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Abstract

In this paper, we study the risk sharing problem among multiple agents using Lambda value

at risk (ΛVaR) as their preferences via the tool of inf-convolution, where ΛVaR is an extension

of Value-at-Risk (VaR). We obtain explicit formulas of the inf-convolution of multiple ΛVaR

with monotone Λ, and explicit forms of the corresponding optimal allocations, extending the

results of the inf-convolution of VaR. It turns out that the inf-convolution of several ΛVaR

is still a ΛVaR under some mild condition. Moreover, we investigate the inf-convolution of

one ΛVaR and a general monotone risk measure without cash-additivity, including ΛVaR,

expected utility and rank-dependent expected utility as special cases. The expression of the

inf-convolution and the explicit forms of the optimal allocation are derived, leading to some

partial solution of the risk sharing problem with multiple ΛVaR for general Λ functions.

Finally, we discuss the risk sharing problem with ΛVaR+, another definition of Lambda value

at risk. We focus on the inf-convolution of ΛVaR+ and a risk measure that is consistent with

the second-order stochastic dominance, deriving very different expression of the inf-convolution

and the forms of the optimal allocations.

Key-words: Lambda value at Risk; Value-at-Risk; Risk sharing; Inf-convolution; Ex-

pected utility; Rank-dependent expected utility; Distortion risk measure; Expected shortfall

1 Introduction

A risk sharing problem in risk management and game theory concerns the redistribution of

the aggregate risk among multiple agents. The preference of the agents can be characterized by

e.g., expected utility or risk measures. In the past two decades, the Pareto-optimal risk sharing

problem has been extensively studied with the preferences of agents represented by some risk

measures. These risk measures are chosen to be either coherent or convex introduced by Artzner

et al. (1999), Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2005) or non-convex
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such as quantile-based risk measures in Embrechts et al. (2018) or VaR-type risk measures in Weber

(2018).

A mathematical tool to study the risk sharing problem in the cooperative environment is inf-

convolution. The inf-convolution of convex-type risk measures has been studied in e.g., Barrieu and

El Karoui (2005) and Jouini et al. (2008) and Filipović and Svindland (2008), showing the existence

of the optimal allocation and it can be chosen to be comonotonic1. In recent years, some works

investigate the inf-convolution of non-convex risk measures such as Value-at-Risk (VaR), Range-

Value-at-Risk (RVaR) and tail risk measures. The analytical expressions of the inf-convolution and

the explicit forms of the optimal allocation for VaR and RVaR are given in Embrechts et al. (2018).

These results are extended to the mixture of left and right VaR, and tail-risk measures in Liu et al.

(2022) and VaR-type risk measures in Weber (2018). Moreover, Embrechts et al. (2019) study the

risk sharing problem with VaR and expected shortfall (ES) as risk measures under heterogeneous

beliefs. We refer to Cai and Chi (2020) for a review of the risk sharing problem in the context of

the design of insurance and reinsurance contracts using risk measures.

In this paper, we focus on the risk sharing problem with multiple agents, where the preferences

of agents are characterized by Lambda value at risk (ΛVaR), which is introduced by Frittelli et al.

(2014) as an extension of VaR by changing the fixed probability level to a function of loss 1 − Λ.

The idea is to incorporate the dependence of the probability level and the amount of loss in the

definition of VaR. The choice of Λ function is very flexible and may be problem-driven; see Hitaj et

al. (2018) for the choice of Λ function. As discussed in Frittelli et al. (2014), the Λ function is usually

assumed to be monotone, representing risk manager’s individual risk appetite. For decreasing Λ,

