viewing this process as a form of regularisation, the representations are forced

to be meaningful, an inverse process that maps from inputs to representations and into a specific

mould.

Variational Autoencoder

The variational autoencoder can be regarded as a two-joined yet independently parameterised

model: the recognition model or the encoder and the generative model or the decoder. The recog-

nition model provides the posterior approximation over the latent variables for the generative model,

35

which is needed to update the parameters in the expectation-maximisation iteration. The genera-

tive model supports the recognition model to learn meaningful representations of data. According

to the Bayes rule, the recognition model is the approximate inverse of the generative model. As

it was mentioned earlier, generative models are primarily concerned with how the data is gener-

ated. It aims to model the joint probability distribution P (X ,Y), where X represents the observable

data, and Y denotes the associated labels or outputs. Utilising the joint distribution, a generative

model can generate new samples and infer the conditional probability P (Y |X), which is the prob-

ability of the labels given the data. A recognition model, often used in the context of variational

autoencoders is typically tasked with approximating the posterior distribution P (Z |X), where Z

represents latent variables and X is the observed data. The recognition model effectively tries to

infer the latent structure of the data [47].

The benefit of the variational autoencoder framework, relative to the ordinary Variational Infer-

ence (VI), is that the recognition model is now a stochastic function of the input variables. This is

contrary to VI, where each data case has a different variational distribution. The recognition model

utilises a set of parameters called amortised inference to model the relationship between input

and latent variables. In Variational Autoencoders (VAEs), the identification model (or encoder) is

formulated as a probabilistic function of the input parameters. This implies that for any specified

input, the model generates a probability distribution over the underlying variables, instead of a

single estimation. The stochastic characteristics of this process assist the model in capturing un-

certainty in the mapping from inputs to latent variables. In classical variational inference method-

ologies, each data point commonly has a distinct variational distribution. This technique generates

an individualised yet fixed distribution for each data, resulting in a situation where the model must

identify and optimise a separate set of variational coefficients for each data point. The variational

autoencoder (VAE) inspired by Dayan et al. [34] was the first model to employ a recognition model.

However, its algorithm was incapable of optimising a single objective. Alternatively, the variational

autoencoder rules follow a single approximation to the maximum likelihood objective. Variational

autoencoders are a combination of graphical models and deep learning.

Analogously, the recognition model is also a conditional Bayesian network of form q(z|x) or as a

hierarchy such as q(z0|z1) · · ·q(zL |X). Inside each conditional, there may be a deep neural net-

work. Its learning algorithm is a classical expectation maximisation with a reparametrisation trick

which back-propagates the embedding through the layers of the deep neural network. From the

outset, the variational autoencoder framework has been extended into numerous directions, e.g.,

models with attention [50], dynamical models [79], models with multiple levels of stochastic latent

variables [70], to name a few.

36

Another generative modelling paradigm, the generative adversarial network (GAN), has received

particular attention [48]. GANS can generate images with high perceptual quality. As opposed to

likelihood-based generative models, GANs lack full support over the data [51]. Generated samples

of VAEs are more dispersed but are better models concerning likelihood criterion, similar to other

likelihood-based models. The variational autoencoder framework provides a method for learning

deep latent-variable models and inference models stochastic gradient descent. It has various ap-

plications, from generative modelling and semi-supervised learning to representation learning.

In 2013, the introduction of the Variational Autoencoder (VAE) by Diederik P. Kingma and Max

Welling marked a significant advancement in generative modelling. The VAE framework distin-

guishes itself from traditional Variational Inference (VI) through the utilisation of a recognition

model that operates as a stochastic process for the input variables. This is in contrast to VI, where

each data case is associated with a unique variational distribution. In VAEs, a collection of param-

eters, referred to as amortised inference, is employed to establish the relationship between input

and latent variables. This approach enables VAEs to generate disentangled representations, which

offer reusable latent codes for applications such as transfer learning. Despite sharing similarities

in structure with regular autoencoders, VAEs deviate in both their objectives and mathematical

formulations [78, 77, 79].

The main objective of a variational autoencoder is to compress the input into a constrained mul-

tivariate latent distribution and then reconstruct it with high accuracy. This contrasts with the

objective of a generative model, which seeks to approximate the distribution of input data using

neural networks. The mathematical representation of this relationship is:

x ∼ Pθ(x) (2.11)

In Equation 2.11, θ represents the parameters determined during training. Effective inference in

this context requires establishing the joint distribution between inputs and latent variables, de-

noted as Pθ(x, z), which encompasses the distribution of input data points and their attributes.

The marginal distribution of Pθ(x) is obtained through:

Pθ(x) =
∫

Pθ(x, z)d z (2.12)

Equation 2.12 integrates all possible attributes to derive a distribution that characterises the in-

puts. However, this equation poses a challenge due to its intractability and non-differentiability

with respect to the parameters, causing it unsuitable for neural network optimisation. An alternate

37

formulation, based on Bayes’ theorem, is:

Pθ(x) =
∫

Pθ(z | x)P (z)d z (2.13)

In Equation 2.13, P (z) is the prior distribution over z and remains unconditioned on observations.

For discrete z and Gaussian Pθ(z | x), Pθ(x) is considered a mixture of Gaussian distributions. Con-

structing a neural network to approximate Pθ(x | z) without an appropriate loss function might

lead to solutions that disregard z. To address this, variational inference introduces:

Qφ(z | x) ≈ Pθ(z | x) (2.14)

Equation 3.2 presents Qφ(z | x) as a parametric and tractable estimate of Pθ(z | x), which can be

optimised by adjusting the parameter φ. This formulation significantly enhances the tractability of

the VAE framework, solidifying its role in the field of generative modelling.

2.8 Residual Networks

Deep convolutional neural networks have brought significant advancements to image classifica-

tion. These networks naturally combine low, mid, and high-level features as well as classifiers in

a multi-layered manner, and the richness of the features improves with the depth of the stacked

layers. Recent research highlights the critical importance of network depth, and the most success-

ful results on challenging datasets, such as ImageNet, are achieved using “very deep” models with

sixteen to thirty layers. Many other complex visual recognition tasks have also greatly improved by

leveraging these deep models. The question is whether adding more layers is sufficient to improve

the performance of a neural network. The answer is no. An obstacle called vanishing gradient

hinders the network from converging [12, 44]. The vanishing gradient problem is a common issue

when training deep neural networks. As the network becomes deeper, the gradients used to update

the model’s weights during back-propagation can become extremely small, effectively vanishing.

This phenomenon makes it challenging for the network to learn from the earlier layers.

The introduction of Residual Networks [60], also known as ResNets, marked a significant break-

through in overcoming the vanishing gradient problem and enabled the training of much deeper

neural networks effectively. The skip connections in ResNets are crucial for their success. Tradi-

tional deep neural networks without skip connections attempt to learn the direct mapping from

one layer to the next. As the depth of the network increases, the gradients can become extremely

small during back-propagation, which leads to the vanishing gradient problem. When gradients are

38

Figure 2.5: Residual Skip Connection.

too small, the network struggles to learn meaningful representations in the earlier layers, and the

overall performance suffers. In contrast, ResNets introduce residual blocks that utilise skip connec-

tions to learn the residual mapping. These blocks take the input and attempt to learn the difference

between the input and the desired output rather than learning the direct mapping. Mathematically,

if H(x) represents the mapping of a layer in a traditional neural network (without a skip connec-

tion), and F (x) represents the mapping learned by the residual block, then the residual block learns

F (x) = H(x)− x. The skip connection directly propagates the input x to the output of the residual

block [122].

Consequently, the network can always fall back to the identity mapping if the optimal mapping

learned by the residual block is close to the identity mapping. In this scenario, the gradient can

flow smoothly through the skip connection without significant loss of information, alleviating the

vanishing gradient problem. As a result of using residual blocks and skip connections, ResNets

can be much deeper than traditional neural networks without encountering the vanishing gradient

problem. This depth allows ResNets to capture increasingly complex patterns and features in the

data, leading to better performance on challenging visual recognition tasks like image classifica-

tion.

Furthermore, the impact of ResNets extends beyond image classification tasks. The idea of skip

connections and residual learning has been applied to various other domains in deep learning,

including natural language processing, speech recognition, and even reinforcement learning [87].

The fundamental concept of allowing the gradient to flow freely through the network and making

39

it easier for the model to learn from earlier layers has proven to be a valuable technique in a wide

range of applications.

ResNets offer a significant advantage by simplifying the optimisation process during training. The

incorporation of skip connections permits the gradients to flow directly, thereby enabling the net-

work to update the weights in earlier layers effectively. As a result, faster convergence and more

secure learning are achieved, making this attribute particularly valuable in the face of complex

datasets or limited training data. In such scenarios, the network’s ability to generalise from earlier

layers is critical to attaining optimal performance [11].

Moreover, Residual Networks have also provided impetus for the creation of other structures and

fundamental units that endeavour to amplify the learning process of complex neural networks.

For example, DenseNet, which is another widely-used architecture, takes the notion of skip con-

nections to a greater extent by densely connecting each layer with all the other layers in a block.

This further enhances the flow of gradients and reuse of features. Despite their success, ResNets

are not without challenges. As the network becomes deeper, it can encounter other issues, such

as over-fitting or increased computational complexity [74]. Designing the right architecture and

hyper-parameters for a specific task and dataset is still an essential part of leveraging the full poten-

tial of ResNets. As the field of deep learning continues to evolve, researchers have not only focused

on improving the depth of neural networks but also on addressing other challenges associated with

training and optimising these models. One significant advancement that complements the success

of ResNets is the use of transfer learning and pretraining on large-scale datasets.

In the field of finance, the application of ResNets and transfer learning is viable for examining intri-

cate market data. ResNets possess a profound architecture that renders them suitable for capturing

the convoluted patterns present in financial time series data. To illustrate, they can be employed

in the prediction of stock prices, identification of market trends, or detection of anomalies within

trading data. To utilise the feature extraction capability and computational efficiency of pre-trained

image models e.g., ResNets having an image representation of financial time series data is neces-

sary.

Transfer learning is the process of leveraging acquired knowledge from a task to boost performance

on a related task. By utilising transfer learning and pre-trained models like ResNets, researchers can

obtain highly effective feature extractors without the need to train extremely deep networks from

scratch on smaller datasets. This approach not only saves computational resources and training

time but also often leads to improved generalisation and better performance on the target task.

Another direction in which deep learning has evolved is the development of attention mechanisms.

Attention mechanisms allow the neural network to selectively focus on the most relevant parts of

40

the input data, giving rise to models like Transformer networks.

Transformers have achieved remarkable success in natural language processing tasks, where se-

quences of words need to be understood and processed effectively. These models have been ex-

tended to computer vision tasks as well, where they can attend to relevant image regions and ef-

fectively handle tasks like image captioning and object detection. The combination of the men-

tioned advancements has led to a thriving field of deep learning with applications in diverse do-

mains. From computer vision to natural language processing, speech recognition, and reinforce-

ment learning, deep learning models are making a significant impact across various industries and

scientific disciplines.

2.9 Transfer Learning

Can Machines Engage in Thought? This inquiry lays the groundwork for artificial intelligence (AI)

and has spurred generations of researchers to delve into the design of intelligent machines. The

trajectory of AI has seen its share of ups and downs. An enduring challenge that has posed obstacles

on the AI journey revolves around how machines can glean knowledge from their surroundings.

The quest to imbue machines with human-like cognitive processes has transitioned from rigidly

imposing rule-based information to embracing data-driven learning.

This evolution has propelled machine learning into a pivotal industrial and societal tool, automat-

ing decision-making across domains like education, healthcare, finance, and commerce. This as-

cendancy owes much to machine learning’s knack for bestowing machines with insight via labelled

and unlabelled data. Nevertheless, achieving accurate predictions hinges on astute observations

and a deep grasp of task domains. Often, training data comprises labelled samples, providing both

observations and target outcomes. These examples are harnessed to craft machine learning models

primed for forecasting novel data [105].

For instance, consider the illustrative domain of computer-based image analysis, specifically facial

recognition. Imagine training a machine learning model on an expansive collection of photos.

This model becomes adept at discerning whether a new image corresponds to someone within

its training set. A practical application could be a building’s security system that ascertains an

individual’s permission to enter. While these machine learning models are impressive, they are not

immune to errors, especially when dealing with unfamiliar subjects or contexts. If, for instance,

a model is trained exclusively on images of puppies, its recognition proficiency might plummet

when presented with images of bunnies. This performance dip underscores the necessity for model

updates and transfers in response to novel situations [135].

41

An overarching challenge in deploying machine learning algorithms is their tendency to falter in

new task domains. This can be attributed to the scarcity of pertinent training data and shifts in cir-

cumstances and requirements. Medical imaging data serves as an example, where obtaining high-

quality training data in novel situations can be a formidable hurdle. A machine learning model’s

efficacy relies on ample training data, yet accessing labelled data from a new realm often involves

substantial resources, hampering the application of AI models in real-world contexts.

The need to develop transfer learning methodologies arises from several key factors:

• The success of machine learning hinges on copious labelled data, a resource that can be

scarce, impeding generalisation to new domains.

• Traditional machine learning assumes uniformity between training and test data distribu-

tions. Yet, distributions can fluctuate over time, space, and scenarios, necessitating model

adaptation.

• Personalising services to individual user preferences is vital, but gathering substantial per-

sonal data can be impractical in many scenarios.

