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Abstract
Bleaching events impact coral reef functionality and carbonate budget dynamics, which is reflected in reduced reef frame-
work accretion, hindering reef ability to keep pace with sea-level rise projections. Reefs in the Arabian Gulf exist in harsh 
environmental conditions with seasonal temperatures ranging between 16 and 36 °C. Despite the high thermal thresholds 
(~ 35 °C) of corals in this region, extensive bleaching and high coral mortality have been reported regionally in 2017. We 
quantify reef carbonate budgets at a near shore and an offshore reef site in Bahrain pre-bleaching in May 2017 and post-
bleaching in May 2018 to assess the impacts of the 2017 severe bleaching event on the budgetary state. Results indicate an 
overall decrease in hard coral cover from 14.2 ± 5.5 to 8.5 ± 1.4% and a decline in the net carbonate budget state from 3.6 ± 2.2 
to 0.3 ± 0.3 kg  CaCO3  m−2  year−1 at the shallow nearshore Fasht Al Adhm reef indicating a shift from a positive budget-
ary state to net neutral, while the deeper offshore Reef Bul Thamah has increased positively from 3.7 ± 1.2 to 4.2 ± 0.6 kg 
 CaCO3  m−2  year−1. We attribute the decline in the nearshore reef to the bleaching event which took place between July and 
October 2017, resulting in high coral mortality rates and subsequent reduced framework carbonate production. Predicted 
warming trends present a threat to the structural integrity of shallow Bahraini reefs, compromising their ability to keep pace 
with future sea-level rise projections.
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Introduction

Coral reefs are experiencing rapid change on a global 
scale as a result of climate-induced disturbances (e.g., 
ocean warming and acidification; Anthony et  al. 2008; 
Hughes et al. 2017a, b) coupled with local pressures, such 
as overfishing and declining water quality due to nutrient 
runoffs and excessive sedimentation (Hughes et al. 2003; 
Ove Hoegh-Guldberg 2011; de Bakker et al. 2019). These 
changes include loss of coral cover resulting in modification 
of the 3-D framework of reefs which in turn compromises 

their structural integrity (Perry and Morgan 2017) and loss 
of architectural complexity such as that described in the Car-
ibbean by Alvarez-Filip et al. (2009). Changes in the func-
tionality of reef associated fish have also been documented 
and strong negative effects of coral loss were noted on the 
individual abundance of coral reef fish (Pratchett et al. 2011) 
with many reefs showing shifts in coral and associated spe-
cies community composition (Hoey et al. 2016; Ryan et al. 
2019).

In Bahrain which is situated in the Arabian Gulf (AG), 
coral reef areas (locally known as “fashts”) occupy a total 
area of 850  km2, which is larger than the land area of Bah-
rain with Fasht Al Adhm itself covering 200  km2 and mostly 
restricted to the east and north of the main island (Burt et al. 
2013). In the 1980s, 30 coral species were recorded in Bah-
rain with Acropora dominating communities in shallow 
(< 5 m) habitats, while Poritids and Faviids dominated the 
deeper (< 20 m) habitats (Alkhuzai et al. 2009); however, 
prior to this, little information is available on corals reefs in 
Bahrain (Sheppard 1988; Vousden 1988, 1995; Burt et al. 
2013). In 1988, dense coral cover of 50–90% dominated by 
Acropora was reported on Bahraini reefs (Sheppard 1988; 
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Vousden 1988, 1995); however, just a few years later, reports 
documented an estimated loss of > 90% of coral cover 
(Wilkinson 1998; Uwate and Shams 1999). This loss was 
linked to mass bleaching events in 1996 and 1998 when tem-
peratures reached 37.7 °C and 38 °C, respectively, making 
Bahrain the worst affected AG country by these bleaching 
events (Uwate and Shams 1999; Rezai et al. 2004; Al-kuwari 
2006).

Reef accretion is essential to reef survival in the face of 
rising sea levels (Perry et al. 2015, 2018a, b) and there are 
concerns around the ability of reefs to maintain their 3-D 
structural framework, which underpins the ecological func-
tioning of coral reefs and the services they provide through 
continuous accumulation of calcium carbonate  (CaCO3) 
(Graham and Nash 2013; Kennedy et al. 2013; Yanovski 
et al. 2017; Perry et al. 2018a).

Carbonate budgets measure the balance between  CaCO3 
production and erosion and allow estimation of reef accre-
tion rates. Detecting changes in budget states can inform 
reef functionality change and/or stressors; it is therefore 
important to understand the magnitude of changes in reef 
carbonate budgets through time, between regions or follow-
ing disturbances.

CaCO3 is precipitated by primary (hermatypic corals; 
Stearn and Scoffin 1977; Hubbard 1986; Hubbard et al. 
1986; Perry and Hepburn 2008) and secondary reef builders 
(calcareous encrusters, e.g., coralline algae, Goreau 1963; 
Choi and Ginsburg 1983; Hepburn et  al. 2015), which, 
together with incorporation of carbonate sediment into the 
reef framework, lead to carbonate accumulation. Bioerosion 
is the counter process and is driven by a diverse range of 
taxa including parrotfish, urchins, bioeroding sponges, and 
other macro- and micro-endolithic taxa.

Sea surface temperatures (SST) have been documented 
to increase globally, with records reporting an average rise 
of 1.0 °C between 1951 and 2015 (i.e., 0.15 °C/decade) in 
the Indian Ocean (Roxy et al. 2020), while the South Pacific 
and Western South Atlantic are reported to have experienced 
a rise in SST of ~ 0.4 °C/decade (Risaro et al. 2022). Short-
term temperature anomalies (i.e., marine heat waves) are 
increasing and have been shown to cause coral bleaching and 
mortality (Berkelmans and Oliver 1999; Baker et al. 2004; 
Hughes et al. 2017a, b). An increase in temperature anomaly 
above a coral’s local tolerance level by 1–2 °C is sufficient 
to cause bleaching (Hoegh-Guldberg 1999; Purkis and Riegl 
2005; Heron et  al. 2016; Hoegh-Guldberg et  al. 2017), 
negatively impacting carbonate budgets and reef capac-
ity to sustain framework development and vertical growth 
(Januchowski-Hartley et al. 2017; Perry and Morgan 2017).