Lambda value at risk is able to capture the tail risk by controlling the probability of exceeding

the loss, which is in a different way from Expected Shortfall (ES). For increasing Λ, ΛVaR may

incorporate some additional requirement such as risk manager’s judgement in the process of risk

management; see Bellini and Peri (2022). Moreover, ΛVaR satisfies quasi-convexity with respect

to distributions, the same as VaR; see Frittelli et al. (2014). Compared with VaR and ES, one

potential application of ΛVaR is to measure the catastrophic risk such as the losses caused by

tsunamis, hurricanes and earthquakes because these losses are typically modelled by infinite-mean

distributions; see Bignozzi et al. (2020). The study of other properties of ΛVaR such as robustness,

elicitability and consistency can be bound in Burzoni et al. (2017). The backtesting, estimation and

risk contribution of ΛVaR are studied in Corbetta and Peri (2018), Hitaj et al. (2018) and Ince et

al. (2022), respectively. Most recently, Bellini and Peri (2022) offer an axiomatization of ΛVaR for

increasing Λ functions and study some further properties of ΛVaR, and Han et al. (2021) provide a

1We say X1, . . . , Xn are comonotonic if there exist non-decreasing functions f1, . . . , fn satisfying f1(x) + · · ·+
fn(x) = x, x ∈ R such that X1 = f1(X1 + · · ·+Xn), . . . , Xn = fn(X1 + · · ·+Xn).
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representation of ΛVaR in terms of VaR for increasing Λ functions. Some economic interpretation

of ΛVaR is available in Frittelli et al. (2014) and Bellini and Peri (2022). An extension of Lambda

value at risk, called lambda-fixed point risk measure, is introduced and studied in Balbás et al.

(2023), where its applications to reinsurance contracts and premium calculation are also discussed.

In Section 3, we study the inf-convolution of multiple ΛVaR with monotone Λ. This is the most

applicable case and the monotonicity of Λ in ΛVaR reflects the risk appetites of agents as discussed

in Frittelli et al. (2014). For increasing Λ, we allow a higher exceeding probability for a higher level

of loss; For decreasing Λ, we only accept a higher level of loss with a lower exceeding probability.

We give a thorough discussion for the cases that all Λ functions are increasing or decreasing by

deriving the expression of the inf-convolution and finding explicit forms of the optimal allocations.

Surprisingly, the inf-convolution of ΛVaR is still a ΛVaR with a slight requirement on the Λ

functions. Our findings extend the results of the inf-convolution of multiple VaR in Embrechts et

al. (2018).

Section 4 is devoted to the study of the inf-convolution of one ΛVaR and a general monotone

risk measure without cash-additivity. This is motivated by the fact that some important risk

functionals do not satisfy cash-additivity such as expected utility (EU) with convex utility function,

rank-dependent expected utility (RDEU) and ΛVaR for general Λ functions; see Han et al. (2021)

for more examples on the risk measures without cash-additivity. Here we only require the right

continuity of Λ. The risk measure considered is either law-invariant monotone risk measure or

a monotone ε-tail risk measure depending on the domain of the risk measures. We obtain an

expression of the inf-convolution and explicit forms of the optimal allocation. Based on this result,

we further obtain the result for the inf-convolution of multiple ΛVaR with general Λ functions.

However, it is not solved thoroughly due to the heterogeneity and complexity of Λ functions. The

case with the mixture of increasing and decreasing Λ functions is a special case of our result,

indicating different risk appetites of agents. Finally, we compute some examples with the risk

measures being EU and RDEU. Our results in this section generate the corresponding results in

Liu et al. (2022), where the inf-convolution of VaR and a monetary ε-tail risk measure is considered.

In Section 5, we consider another definition of Lambda value at risk, ΛVaR+ (see the definition

in (5) in Section 2), which can capture the tail risk by controlling the probability of exceeding the

loss. The inf-convolution of two ΛVaR+ is a very difficult problem and is beyond the scope of this

paper as it involves the robust risk aggregation of two ΛVaR+ with fixed marginal distributions and

unknown dependence structure. Instead, we consider the inf-convolution of ΛVaR+ with general

Λ and a risk measure that is consistent with the second-order stochastic dominance such as convex

or coherent risk measures. The expression of the inf-convolution and the explicit forms of the

optimal allocations are derived, which are very different from the ones in previous sections because
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the function Λ is showing up in these expressions. To illustrate our main result, we consider the

inf-convolution of ΛVaR+ and one expected utility/distortion risk measure as examples.