• In certain cases, utilising multiple datasets with diverse owners is necessary, but privacy and

security concerns limit data sharing. Extracting the core of each dataset for constructing a

new model becomes imperative.

In essence, transfer learning stands as a machine learning paradigm where algorithms extract knowl-

edge from diverse scenarios to bolster performance in target scenarios. In contrast to traditional

machine learning, transfer learning doesn’t demand copious, finely defined training data as input.

Instead, it represents a fresh paradigm. This concept addresses data sparsity and cold start issues in

numerous large-scale applications. Transfer learning empowers artificial intelligence in less tech-

nologically advanced sectors where labelled data is scarce.

A proficient model from one domain can be extended to similar domains using transfer learning

techniques. To facilitate this, an accurate measure of domain task distance is crucial. This distance

can be gauged in terms of the features used to describe data. For image analysis, features might be

pixels, colours, or shapes, while in Natural Language Processing, words or phrases serve as features.

Once domain comparability is established, AI models from well-established domains can be effec-

tively utilised in less mature ones. This knowledge transfer broadens the scope of machine learning

systems beyond their initial domain, rendering AI more robust and accessible in resource-scarce

settings [128].

Various terms have been applied to transfer learning within machine learning, such as knowledge

reuse, case-based reasoning (CBR), and learning by analogy. The notion of "transfer of learning"

42

from education and learning psychology shares a similar essence in machine learning. It signifies

the process of leveraging past experiences to shape future learning and performance in a target

context. The learned knowledge or model is adapted for new tasks.

Despite the remarkable strides made by machine learning across practical problems, limitations

persist in specific real-world scenarios. Conventional machine learning algorithms thrive on abun-

dant labelled examples that match the test data distribution. However, attaining such training data

is often expensive and time-consuming in reality. Semi-supervised learning, a related domain, mit-

igates this challenge by relying less heavily on extensively labelled data. It capitalises on sizeable

unlabelled datasets to enhance learning accuracy. In this context, transfer learning emerges as a

promising solution.

Regarding domain disparities, transfer learning is categorised into two types [132]: homogeneous

and heterogeneous. Homogeneous transfer learning tackles cases where domains share the same

feature space. However, this assumption doesn’t hold in numerous instances. For instance, a word

might possess distinct meanings in various domains, leading to context feature bias. Heteroge-

neous transfer learning [33] confronts domains with disparate feature spaces, necessitating adap-

tation of both distribution and feature space [67, 119].

Human beings innately excel at transferring knowledge across tasks. We naturally apply previously

learned insights to new challenges. The more akin a new task is to our prior experience, the quicker

we grasp it. On the contrary, conventional machine learning algorithms are engineered for isolated

tasks. Transfer learning enriches classical machine learning by transposing knowledge acquired in

source tasks to related target tasks. Transfer methods often extend machine learning algorithms,

relying heavily on them.

For instance, within inductive learning, transfer learning involves extending classification, infer-

ence algorithms like neural networks, and Bayesian networks, as well as Q-learning and policy

search in reinforcement learning. Transfer learning aims to leverage source task knowledge to bol-

ster learning in target tasks. This enhancement can manifest through three dimensions:

• Initial attainable performance

• Training time

• Final attainable performance

Figure 2.6 depicts the conceptual representation of transfer learning where a developed model for

one task could be utilised as the starting point for a model on a second task. The source refers

to the source domain where the initial model has been trained. The source model has gathered

certain knowledge from this domain. The target label represents the target domain to which the

43

Figure 2.6: Transfer learning in machine learning

knowledge is being transferred. The target domain usually has less data available training data. The

objective is to leverage the pre-existing knowledge gathered from the source domain to improve the

performance in the target domain.

Figure 2.7 vividly illustrates how transfer learning contributes to improved learning through these

dimensions. There’s a marked elevation in initial performance, a steeper learning curve, and higher

asymptotic performance towards the curve’s end. Should a transfer lead to performance degrada-

tion, a negative transfer has occurred. Facilitating positive transfer between related tasks while

sidestepping negative transfer poses a significant challenge in transfer method development. Of-

ten, mapping features from one task to another is required to establish correspondence when ap-

plying knowledge. While humans often provide these mappings, automated methods also exist.

Figure 2.7: Contributions of transfer learning to improved learning

44

Transfer learning is aimed at rapid adaptation of systems to new scenarios, tasks, and environ-

ments. It equips machine learning systems with the capability to harness auxiliary data and mod-

els to solve target problems when scant data is available. This imbues these systems with reliability

and resilience, preventing significant deviations from expected performance in the face of unfore-

seen changes. At an organisational level, transfer learning empowers knowledge reuse, enabling

once-acquired expertise to be repeatedly deployed in the real world.

2.10 Gramian Angular Fields

Deep neural networks or deep learning techniques have deeply impacted many areas of artificial

intelligence, such as natural language processing, speech recognition, and computer vision. One of

Computer Vision’s successful deep learning architectures is convolutional neural networks (CNN).

CNN architecture takes advantage of translational invariance by extracting features through recep-

tive fields and learning with weight sharing. Convolutional neural networks have become the go-to

approach in various computer vision and image recognition problems. Accomplishments of super-

vised and unsupervised learning techniques in computer vision inspired Wang and Oates [131] to

consider the problem of encoding time series as images to enable machines to recognise and learn

patterns and structures visually.

Redefining time-series features as visual clues have raised attention in computer science and physics.

Researchers have built different network structures from time series for visual inspection or design-

ing distance measures. Silva et al. [115] utilised the compression distance to expand the recurrence

plot paradigm for time series classification. Another approach to construct a weighted adjacency

matrix is extracting transition dynamics from the first-order Markov matrix [19]. Despite demon-

strating distinct topological properties amongst different time series, these maps are unclear about

how they relate to the original time series since they lack exact inverse operations.

Gramian Angular Fields (GAF) imaging proposed by Wang and Oates [131] is a technique to encode

time series into images. The reason for developing this approach is the possibility of using exist-

ing pre-trained models rather than training RNNs or employing one-dimensional CNN models. In

order to generate GAF images, time series observations are required to be re-scaled.

Let X = {x1, x2, · · · , xn} be the considered time-series with n observations, re-scaling to the [−1,1]

interval is done using Equation 2.15 or within [0,1] interval using Equation 2.16:

x̃i = (xi −max(X))+ (xi −mi n(X))

max(X)−mi n(X)
(2.15)

45

x̃i = xi −mi n(X)

max(X)−mi n(X)
(2.16)

Hence, the re-scaled series is denoted by X̃ = {x̃1, x̃2, · · · , x̃n}. The re-scaled time series is trans-

formed into a polar coordinates system by calculating the angular cosine of every single compo-

nent of the scaled time series:

φi = arccos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

ri = i

N
, i ∈ N

(2.17)

Here ri represents the radius for the time stamp i , i is the time stamp and N is a constant factor

to regularise the span of the polar coordinate system. Contrary to the Cartesian coordinates, polar

coordinates preserve temporal relations. Vidal and Kristjanpoller [127] proposed an LSTM added

to the convolutional neural networks model (specifically, a pre-trained VGG16 network) to forecast

the future volatility of Gold. Gramian Summation Angular Field (GASF) and Gramian Difference

Angular Field (GADF) can be obtained by calculating the sum or difference between the points of

the series:

G ASF = [cos(φi −φ j)] = X̃ ⊤ · X̃ −
√

I − X̃ 2
⊤
·
√

I − X̃ 2 (2.18)

G ADF = [sin(φi −φ j)] =
√

I − X̃ 2
⊤
· X̃ − X̃ ⊤ ·

√
I − X̃ 2 (2.19)

I is the unit row vector [1,1, · · · ,1].

2.11 Markov Chain

A Markov chain is a memory-less stochastic process, i.e., future actions are not dependent on pre-

vious states. This is called the Markov property. Simply put, a Markov chain characterises a process

where a system can exist in a set of discrete states, and it moves from one state to another over

time. The key characteristic is that the future behaviour of the system is only influenced by its

current state and the probabilities of transitioning to other states from its current state. A Markov

chain consists of the following components:

• State Space (S): This is defined as the set of all possible states.

• Transition Probability Matrix (P): This n ×n matrix outlines the probabilities of transition-

46

ing from one state to another. The elements in the i th row and j th column represent the

probability of transitioning from state i to state j .

• Initial State Distribution: This is the probability distribution representing the likelihood of

the system starting in each of the possible states.

Following is an example of a transition probability matrix for a contrived weather model with three

states: Sunny, Cloudy, and Raining.

P =

0.7 0.2 0.1

0.3 0.4 0.3

0.2 0.3 0.5

This matrix indicates, for instance, that if it’s currently sunny, there’s a 70% chance that it will re-

main sunny the next day, a 20% chance it will become cloudy, and a 10% chance it will become

rainy. Markov chains have various applications in many fields. They are employed to model pro-

cesses where the outcome is uncertain and depends on the current state.

2.12 Markov Transition Fields

Markov Transition Field (MTF) is an image-like representation of transitions between different

quantile-based states in a time series and offers insights into the temporal dynamics of the data.

Given a time series X , it is divided into Q quantile bins to group data points by their values. Next,

a Q ×Q matrix is created where each element represents the probability of transitioning from one

quantile bin to another. Subsequently, the matrix is normalised to ensure accurate representation.

The resulting MTF matrix highlights patterns of transition probabilities. Consider the following

time series of daily stock prices over a week:

X = [50,52,55,48,57,49,53] (2.20)

To create simple MTF with Q = 3 quantile bins, the following steps are taken:

• Quantile Assignment:

– Sort Data: [48,49,50,52,53,55,57]

– Assign values to bins:

* q1 : [48,49,50]

* q2 : [52,53]

47

* q3 : [55,57]

• Counting Transitions:

– q1 → q1 : 1 occurrence.

– q1 → q2 : 1 occurrence.

– q2 → q2 : 1 occurrence.

– q2 → q3 : 1 occurrence.

– q3 → q1 : 1 occurrence.

– q3 → q2 : 1 occurrence.

• Constructing Transition Probability Matrix W : Using the transition counts, the transition

probability matrix W is constructed. Wi j represents the probability of transitioning from

quantile bin qi to q j .

W =

1/3 1/3 1/3

0 1/2 1/2

1/2 1/2 0

• Normalisation: Each row of the W matrix is normalised:

Wnor mali sed =

0.33 0.33 0.33

0 0.25 0.25

0.5 0.5 0

• Markov Transition Field Visualisation: Visualise the normalised matrix W as a grid where

the colour or intensity of each cell represents the transition probability. Darker cells indicate

higher probabilities.

(a) Gramian Angular Difference
Field.

(b) Gramian Angular Summation
Field.

(c) Markov Transition Field
Image.

Figure 2.8: GAF and MTF Images

Chapter 3

Event Prediction within Directional

Change Framework using a

CNN-LSTM Model

3.1 Introduction

The focus of this study, presented in this chapter is to investigate how a deep learning model

i.e. CNN-LSTM model performs in the Directional Change framework considering the volatility of

high-frequency financial data1. The chapter concludes by discussing the findings of the study and

suggesting future research directions, including exploring other neural network architectures and

determining the Directional Change threshold dynamically. Overall, the study highlights the effec-

tiveness of the CNN-LSTM model within the DC framework for event prediction in high-frequency

financial markets.

3.2 Methodology and Experimentation

The methodology begins with a brief introduction to Support Vector and Random Forest Regres-

sion, which will be used for comparison. The data in this study comprises tick prices of GBPUSD,

EURUSD, USDCHF, and USDCAD currency pairs and tick bars are generated from these prices. Tick

bars with the least auto-correlations are then identified using the Durbin-Watson statistic, and the

1This Chapter is based on a published work in the journal of Neural Computing and Applications.

48

49

ATR is computed for these tick bars to determine the θ value. DC summaries are generated based

on this threshold value. The experiment is carried out by training and validating the CNN-LSTM

model using the DC summaries within the framework and without the framework using raw tick

bars.

The model’s predictive capabilities are assessed through metrics such as mean absolute error (MAE),

root mean squared error (RMSE), and coefficient of determination (R2). The results indicate that

the CNN-LSTM model performs significantly better within the DC framework for all tested cur-

rency pairs, showing improvements in MAE, RMSE, and R2 metrics. Comparative analysis between

Support Vector and Random Forest regression models, in conjunction with the CNN-LSTM model,

demonstrates that the latter outperforms the former in terms of predictive accuracy within the DC

framework.

Support Vector Machines and Random Forest

Support Vector Machines (SVM) are a sophisticated set of supervised learning algorithms that are

primarily employed for classification and to a lesser extent for regression tasks. Developed by Vap-

nik [126], Support Vector Machines have achieved popularity due to their capability to efficiently

address both linear and non-linear data. Fundamentally, an SVM model attempts to identify the

optimum hyperplane that distinguishes different classes within the feature space. For problems

with two-class classification, the SVM algorithm creates a line or hyperplane that partitions the

data such that the margin of separation between the classes is maximised. This margin is specified

by the closest points to the hyperplane, referred to as the support vectors. These support vectors

play a crucial role in the dataset as they directly influence the position and orientation of the hy-

perplane. When dealing with data that is not linearly separable, SVMs employ the kernel trick, a

mathematical technique that transforms the input space into a higher-dimensional space where

a hyperplane can successfully separate the classes. The commonly used kernels encompass the

linear, polynomial, radial basis function (RBF), and sigmoid kernels [102, 53, 75].