In the AG, corals are subjected to large and unique sea-
sonal variations in temperatures (16–36 °C) (Coles and Riegl 
2013; Hume et al. 2013). In the last 2 decades, reefs in this 
region have been exposed to severe temperature anomalies 

(~ 2 °C above the average daily temperature in the sum-
mer) at a frequent and highly recurring rate (Riegl 2002; 
Sheppard and Loughland 2002; Burt et al. 2012), similar 
to those projected (1.5–2 °C above pre-industrial levels) to 
occur globally by 2100 (IPCC 2014). Due to their extreme 
tolerances to seasonal temperature changes, coral communi-
ties in AG have the highest bleaching threshold (i.e., 35 °C) 
globally (Rezai et al. 2004; Riegl et al. 2012; Kavousi et al. 
2014; Shuail et al. 2016). However, despite their high thresh-
old, they are still susceptible to bleaching and it is reported 
that 70% of original AG reef cover (i.e., 3800  km2) may be 
considered to have suffered bleaching-related mortality, and 
a further 27% threatened or at critical stages of degradation 
with declines linked to major bleaching events, e.g., 1998 
(Wilkinson 2008; van Lavieren et al. 2011). In recent years, 
one-third of the world’s coral reefs experienced huge losses 
due to the 2016 heat wave (Schiermeier 2018), whereas the 
AG reefs experienced a 1-year (2017) delay which resulted 
in severe mortality (Burt et al. 2019; Paparella et al. 2019). 
Over the past decades, efforts have been made to calculate 
reef carbonate budgets (Stearn and Scoffin 1977; Hutchings 
and Bamber 1985; Holmes et al. 2000; Hepburn 2006; Mal-
lela and Perry 2007; Browne 2011). Bleaching-associated 
declines in reef carbonate budgets have been found in the 
central Indian ocean (Perry et al. 2014; Januchowski-Hart-
ley et al. 2017; Perry and Morgan 2017; Lange and Perry 
2019); however, no previous attempt has been made to assess 
reef carbonate budgets in the AG. Therefore, this paper will 
examine a nearshore and an offshore reef in Bahrain both 
pre- and post-the 2017-bleaching event with the aim to char-
acterize the benthic composition of carbonate producers and 
eroders, quantify reef carbonate budgets, and report on the 
impacts on budgetary states caused by the 2017 warming 
event.

Materials and methods

Site description

Bahrain is an archipelago of 33 low-lying islands (Fig. 1) 
and its coral reefs were among the most extensive in the 
southern basin of the Arabian Gulf (Riegl 2003; Purkis and 
Riegl 2005; Kavousi et al. 2014). However, in the last 4 
decades, these reefs have undergone significant decline in 
coral cover due to large-scale coastal development in pur-
suit of socio-economic growth. This has added 13% to the 
Kingdom’s total land area between 1961 (690  km2) and 2021 
(780  km2) (World Bank 2021).

To understand the thermal profile experienced on Bah-
raini reefs, we analyzed the time series weekly SST mean 
for the period 1982–2017 and the degree heating weeks 
(DHW) and thermal stress anomaly (TSA), giving an 
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indication of the delineation between coral bleaching and 
mortality levels. Data were derived from CoRTAD ver-
sion 6 database (Fig. 2; refer to supplementary material 
for method of acquisition and processing in addition to 
definition and calculation methods of SST thermal history 
metrics).

In subsequent years following the 1998 bleaching epi-
sode, recovery of Bahraini reefs was observed to be limited, 
(Lough 2000; Uwate et al. 2000) with reports observing the 
reefs to be dominated by rock (66.9%) and sand (30.6%) with 
low coral cover (0.6%) in Fasht Al Adhm and no observa-
tions of the formerly dominant Acropora (Uwate et al. 2000).

For the purpose of this study, two reefs in Bahrain were 
investigated in April/May 2017 (pre-bleaching) and 2018 
(post-bleaching; Fig. 1c) comparing a nearshore site at 
Fasht Al Adhm (Site Nearshore, 5–7 m depth, turbid con-
ditions) and an offshore site at Reef Bul Thamah (Site 
Offshore, 10–12 m, clear conditions). Table 1 provides 
details of the environmental characteristics of each site. 
Surveying depths differ due to natural topography of the 
sites; Site Nearshore is a gently sloping shallow reef, with 
a maximum depth of 7 m and minimal relief due to the 
site being relatively homogenous and lacking more typical 
reef structural complexity. Site Offshore is also relatively 
homogenous, with a gentle slope starting at 10 m and con-
tinuing to 12 m where Pleistocene bedrock continues to a 
depth of 18 m, after which the substrate becomes patchier 
with sand and bedrock formations as it slopes off into the 

deep (> 50 m). Due to limitations related to access to sites, 
time, and funding constrains, only two sites could be stud-
ied over the 2 years.

Results derived from the CORTAD dataset illustrated 
that over the 35 years (1982–2017), the minimum SST 
experienced by Site Nearshore and Site Offshore were 
15.5 °C and 16.5 °C, respectively, while the maximum 
SST was 37.0 °C at Site Nearshore and 36.2 °C at Site 
Offshore. The annual mean temperature at Site Nearshore 
was 26.0 ± 0.1 °C and Site Offshore was 26.2 ± 0.1 °C. 
Trends in the accumulated thermal stress [expressed as 
degree heating weeks (DHW)] shows that prior to the 1998 
bleaching event, all DHWs were constantly lower than 
4 °C-weeks. However, since 1998, DHWs were recorded 
to reach ≥ 8 °C-weeks with an exception observed in 1998 
and 2017 where DHW reached ≥ 15 °C-weeks (Fig. 2). In 
addition, the bleaching threshold at Site Nearshore was 
calculated to be 34.5 °C and 34.1 °C at Site Offshore. 
It is important to note that these values were calculated 
based on the thermal stress metrics obtained from sat-
ellite data instead of in situ measurements. Given this, 
the 2017-bleaching event experienced on the reefs in 
Bahrain is expected to have taken place between July 
and October 2017 where temperatures exceeded 34 °C 
for ≥ 15 °C-weeks (Fig. 2). The surveys for this study were 
undertaken in April/May 2017 (pre-bleaching) and 2018 
(post-bleaching).