The notation and definitions are displayed in Section 2 and all the proofs are postponed to

Appendices A-E.

2 Notation and Definitions

For a given atomless probability space (Ω,F ,P), let Lp, p ∈ (0,∞] denote the collection of all

random variables with finite Lp norm and L0 be the set of all finite random variables. Moreover,

let X be a set of random variables containing L∞. We say X is unbounded if X ⊋ L∞. If we do not

specify X , we tacitly suppose X ⊇ L∞ is a set of random variables with good enough properties

to conduct our study, such as X = Lp for some p ∈ [1,∞]. For any X ∈ X , the positive value of

X represents the financial loss and its distribution function is denoted as FX . A risk measure is a

mapping from X to (−∞,∞). A risk measure ρ is law-invariant if for all X,Y ∈ X ,

X
d
= Y ⇒ ρ(X) = ρ(Y ), (1)

where
d
= stands for equality in distribution; ρ is monotone if X ⩽ Y implies ρ(X) ⩽ ρ(Y ); and ρ

is cash-additive if ρ(X + c) = ρ(X)+ c for X ∈ X and c ∈ R. We say ρ is a monetary risk measure

if ρ is monotone and cash-additive. We refer to Föllmer and Schied (2016) for more details on risk

measures.

For X ∈ X , F−1
X represents its left-quantile, which is defined by

F−1
X (p) = inf{x : FX(x) ⩾ p}, p ∈ (0, 1]

with the convention that inf ∅ = ∞. For any X ∈ X , we denote by UX a uniform random variable

on [0, 1] such that X = F−1
X (UX) a.s.. The existence of such UX for any random variable X is

guaranteed by e.g., Lemma A.32 of Föllmer and Schied (2016). We next define tail risk measure,

which is important in our results later. For a random variable X ∈ X and p ∈ (0, 1], we call

Xp = F−1
X (1− p+ pUX)

the tail risk of X beyond its (1− p)-quantile. The distribution of Xp is given by

P(Xp ⩽ x) =
(FX(x)− (1− p))+

p
, x ∈ R,

where x+ = max(x, 0).
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We say ρ is a p-tail risk measure for some p ∈ (0, 1) if Xp
d
= Yp implies ρ(X) = ρ(Y ) for all

X,Y ∈ X . One can refer to Liu and Wang (2021) and Liu et al. (2022) for more details on the

definition, properties and applications of tail risk measures.

Next, we define inf-convolution. For a random variable X ∈ X , define the set of allocations

of X as

An(X) =

{
(X1, . . . , Xn) ∈ Xn :

n∑
i=1

Xi = X

}
. (2)

The inf-convolution of risk measures ρ1, . . . , ρn is the mapping □n
i=1 ρi : X → [−∞,∞), defined as

n
□
i=1

ρi(X) = inf

{
n∑

i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}
. (3)

An n-tuple (X1, . . . , Xn) ∈ An(X) is called an optimal allocation of X for (ρ1, . . . , ρn) if∑n
i=1 ρi(Xi) = □n

i=1 ρi(X). If the risk measures are interpreted as the capital charge for a financial

institution to take risky positions, then □n
i=1 ρi(X) represents the smallest possible aggregate

capital for the total risk X in financial system. We refer to Delbaen (2012), Rüschendorf (2013)

and Embrechts et al. (2018) for more economic interpretations on the inf-convolution.