The Random Forest algorithm is a highly flexible and robust machine learning technique employed

for both classification and regression. It is classified as an ensemble learning method, functioning

by generating numerous decision trees during the training phase. In classification tasks, the output

of Random Forest is the class that occurs most frequently among the individual trees. Conversely,

in regression tasks, it predicts the mean output value. Technically, Random Forest is based on the

principle of decision trees. The algorithm creates multiple decision trees, where each tree is trained

on a random subset of the data. This training process, known as bagging or bootstrap aggregating,

ensures that each tree in the ensemble has slight variations from the others. By doing so, the risk of

50

over-fitting is minimised, leading to an enhanced overall accuracy of the model [134].

During the generation of the decision trees, the Random Forest algorithm incorporates an element

of randomness. Rather than taking into account all characteristics when dividing nodes, the al-

gorithm instead chooses a random subset of features. This element of randomness enhances the

resilience of the model and makes it more robust and less prone to bias towards certain features.

The Random Forest algorithm has gained recognition for its exceptional accuracy, robustness, and

capacity to handle large and higher dimensional datasets. This method proves particularly effective

in cases where over-fitting arises, as the ensemble approaches notably lessen this risk. Additionally,

the algorithm manages missing data very well and is performant in feature importance, making it

quite valuable for exploratory data analysis [2].

Random Forest has some drawbacks despite its strengths. The model can be complex and compu-

tationally intensive, especially when dealing with a large number of trees. This complexity can lead

to longer training times. Moreover, the ensemble nature of Random Forest causes less interpretabil-

ity compared to a single decision tree, which can be seen as a limitation where understanding the

decision-making process of the model is necessary [97]. Random Forest has various applications

in finance. Fraud detection and risk assessment are among the various applications of Random

Forest in finance [134, 83]. It also has been used for predicting stock behaviour and creating rec-

ommendation systems.

Data Description

Financial data comes in a variety of shapes and forms. The four essential financial data types are

fundamental data, market data, analytics, and alternative data. To apply machine learning algo-

rithms to unstructured financial data, we need to parse it and extract valuable information, then

store those extractions in a regularised format. The tabular representations of data used in ML algo-

rithms (i.e. table rows) equate to what finance practitioners refer to as bar in bar charts [35]. Time

bars which perhaps are the most popular among market practitioners and academics are gener-

ated through sampling price information at fixed time intervals. The information usually includes;

timestamp, volume-weighted average price, open, high, low, close, and traded volume. Time bars

unrealistically process information at a fixed time interval, leading to an exhibition of poor statisti-

cal properties [35].

In financial jargon, a tick refers to a change in the price of a security from one trade to the next. To

generate tick bars, it is necessary to extract the aforementioned sample variables every time a pre-

determined number of transactions takes place. This will enable the synchronisation of sampling

with a proxy indicator of the arrival of information. For instance, if we wish to generate 100-tick

51

bars, we need to store the 100 price information and then extract the open, high, low, and close

values from the observations. Mandelbrot and Taylor [89] found that sampling as the function of

transaction numbers exhibits Gaussian distribution properties. In contrast, sampling over a fixed

interval may follow a stable Paretian distribution, whose variance is infinite [35]. It should be men-

tioned that throughout the experiment, tick bars and tick candles are used interchangeably. The

sole difference between the two is that the tick candles are colour-coded to reflect any increase or

decrease in price.

Average True Range

The average true range (ATR) is a technical analysis indicator that measures market volatility. It

decomposes the whole range of an asset price for a specific period. It is typically derived from a

moving average of length 14 of a series of true range values and can be calculated on an intra-day,

daily, weekly or monthly basis. If the high of the current period is greater than the high of the

previous period and the low is lesser than the low of the previous period (referred to as an “outside

day"), then the difference between the high and the low will be utilised as the True Range.

In addition, in the case of a gap when the previous close is greater than the current high or the

previous close is lower than the current low, or an inside day (i.e. when the current high is below

the previous high and the current low is above the previous low), current high less the previous

close or the current low less the previous close will be used. The following equations represent the

calculation of ATR using High, Low, and previous close (H ,L,Cpr evi ous):

T R = max
[
H −L,

∣∣H −Cpr evi ous
∣∣ ,

∣∣L−Cpr evi ous
∣∣] (3.1)

AT R = 1

n

n∑
i

T Ri (3.2)

AT R % = AT R

cur r ent pr i ce
(3.3)

where T Ri is the true range, and n is the time period. In Equation 3.3, ATR%, is the ATR division

by the current price of the asset. In Table 3.1, asset price information and the calculation of TR and

ATR are represented. Equation 3.3, %ATR, is the ATR division by the current price of the asset.

52

High Low Close H-L abs(H-C) abs(L-C) TR ATR
48.70 47.79 48.16 0.91 - - 0.91 -
48.72 48.14 48.16 0.58 0.56 0.02 0.58 -
48.90 48.39 48.75 0.51 0.29 0.22 0.51 0.67
48.87 48.37 48.63 0.50 0.12 0.38 0.50 0.53
48.82 48.24 48.4 0.58 0.19 0.39 0.58 0.53

Table 3.1: Average True Range Calculation

Experiment

This chapter’s objective is to apply the CNN-LSTM network to the generated DC-based summaries

of GBPUSD, EURUSD, USDCHF, and USDCAD tick prices to predict the next DC event. The ini-

tial dataset comprises of the currency pairs’ tick prices from January to August 2019, in comma-

separated variables (CSV) format. As we mentioned earlier, a tick price alludes to a change in an

asset price from one trade to the next. To generate the tick bars, we will aggregate 50, 100, 200, 500,

1000 data points from the original tick prices of the GBPUSD, EURUSD, USDCHF, and USDCAD

currency pairs.

Figure 3.1: The first 100 observations of GBPUSD with a predefined number of tick prices.

Every tick bar has an open, high, low, and close price. The open and close prices correspond to the

price of the first and last trade. The high and close prices are the maximum and minimum prices

53

within the range of the predefined number of ticks. Figure 3.1 is the depiction of the generated tick

bars/candles from the GBPUSD tick prices with the predefined number of ticks. The tick bar with

the least auto-correlation will be used to generate the DC-based summaries. In order to obtain the

least auto-correlated tick bar, the Durbin-Watson (DW) statistic was performed on all the currency

pairs’ tick bars. The DW test is calculated as follows:

DW =
∑n

i=2(ei −ei−1)2∑n
i=1 e2

i

(3.4)

Where:

• ei represents the i th residual (difference between observed and predicted values).

• n is the number of observations.

The Durbin-Watson statistic ranges from 0 to 4. A value of around 2 indicates no auto-correlation,

a value significantly less than 2 suggests positive auto-correlation and a value significantly greater

than 2 suggests negative auto-correlation. Table 3.3 represents the Durbin-Watson results for the

tick bars. As the results imply, the 1000 tick-bar has the lowest DW value for GBPUSD, EURUSD,

and USDCHF and the 200 tick-bar for the USDCAD pair. The Average True Range will be calculated

for the tick-bar with the smallest DW and will then be used as the Directional Change threshold θ.

The rationale for using ATR as the determinant for θ is anchored in its ability to reflect market

volatility. Employing a fixed θ might not be appropriate to different market conditions. A market

with low volatility might require a smaller θ to be able to capture price movements, whereas a high

volatility environment might need a larger θ to filter out noise. ATR adjusts the threshold accord-

ing to the market volatility and provides a more dynamic threshold. As previously mentioned, the

Average True Range (ATR) is a market volatility measure and is typically calculated from the 14-day

simple moving average of true range values. After the ATR calculation, DC-based summaries will

be generated. Using the past five DC event prices we aimed to predict the next event price. The

CNN-LSTM model, as its name implies, consists of a convolutional neural network layer and a long

short-term memory layer. Figure 3.2 is the illustration of the employed model.

Figure 3.2: CNN-LSTM model

As illustrated in Figure 4.6, the inputs i.e., DC event prices are directed to the one-dimensional

convolutional layer. To reduce dimensionality and capture the most significant features, a max-

pooling layer is applied. Following the LSTM layer, a dropout layer is incorporated to mitigate the

54

Parameters Value

Convolution layer filters 32
Convolution layer kernel size 1
Convolution layer padding Same
Pooling layer pool size 3
Pooling layer padding Same
Number of units in LSTM layer 64
LSTM activation function t anh
Dropout rate 0.2
Optimiser learning rate 0.001

Table 3.2: CNN-LSTM Parameters

risk of over-fitting. This is necessary to enhance the generalisability of the model. The number of

Convolutional filters, LSTM units and activation function, as well as the Dropout percentage and

optimiser learning rate, were determined through hyper-parameter tuning with KerasTuner [96].

Table 3.2 presents the parameters’ setting for the CNN-LSTM model.

The DC summaries of the currency pairs were divided into training, validation, and test sets, where

80% of data points constitute the training, and the remaining 20% is the test set. Moreover, 20%

of the training set was used as the validation set to prevent data leakage. The training process was

performed with the Adam optimiser and the mean squared error as the loss function. To evaluate

the predictive performance of the model, the mean absolute error (MAE), root mean squared error

(RMSE), and coefficient of determination (R2) will be used. The following are the equations for the

MAE, RMSE, and R2 where yi is the target value and ŷi represents the prediction.

M AE = 1

n

n∑
i=1

∣∣yi − ŷi
∣∣ (3.5)

RMSE =
√

1

n

n∑
i=1

(yi − ŷi)2 (3.6)

R2 = 1−
∑

i (yi − ŷi)2∑
i (yi − ȳ)2 (3.7)

The CNN-LSTM model will be trained and validated with the DC summaries of GBPUSD, EURUSD,

USDCHF, and USDCAD with an Early-Stopping of Keras callback API. Initially, DC summaries of the

GBPUSD pair will be used to train and validate the model on the training and validation sets with

respective 4,567 and 1,138 data points. Prediction on the test set, which is considered the out-of-

sample set, resulted in a 0.0142 mean absolute error and a 0.0179 root mean squared error. Figure

3.4a represents the prediction of the model on the GBPUSD DC summaries.

55

As it is observable, the model has reached a reasonably good prediction throughout the summaries

with a coefficient of determination of 0.985. The accuracy of prediction has dwindled near the end

of the graph. To explore the predictive capability of the CNN-LSTM model within the directional

change framework and on the raw tick bars, we applied the identical CNN-LSTM model on the close

price of the 1000 tick bar dataset. Training and validating the CNN-LSTM model on the GBPUSD

raw 1000 tick bar dataset with the respective number of 14,921 and 3,727 observations resulted in

0.0604 mean-absolute error (MAE), and 0.0697 root mean squared error (RMSE). We then utilised

the trained model to perform predictions on the out-of-sample dataset. From Table 3.4b, in the

absence of the DC Framework, the coefficient of determination has plummeted from 0.985 to 0.359.

Figure 3.4b portrays this noticeable decline in the prediction accuracy of the model. The same steps

were applied for EURUSD, USDCHF, and USDCAD currency pairs.

With the suggestion of Table 3.4 and the comparison of Figures 3.5a and 3.5b, an increase in the

MAE and RMSE metrics from 0.0188 to 0.0294 and 0.0248 to 0.0368 is discernible. Furthermore, the

coefficient of determination (R2) for EURUSD has decreased from 0.972 to 0.946. Despite capturing

the overall trend of the USDCHF, distinguished from Figures 3.6a and 3.6b, metrics altogether cor-

roborate the substantial drop in the accuracy of the CNN-LSTM model. Both MAE and RMSE have

risen from 0.0301 to 0.0466 and from 0.0387 to 0.0516. The R2 has declined from 0.865 to 0.772.

Figure 3.7a substantiates the prediction accuracy of the CNN-LSTM model within the DC frame-

work. The model captured the overall trend correctly and predicted more than 6000 observations

with a coefficient of determination (R2) of 0.973. In Figure 3.7b the performance of the model in

predicting nearly three times more observations without DC framework plummeted to 0.548. For

the USDCAD, MAE and RMSE have surged from 0.0182 to 0.0989 and from 0.0221 to 0.1094. R2 has

plunged from 0.973 to 0.548.

We observed that the CNN-LSTM model, within the DC framework, outperforms itself by a consid-

erable margin. Consequently, applying the CNN-LSTM model within the DC framework for the GB-

PUSD, EURUSD, USDCHF, and USDCAD currency pairs enhances the accuracy of the prediction in

all performance metrics. It is concluded from the results that applying the CNN-LSTM architecture

within the Directional Change framework improves the accuracy of prediction for high-frequency

Forex data. Support Vector and Random Forest regression, two widely used machine learning tech-

niques in financial forecasting, were also utilised to compare to the CNN-LSTM model. Both mod-

els’ hyper-parameters were tuned with RandomisedSearchCV [98] and used in the same fashion as

the CNN-LSTM with and without the DC framework.

It is inferred from Table 3.4 that Support Vector, and Random Forest regression failed to perform

an acceptable prediction with significantly high error and negative coefficient of determination

56

Figure 3.3: GBPUSD generated tick bars.

Currency Pair 50 Tick-bar 100 Tick-Bar 200 Tick-Bar 500 Tick-Bar 1000 Tick-Bar

GBPUSD 2.294 2.163 2.126 2.094 2.092
EURUSD 2.591 2.447 2.320 2.180 2.131
USDCHF 2.289 2.181 2.158 2.138 2.112
USDCAD 2.678 2.511 2.379 2.386 2.461

Table 3.3: Durbin-Watson Statistic of the Currency Pairs

(R2). Summarily, the tick bars were created from raw tick prices and the least auto-correlated were

determined using the Durbin-Watson statistic. Next, the least auto-correlated tick bars were used

to calculate the ATR value, which then was used as the Directional Change threshold θ. Then, the

DC summaries of the tick bars were generated. Finally, the proposed model was applied to the

mentioned DC summaries of all the currency pairs as well as their raw tick bars to investigate the

performance of the CNN-LSTM model with and without the DC framework.