Fig. 1  Location of study sites: A location of Arabian Gulf (AG); B 
location of Bahrain within AG; C location of selected study sites 
within Bahrain-Fasht Al Adhm (Nearshore) and Reef Bul Thamah 

(Offshore). Shapefiles were created using google earth, while all 
maps were created using R
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Quantifying carbonate budget states

Gross carbonate production and erosion rates were cal-
culated to determine net carbonate production (kg 
 CaCO3  m−2  year−1 hereafter expressed as G, while ± rep-
resents the SE of all values stated) using the international 
standardised census-based ReefBudget methodology (Indo-
Pacific version) (Perry et al. 2018a, b) hereafter referred to 
as ReefBudget methodology. The natural reef topography 
in Bahrain is gently sloping (< 2 m), and thus, all transects 
were conducted on the bottom flat of the reef at a depth 
of ~ 5–7 m at Site Nearshore and ~ 10 m at Site Offshore.

At each site, data were collected along 6 × 10 m replicate 
transects laid parallel to each other with a spacing of 5 m 
between each transect both in 2017 and 2018. Data were 

collected from each transect to assess benthic substrate com-
position, surface rugosity, eroder populations, specifically 
echinoid, scaridae, and macro- and microbioeroders as per 
the ReefBudget methodology outlined in Perry et al. (2018a, 
b) (Table 2). Benthic substrate composition was recorded 
using the LIT method where each benthic component pre-
sent directly under the transect line was recorded along with 
its linear length, while rugosity was calculated from the total 
surface distance for each linear 1 m of reef using a flexi-tape.

Quantifying carbonate production

Primary carbonate producers To calculate carbonate pro-
duction rates, primary producers (Scleractinian coral colo-
nies) when encountered beneath the transect line were: 

Fig. 2  A Time series weekly SST mean for the period (1982–2017; 
n = 1878) illustrating the change in SST across the two study sites 
in Bahrain. The blue and red dotted lines indicate the minimum and 
maximum climatology (defined here as the long-term mean of SST 
conditions). Positive or negative values of SST exceed long-term 
mean SST (climatology) of a particular area, which indicates whether 
SST is warmer or cooler than usual (Heron et al. 2016)), respectively, 
while the red solid line indicates the bleaching threshold. The blue 
solid line indicates the linear fit with standard error of the regression 
in dark gray shading. B Degree heating weeks (DHW; in red solid 
lines) defined as of accumulated daily hotspots over 12 consecutive 
weeks when the thermal stress anomaly (TSA; in black solid lines) 

is ≥ 1  °C. The gray dotted lines indicate the DHW values of 4 and 
8 °C-weeks, which corresponds to delineation between coral bleach-
ing and mortality levels. Years that correspond to coral bleaching and 
mortality were highlighted in blue and red fonts, respectively. Data 
were derived from the CoRTAD version 6 database (Coral Reef Tem-
perature Anomaly Database (CoRTAD) which is a dataset of SST and 
related thermal stress metrics, developed by NOAA specifically for 
coral reef ecosystem applications. The CoRTAD Version 6 database 
used in this study contains global ~ 4  km resolution SST data on a 
weekly time scale for the period 1982–2017. ftp:// ftp. nodc. noaa. gov/ 
pub/ data. nodc/ cortad/ README. html)

ftp://ftp.nodc.noaa.gov/pub/data.nodc/cortad/README.html
ftp://ftp.nodc.noaa.gov/pub/data.nodc/cortad/README.html
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(a) identified to genus level, e.g., Porites spp., (b) meas-
ured for colony size [calculated based on linear coverage 
(length × width) using a flexi-tape and categorized based 
on morphology]. Although the Reefbudget methodology 
advises that 3D coral colony measurements should be used 
for more accurate colony measurements, 2D colony meas-
urements were taken for this study due to field limitations 
both terms of time and human resources. To date, there are 
no published growth rates or skeletal densities for corals in 
the Arabian Gulf, with the exception of two species (Platy-
gyra daedalea and Cyphastrea microphthalma) (Howells 
et  al. 2018). Therefore, coral growth rates and skeletal 
density data used in this study were those provided in the 
open source “Indo-Pacific data entry spreadsheets” of the 
ReefBudget methodology which are derived from published 
literature. The data were then inserted in the spreadsheets 
that have been set up with standardized Reefbudget equa-
tions that automatically calculate the carbonate production 

rates for each transect. Datasheets can be downloaded for 
use through: https:// geogr aphy. exeter. ac. uk/ reefb udget/

Secondary carbonate producers Secondary carbonate pro-
duction rates were quantified based on the weight per unit 
area derived using six PVC pipes which were deployed in 
September 2017 for a period of 1  year at each study site 
measuring 35  cm × 16  cm (length x circumference of the 
pipe; Fig. 3). Following the 1-year period, pipes were pho-
tographed underwater, placed in a plastic bag secured with 
cable ties over the upper part of the pipe for removal. All 
pipes were successfully retrieved using the ReefBudget 
methodology from Site Nearshore (n = 6); however, only 
one out of six pipes was found and retrieved at Site Offshore. 
Evidence of illegal destructive fishing practices, including 
trawling was witnessed at the site which could have resulted 
in the displacement and loss of the other pipes. Once in the 
lab, pipes were examined and photographed in detail fol-

Table 1  Site description and characterization of study sites in Bahrain, Arabian Gulf

a Due to time restrictions, sediment traps (n = 6) were deployed for a period of 3 days at each site in May 2018, although robust data on sedimen-
tation rates is unavailable for these sites, local knowledge was used to gain insights as to the nature of the sites
b Data were logged using a hobologger (Model: UA-002-64) at a 1-min interval at two depths (Offshore = 5 m and 10 m; Nearshore = 3 m and 
7 m) over 5 days. Units were converted from Lux to µmol photons  m−2  s−1 (as per Long et al. 2012) for light attenuation coefficients (Kd (PAR), 
 m−1)