Finally, we define Lambda value at risk. For Λ : R → [0, 1], the Lambda value at risk are

given by

ΛVaR(X) = inf{x ∈ R : FX(x) ⩾ 1− Λ(x)}, (4)

and

ΛVaR+(X) = sup{x ∈ R : FX(x) < 1− Λ(x)}, (5)

where inf ∅ = ∞ and sup ∅ = −∞. Note that our definition is a bit different from the one in Bellini

and Peri (2022). This modification is to be consistent with the definition of VaR as in Embrechts

et al. (2018) and Liu et al. (2022) to focus more on the tail probability. Here, Λ function is used to

control the tail probability. Note that ΛVaR(X) = ΛVaR+(X) if Λ is increasing; Otherwise, it may

not be true; see Proposition 6 of Bellini and Peri (2022). In fact, there are two other definitions

of ΛVaR given by Bellini and Peri (2022). They are not discussed in this paper as they perform

similarly as ΛVaR and ΛVaR+ in the risk sharing problem. In this paper, we are particularly

interested in ΛVaR with Λ being monotone functions. If Λ is a constant, then ΛVaR boils down

to VaR, i.e., VaR at level p ∈ [0, 1) is

VaRp(X) = ΛVaR(X) = F−1
X (1− p), X ∈ X ,
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for Λ = p. Although VaR has been widely applied in practice for risk measurement due to its

simplicity and possession of some nice properties, VaR is always criticised that it cannot capture

the tail risk. See McNeil et al. (2015) and the references therein for more detailed discussion on

VaR. Compared to VaR, ΛVaR+ is able to capture the tail risk; see e.g., Frittelli et al. (2014) and

Hitaj et al. (2018).

The following result shows the essential difference between VaR and ΛVaR.

Proposition 1. Let ρ = ΛVaR or ΛVaR+ with Λ : R → (0, 1) being a monotone function. Then

ρ is a VaR if and only if it satisfies cash-additivity.

As shown in Bellini and Peri (2022), ΛVaR and VaR share many properties. The above result

shows that the only difference between VaR and ΛVaR is whether it satisfies cash-additivity. This

somehow explains the fact that the inf-convolution of ΛVaR and that of VaR share the similar

forms of the optimal allocations in Section 3.

Let HI be the collection of all increasing and right-continuous function Λ : R → [0, 1], where

Λ is not a constant 1, and HD be the collection of all decreasing and left-continuous function

Λ : R → [0, 1]. Here increasing (decreasing) means non-decreasing (non-increasing). We denote H

as the collection of all Λ : R → [0, 1], where Λ is right-continuous and not a constant 1. Hereafter,

for any Λ, we denote λ− = infx∈R Λ(x) and λ+ = supx∈R Λ(x). We say that a constant λ is

attainable for Λ if there exists x ∈ R such that Λ(x) = λ.

3 Inf-convolution of multiple ΛVaR with monotone Λ

In this section, we consider the most attractive scenarios: all Λ functions are monotone in

the same direction. The cases with Λ being other type of functions will be studied in Section

4. The set X is general and the aggregate risk is shared among n agents using ΛVaR as their

preferences. Hence we consider risk sharing problem with ΛiVaR, i = 1, . . . , n. Recall that

λ−
i = limx→∞ min(Λi(x),Λi(−x)) and λ+

i = limx→∞ max(Λi(x),Λi(−x)).

We denote Λxn−1(x) =
(
Λn(x− xn−1) +

∑n−1
i=1 Λi(xi − xi−1)

)
∧ 1 for n ⩾ 2, where xn−1 =

(x1, . . . , xn−1), x ∧ y = min(x, y) and x0 = 0. For convenience, we let Λx0 = Λ1,
∨n

i=1 xi =

maxni=1 xi and
∧n

i=1 xi = minni=1 xi. Moreover, we denote

Λ∗(x) = sup
xn−1∈Rn−1

Λxn−1(x) =

(
sup∑n

i=1 xi=x

n∑
i=1

Λi(xi)

)∧
1, x ∈ R. (6)

Note that 0 ⩽ Λ∗ ⩽ 1 and Λ∗ is increasing (decreasing) if all Λi are increasing (decreasing).
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3.1 Inf-convolution of multiple ΛVaR with decreasing Λ

In this subsection, we consider the inf-convolution of several ΛVaR with decreasing and left-

continuous Λ. As discussed in Frittelli et al. (2014), in this setup, higher losses should be tolerated

with lower probability for all agents. We give a thorough discussion for this case by obtaining an

expression of the inf-convolution and explicit forms of optimal allocations.