57

(a) CNN-LSTM prediction on GBPUSD DC summaries

(b) CNN-LSTM prediction on GBPUSD 1000 tick bars

Figure 3.4: CNN-LSTM results within DC framework and on raw tick bars for GBPUSD

58

(a) CNN-LSTM prediction on EURUSD DC summaries

(b) CNN-LSTM prediction on EURUSD 1000 tick bars

Figure 3.5: CNN-LSTM results within DC framework and on raw tick bars for EURUSD

59

(a) CNN-LSTM prediction on USDCHF DC summaries

(b) CNN-LSTM prediction on USDCHF 1000 tick bars

Figure 3.6: CNN-LSTM results within DC framework and on raw tick bars for USDCHF

60

(a) CNN-LSTM prediction on USDCAD DC summaries

(b) CNN-LSTM prediction on USDCAD 200 tick bars

Figure 3.7: CNN-LSTM results within DC framework and on raw tick bars for USDCAD

61

CNN-LSTM Support Vector Regression Random Forest Regression

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

GBPUSD 0.0142 0.0179 0.985 0.2909 0.3604 -1.8945 0.2841 0.3543 -1.7975
EURUSD 0.0188 0.0248 0.972 0.5746 0.6047 -8.3019 0.5993 0.6294 -9.0758
USDCHF 0.0301 0.0387 0.865 0.0917 0.1149 0.0035 0.1016 0.1220 -0.1219
USDCAD 0.0182 0.0221 0.973 0.5791 0.5914 -23.1734 0.5488 0.5579 -30.1266

(a) Results within DC Framework

CNN-LSTM Support Vector Regression Random Forest Regression

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

GBPUSD 0.0604 0.0697 0.359 0.3435 0.3942 -3.1636 0.2501 0.3158 -1.6722
EURUSD 0.0294 0.0368 0.946 0.5107 0.5409 -6.9423 0.6003 0.6304 -9.7862
USDCHF 0.0466 0.0516 0.772 0.1029 0.1291 -0.0081 0.1133 0.1382 -0.1549
USDCAD 0.0989 0.1094 0.548 0.5812 0.5948 -21.071 0.5625 0.5725 -28.2334

(b) Results without DC Framework

Table 3.4: Prediction Accuracy Results

3.3 Results

The present section details a research endeavour that focuses on the prediction of events in finan-

cial markets through the utilisation of a CNN-LSTM model within the framework of Directional

Change (DC). The DC framework is responsible for converting time series price data into an in-

trinsic time curve by utilising a predetermined threshold value known as theta (θ) to identify sig-

nificant price changes called events. The threshold value is established with the aid of the Average

True Range (ATR) indicator. The research methodology involves comparing the performance of the

CNN-LSTM model within and without the DC framework, using raw tick bars.

The research study encompasses several essential steps, which include generating tick bars from

tick prices of major currency pairs in the Forex market, identifying the least auto-correlated tick

bars through the Durbin-Watson statistic, computing the ATR for these least auto-correlated tick

bars to determine the threshold value (θ), generating DC summaries based on the threshold value,

training and validating the CNN-LSTM model using the DC summaries and raw tick bars separately,

and evaluating the predictive capabilities of the CNN-LSTM model using metrics such as mean ab-

solute error (MAE), root mean squared error (RMSE), and coefficient of determination (R2). The

results of the research indicate that the CNN-LSTM model performs significantly better within the

DC framework for all tested currency pairs, displaying improvements in MAE, RMSE, and R2 met-

rics.

The model’s accuracy is augmented when using DC summaries in comparison to raw tick bars.

Comparative analysis with Support Vector and Random Forest regression models also validates the

superiority of the CNN-LSTM model in terms of predictive accuracy within the DC framework.

62

Further research would apply other networks, e.g. GRU, and BiLSTM with a more complex archi-

tecture on different currency pairs and financial assets. It would be of importance and interest to

explore ways to determine the Directional Change threshold dynamically.

Chapter 4

Deep-learning Driven Forecasting

with Autoencoders and Variational

Autoencoders

4.1 Introduction

The financial market analysis is a highly challenging task. The profit and success of the financial in-

vestments are closely tied to the accuracy of prediction within the market. However, the prediction

of financial markets is a challenging task due to factors that affect the market’s direction. Noise,

time-varying distribution, and non-linearity are among the reasons that challenge the effort. The

main two approaches to financial market analysis are trend and price prediction. The market trend

prediction is considered a classification task, while price prediction is a regression problem. Two

major approaches, statistical models and machine learning methods, are widely used to address

stock price prediction.

Conventional statistical models and machine learning approaches can be fundamentally distinct

when it comes to their underlying assumptions and adaptability in the context of financial time

series. Classical statistical models, such as ARIMA, often are based on the assumption of linear-

ity and stationarity in the data. On the contrary, machine learning methods are particularly de-

signed to capture and model more complex, non-linear relationships in the data. This property has

proven to be advantageous in financial time series analysis, where the market displays non-linear

and non-stationary behaviours. For this reason, while not all financial time series adhere to the

mentioned characteristics, the flexibility and robustness of machine learning methods in dealing

63

64

with different patterns have significantly broadened the scope and effectiveness of financial anal-

ysis. Linear models ARMA and ARIMA have been widely used to predict financial time series [125].

Non-linear models such as neural networks, support vector regression, and hybrid algorithms have

also been employed to predict stock prices with high accuracy [10], [55], [30]. At the forefront of in-

novative methodologies, autoencoders emerge as unsupervised learning algorithms designed to

unravel complex data representations, offering potential solutions to the intricacies of financial

market analysis.

In this chapter, we investigate the employment of autoencoders and variational autoencoders for

denoising and forecasting financial data, comparing their performance with recurrent and con-

volutional models. The systematic exploration covers concepts of autoencoders, experimental

data, methodology, and a comprehensive discussion of results. Our findings reveal that while au-

toencoders and variational autoencoders are effective in reducing noise from financial time series,

CNN-LSTM (Convolutional Neural Network - Long Short Term Memory) and CNN-BiLSTM (Con-

volutional Neural Network - Bidirectional Long Short Term Memory) models demonstrate superior

performance. These advanced neural network architectures, with their ability to capture both spa-

tial and temporal dependencies, prove more adept at handling the complexities inherent in finan-

cial time series, outperforming in both denoising and forecasting accuracy.

4.2 Methodology and Experimentation

Autoencoders introduced by Hinton and Salakhutdinov [62], as it was described in 2.7, are unsu-

pervised learning algorithms designed for representation learning that attempts to copy inputs to

the outputs. Autoencoders are inherently unable to create perfect replications of their inputs. This

limitation has become a strength since it forces the model to learn the most salient features of the

data, rather than merely memorising it. As a consequence, autoencoders surpass tasks where the

extraction of underlying patterns and features is critical. Autoencoders have found various appli-

cations across different fields. In dimensionality reduction tasks, they distil high-dimensional data

into lower dimensions. In image processing, they are used to compress and denoise image data.

Moreover, they are widely used in feature extraction, recommendation systems, and sequence-to-

sequence prediction tasks.

Given the complexity of financial time series forecasting and the proven efficacy of deep learning

models, we propose a deep learning framework tailored for time series prediction. Our model is

designed to process sequences of financial time series data, each characterised by open, high, low,

65

Figure 4.1: Proposed Model

close, and volume features. The output is a sequence where each time lag1 to predict the closing

price for the subsequent intervals. Our approach sets our model as a tool for multi-step-ahead

forecasting, capable of handling and generating predictions from multivariate financial data.

Researchers use autoencoders in a variety of problems, including dimensionality reduction, im-

age compression and denoising, feature extraction, recommendation systems and sequence-to-

sequence prediction, to name a few. Considering the complexity of financial time series forecasting

and deep learning applications in addressing such problems, we propose a deep learning frame-

work to perform prediction. Our proposed model uses an input sequence of financial time series

where each time lag has multivariate features: open, high, low, close and volume. The output of the

model will be a sequence where each time lag corresponds to the closing price of the succeeding

intervals. Consequently, the proposed model is considered to be a multi-step-ahead forecasting

with multivariate data.

Data Description

In the experiment, the five companies’ minute-by-minute price information, namely AAPL, GOOG,

AMZN, FB, and EBAY are collected over one month from June 2021 to July 2021 from AlphaVantage

API2. The price information consists of open, high, low, close prices as well as the volume. Open

price is defined as the first price across all markets for the minute. Similarly, the high, low, and close

prices are respectively the highest, lowest and close prices across all markets for the minute. The

volume is the total volume of trades across all markets for the minute.

Before feeding the data into the forecasting model, it passes through the denoising block. This step

denoises the input time series of the five stocks with a variational autoencoder network. A varia-

tional autoencoder is applied to the financial time series of data with open, high, low, close, and

1Time lag refers to the interval or delay between two consecutive data points in a time series. In financial analysis, it often
represents the period used to predict future values based on past observations. For instance, a time lag of one day in stock
price data would use the previous day’s price to forecast today’s price

2https://www.alphavantage.co/documentation/

https://www.alphavantage.co/documentation/

66

volume as the input features to remove noise by generating the latent dimension from the original

features. Consequently, following the application of the variational autoencoder, the financial time

series will have the original and reconstructed features combined.

Data Normalisation

To preprocess the input financial time series, we first normalise the inputs using feature scaling

to ensure that the multivariate input and multi-step predictions lie in the range (0, 1). Since the

models in the forecasting block are designed with the recurrent neural network, Long Short-Term

Memory (LSTM), the inputs are required to be three-dimensional data of shape [ns ,nt ,n f], where

n f is the number of training samples, nt is the input window size and n f is the number of input

features. To normalise the inputs, we use the Scikit-Learn library. MinMaxScalar is a class for data

normalisation and requires the input data to be two-dimensional.

To make the input data of shape [ns ,nt ,n f] compatible with the input size of the MinMaxScalar, we

reshape the data of shape [ns ,n f] into separate groups for each feature. Following the reshaping,

the number of separate groups will be equal to n f , with two-dimensional data of shape [ns ,1].

After normalisation, we merged them into their original two-dimensional shape of [ns ,n f]. In this

manner, we will have n f unique scalar objects for each feature in the dataset. Consequently, it will

already be normalised when the data is expanded to have the third dimension, i.e., the number of

time steps.

Data Preparation

To prepare the normalised input data for the forecasting model, it’s crucial to restructure it into an

overlapping sliding window format. The normalised dataset, originally having the shape [ns ,n f],

where ns denotes the number of samples and n f the number of features, is transformed to facilitate

time series forecasting. Specifically, we utilise n past time steps and m time steps ahead to perform

predictions. For instance, to predict the closing price of a stock at future times t +1, t +2, t +3, . . . ,

t +m, the input to the model comprises the past data points xt , xt−1, . . . , xt−n , while the model

outputs future values yt+1, yt+2, . . . , yt+m . Consequently, this restructuring results in the dataset

having the shape [ns ,nt ,n f].

In this project, nt , the length of the sliding window, is set to seven minutes, meaning that we use

data from seven past time steps to predict the closing price for the next seven steps. Detailed in-

formation about the datasets includes the source of the data, the range of dates covered, and any

preprocessing steps such as normalisation or handling of missing values. Our preprocessing steps

ensure that the data is clean, relevant, and structured in a way that optimises the model’s ability to

67

learn from temporal patterns. By providing this detailed information on dataset preparation, we

aim to eliminate any ambiguities, allowing readers to fully grasp the methodology and context of

the forecasting model’s data structure.

Proposed Model

LSTM-VAE Denoising Block

For the purpose of noise removal from the input financial time series, we use a Long Short-Term

Memory Variational Autoencoder (LSTM-VAE). A variational autoencoder, analogous to a standard

autoencoder, consists of an encoder and a decoder network. The inputs at each time step are

mapped into latent space with a Gaussian distribution with µ = 0 and σ = 1. Then, the decoder

network estimates the expected distribution of the inputs from the latent representation. In other

words, the encoder in variational autoencoder first projects an instance into a mean and standard

deviation of a latent variable and then samples from the latent distribution. Subsequently, the

decoder decodes the samples into a mean and standard deviation of the output variables and gen-

erates samples from the output distribution. The reconstruction of the input features contributes

to removing noise and anomalies. Therefore, collecting the original inputs and their reconstruction

will create the input for the feature engineering block. Figure 4.2 and 4.3 are the illustrations of the

encoder and decoder network of the LSTM-VAE network.

The encoder model comprises an input layer and two LSTM layers with a dropout layer in between.

The first LSTM layer has 128 units, and the second one has 64 units. The dropout layer with a ra-

tio of 0.1 prevents the encoder model from over-fitting. Next, there exist two dense layers for the

mean and variance of the variational autoencoder—these two dense layers output to a Lambda

layer. The ensemble of the mentioned layers creates the encoder model of the variational autoen-

coder. The output of the encoder network enters the repeat vector layer of the decoder network

and then passes through two LSTM layers, connected with a dropout layer with the same ratio as

the encoder. The decoder network mirrors the encoder model; therefore, the first LSTM layer has

64 units and the second one 128 units. Eventually, the decoder model ends with a Time-Distributed

layer. We train the variational autoencoder with Adam [77] optimiser for 40 epochs. The denoised

features will be concatenated with the original features forming ten features to feed into the feature

engineering and selection block.