Site Site code Depth (m) Temp (°C) Salinity (ppt) Sedimenta-
tion rates 
(mg  cm−2  day−1)a

Light attenu-
ation (Kd 
PAR)b

Distance Impacts

Fasht Al Adhm Nearshore 5–7 20–36 42–44 0.23 ± 0.04 0.02 ± 0.04 ~ 11 km 
east of 
the main 
island

Heavily impacted due 
to anthropogenic 
activities mainly 
reclamation and 
dredging

Reef Bul Thamah Offshore 10–12 0.19 ± 0.04 0.04 ± 0.07 ~ 80 km 
northeast 
of the 
main 
island

Although located 
within a Marine 
Protected National 
Park (MPA), the site 
is subjected to ille-
gal and destructive 
fishing practices

Table 2  Details of carbonate 
budget components and number 
of replicates at each study site 
conducted in 2017 and 2018 in 
Bahrain, Arabian Gulf

Carbonate budget component Variable Number of 
transects

Length of 
transect 
(m)

Carbonate production rate Benthic composition assessment 6 10
Rugosity 6 10
Carbonate producers 6 10

Carbonate erosion rate Echinoids (Urchins) 6 10
Scaridae (Parrotfish) 3 (in 2017) and 

6 (in 2018)
30

Macroborers 6 10
Microborers 6 10

https://geography.exeter.ac.uk/reefbudget/


 Marine Biology          (2024) 171:39 

1 3

   39  Page 6 of 17

lowing which they were placed in 10% sodium hypochlorite 
(bleach) for 36 h. Once removed from the bleach, the pipes 
were left to dry after which, they were weighed three times. 
The pipes were then soaked in 10% HCl for another 36 h. 
Once all the calcium carbonate was dissolved, the pipes were 
taken out and weighted for a second time (in replicates of 
three). This allowed for a weight per unit area to be derived. 
To calculate secondary carbonate production, the weight per 
unit area previously derived through the 1-year experiment 
was inserted in the Reefbudget calculation spreadsheets in 
the growth rates column thereby automatically including it 
in the overall production budget calculation. The Reefbudget 
methodology uses locally derived data on the rate of total 
secondary carbonate production in addition to the data on 
available substrate for secondary producers (e.g., CCA) 
recorded by the benthic transects (Perry et al. 2018a, b).

Quantifying carbonate erosion

For calculating carbonate erosion rates, species, density, and 
size class measurements were recorded for grazers, such as 
echinoids (urchins) and Scaridae (parrotfish) along the belt 
transect area.

• Echinoids: The area surveyed along each of the six tran-
sects was 1 m on either side of the 10 m transect line 
covering a total of 20  m2 per transect (10 m length × 2 m 
width). The number of individuals along each transect 
was counted, identified to species level and recorded in 
the following size class which is the width of the echinoid 
without the spines: 0–20 mm, 21–40 mm, 41–60 mm, 
61–80 mm, and 81–100 mm. Data were then inputted 
into the Reefbudget calculation spreadsheets which auto-
matically calculates the carbonate erosion rate of echi-
noids based on species level.

• Scaridae: The area surveyed along each of the transects 
(3 replicates in 2017 and 6 replicates in 2018) was 4 m 

in width of the 30 m transect line covering a total of 
120   m2 per transect (30 m length × 4 m width). The 
number of individuals encountered along each transect 
were counted, identified to species level and recorded in 
the following size class based on total length: 5–10 cm, 
11–20 cm, 21–30 cm 31–40 cm, and > 40 cm along with 
their life phase (i.e., juvenile or adult). Biomass of par-
rotfish was calculated using published species-specific 
length–weight relationships as provided by the Reef-
budget calculation spreadsheets where the data were 
inputted for carbonate erosion rate contributed by par-
rotfish.

• Macroborers: The Reefbudget (Indo-Pacific version) 
defines macroborers as those that produce boreholes with 
diameters of > 1 mm. These include endolithic sponges, 
bivalves, decapods, polychaete and sipunculid worms, 
and cirripeds, of these, sponges dominate the macrob-
oring community, comprising 75–90% by proportion of 
substrate infestation (Perry al. 2018). In general, the mac-
roborer community is less characterized than that of the 
Caribbean in both the Indian and Pacific Oceans, many 
bioeroders especially clionaid sponges are cryptic in 
general making their identification difficult on the field. 
In addition, macroerosion measurements tend to rely on 
deploying of experimental substrates (e.g., coral blocks) 
and/or using X-rays or CT scans to estimate internal rates 
of bioerosion using cored or slabbed corals (Perry et al. 
2018a, b). Therefore, the Reefbudget methodology uses 
published rates of the total macrobioerosion with data 
on available substrate for bioerosion (including dead car-
bonate substrate and live coral colonies) derived from 
the benthic transects (Perry et al. 2018a, b). Thus, mac-
robioerosion rates are automatically calculated in the 
Reefbudget calculation spreadsheets using the benthic 
substrate data.

• Microborers: Endolithic microborers such as cyanobacte-
ria, cholorophytes, and fungi are able to exist inside car-

Fig. 3  CaCO3 production by 
secondary carbonate producers 
over a 1-year period on PVC 
pipes deployed at Nearshore 
(Fasht Al Adhm). NB: 
exposed = high light, cryp-
tic = low light
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bonate substrates. Similar to macrobioerosion, the assess-
ment of microbioerosion rates tend to rely on deploying 
of experimental substrates (Chazottes et al. 1995; Tri-
bollet and Golubic 2005). The Reefbudget methodology 
acknowledges data scarcity on microbioerosion processes 
and despite the challenges in measuring microbioero-
sion on the field, it recognizes that microborers can have 
the potential to contribute to bioerosion on reefs in a 
non-negligible amount. Thus, since published rates on 
microbioerosion are within similar ranges to those of 
macroborers, the rates are automatically calculated in 
the Reefbudget calculation spreadsheets using the ben-
thic substrate data.