Theorem 1. For Λi ∈ HD with 0 < λ−
i ⩽ λ+

i < 1, we have the following conclusion.

(i) If
∑n

i=1 λ
+
i < 1, then

n
□
i=1

ΛiVaR(X) = inf
xn−1∈Rn−1

Λxn−1VaR(X); (7)

If in addition, all λ±
i are attainable, then

n

□
i=1

ΛiVaR(X) = Λ∗VaR(X); (8)

(ii) If
∑n

i=1 λ
+
i > 1, then □n

i=1 ΛiVaR = −∞;

(iii) Moreover, for
∑n

i=1 λ
+
i < 1, the existence of the optimal allocation of the inf-convolution is

equivalent to the existence of the minimizer of (7). If xn−1 ∈ argminxn−1∈Rn−1 Λxn−1VaR(X),

then one optimal allocation is recursively given by

Xn = (X − xn−1)1{UX⩽1−Λxn−2 (xn−1)} −mn−11{UX>1−Λxn−2 (xn−1)},

Xk = (xk − xk−1)1{UX⩽1−Λxk−1 (xk)} +

(
X +

n−1∑
i=k

mi − xk−1

)
1{1−Λxk−1 (xk)<UX⩽1−Λxk−2 (xk−1)}

−mk−11{UX>1−Λxk−2 (xk−1)}, k = n− 1, . . . , 2,

X1 = x11{UX⩽1−Λ1(x1)} +

(
X +

n−1∑
i=1

mi

)
1{UX>1−Λ1(x1)},

where mk, k = n− 1, . . . , 1 satisfy mk > xk − F−1
X (1−

∑n
i=1 λ

+
i ) and

∑n
i=n+1 mi = 0.

Remark 1. If all Λi are decreasing and right-continuous, our findings in Theorem 1 still hold except

(8). To guarantee the validity of (8) in this setup, we only need to impose an additional assumption

on Λi: all Λi are continuous.

Remark 2. Note that the optimal allocation given in Theorem 1 is not unique. At least, the choice

of mk, k = 1, . . . , n − 1 is not unique. The result given in Theorem 1 indicates that the optimal

risk allocation can be obtained by allocating the total risk onto a partition of the whole probability
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space, sharing the similar structure as the one for the inf-convolution of multiple VaR or Range-

Value-at-Risk in Embrechts et al. (2018). Moreover, if Λi, i = 1, . . . , n are all constants, Theorem

1 boils down to Corollary 2 of Embrechts et al. (2018).

Note that we do not discuss the boundary scenario
∑n

i=1 λ
+
i = 1 in Theorem 1 because it is

tricky and it involves the assumptions on whether the maximum of Λi can be attained. We next

discuss the boundary case.

Proposition 2. Suppose all Λi ∈ HD with 0 < λ−
i ⩽ λ+

i < 1 and
∑n

i=1 λ
+
i = 1.

(i) If all λ+
i are attainable, then □n

i=1 ΛiVaR(X) = −∞;

(ii) If one of λ+
i , i = 1, . . . , n− 1 is not attainable,

n

□
i=1

ΛiVaR(X) = inf
xn−1∈Rn−1

Λxn−1VaR(X).

We notice that in Proposition 2, we do not discuss the scenario that only λ+
n is not attainable.

This can actually be transformed to case (ii) of Proposition 2 by changing the order of the inf-

convolution with the aid of Lemma 2 in Liu et al. (2020).

To illustrate our result in Theorem 1, we next consider a special case where Λi are step

functions with two values.

Example 1. Let Λi(x) = λ+
i 1{x⩽bi} + λ−

i 1{x>bi}, where 0 < λ−
i ⩽ λ+

i < 1 and
∑n

i=1 λ
+
i < 1.

Then we have
n

□
i=1

ΛiVaR(X) = (λ∗ ∨ Λ⋄)VaR(X),

where λ∗ =
∨n−1

i=1 (λ
−
i +

∑
j ̸=i λ

+
j ) and Λ⋄(x) =

∑n−1
i=1 λ+

i + Λn(x−
∑n−1

i=1 bi).