Feature Engineering Block

The output from the previous step is given to the feature engineering block to extract a new set

of features. Since we deal with time-series data, we need to employ time-series feature extraction

68

Figure 4.2: Denoising LSTM-VAE encoder

69

Figure 4.3: Denoising LSTM-VAE decoder

70

techniques to bring out informative features. Tsfresh 3 is a Python package that automatically com-

putes a vast number of time series features. It has methods to evaluate the power and significance

of such features for regression and classification problems. The extracted features involve basic

and advanced characteristics of the time series.

Tsfresh extracted more than seven hundred features for each stock, and some extracted features

include the mean, standard deviation, kurtosis, and skewness, to name a few. Before proceeding,

we need to impute and replace the null values in the features. Next, we rank the features according

to their importance using the SelectKBest, a Scikit-Learn’s class for selecting features according to

the k highest scores. Due to the minor improvement in accuracy measures, we only used the twenty

features of the SelectKBest algorithm.

Forecasting Block

The forecasting block of the proposed model consists of a stacked LSTM autoencoder, a stacked

BiLSTM autoencoder, a CNN-LSTM, and a CNN-BiLSTM model. The convolutional layers in CNN-

LSTM and CNN-BiLSTM are one-dimensional convolutional neural networks. A one-dimensional

CNN layer creates a convolutional kernel that convolves with the layer input over a single spa-

tial or temporal dimension. The stacked LSTM autoencoder is the reference model in this work.

The LSTM autoencoder is an encoder-decoder LSTM architecture suited for sequence-to-sequence

problems.

A sequence-to-sequence (seq2seq) problem takes in a sequence and predicts an output sequence.

The sequence-to-sequence prediction problems are challenging since the length of the input and

output sequences are not fixed. LSTM autoencoders have proven to be effective for the seq2seq

problems. In such a problem, the encoder compresses the inputs into a fixed-length representa-

tion, and the decoder uses it to predict the output sequences.

The detailed structure of the stacked LSTM autoencoder is represented in Figure 4.4. In the output

layer, the TimeDistributed layer is a wrapper function to ensure that the Dense layer inside is ap-

plied independently to the output of each time step. Hence, the network’s output dimension will

be the same as the input dimension, i.e., [ns ,nt ,n f]. Here, predicting the stock closing price for a

seven-step-ahead prediction will output a sequence with the shape [1,7,1]. The stacked LSTM au-

toencoder takes a sequence of features with n lags and predicts the outputs of a sequence of length

m. Each lag of the input sequences entails multiple features, including the open, high, low, close

and volume and the features from the feature engineering step. Therefore, the task is to perform

3https://tsfresh.readthedocs.io/en/latest/

https://tsfresh.readthedocs.io/en/latest/

71

multi-step forecasting with multivariate input data. Additionally, the performance of the stacked

LSTM autoencoder will be investigated against a stacked BiLSTM autoencoder, CNN-LSTM, and

CNN-BiLSTM models. Figures 4.5, 4.6, and 4.7 illustrate the detailed structure of the forecasting

models.

The structure of the stacked BiLSTM autoencoder is similar to the stacked LSTM autoencoder, ex-

cept the LSTM layers are replaced with BiLSTM layers. Bidirectional LSTM or BiLSTM is an ex-

tension of the LSTM models described in 2.5, in which two LSTM layers are applied to the input

data. In the first step, an LSTM layer is applied to the input sequences in the forward direction. In

the second step, another LSTM layer is applied to the input sequence reversely, in the backward

direction [114]. Employing the LSTM layer twice improves learning long-term dependencies and,

consequently, improves the model’s accuracy [8].

For this reason, we also investigate the advantage of the BiLSTM over the LSTM in our CNN-LSTM

and CNN-BiLSTM forecasting models. The CNN layer in both CNN-LSTM and CNN-BiLSTM is a

one-dimensional CNN with thirty-two filters and a kernel size of 1. The padding is set to ‘same’,

and the ‘use-bias’ parameter is true. The CNN layer is followed by a ‘MaxPooling1D’ layer with a

pool size of three. CNN-LSTM model has an LSTM layer with 32 units and a Rectified Linear Unit

as the activation function. A similar setting is used for the CNN-BiLSTM. The final two layers are a

dropout with a 0.2 rate and a dense layer with seven units corresponding to the seven step-ahead

predictions.

Predictive Performance

The predictive performance of the proposed models has been validated with multiple experiments.

For the experiment, we used the minute-by-minute historical prices of five companies in the top 50

stocks on the NASDAQ exchange to evaluate our model. The companies are AAPL, AMZN, GOOG,

FB, and EBay. Separating the time-series data into training and validation sets for model evaluation

and selection is a challenging task. Methods such as k-fold cross-validation are not applicable since

they do not preserve the temporal nature of time-series data [121].

For this reason, at each iteration, the training data will be split into two sets so that the validation

data chronologically succeeds the training data. In each iteration, the first m months constitute

the training data and the final n form the validation data, where n < m [114]. In order to evaluate

the predictive performance of the proposed models, we used Root Mean Squared Error (RMSE),

coefficient of determination (R2), and the Mean Absolute Error (M AE). Following are the metrics

equations.

72

Figure 4.4: LSTM-AE forecasting model

73

Figure 4.5: BiLSTM-AE forecasting model

74

Figure 4.6: CNN-LSTM forecasting model

75

Figure 4.7: CNN-BiLSTM forecasting model

76

Ticker Model RMSE MAE R2

AAPL

LSTM-AE 0.5337 0.0604 0.8081
BiLSTM-AE 0.8594 0.0512 0.8423
CNN-LSTM 0.5874 0.0483 0.8545

CNN-BiLSTM 0.8965 0.0423 0.8978

GOOG

LSTM-AE 2.7854 0.0521 0.8147
BiLSTM-AE 1.9676 0.0500 0.8565
CNN-LSTM 2.5245 0.0489 0.8763

CNN-BiLSTM 2.7595 0.0471 0.9158

AMZN

LSTM-AE 2.4194 0.0665 0.7965
BiLSTM-AE 4.004 0.0623 0.8497
CNN-LSTM 5.0073 0.0515 0.8521

CNN-BiLSTM 3.5658 0.0557 0.9265

FB

LSTM-AE 0.8589 0.0587 0.8341
BiLSTM-AE 0.8148 0.0564 0.8425
CNN-LSTM 0.7653 0.5580 0.9331

CNN-BiLSTM 0.8465 0.0478 0.9451

EBAY

LSTM-AE 0.0645 0.0658 0.7895
BiLSTM-AE 0.0652 0.0549 0.8265
CNN-LSTM 0.0614 0.0538 0.8897

CNN-BiLSTM 0.0686 0.0529 0.9469

Table 4.1: Prediction Accuracy Results (Test set)

4.3 Results

Within the forecasting block, four distinct models were examined: a stacked LSTM autoencoder,

a stacked Bidirectional LSTM autoencoder, a CNN-LSTM, and a CNN-BiLSTM. The LSTM-AE was

trained using an Adam optimiser and mean-squared error loss, undergoing 200 epochs with early

stopping on denoised and feature-engineered AAPL data. Post-training, the model achieved 0.0604

for Mean Absolute Error (M AE) and 0.8081 for Coefficient of Determination (R2). The subse-

quent model, akin to LSTM-AE but incorporating Bidirectional LSTM, underwent similar train-

ing, resulting in M AE of 0.0512 and R2 of 0.8423. The addition of the Bidirectional LSTM layer

notably enhanced M AE from 0.0604 to 0.0512 and R2 from 0.8081 to 0.8423. Remarkably, the one-

dimensional Convolutional Neural Network showed to be a robust architecture for time-series data.

Upon training CNN-LSTM with AAPL data, it achieved 0.0483 for M AE and 0.8545 for R2. The ulti-

mate model in the forecasting block, CNN-BiLSTM, achieved M AE of 0.0423 and R2 of 0.8978. The

model’s forecasting outcomes showcased CNN-BiLSTM’s superiority over other models. Notably,

consistent enhancement was observed across forecasting models: LSTM-AE, BiLSTM-AE, CNN-

LSTM, and CNN-BiLSTM. Notably, the combination of Convolutional Neural Networks and Long

Short-Term Memory demonstrated superior performance compared to the autoencoder model.

This enhancement trend was mirrored across metrics for GOOG, AMZN, FB, and EBAY.

Chapter 5

Transfer Learning in Financial

Forecasting, Encoding Time-series to

Images

5.1 Introduction

In the intricate realm of financial markets, accurate forecasting stands as a pivotal cornerstone

for making informed decisions, mitigating risks, and formulating effective strategic plans. Among

the various dimensions of forecasting, the task of predicting volatility holds particular significance.

This is especially true in the context of the Volatility of Volatility Index (VVIX), which offers insights

into market sentiment and uncertainty dynamics. However, the domain of financial time series

forecasting has lagged in adopting cutting-edge techniques compared to fields like Natural Lan-

guage Processing and Computer Vision, which have experienced remarkable advancements.

While modern methodologies from Natural Language Processing (NLP) and CV have reshaped var-

ious domains, the intricate characteristics of financial time series data have posed unique chal-

lenges, hampering the direct transfer of techniques from related domains. The financial forecast-

ing domain deals with highly complex, often non-linear data that is influenced by a myriad of un-

predictable factors, including economic indicators, political events, and market sentiment. Addi-

tionally, the financial industry’s strict regulatory environment and the high cost of inaccuracies in

predictions add layers of complexity. These factors make the direct application of techniques suc-

cessful in NLP and Computer Vision more challenging, necessitating a more cautious and tailored

approach to innovation in financial forecasting.

77

78

This disparity between the potential of advanced techniques and their application in financial fore-

casting has created an urgent need for innovative approaches capable of bridging the gap between

finance and modern deep learning methodologies.

The motivation driving this research is rooted in several fundamental observations within the realms

of financial forecasting and the rapid progress in deep learning. The complexity inherent in finan-

cial sequential data has inhibited the evolution of forecasting methodologies, leaving it discon-

nected from the strides made in NLP and CV. This disconnection arises from the intricate nature

of financial time series data, which requires tailored approaches due to its unique characteristics.

In response, two pioneering approaches have emerged as potential solutions: Gramian Angular

Fields and Markov Transition Fields. These techniques ingeniously transform time series data into

image representations, capturing temporal information while aligning with the image-centric ad-

vancements in CV. Furthermore, the sophistication of computer vision models, such as Residual

Neural Networks (ResNet), and the utility of pre-trained networks offer significant gains in feature

extraction and generalisation.

Among the crucial topics in finance, volatility forecasting, especially regarding the VVIX index,

holds a prominent position. Given its impact on risk assessment, trading strategies, and portfolio

management, accurate VVIX forecasting becomes paramount. By delving into the convergence of

time series image encoding, pre-trained networks, and deep learning techniques, a novel pathway

emerges for refining VVIX forecasting accuracy. Such a synthesis possesses the potential to enrich

the finance industry with more precise insights and predictive capabilities. Our research embarks

on a comprehensive exploration of deep learning-based VVIX forecasting, powered by time series

image encoding and a hybrid ResNet-LSTM model, guided by the following question:

• To what extent does the hybrid ResNet-LSTM architecture capture temporal dependencies and

feature hierarchies, contributing to more robust VVIX predictions?

This chapter progresses to provide an intricate analysis of the methodology, experiment, and results

that collectively elucidate the potential of our approach in the context of financial forecasting.

5.2 Methodology and Experimentation

VVIX Index

The CBOE1 VVIX functions as an index that assesses the volatility of volatility. Its core objective is to

gauge the anticipated volatility of the VIX’s 30-day forward price. The forward price, in this context,

1Chicago Board Options Exchange

79

Figure 5.1: VIX Volatility

alludes to the hypothetical value of a VIX futures contract, which would expire in 30 days. The VVIX,

while not precisely identical to the expected volatility of the VIX itself, shares a close relationship

with the latter due to the tracking of nearby VIX futures to the VIX. The oscillation of VVIX between

2019 to 2023 is depicted in Figure 5.1. The methodology used to compute VVIX is analogous to

that of VIX. It is obtained from the price of a portfolio of liquid at2 and out-of-money3 VIX options.

This portfolio can be utilised to manage volatility risk linked to exposures to VIX and to exploit

the risk premium between the expected and realised volatility of VIX forward prices. Although the

availability of VIX options with a 30-day expiration is generally limited, the computation of VVIX-

like values can be achieved by utilising VIX options that expire at two distinct dates within a 30-day

time frame. The determination of VVIX is subsequently performed through interpolation founded

on said values. Following is the calculation of VVIX from VIX options prices at each expiration using

the VIX formula:

V V I X = 2

T

∑ ∆Ki

K 2
i

eRT Q(ki)− 1

T

[
F

K0
−1

]2

where:

T Time to expiration

F Forward index level

K0 First strike below the forward index level F

Ki Strike price of i thout-of-money option

∆Ki Interval between strike prices

R Risk-free rate to expiration

Q(ki) Spread midpoint for option with strike ki

(5.1)

2At the money are calls and puts whose strike price is at or very near to the current market price of the underlying security.
3Out of the money refers to options that do not have any intrinsic value; they only have extrinsic, or time value.

80

Figure 5.2: ResNet-18 Architecture.