Data analysis

Data processing, analysis, and visualization were conducted 
in the software “R” and “RStudio” version 3.5.1 (R Core 
Team 2018) utilizing the following R packages: ggplot 
(Hothorn et al. 2008), tidyverse (Wickham et al. 2019), 
stats package (R Core Team 2021), and multcomp package 
(Hothorn et al. 2008). Mean ± standard error (SE) is stated 
throughout along with the median (md) values for primary 
producers, gross carbonate production, and gross carbon-
ate erosion. Using the glm function in stats package, gen-
eralized linear models (GLMs) were used to test the effects 
of bleaching events on the percentage cover of carbonate 
producers (i.e., hard coral cover and CCA), rugosity, den-
sity of eroders (i.e., Scaridae and echinoids), gross carbon-
ate production, gross carbonate erosion, and net carbonate 
production at both sites (Supplementary Tables 1 and 2). 
Likelihood ratio tests (LRT) were conducted to analyze the 
deviance between null and alternative models to determine 
the effect of the interaction between bleaching events and 
sites on the observations using the anova function in the stats 
package (Supplementary Table 3). The interaction term was 
included in the model if LRT was found to be significant. 
Post hoc comparison tests were implemented using the glht 
function in the multcomp package (Hothorn et al. 2008) with 
all significant test results reported in the text and additional 
results presented in Supplementary Table 4.

Results

Site characterization

Carbonate producers

Dominant hard corals recorded at both sites included Platy-
gyra spp., Favia spp., and Porites spp., all of which were 
either massive, sub-massive, or encrusting with no branch-
ing corals observed at any of the study sites either year 

(with the exception of one colony of Pocillopora sp. seen 
in 2017 at Site Nearshore). Hard coral cover declined from 
13.6 ± 7.0%, pre-bleaching to 1.4 ± 0.6%, post-bleaching 
at Site Nearshore, while Site Offshore maintained its coral 
cover (pre-bleaching = 14.8 ± 4.1%, n = 6; post-bleach-
ing = 15.5 ± 2.2%); however, no significant difference was 
observed between sites in 2017 (Site Nearshore: GLM, 
z = − 2.1, p > 0.05; Site Offshore: GLM, z = 0.1, p > 0.05) 
(Figs.  4, 5 and 6a). No branching coral colonies were 
observed at either study site in 2018 and no change in the 
coral community was observed as the dominant coral groups 
remain to be either massive, sub-massive, or encrusting.

CCA cover was dominant at Site Nearshore pre-bleach-
ing (mean = 42.2 ± 12.9%, md = 38.9); however, this 
declined significantly to 13.2 ± 3.5%, md = 14.5 (GLM, 
z = − 2.7, p < 0.05) post-bleaching (Figs. 5 and 6b). CCA 
was also observed to decline at Site Offshore post-bleach-
ing (pre-bleaching = 10.1 ± 7.0%, md = 4.2; post-bleach-
ing = 1.73 ± 0.4%, md = 1.8) but was statistically non-
significant (Fig. 6b—Supplementary Material, Table 4). 
No change in reef rugosity was noted in Site Offshore 
(pre-bleaching = 1.8 ± 0.14; post-bleaching = 1.7 ± 0.04), 
while a decline in rugosity was noted in Site Nearshore 
(pre-bleaching = 1.7 ± 0.17; post-bleaching = 1.4 ± 0.05). 
The largest dominating benthic group at Site Offshore was 
algae, including turf algae (pre-bleaching = 25.5 ± 7.6%, 
post-bleaching = 34.4 ± 6.6%) and macroalgae (mainly Hal-
imeda sp. and Padina sp.; pre-bleaching = 19.6 ± 3.5%; post-
bleaching = 23.4 ± 2.1%) (Fig. 5). At Site Nearshore, mac-
roalgae (mainly Halimeda sp.; pre-bleaching = 2.7 ± 1.5%, 
post-bleaching = 3.6 ± 1.7%) was seen to be low in com-
parison to Site Offshore in both years. However, turf algae 
was higher at Site Nearshore with an increase of 50% 
post-bleaching (pre-bleaching = 31.5 ± 14.2%, post-bleach-
ing = 63.1 ± 6.0%) (Fig. 5). The remaining benthic substrate 
for both Site Nearshore and Site Offshore was composed 
of sand, rubble, sponge, soft coral, and other (e.g., other 
calcareous encrusters and ascidians) (Fig. 5).

Carbonate eroders

At Site Nearshore, echinoid densities were higher pre-
bleaching (25.0 ± 6.4 individuals per 20  m2) than post-
bleaching (8.0 ± 2.5 individuals per 20  m2) with a signifi-
cant reduction of 68% (GLM, z = 3.6, p < 0.01) (Fig. 6c), 
but echinoids were observed to be larger post-bleaching, i.e., 
pre-bleaching: size class = 41–60 mm and 61–80 mm; post-
bleaching: size class = 61–80 mm and 81–100 mm. Echi-
nometra mathei (short-spined urchin) was the only species 
of echinoid recorded along the transects at Site Nearshore 
throughout the study period and no parrotfish were observed 
either pre- or post-bleaching (Fig. 6d). At Site Offshore, no 
echinoids were observed; however, parrotfish of the species 
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Fig. 4  Example photographs of reefscapes pre- and post-bleaching at 
A Fasht Al Adhm (Site Nearshore) and B Reef Bul Thamah (Site Off-
shore), Bahrain. NB: Photos were taken in September, 2017 while the 

bleaching period is estimated to have taken place from July to Octo-
ber 2017 based on satellite data derived from the CORTAD version 6 
database

Fig. 5  Mean percentage cover 
(%) of the reef benthic com-
munity structure pre (2017) and 
post (2018) bleaching at Site 
Nearshore and Site Offshore 
(n = 6), Bahrain
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Chlorurus sordidus, Scarus ghobban, and Scarus persicus 
were recorded pre-bleaching (17.0 ± 3.8 individuals per 120 
 m2), which were mainly scrapers in their initial phase of 
life; contrastingly, very few individuals were observed post-
bleaching (1.0 ± 0.5 individuals per 120  m2) (Fig. 6d).