3.2 Inf-convolution of multiple ΛVaR with increasing Λ

In this subsection, we will focus on the inf-convolution of several ΛVaR with increasing and

right-continuous Λ. This indicates that all agents are accepting higher losses with higher probability

of exceeding the loss. As discussed in Example 7 of Bellini and Peri (2022), this type of ΛVaR can

be used to describe the contrasting objectives of the risk manager in setting the capital reserve: to

be conservative but not too much. We obtain an expression for the inf-convolution and find the

forms of optimal allocations.

Theorem 2. For Λi ∈ HI with 0 < λ−
i ⩽ λ+

i ⩽ 1, we have the following conclusion.

(i) If
∨n

i=1(λ
−
i +

∑
j ̸=i λ

+
j ) < 1, then

n
□
i=1

ΛiVaR(X) = inf
xn−1∈Rn−1

Λxn−1VaR(X); (9)
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If in addition, all λ±
i are attainable, then

n

□
i=1

ΛiVaR(X) = Λ∗VaR(X); (10)

(ii) If
∨n

i=1(λ
−
i +

∑
j ̸=i λ

+
j ) > 1, then □n

i=1 ΛiVaR = −∞;

(iii) Moreover, for
∨n

i=1(λ
−
i +

∑
j ̸=i λ

+
j ) < 1, the existence of the optimal allocation is equivalent

to the existence of the minimizer of (9). If xn−1 ∈ argminxn−1∈Rn−1 Λxn−1VaR(X), then the

optimal allocation is recursively given by

Xn = (X − xn−1)1{UX⩽1−Λxn−2 (xn−1)} −mn−11{UX>1−Λxn−2 (xn−1)},

Xk = (xk − xk−1)1{UX⩽1−Λxk−1 (xk)} +

(
X +

n−1∑
i=k

mi − xk−1

)
1{1−Λxk−1 (xk)<UX⩽1−Λxk−2 (xk−1)}

−mk−11{UX>1−Λxk−2 (xk−1)}, k = n− 1, . . . , 2,

X1 = x11{UX⩽1−Λ1(x1)} +

(
X +

n−1∑
i=1

mi

)
1{UX>1−Λ1(x1)},

where mk, k = n−1, . . . , 1 satisfy mk > xk−F−1
X−

∑n
i=k+2 Xi

(1−Λxk−1(xk)) and Λk+1(−mk)+

FX−
∑n

i=k+2 Xi
(−mk + xk) < 1− Λk(xk) with

∑n
i=n+1 mi = 0.

For increasing and decreasing Λ, ΛVaR possesses very different properties (see Bellini and

Peri (2022)). However, their applications in the risk sharing problem result in similar expressions

of the inf-convolution and similar forms of the optimal risk allocations as shown in Theorems 1-2.

Surprisingly, the inf-convolution of ΛVaR is still a ΛVaR for monotone Λ functions if the supremum

and the infimum are attainable. This conclusion will be extended to the case with general Λ

functions in Theorem 4 in next section under some more strict conditions on Λ functions.

Note that by Proposition 6 of Bellini and Peri (2022), we have Λ′
iVaR(X) = ΛiVaR(X),

where Λ′
i : R → [0, 1] is increasing and Λi represents its right-continuous version. This allows us to

extend Theorem 2 to the cases with increasing Λ functions. More specifically, □n
i=1 Λ

′
iVaR(X) =

□n
i=1 ΛiVaR(X) = Λ∗VaR(X).

In light of Theorem 3.1 in Han et al. (2021), we obtain some new expressions on the inf-

convolution in Theorem 2.

Proposition 3. For Λi ∈ HI with 0 < λ−
i ⩽ λ+

i ⩽ 1, if
∨n

i=1(λ
−
i +

∑
j ̸=i λ

+
j ) < 1, then

n

□
i=1

ΛiVaR(X) = inf
y1,...,yn∈R

(
VaR∑n

i=1 Λi(yi)(X)
∨

(

n∑
i=1

yi)

)
.
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If in addition, all λ±
i are attainable, then

n

□
i=1

ΛiVaR(X) = inf
x∈R

(
VaRΛ∗(x)(X) ∨ x

)
.