81

ResNet-18

The ResNet-18 architecture comprises multiple stages and layers. Initially, the input of a fixed-sized

image, typically 224 × 224 pixels undergoes a convolutional layer with 64 filters with a spatial size

of 7 × 7, following a batch normalisation layer and Rectified Linear Unit (ReLU) activation resulting

in dimension reduction of the input image. Thereafter, a 3 × 3 max-pooling layer is employed to

reduce the spatial dimension. From here onward there exist four sets of layers each containing two

residual blocks with convolutional layers with respective 64, 128, 256, and 512 filters. Following

a global average pooling layer is applied to aggregate spatial information across the entire feature

map leading to a fixed-size representation. Ultimately, the global average pooling layer output is

passed to a fully connected layer. As for ResNet-18, the fully connected layer consists of 1000 units

corresponding to the number of classes in the ImageNet dataset. The final classification probabili-

ties are obtained through the application of a softmax activation function at the exit of this layer.

Dataset Description

The dataset used in this study comprises VVIX time series data spanning from 2006 to 2023, ob-

tained from the Chicago Board Options Exchange website4. The Volatility of VIX (VVIX) measures

the expected volatility for the S&P 500 options. It is a crucial indicator for market participants, in-

cluding investors and traders, as it reflects the market’s expectations of future volatility. High VVIX

values signify increased market uncertainty and potential fluctuations in price, while low VVIX val-

ues suggest market stability and reduced volatility. Accurate VVIX predictions are of great impor-

tance for making informed decisions related to risk management, portfolio allocation, and trading

strategies.

Proposed Hybrid Model

The proposed model in this experiment combines both an image pathway and a recurrent pathway

to predict VVIX values.

Image Pathway

The image pathway leverages three representations: Gramian Angular Difference Field, Gramian

Angular Summation Field, and Markov Transition Field. These representations convert the VVIX

data into spatial images, which are then processed through ResNet blocks and convolutional layers.

This enables the model to capture spatial patterns and features in the volatility data. To take ad-

vantage of pre-existing knowledge and feature representations, we employ a pre-trained ResNet-18

4https://www.cboe.com/us/indices/dashboard/vvix/

https://www.cboe.com/us/indices/dashboard/vvix/

82

Recurrent Pathway Input Dim Hidden Dim

LSTM Layer 1 1 32
LSTM Layer 2 32 32

Table 5.1: Recurrent Pathway LSTM dimensions.

Image Pathway Kernel

Convolutional Layer 1 128
Convolutional Layer 2 64
Convolutional Layer 3 32

*All convolutional layers have a kernel size of 3, a stride of 1, and a padding of 1, without the use of biases.

Table 5.2: Image Pathway kernel dimensions.

featuriser within the image pathway. This approach reduces data requirements, speeds up train-

ing, and improves performance. Three convolutional layers are then applied, with the final layer

concatenating the outputs of the convolutional neural networks (CNNs). This process allows the

model to capture spatial features and patterns present in the images.

Recurrent Pathway

In contrast to the image pathway, the recurrent pathway incorporates sequential information by

passing the VVIX time series data through recurrent layers to capture temporal dependencies and

trends. Two consecutive recurrent layers are used to process the recurrent sequences effectively.

Data Preparation

Before inputting the data into the model, several preprocessing steps were applied. For the recur-

rent pathway, sequences were constructed using three different sliding windows, corresponding to

short-term, mid-term, and long-term time frames. Each sequence had a window length of 10, 21,

and 41 working days as features, and the subsequent day was used as the label for making predic-

tions. The window lengths are chosen arbitrarily to incorporate the impact of providing the model

with more information. In addition to the recurrent sequences, three key representations were

generated for the image pathway. These representations were used to create RGB5 images depict-

ing the volatility values for each time frame. Figure 5.4 displays a sample of the generated images,

providing a visual representation.

5Red-Green-Blue

83

Figure 5.3: Proposed ResNet-LSTM Model

84

Figure 5.4: GAF, MTF Images of VVIX

Model Training

The model’s weights and biases were optimised using the mean squared error (MSE) loss function

and the Adam optimiser. To enhance the model’s performance during training and avoid conver-

gence to sub-optimal solutions, a decaying learning rate was implemented. If the loss plateaued af-

ter three consecutive epochs, the learning rate was reduced from the initial value of 0.01. After sub-

jecting the proposed ResNet-LSTM model to three training runs using distinct time frames (short-

term, mid-term, and long-term: 10x10, 21x21, and 41x41), it became evident that the mid-term

time frame exhibited a more favourable balance in accuracy and demanded a reasonable dura-

tion for training. Combining the strengths from both the image and recurrent pathways within our

model exhibits promising potential. It showcases the ability to predict VVIX values with enhanced

precision, particularly highlighted by the mid-term time frame which demonstrated notably re-

duced errors on average when contrasted with the outcomes from short-term and long-term time

frames.

Image Size LSTM Lag Length Run 1 MSE Run 2 MSE Run 3 MSE

10×10 10 0.008 0.051 0.034

ResNet-LSTM 21×21 21 0.014 0.087 0.007

41×41 41 0.055 0.028 0.067

Table 5.3: ResNet-LSTM results for different image sizes and LSTM lag lengths.

5.3 Results

In this study, we proposed and examined a novel model for predicting VVIX values based on a com-

bination of image and recurrent pathways. The VVIX dataset, spanning from 2006 to 2023, served

85

as the foundation for our investigation into accurately forecasting market volatility. Our research

is significant as it addresses the critical need for reliable VVIX predictions, enabling market partici-

pants, such as investors and traders, to make well-informed decisions regarding risk management,

portfolio allocation, and trading strategies. The utilisation of both image and recurrent pathways

in our proposed model allowed us to capture and incorporate both spatial patterns and temporal

dependencies present in the VVIX time series data. The image pathway leveraged Gramian Angu-

lar Difference Field, Gramian Angular Summation Field, and Markov Transition Field to convert the

raw VVIX data into spatial images.

By employing pre-trained ResNet-18 featuriser and convolutional layers within the image path-

way, we effectively harnessed valuable feature representations while optimising computational ef-

ficiency. Concurrently, the recurrent pathway was adept at capturing sequential information, en-

abling the model to discern underlying trends and temporal dynamics in the VVIX time series. The

combination of both pathways facilitated a comprehensive understanding of the volatility patterns,

culminating in a reasonable predictive performance. The experimental results exhibited promis-

ing outcomes, with the mid-term time frame demonstrating a particularly balanced accuracy and

training time. This finding emphasises the importance of choosing an appropriate time frame for

VVIX prediction, which can significantly impact the practical applicability of the model.

Overall, our proposed ResNet-LSTM model showcased potential advantages for accurate VVIX value

predictions, providing valuable insights to market participants seeking to navigate the complex-

ities of financial markets. The successful amalgamation of spatial and temporal information in

our model highlights the significance of incorporating multiple data modalities in predictive tasks,

particularly in the domain of financial market forecasting. It is important to acknowledge the lim-

itations of our study. While our proposed model exhibited promising results, further research is

warranted to explore various architecture configurations, alternative data representations, and ad-

ditional optimisation strategies. Moreover, the generalisability of the model to different market

conditions and the influence of various external factors merit further investigation.

In conclusion, this research contributes to the growing body of knowledge in predictive analytics for

financial markets, specifically in the context of VVIX value forecasting. Our proposed model serves

as a stepping stone towards more accurate and robust predictions in financial domains, which are

indispensable for making informed decisions and mitigating risk in today’s dynamic and intercon-

nected global markets. As the financial landscape continues to evolve, our model opens avenues

for future studies and applications that can have a profound impact on the financial industry and

its stakeholders.

Chapter 6

Conclusion and Future Work

This chapter will provide a conclusive overview of the investigation by succinctly summarising the

key research findings in relation to the study’s objectives and queries, as well as highlighting the

worth and contribution thereof. Lastly, it will suggest prospects for further research.

6.1 Summary of Findings

In this comprehensive exploration of deep learning model applications in financial forecasting, our

study delved into three distinct yet interconnected research questions, each contributing a unique

perspective to our understanding of the field. The following research questions guided our study:

Project 1

• How does a deep learning CNN-LSTM model perform within the Directional Change Frame-

work for forecasting events, considering the inherent volatility of high-frequency financial

data?

To answer the first research question, in our first project, we summarised the price movement

of the high-frequency tick bar data of four currency pairs i.e., GBPUSD, EURUSD, USDCHF,

and USDCAD using the Directional Change framework. Within DC, an event is identified by

a price change greater than a pre-defined threshold θ. We employed the Average True Range

(ATR) indicator to determine θ based upon the oscillation of tick data. Subsequent to the

generation of the DC events, a one-dimensional CNN-LSTM model was utilised to predict

unseen events. Through this investigation, we observed that the CNN-LSTM model’s perfor-

mance transcends within the DC framework, demonstrating improvements in MAE, RMSE,

and R2 metrics, compared to its performance on raw tick bars. Comparative analysis with

86

87

Support Vector and Random Forest regression models also validated the out-performance of

CNN-LSTM with respect to predictive accuracy.

Project 2

• Can an Autoencoder and a Variational Autoencoder be employed for financial time series

forecasting? If so, how would they perform compared to recurrent and convolutional mod-

els?

Our exploration of the second research question led us to investigate the applications of a

variational autoencoder to improve the accuracy of financial forecasting. In this study, we

leveraged a Long Short-term Memory Variational Autoencoder (LSTM-VAE) in the denoising

block to remove noise from the minute-by-minute price information of the five companies

with ticker symbols AAPL, GOOG, AMZN, FB, and EBAY respectively. Following this step, the

denoised data were used to extract a new set of features within the feature engineering and

selection block. The outputs were used in the forecasting block which contains a stacked

LSTM autoencoder, a stacked Bi-LSTM autoencoder, a CNN-LSTM and a CNN-BiLSTM. The

outcomes exhibited by the Autoencoders could be utilised to forecast time-series data how-

ever the CNN-LSTM and CNN-BiLSTM performances exceeded in terms of MAE, RMSE, and

R2.

Project 3

• How can pre-trained computer vision models be harnessed for financial prediction?

The final research question shaped our third project. In this study, we explored the feasi-

bility of employing pre-trained computer vision models in financial forecasting, for predict-

ing VVIX values by merging images and recurrent sequences from the image and recurrent

pathways. We utilised VVIX data spanning from 2006 to 2023 to generate RGB images with

10× 10, 21× 21, and 40× 40 image sizes, representing the short-term, mid-term, and long-

term periods. By incorporating both spatial patterns and temporal dependencies present in

the VVIX time series, we utilised Gramian Angular Difference Field, Gramian Angular Sum-

mation Field, and Markov Transition Field to convert raw VVIX data into spatial images. The

image pathway leverages a pre-trained ResNet-18 featuriser and convolutional layers to effi-

ciently capture valuable feature representations. Meanwhile, the recurrent pathway captures

sequential information, enabling the framework to comprehend underlying trends and tem-

poral dynamics. The integration of pathways leads to improved predictive performance, par-

ticularly within the mid-term time frame. The ResNet-LSTM framework exhibits potential

88

advantages for reasonable VVIX value projections, demonstrating the significance of incor-

porating multiple data modalities in financial market forecasting.

6.2 Synthesis of Findings

Collectively, the findings from these projects underscored the value of deep learning models in fi-

nancial forecasting. Our research in the first project highlighted the application of the CNN-LSTM

model in predicting Directional Change events and the contribution of the Directional Change

framework to improve the accuracy of the mentioned model. In the second project, we emphasised

the capability of autoencoders and variational autoencoders to remove noise in high-frequency

minute-by-minute data as well as forecasting. Ultimately, we accentuated the potency of pre-

trained computer vision models i.e., ResNet-18 within a multi-modal framework to forecast the

volatility of the volatility index (VVIX).

6.3 Contribution and Broader Significance

The present thesis has made a contribution through its empirical exploration of various deep learn-

ing model applications in the realm of financial forecasting. Through addressing unique research

questions and conducting meticulous comparative analyses, our work has enhanced the collection

of tools accessible to both financial researchers and practitioners. Project 1’s insights supported the

beneficial application of the deep learning CNN-LSTM model in forecasting the Directional Change

events as well as the potential of the Directional Change framework in improving the CNN-LSTM

model’s prediction accuracy. Project 2’s emphasis on autoencoders and variational autoencoders

highlighted their potential for noise reduction and forecasting, while Project 3’s novelty in integrat-

ing pre-trained computer vision models and multi-modal models for volatility forecasting is note-

worthy. These contributions have collectively contributed to the domain of financial forecasting

with deep learning approaches.

6.4 Future Research

Although our investigation has shed light on several aspects of the utilisation of deep learning mod-

els for financial forecasting, there exist intriguing opportunities for further exploration.

1. Utilising denoising and forecasting capabilities of autoencoders and variational autoencoders

in the Directional Change framework.

2. Investigating the utilisation of Gramian Angular Fields and Markov Transition Fields trans-

89

formations in Directional Change framework.

3. Determination and clustering of the patterns in high-frequency tick data using the Gramian

Angular Fields and Markov Transition Fields transformations.

4. Applications of multi-modal approaches within Directional Change framework.

5. Improving the ResNet-LSTM model by employing different models. Replacing LSTM layers

in the recurrent pathway with transformers models and extending the width by employing

more inputs.

By venturing into these unexplored directions, future research has the potential to deepen our un-

derstanding of the intricate interplay between deep learning models and the dynamic landscape of

financial forecasting.