Carbonate budgetary state|pre‑ and post‑bleaching 
(2017–2018)

Gross carbonate production rates decreased at Site 
Nearshore from 4.1 ± 2.3 G pre-bleaching to 0.5 ± 0.2 
G post-bleaching, whereas Site Offshore maintained its 
gross carbonate production (pre-bleaching = 4.0 ± 1.1 
G; post-bleaching = 4.2 ± 0.6 G) (Fig.  7a). No signifi-
cant differences in gross carbonate production rates were 
detected in both Site Nearshore (GLM, z = − 1.9, p > 0.01) 
and Site Offshore (GLM, z = 0.1, p > 0.01). In addition, 
the calcification rate for secondary producers derived 
from the 1-year experiment was 0.027 g   cm2   year−1 at 
Site Nearshore. In terms of gross carbonate erosion, Site 
Nearshore had a higher rate of gross erosion with 0.5 ± 0.1 
G pre-bleaching which was seen to significantly decrease 
to 0.2 ± 0.1 G post-bleaching (GLM, z = − 3.4, p < 0.01) 

(Fig. 7 (b)). The majority of erosion at Site Nearshore is 
dominated by echinoids with negligible contribution by 
macroborers, while at Site Offshore, erosion was domi-
nated by parrotfish which was observed to be minimal 
especially post-bleaching (Supplementary Table 5). Site 
Offshore did experience a decline in gross carbonate 
erosion from the pre-bleaching value of 0.3 ± 0.1 G to 
post-bleaching value of 0.01 ± 0.01 G (GLM, z = − 3.0, 
p < 0.01) (Fig. 7 (b)).

Overall, a decrease in the net carbonate production 
rates was recorded on Site Nearshore, while Site Offshore 
reported an increase. Specifically, Site Nearshore showed 
a decline in net carbonate production rate following the 
2017-bleaching (pre = 3.6 ± 2.2; post = 0.3 ± 0.3 G) indi-
cating a shift from a positive budget state to a nearly a 
net neutral budget state (Fig. 7c). Contrastingly, Site Off-
shore documented an increase in its net carbonate produc-
tion from 3.7 ± 1.2 to 4.2 ± 0.6 G, therefore maintaining 
its positive budgetary state. Both sites did not experience 
significant differences in net carbonate production rates 
(Site Nearshore: GLM, z = − 1.8, p > 0.01); Site Offshore: 
GLM, z = 0.3, p > 0.01).

Fig. 6  Percentage cover of 
carbonate producers in 2017 
and 2018: A Hard corals (n = 6) 
and B CCA = crustose coralline 
algae (n = 6); density (count per 
unit  m2) of carbonate eroders: C 
Echinoids (n = 6; area = 20  m2 
per transect; Nearshore) and D 
Scaridae (n = 3; area = 120  m2 
per transect) at Site Nearshore 
and Site Offshore, Bahrain
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Discussion

This study quantified carbonate budgets for two reefs in Bah-
rain. Here, we report on the impacts observed on the budget-
ary state of these reefs as a result of the 2017 warming event, 
which is the most intense bleaching event experienced by 
these reefs since 1998.

Carbonate production

Hard coral (primary reef producers) cover declined at Site 
Nearshore between 2017 and 2018. In 2012, it was reported 
that the live coral coverage at this site averaged 9.8% (Burt 
et al. 2013). Our results from 2017 indicated that this reef 
had recovered somewhat between 2010 and 2017, with coral 
cover at 13.6 ± 6.9% despite facing two bleaching events in 
that duration. Our observations are in line with what has 
been reported in the latest Global Coral Reef Monitoring 
Network (GCRMN) report (2020) which states that live 
coral in AG has experienced a decline from 30.1 to 18.0% 
between 1997 and 2002, followed by a period of recovery 
(2002–2015) when coral cover recovered to 30.2%, almost 
comparable to the pre-bleaching period. Although there 

are not much published data which is exclusive or directly 
focused on the impacts of the bleaching events between 2010 
and 2017, consequences of bleaching on reefs in the North 
of the AG have been reported by Kavousi et al. (2021) where 
coral mortality between 81 and 100% was experienced due 
to consecutive bleaching (2014–2017), while the south of 
the AG experienced a loss of 73% of coral cover in one year 
(2017–2018) (Burt et al. 2019). Currently, there are no pub-
lished data on the bleaching rates on Bahraini reefs. Unfor-
tunately, following the 2017-bleaching event, coral cover 
decreased to 1.4 ± 0.6% at the nearshore site. One of the 
factors that could have contributed toward this decline could 
be the shallow depth of the reef (< 7 m) which could sub-
ject the reef to warmer waters and higher erosion rates than 
those occurring at deeper reefs, since bioerosion is depend-
ent on numerous environmental factors including depth and 
light availability (Chazottes et al. 1995; Mallela 2007). In 
nearshore reefs that are subjected to higher wave action, tur-
bid conditions are expected especially if the shoreline is low 
and flat. Wave action influences the sedimentary processes 
on these reefs, and thus, turbidity induced by the suspended 
sediment reduces the light level corals are exposed to. This 
could lead coral communities to be dominated by massive 

Fig. 7  Reef carbonate budget rates (kg  CaCO3  m−2  year−1 expressed as G) across study sites Nearshore and Offshore pre- and post-2017 bleach-
ing illustrating: A gross carbonate production; B gross carbonate erosion; C net carbonate production, Bahrain
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and sub-massive coral groups, thereby transiting the reef 
from a high accretion reef due to its vertical 3-D frame-
work growth to one that is of low accretion like the reefs in 
Bahrain. It has been previously mentioned that carbonate 
erosion and dissolution rates on reefs that exist with low 
light levels (including mesophotic reefs) exceed carbon-
ate production (Hoegh-Guldberg et al. 2017). In addition, 
nearshore reefs are shallower and hence are associated with 
warmer waters. Increased temperatures combined with more 
acidic conditions have been documented to trigger responses 
from bioeroding organisms such as microbioeroders which 
were seen to enhance skeletal dissolution due to increased 
biomass (Reyes-Nivia et al. 2013) and bioeroding sponge 
(such as Cliona orientalis) were previously reported to have 
increased both in biomass and bioerosion (Fang et al. 2013; 
Hoegh-Guldberg et al. 2017). This coupled with bleach-
ing episodes that reduce calcification rates could subject 
nearshore reefs to higher erosion reefs. Furthermore, land-
based runoff could lead to overproliferation of turf algae 
and macroalgae, increasing the abundance of echinoids 
(Kriegisch et al. 2020). Nevertheless, the recovery wit-
nessed prior to the 2017-bleaching event creates a positive 
outlook for the post-2017-bleaching period as temporal data 
indicate the reef’s ability for recovery despite encounter-
ing multiple bleaching events in previous years (e.g., 2010; 
Fig. 2). Nevertheless, it is evident that fundamental changes 
have occurred to the ecology of this shallow reef. Prior to 
the 2017 warming event, over 50% of the reef was domi-
nated by primary and secondary producers; however, by 
2018, these groups covered only 30% of the reef substrate. 
On the contrary, Site Offshore (> 10 m) demonstrated a 2% 
increase in hard coral cover reaching 14.8 ± 4.1% in 2018, 
maintaining its coral cover, which was reported to be 16.3% 
in 2012 (Burt et al. 2013). It is important to note that in 
addition to thermal anomalies, reefs in Bahrain are known to 
be impacted by various anthropogenic activities such as rec-
lamation and dredging which has contributed significantly 
toward diminishing coral cover at Site Nearshore (Naser 
2012; Burt et al. 2013).

It is of particular note that no branching or tabular coral 
taxa (e.g. Acropora spp.) were observed throughout the 
study period at either site as this has major ecological impli-
cations on both habitat diversity and complexity, as well 
as overall trends in reef accretion and budgetary dynamics. 
Branching corals such as Acropora spp. are responsible for 
the majority of calcification and structural complexity due 
to their morphology and rapid growth (e.g., Lizard Island, 
GBR =  ~ 7.31 cm  year−1; Anderson et al. 2017). Acropo-
rids are, therefore, an important functional genus in terms 
of structural complexity, which contributes toward habitat 
provisioning for reef associated species (Alvarez-Filip et al. 
2013; Anderson et al. 2017; Roff 2020), as well as contrib-
uting to reef accretion and enhancing the ability for reefs to 

track sea-level rise (SLR). The disappearance of fast grow-
ing, branching corals such as Acropora spp. from Bahraini 
reefs since 1998, is exacerbating reef framework decline and 
has resulted in shifts from these competitive corals (i.e., fast 
growing and branching) to opportunistic and stress-tolerant 
corals (i.e., low growing, thermally tolerant, e.g., Porites 
spp. and Siderastrea spp.) thereby compromising reef struc-
tural integrity. These shifts have also been documented in 
the Indian Ocean (Perry and Morgan 2017) and Caribbean 
(Baumann et al. 2016).

In general, the morphological and physiological attrib-
utes of reef associated species are closely linked to the coral 
assemblages and their life-history strategies which is key to 
the functionality of coral reefs (Darling et al. 2012; Alvarez-
Filip et al. 2011). Changes in the functionality of reef associ-
ated fish have been documented with links associating coral 
cover decline to fish diversity decline, thereby impacting 
various functional groups, e.g., obligate corallivores asso-
ciated with tabulate Acropora spp. (Pratchett et al. 2011). 
This was evident on these Bahraini reefs as many functional 
groups were observed to either be absent, e.g., obligate cor-
allivores (Chaetodon sp.) or represented by only a handful 
of species. Moreover, many reefs reported shifts in coral 
and associated species community composition, e.g., shifts 
toward sponge-dominated reefs in Indonesia (Bell et al. 
2013) and shifts toward massive stress-tolerant reefs in the 
Maldives, e.g., Porites spp., Goniopora spp., and Platygyra 
spp. (Ryan et al. 2019). This is evident on Bahraini reefs with 
the community composition shifting from primary carbon-
ate producers associated with massive stress-tolerant corals 
to algal cover dominated communities. Reefs dominated by 
massive stress-tolerant corals could impact fish recruitment, 
diversity, and abundance due to limited resources and lack of 
structural complexity. This in turn tends toward a decrease in 
species richness, which could accelerate the collapse of the 
reef ecosystem. It is an accepted view that ecosystems with 
high species richness have a higher resilience to environ-
mental change due to increased diversity of functional traits 
that facilitate successful recruitment of both coral and fish, 
thereby enabling reef resilience and recovery (Emslie et al. 
2014; Hughes et al. 2012; Pratchett et al. 2011; Yachi and 
Loreau 1999). In addition, the shifts from competitive corals 
to opportunistic and stress-tolerant corals impact the ability 
of reefs to function as natural barriers through decreasing 
their efficiency to absorb wave energy and compromises 
coastal protection (Hoegh-Guldberg et al. 2007).

Interestingly, CCA percentage cover was extremely high 
at Site Nearshore pre-bleaching (mean = 42.2 ± 12.9%), per-
haps due to the presence of high rubble cover caused by 
previous dredging activities in the area (Vousden 1988). In 
addition to being an important carbonate producer, CCA 
plays a key role in binding the reef through colonizing reef 
substrate and contributing to cementation and stability 
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(Rasser and Riegl 2002; Langer 2008; Perry and Hepburn 
2008; Fujita et al. 2009). This promotes accretion, enhances 
larval recruitment and maintains wave-resistant reef fronts 
(Rasser and Riegl 2002; Mallela and Perry 2007). During 
the field surveys in April/May 2017, extensive rubble bind-
ing was witnessed following what was suspected to be a 
dredging event (c. 10 years), and this could have contributed 
to the rise in coral cover between the period 2010 and 2017. 
Following the bleaching event, the reef has experienced a 
change from CCA domination to turf algae which increased 
by 50% post-bleaching. This finding aligns with other stud-
ies in various locations, such as Hawaii (Foo et al. 2022) and 
New Caledonia (Tanvet et al. 2022), all of which is attributed 
to SST warming (Cornwall et al. 2019). Therefore, the high 
presence of CCA is evidence that this reef was in recov-
ery but has been affected by this warming event which is 
impacting the recovery process (Teichert et al. 2020; Roth 
et al. 2018). Most importantly, it has been demonstrated 
that CCA can match or exceed the contribution of corals 
to reef carbonate production; however, they are often inac-
curately recorded in benthic surveys and sometimes missed 
in the reef carbonate budget analysis (Cornwall et al. 2023). 
Finally, the calcification rate (i.e., 0.027 g  cm2  year−1) for 
secondary producers derived from the 1-year experiment 
was observed to be similar to those recorded in the Indo-
Pacific (Perry et al. 2018a, b).