Bibliography

[1] Ayman Abu Hammad and Ernest Hall. Forecasting the Jordanian Stock Prices Using Artificial

Neural Networks. 01 2007.

[2] Md. Nasim Adnan. On reducing the bias of random forest. In Weitong Chen, Lina Yao, Taotao

Cai, Shirui Pan, Tao Shen, and Xue Li, editors, Advanced Data Mining and Applications, pages

187–195. Springer Nature Switzerland, 2022. ISBN 978-3-031-22137-8.

[3] Irene E. Aldridge. High-Frequency Trading: A Practical Guide to Algorithmic Strategies and

Trading Systems. Wiley Trading, 2009.

[4] Hamed Alqahtani, Manolya Kavakli-Thorne, and Gulshan Kumar. Applications of genera-

tive adversarial networks (gans): An updated review. Archives of Computational Methods in

Engineering, 28:525 – 552, 2019.

[5] Daniel Bachman. Comparing forecasting methods: Why do traditional macroeconometric

models remain popular? Econometrics: Applied Econometrics & Modeling eJournal, 2011.

[6] Amer Bakhach, Edward Tsang, and Hamid R. Jalalian. Forecasting directional changes in the

FX markets. 12 2016.

[7] Amer Bakhach, Edward Tsang, Wing Lon Ng, and V L Raju Chinthalapati. Backlash agent: A

trading strategy based on directional change. In 2016 IEEE Symposium Series on Computa-

tional Intelligence (SSCI), pages 1–9, 2016.

[8] Pierre Baldi, Søren Brunak, Paolo Frasconi, Giovanni Soda, and Gianluca Pollastri. Exploiting

the past and the future in protein secondary structure prediction . Bioinformatics, 15(11):

937–946, 11 1999.

[9] Arindam Banerjee. An Analysis of Logistic Models: Exponential Family Connections and On-

line Performance, pages 204–215.

[10] Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time series using

stacked autoencoders and long-short term memory. PLoS ONE, 12, 2017.

90

91

[11] Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas, Tsung-Yi Lin,

Jonathon Shlens, and Barret Zoph. Revisiting resnets: Improved training and scaling strate-

gies, 2021.

[12] Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5 2:157–66, 1994.

[13] Akshay Bhalla. Enhancement in predictive model for insurance underwriting. 2012.

[14] Daniel Alexandre Bloch. Option pricing with machine learning. EngRN: Electronic, 2019.

[15] Imad Bou-Hamad and Ibrahim Jamali. Forecasting financial time-series using data mining

models: A simulation study. Research in International Business and Finance, 51:101072, 2020.

[16] Joseph L. Breeden. Survey of machine learning in credit risk. Electronic, 2020.

[17] Bruce G. Buchanan. Can machine learning offer anything to expert systems? Machine Learn-

ing, 4:251–254, 2005.

[18] Nicholas Burgess. An introduction to algorithmic trading: Opportunities & challenges within

the systematic trading industry. Financial Crises eJournal, 2019.

[19] Andriana S. L. O. Campanharo, M. Irmak Sirer, R. Dean Malmgren, Fernando Manuel Ramos,

and Luis A. Nunes Amaral. Duality between time series and networks. PLoS ONE, 6, 2011.

[20] Mauro Castelli and Luca Manzoni. Special issue: Generative models in artificial intelligence

and their applications. Applied Sciences, 2022.

[21] Yekun Chai, Qiyue Yin, and Junge Zhang. Improved training of mixture-of-experts language

gans. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 1–5, 2023.

[22] Luyang Chen, Markus Pelger, and Jason Zhu. Deep learning in asset pricing. Research Meth-

ods & Methodology in Accounting eJournal, 2019.

[23] Shuangshuang Chen and Wei Guo. Auto-encoders in deep learningmdash;a review with new

perspectives. Mathematics, 11(8), 2023. ISSN 2227-7390. URL https://www.mdpi.com/

2227-7390/11/8/1777.

[24] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan M. Cohen, John Tran, Bryan

Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. ArXiv,

abs/1410.0759, 2014.

[25] Subhabrata Choudhury, Subhajyoti Ghosh, Arnab Bhattacharya, Kiran Jude Fernandes, and

https://www.mdpi.com/2227-7390/11/8/1777
https://www.mdpi.com/2227-7390/11/8/1777

92

Manoj Kumar Tiwari. A real time clustering and svm based price-volatility prediction for

optimal trading strategy. Neurocomputing, 131:419–426, 2014.

[26] Gil Cohen. Algorithmic trading and financial forecasting using advanced artificial intelli-

gence methodologies. Mathematics, 2022.

[27] Sven F. Crone and Christian Koeppel. Predicting exchange rates with sentiment indicators:

An empirical evaluation using text mining and multilayer perceptrons. 2014 IEEE Conference

on Computational Intelligence for Financial Engineering & Economics (CIFEr), pages 114–

121, 2014.

[28] Robert Culkin. Machine learning in finance: The case of deep learning for option pricing.

2017.

[29] Chester Curme, Harry Eugene Stanley, and Irena Vodenska. Coupled network approach to

predictability of financial market returns and news sentiments. International Journal of The-

oretical and Applied Finance, 18:1550043, 2015.

[30] Shom Prasad Das and Sudarsan Padhy. Support vector machines for prediction of futures

prices in indian stock market. International Journal of Computer Applications, 41:22–26,

2012.

[31] Min-Yuh Day and Chia-Chou Lee. Deep learning for financial sentiment analysis on finance

news providers. 2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM), pages 1127–1134, 2016.

[32] Min-Yuh Day and Chia-Chou Lee. Deep learning for financial sentiment analysis on finance

news providers. In 2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM), pages 1127–1134, 2016.

[33] Oscar Day and Taghi M. Khoshgoftaar. A survey on heterogeneous transfer learning. Journal

of Big Data, 4:1–42, 2017.

[34] Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. The helmholtz

machine. Neural Computation, 7:889–904, 1995.

[35] Marcos Lopez de Prado. Advances in Financial Machine Learning. John Wiley & Sons, 2018.

[36] Thomas G. Dietterich. What is machine learning? Machine Learning and AI for Healthcare,

2019.

[37] L. DiPersio and O. Honchar. Recurrent neural networks approach to the financial forecast of

Google assets. 2017.

93

[38] Dongsong Zhang and Lina Zhou. Discovering golden nuggets: data mining in financial ap-

plication. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-

views), 34(4):513–522, 2004.

[39] Ziv Epstein, Aaron Hertzmann, Laura Mariah Herman, Robert Mahari, Morgan R. Frank,

Matthew Groh, Hope Schroeder, Amy Smith, Memo Akten, Jessica Fjeld, Hany Farid, Neil

Leach, Alex Pentland, and Olga Russakovsky. Art and the science of generative ai. Science,

380:1110 – 1111, 2023.

[40] Thomas G. Fischer and Christopher Krauss. Deep learning with long short-term memory

networks for financial market predictions. Eur. J. Oper. Res., 270:654–669, 2018.

[41] Mark D. Flood, H. V. Jagadish, and Louiqa Raschid. Big data challenges and opportunities in

financial stability monitoring. Financial Stability Review, pages 129–142, 2016.

[42] Ramazan Gençay, Michel M. Dacorogna, Ulrich A. Müller, Olivier V. Pictet, and Richard B.

Olsen. An Introduction to High-Frequency Finance. 2001.

[43] J. Glattfelder, A. Dupuis, and R. Olsen. Patterns in high-frequency FX data: discovery of 12

empirical scaling laws. Quantitative Finance, 11:599 – 614, 2011.

[44] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In International Conference on Artificial Intelligence and Statistics, 2010.

[45] Ashok K. Goel and Kurt P. Eiselt. Mental models, text interpretation, and knowledge acquisi-

tion. SIGART Bull., 2:75–78, 1991.

[46] A. Golub, G. Chliamovitch, A. Dupuis, and B. Chopard. Multi-scale representation of high

frequency market liquidity, 2014.

[47] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[48] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[49] Adam Grealish and Petter N. Kolm. Robo-advisory: From investing principles and algorithms

to future developments. Robotics eJournal, 2021.

[50] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. Draw:

A recurrent neural network for image generation. ArXiv, abs/1502.04623, 2015.

[51] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood

and adversarial learning in generative models. In AAAI, 2018.

94

[52] Shihao Gu, Bryan T. Kelly, and Dacheng Xiu. Empirical asset pricing via machine learning.

NBER Working Paper Series, 2018.

[53] Bin Gui, Xianghe Wei, Qiong Shen, Jingshan Qi, and Liqiang Guo. Financial time series fore-

casting using support vector machine. 2014 Tenth International Conference on Computa-

tional Intelligence and Security, pages 39–43, 2014.

[54] Dominique M. Guillaume, M. Dacorogna, R. R. Davé, Ulrich A. Müller, R. Olsen, and O. Pictet.

From the bird’s eye to the microscope: A survey of new stylized facts of the intra-daily foreign

exchange markets. Finance and Stochastics, 1:95–129, 1997.

[55] Zhiqiang Guo, Huaiqing Wang, QUAN LIU, and Jie Yang. A feature fusion based forecasting

model for financial time series. PLoS ONE, 9, 2014.

[56] Hamid Haddadian, Morteza Baky Haskuee, and Gholamreza Zomorodian. A hybrid artificial

intelligence approach to portfolio management. Iranian Journal of Finance, 2022.

[57] Magnus Hansson. On stock return prediction with LSTM networks. 2017.

[58] Dinesh G. Harkut and K. N. Kasat. Introductory chapter: Artificial intelligence - challenges

and applications. Artificial Intelligence - Scope and Limitations, 2019.

[59] GM Harshvardhan, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth Swarup

Rautaray. A comprehensive survey and analysis of generative models in machine learning.

Comput. Sci. Rev., 38:100285, 2020.

[60] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

770–778, 2015.

[61] Pierre Henry-Labordère. Generative models for financial data. Derivatives eJournal, 2019.

[62] Geoffrey E. Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data with neu-

ral networks. Science, 313:504 – 507, 2006.

[63] S. Hochreiter and J. Schmidhuber. LSTM can solve hard long time lag problems. In NIPS,

1996.

[64] Harrison G. Hong and Jiang Wang. Trading and returns under periodic market closures. Jour-

nal of Finance, 55:297–354, 2000.

[65] Y Hu. Stock market timing model based on convolutional neural network–a case study of

Shanghai composite index. Finance & Economy, 4:71–74, 2018.

95

[66] Mei hua Zheng and Jia Miao. Comparing the forecastability of alternative quantitative mod-

els: a trading simulation approach in financial engineering. Systems Engineering Procedia, 4:

35–39, 2012.

[67] Jiayuan Huang, Alex Smola, Arthur Gretton, Karsten M. Borgwardt, and Bernhard Schölkopf.

Correcting sample selection bias by unlabeled data. In NIPS, 2006.

[68] Codrut, -Florin Ivas, cu. Option pricing using machine learning. Expert Systems with Applica-

tions, 163:113799, 2021. ISSN 0957-4174.

[69] Charbel José Chiappetta Jabbour, Ana Beatriz Lopes de Sousa Jabbour, Joseph Sarkis, and

Moacir Godinho Filho. Unlocking the circular economy through new business models based

on large-scale data: An integrative framework and research agenda. Technological Forecast-

ing and Social Change, 2017.

[70] Matthew J. Johnson, David Kristjanson Duvenaud, Alexander B. Wiltschko, Ryan P. Adams,

and Sandeep Robert Datta. Composing graphical models with neural networks for structured

representations and fast inference. In NIPS, 2016.

[71] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network

for modelling sentences. In Annual Meeting of the Association for Computational Linguistics,

2014.

[72] Michael Kampouridis and Fernando Otero. Evolving trading strategies using directional

changes. Expert Systems with Applications, 73:145 – 160, 2017.

[73] Andreas S. Karathanasopoulos, Mitra Sovan, Chia Chun Lo, Adam Zaremba, and Mohammed

Osman. Ensemble models in forecasting financial markets. ERN: Forecasting Techniques

(Topic), 2019.

[74] Sengim Karayalcin, Guilherme Perin, and Stjepan Picek. Resolving the doubts: On the con-

struction and use of resnets for side-channel analysis. Mathematics, 11(15), 2023. doi:

10.3390/math11153265.

[75] Divit Karmiani, Ruman Kazi, Ameya Nambisan, Aastha Shah, and Vijaya Kamble. Compari-

son of predictive algorithms: Backpropagation, SVM, LSTM and Kalman filter for stock mar-

ket. In 2019 Amity International Conference on Artificial Intelligence (AICAI), pages 228–234,

2019.

[76] Byeong Soo Kim and T. Kim. Cooperation of simulation and data model for performance

analysis of complex systems. International Journal of Simulation Modelling, 18:608–619, 12

2019.

96

[77] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014.

[78] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114,

2014.

[79] Diederik P. Kingma, Tim Salimans, and Max Welling. Improved variational inference with

inverse autoregressive flow. ArXiv, abs/1606.04934, 2017.

[80] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional net-

works. ArXiv, abs/1609.02907, 2016.

[81] Anisha M. Lal, Bharath Reddy, and Aju D. Review on various machine learning and deep

learning techniques for prediction and classification of quotidian datasets. 2020.

[82] Alex Lamb. A brief introduction to generative models. ArXiv, abs/2103.00265, 2021.

[83] Kruti Lavingia, Pimal Khanpara, Rachana Mehta, Karan Patel, and Niket Kothari. Predicting

stock market trends using random forest: A comparative analysis. In 2022 7th International

Conference on Communication and Electronics Systems (ICCES), pages 1544–1550, 2022. doi:

10.1109/ICCES54183.2022.9835876.