Bioerosion

Erosion rates in Bahrain both pre- and post-bleaching 
(0.4–0.1 and 0.1–0.1 G, respectively) are generally lower 
than other regions, e.g., Caribbean = 1.0–3.7 G (Perry et al. 
2014); South China Sea = 0.1–0.7 G (Dumont et al. 2013), 
and the Red Sea = 1.9–2.9 G (Roik et al. 2017). This could 
be due to lower eroder (fish and urchin) diversity and abun-
dance and could be attributed to lower sedimentation off-
shore, and other environmental factors (Tribollet and Golu-
bic 2005 at Great Barrier reef; Morris et al. 2022 at Florida 
Keys.

Similarly, parrotfish were observed only at Site Offshore 
pre-bleaching, in low numbers, while none were found at 
Site Nearshore. This could be attributed to extensive over-
fishing activities at both sites (Morgan 2006) as despite 
Site Offshore being a marine national park, there is no law 
enforcement or patrol in the area. In addition, lower ero-
sion rates by parrotfish in the AG could be linked to lower 
fish biomass (e.g., D’Agostino et al. 2021 and Feary et al. 
2010). Erosion rates in Bahrain caused by macroborers 
(dominated by bioeroding sponges) are negligible and fall 
well below other regions such as Brazil (0.2–3.0 G) (Reis 
and Leão 2000), Bonaire (Caribbean) (0.01–0.1 G) (Perry 
et al. 2012), and Gulf of Aqaba (Red Sea) (0.34 G) (Zunde-
levich et al. 2007). However, we suggest further examining 

the contribution of macroborers and microborers to reef ero-
sion, as bioerosion was previously reported to be high in the 
AG with bioeroders removing 9.2 ± 1.6% of the skeletal sur-
face area of Porites daedalea and 26.4 ± 1.6% in Cyphastrea 
microphthalma with variation in colony morphology being 
attributed to the differences between species (Al-Mansoori 
et al 2019). Bioerosion in the AG appears to be related to 
environmental stress and past bleaching exposure (Al-Man-
soori et al 2019).

Carbonate budgets

Thermal anomalies are known to reduce calcification rates in 
coral (De’ath et al. 2009) and, therefore, carbonate produc-
tion and reef accretion rates. This is observed in a 20 year 
dataset from the Seychelles, which showed a 62.5% differ-
ence in reef carbonate budget rates post-bleaching (− 1.5 G 
(erosive state)) compared to pre-bleaching (~ 4 G (positive 
state); Januchowski-Hartley et al. 2017). Our results show a 
similar trend on the shallow nearshore reefs of Bahrain, high-
lighting a decrease by 88% (pre = 3.6 ± 2.2; post = 0.3 ± 0.3 
G), while the deeper offshore reefs reported an increase in 
budgetary state (3.7 ± 1.2 to 4.2 ± 0.6 G) which could be 
attributed to the decrease of erosion rate post-bleaching at 
Site Offshore. The near collapse of the reef budget at Site 
Nearshore is directly linked to the widespread mortality 
of corals resulting from the thermal anomaly episode in 
2017 (Fig. 2). It is worth noting that massive stress-tolerant 
corals have been reported to be able to maintain positive 
carbonate production on reefs, e.g., reefs in the Maldives 
(Ryan et al. 2019) despite their comparative lack of vertical 
growth, which was evident at Site Nearshore prior to Sep-
tember 2017; however, following the 2017-bleaching event, 
we report a shift to nearly a negative state in the reef car-
bonate budget for this nearshore site. It is important to note 
that in this study, there may have been an over-estimation of 
coral growth rates, since rates used for the ReefBudget cal-
culation were not site specific due to unavailable published 
literature on coral growth rates in the AG, with the excep-
tion of growth rates of two species (Platygyra daedalea and 
Cyphastrea microphthalma; Howells et al. 2018). Similarly, 
CCA and other secondary producers growth rates could be 
overestimated as utilizing different experimental substrates 
could yield different results (Mallela et al. 2017). In addi-
tion, it is important to note that the ReefBudget method does 
not take into account the physical loss and chemical dis-
solution rates, and hence, this could also be an additional 
cause for overestimation of the reef budget rates. In general, 
Bahraini reef budget rates (including pre- and post-bleach-
ing) (range = 0.3–4.2 G) were seen to be in the lower scale, 
most similar to those in the Caribbean (e.g., Jamaica = 1.1 
G (Land 1979) and Barbados = 4.5 G (Scoffin et al. 1980)) 
and the Indian Ocean (e.g., Maldives = 2.5 ± 2.5 G (Ryan 
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et al. 2019) and Seychelles 4 G (pre-bleaching) and − 1.5 G 
(post-bleaching) (Januchowski-Hartley et al. 2017)) in com-
parison to reefs in the Indo-Pacific, where, for example, net 
carbonate production were reported to be as high as 22.6 G 
in some areas of the Great Barrier Reef (Brown et al. 2021). 
Both sites retained low gross erosion rates accompanying 
the low gross production rates.

In conclusion, to our knowledge, no study has been con-
ducted to quantify carbonate budgets of reefs in Bahrain or 
AG making this the first attempt. Reefs in AG are unique, 
particularly in relation to the capability of corals to sustain 
themselves in such extreme environmental conditions with 
seasonal temperature fluctuations. However, SST warming 
events, which are projected to increase in frequency and 
intensity with climate change, may jeopardize the resilience 
of these reefs and impacting their ecological functionality. 
Based on these trends, we predict suppressed budgetary 
states in AG. This, along with associated IPCC projected 
sea-level rise, will limit the capacity of Bahraini reefs to per-
form their natural breakwater function and therefore threaten 
island stability.
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