[84] Yann LeCun, Lawrence D. Jackel, Léon Bottou, A. Brunot, Corinna Cortes, John S. Denker,

Harris Drucker, Isabelle M Guyon, Urs Muller, E. Sackinger, Patrice Y. Simard, and

Vladimir Naumovich Vapnik. Comparison of learning algorithms for handwritten digit recog-

nition. 1995.

[85] Jing Li, S. Pan, L. Huang, and Xi Zhu. A machine learning based method for customer behav-

ior prediction. Tehnicki Vjesnik-technical Gazette, 26:1670–1676, 2019.

[86] Y. Li and W. Ma. Applications of Artificial Neural Networks in Financial Economics: A Survey.

In 2010 International Symposium on Computational Intelligence and Design, volume 1, pages

211–214, 2010.

[87] Fenglin Liu, Xuancheng Ren, Zhiyuan Zhang, Xu Sun, and Yuexian Zou. Rethinking skip

connection with layer normalization in transformers and resnets, 2021.

[88] Marc E. Maier, Hayley Carlotto, Freddie Sanchez, Sherriff Balogun, and Sears A. Merritt.

Transforming underwriting in the life insurance industry. In AAAI Conference on Artificial

Intelligence, 2019.

[89] Benoît Mandelbrot and Howard M. Taylor. On the Distribution of Stock Price Differences.

Operations Research, 15(6):1057–1062, 1967.

97

[90] Vivien Marx. Biology: The big challenges of big data. Nature, 498:255–260, 2013.

[91] Ricardo P. Masini, M. C. Medeiros, and Eduardo F. Mendes. Machine learning advances for

time series forecasting. ArXiv, abs/2012.12802, 2020.

[92] Sidra Mehtab and Jaydip Sen. Stock Price Prediction Using Convolutional Neural Networks

on a Multivariate Timeseries, 2020.

[93] Kostadin Mishev, Ana Gjorgjevikj, Irena Vodenska, Ljubomir T. Chitkushev, Wataru Souma,

and Dimitar Trajanov. Forecasting corporate revenue by using deep-learning methodologies.

2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (IC-

CAIRO), pages 115–120, 2019.

[94] Hanae Moussaoui, Nabil El Akkad, and Mohamed Benslimane. Reinforcement learning: A

review. International Journal of Computing and Digital Systems, 2023.

[95] David Nelson, Adriano Pereira, and Renato de Oliveira. Stock market’s price movement pre-

diction with LSTM neural networks. pages 1419–1426, 05 2017.

[96] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin, Luca Invernizzi,

et al. Kerastuner, 2019.

[97] Aakash Parmar, Rakesh Katariya, and Vatsal Patel. A review on random forest: An ensemble

classifier. In Jude Hemanth, Xavier Fernando, Pavel Lafata, and Zubair Baig, editors, Inter-

national Conference on Intelligent Data Communication Technologies and Internet of Things

(ICICI) 2018, pages 758–763. Springer International Publishing, 2019.

[98] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-

rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learn-

ing Research, 12:2825–2830, 2011.

[99] G. Jaculine Priya and S. Saradha. Fraud detection and prevention using machine learning

algorithms: A review. 2021 7th International Conference on Electrical Energy Systems (ICEES),

pages 564–568, 2021.

[100] Lele Qin, Naiwen Yu, and Donghui Zhao. Applying the convolutional neural network deep

learning technology to behavioural recognition in intelligent video. Tehnicki Vjesnik, 25:528–

535, 04 2018.

[101] Yongyi Ran, Han Hu, Xin Zhou, and Yonggang Wen. Deepee: Joint optimization of job

scheduling and cooling control for data center energy efficiency using deep reinforce-

98

ment learning. 2019 IEEE 39th International Conference on Distributed Computing Systems

(ICDCS), pages 645–655, 2019.

[102] Ibai Roman, Roberto Santana, Alexander Mendiburu, and José Antonio Lozano. In-depth

analysis of svm kernel learning and its components. Neural Computing and Applications, 33:

6575 – 6594, 2020.

[103] Murtaza Roondiwala, Harshal Patel, and Shraddha Varma. Predicting stock prices using

LSTM. 2017.

[104] Ahoora Rostamian and John G. O’Hara. Event prediction within directional change frame-

work using a cnn-lstm model. Neural Computing and Applications, 34:17193 – 17205, 2022.

[105] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson, 2020.

[106] E.W. Saad, D.V. Prokhorov, and D.C. Wunsch. Comparative study of stock trend prediction

using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural

Networks, 9(6):1456–1470, 1998.

[107] Imane Sadgali, Nawal Sael, and Faouzia Benabbou. Performance of machine learning tech-

niques in the detection of financial frauds. Procedia Computer Science, 2019.

[108] V. E. Salis, Akanksha Kumari, and Animesh Singh. Prediction of gold stock market using hy-

brid approach. International journal of engineering research and technology, 8:803–812, 2019.

[109] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on

Signal Processing, 45(11):2673–2681, 1997.

[110] Jaydip Sen. Stock Price Prediction Using Machine Learning and Deep Learning Frameworks.

12 2018.

[111] Joel Serey, Luis E. Quezada, Miguel D. Alfaro, Guillermo Fuertes, Manuel Vargas, Rodrigo

Ternero, Jorge Sabattin, Claudia Duran, and Sebastián Gutiérrez. Artificial intelligence

methodologies for data management. Symmetry, 13:2040, 2021.

[112] Omer Berat Sezer and Ahmet Murat Ozbayoglu. Algorithmic financial trading with deep con-

volutional neural networks: Time series to image conversion approach. Applied Soft Com-

puting, 70:525–538, 2018.

[113] Shunrong Shen, Haomiao Jiang, and Tongda Zhang. Stock market forecasting using machine

learning algorithms. 2012.

[114] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of LSTM

99

and BILSTM in forecasting time series. 2019 IEEE International Conference on Big Data (Big

Data), pages 3285–3292, 2019.

[115] Diego Furtado Silva, Vinicius M. A. Souza, and Gustavo E. A. P. A. Batista. Time series classi-

fication using compression distance of recurrence plots. 2013 IEEE 13th International Con-

ference on Data Mining, pages 687–696, 2013.

[116] Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. A review of supervised machine

learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global

Development (INDIACom), pages 1310–1315, 2016.

[117] Erik Solís, Sherald Noboa, and Erick Cuenca. Financial time series forecasting applying deep

learning algorithms. Information and Communication Technologies, 2021.

[118] Jan De Spiegeleer, Dilip B. Madan, Sofie Reyners, and Wim Schoutens. Machine learning for

quantitative finance: fast derivative pricing, hedging and fitting. Quantitative Finance, 18:

1635 – 1643, 2018.

[119] Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, and

Motoaki Kawanabe. Direct importance estimation for covariate shift adaptation. Annals of

the Institute of Statistical Mathematics, 60:699–746, 2008.

[120] George Daniel Brown Swankie and Daniel Broby. Examining the impact of artificial intelli-

gence on the evaluation of banking risk. 2019.

[121] Sean J. Taylor and Benjamin Letham. Forecasting at scale. PeerJ Prepr., 5:e3190, 2017.

[122] Aditya Thakur, Harish Chauhan, and Nikunj Gupta. Efficient resnets: Residual network de-

sign, 2023.

[123] Michal Tkáč and Robert Verner. Artificial neural networks in business: Two decades of re-

search. Applied Soft Computing, 38:788 – 804, 2016.

[124] E. Tsang, Ran Tao, A. Serguieva, and S. Ma. Profiling high-frequency equity price movements

in directional changes. Quantitative Finance, 17:217 – 225, 2017.

[125] Balakrishnan Umadevi, D. Sundar, and P. Alli. An effective time series analysis for stock trend

prediction using arima model for nifty midcap-50. International Journal of Data Mining &

Knowledge Management Process, 3:65–78, 2013.

[126] Vladimir Naumovich Vapnik. The nature of statistical learning theory. In Statistics for Engi-

neering and Information Science, 2000.

100

[127] Andrés Vidal and W. Kristjanpoller. Gold volatility prediction using a cnn-lstm approach.

Expert Syst. Appl., 157:113481, 2020.

[128] Jindong Wang and Yiqiang Chen. Introduction to Transfer Learning: Algorithms and Prac-

tice. Machine Learning: Foundations, Methodologies, and Applications. Springer Singapore,

2023. doi: 10.1007/978-981-19-7584-4.

[129] Ju-Jie Wang, Jian-Zhou Wang, Zhe-George Zhang, and Shu-Po Guo. Stock index forecasting

based on a hybrid model. Omega, 40(6):758 – 766, 2012.

[130] Pingan Wang, Yuanwei Lou, and Lei Lei. Research on stock price prediction based on BP

wavelet neural network with mexico Hat wavelet basis. pages 99–102. Atlantis Press, 2017.

[131] Zhiguang Wang and Tim Oates. Imaging time-series to improve classification and imputa-

tion. ArXiv, abs/1506.00327, 2015.

[132] Karl R. Weiss, Taghi M. Khoshgoftaar, and Dingding Wang. A survey of transfer learning.

Journal of Big Data, 3:1–40, 2016.

[133] White. Economic prediction using neural networks: the case of IBM daily stock returns. In

IEEE 1988 International Conference on Neural Networks, pages 451–458 vol.2, 1988.

[134] Shiyang Xuan, Guanjun Liu, Zhenchuan Li, Lutao Zheng, Shuo Wang, and Changjun Jiang.

Random forest for credit card fraud detection. In 2018 IEEE 15th International Conference

on Networking, Sensing and Control (ICNSC), pages 1–6, 2018. doi: 10.1109/ICNSC.2018.

8361343.

[135] Qiang Yang, Yu Zhang, Wenyuan Dai, and Sinno Jialin Pan. Transfer Learning. Cambridge

University Press, 2020.

[136] Tingting Ye and Liangliang Zhang. Derivatives pricing via machine learning. Boston: Infor-

mation Technology (Topic), 2019.

[137] Lining Yu, Wolfgang Karl Härdle, Lukas Borke, and Thijs Benschop. An ai approach to mea-

suring financial risk. Risk Management eJournal, 2017.

[138] Li Yunsheng, Cao Jie, Chen Xuewen, Zhao Feng, and Li Jingling. Auto-recognition pedestrians

research based on hog feature and svm classifier for vehicle images. 2020 IEEE International

Conference on Real-time Computing and Robotics (RCAR), pages 304–309, 2020.

[139] Kamil Zbikowski. Using volume weighted support vector machines with walk forward testing

and feature selection for the purpose of creating stock trading strategy. Expert Syst. Appl., 42:

1797–1805, 2015.

101

[140] G.Peter Zhang. Time series forecasting using a hybrid ARIMA and neural network model.

Neurocomputing, 50:159–175, 2003.

[141] Li Zhang, Fulin Wang, Bing Xu, Wenyu Chi, Qiongya Wang, and Ting Sun. Prediction of stock

prices based on LM-BP neural network and the estimation of overfitting point by RDCI. Neu-

ral Computing and Applications, 30:1425–1444, 09 2018.

[142] Q. Zhuge, L. Xu, and G. Zhang. LSTM neural network with emotional analysis for prediction

of stock price. Engineering Letters, 25:167–175, 01 2017.

	1 Introduction
	1.1 Research Background
	Financial Markets and Data
	Financial Data
	Tick Data

	1.2 Research Motivation and Objectives
	1.3 Publications
	1.4 Roadmap

	2 Background and Literature Review
	2.1 Machine Learning and Deep Learning in Finance
	Elevating Portfolio Management and the Emergence of Robo-Advisors
	Mitigating Fraud and Unveiling Money Laundering Patterns
	Enhancing Loans, Credit Card Services, and Insurance Underwriting
	Revolutionising Risk Management Paradigms
	Pioneering Sentiment Analysis in Finance
	Predicting Asset Prices with Machine Learning
	Revitalising Derivative Pricing Strategies
	Pioneering Algorithmic Trading Frontiers

	2.2 Time Series and Forecasting
	2.3 Deep Learning Applications in Financial Forecasting
	2.4 Directional Change Framework
	2.5 Long Short-Term Memory
	2.6 Convolutional Neural Networks
	2.7 Generative Modelling
	2.8 Residual Networks
	2.9 Transfer Learning
	2.10 Gramian Angular Fields
	2.11 Markov Chain
	2.12 Markov Transition Fields

	3 Event Prediction within Directional Change Framework using a CNN-LSTM Model
	3.1 Introduction
	3.2 Methodology and Experimentation
	Support Vector Machines and Random Forest
	Data Description
	Average True Range
	Experiment

	3.3 Results

	4 Deep-learning Driven Forecasting with Autoencoders and Variational Autoencoders
	4.1 Introduction
	4.2 Methodology and Experimentation
	Data Description
	Data Normalisation
	Data Preparation
	Proposed Model
	Predictive Performance

	4.3 Results

	5 Transfer Learning in Financial Forecasting, Encoding Time-series to Images
	5.1 Introduction
	5.2 Methodology and Experimentation
	VVIX Index
	Dataset Description
	Proposed Hybrid Model
	Model Training

	5.3 Results

	6 Conclusion and Future Work
	6.1 Summary of Findings
	Project 1
	Project 2
	Project 3

	6.2 Synthesis of Findings
	6.3 Contribution and Broader Significance
	6.4 Future Research