Remark 3. We can show that if a :=
∨n

i=1(λ
−
i +

∑
j ̸=i λ

+
j ) < 1, then □n

i=1 ΛiVaR(X) > −∞.

Observe that

lim
y1+···+yn→−∞

VaR∑n
i=1 Λi(yi)(X)

∨
(

n∑
i=1

yi) ⩾ VaRa+ε(X) > −∞,

where 0 < ε < 1− a. Hence

n

□
i=1

ΛiVaR(X) = inf
y1,...,yn∈R

(
VaR∑n

i=1 Λi(yi)(X)
∨

(

n∑
i=1

yi)

)
> −∞.

Note that we do not discuss the boundary scenario
∨n

i=1(λ
−
i +

∑
j ̸=i λ

+
j ) = 1 in Theorem 2

because it is tricky and it involves the assumptions on whether the maximum of Λi can be attained.

We next discuss the boundary case.

Proposition 4. Suppose all Λi ∈ HI , 0 < λ−
i < 1 and

∨n
i=1(λ

−
i +

∑
j ̸=i λ

+
j ) = 1.

(i) If λ−
i +

∑
j ̸=i λ

+
j = 1 for some i = 1, . . . , n and λ+

j are attainable for all j ̸= i, then

□n
i=1 ΛiVaR(X) = −∞;

(ii) Otherwise,
n

□
i=1

ΛiVaR(X) = inf
xn−1∈Rn−1

Λxn−1VaR(X).

To illustrate our Theorem 2, we next consider a special case where Λi are step functions with

two steps.

Example 2. Let Λi(x) = λ−
i 1{x<bi} + λ+

i 1{x⩾bi}, where 0 < λ−
i ⩽ λ+

i < 1 and
∨n

i=1(λ
−
i +∑

j ̸=i λ
+
j ) < 1. Then we have

n

□
i=1

ΛiVaR(X) = (λ∗ ∨ Λ⋄)VaR(X),

where λ∗ =
∨n−1

i=1 (λ
−
i +

∑
j ̸=i λ

+
j ) and Λ⋄(x) =

(∑n−1
i=1 λ+

i + Λn(x−
∑n−1

i=1 bi)
)
∧ 1.

Remark 4. Note that in Bellini and Peri (2022), Lambda value at risk is defined differently from

(4). As in Bellini and Peri (2022), for Λ : R → [0, 1], the Lambda value at risk is given by

ΛVaR(X) = inf{x ∈ R : FX(x) ⩾ Λ(x)}, (11)
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where inf ∅ = ∞. The corresponding Λxn−1(x) and Λ∗(x) become a bit more complicated, i.e.,

Λ
xn−1

(x) = 1−

(
1− Λn(x− xn−1) +

n−1∑
i=1

(
1− Λi(xi − xi−1)

))
∧ 1

=

(
Λn(x− xn−1) +

n−1∑
i=1

Λi(xi − xi−1)− n+ 1

)
+

and

Λ
∗
(x) = inf

xn−1∈Rn−1
Λ
xn−1

(x) = inf∑n
i=1 xi=x

(
n∑

i=1

Λi(xi)− n+ 1

)
+

,

where x+ = max(x, 0). We will give the corresponding results of Theorems 1 and 2 in terms of

definition (11). Let λ
−
i = limx→∞ min(Λi(x),Λi(−x)) and λ

+

i = limx→∞ max(Λi(x),Λi(−x)). By

replacing Λi by 1− Λi in Theorems 1 and 2, we arrive at the following results.

� For Λi : R → [0, 1] being increasing and left-continuous with 0 < λ
−
i ⩽ λ

+

i < 1, we have the

following conclusion.

(i) If
∑n

i=1 λ
−
i > n− 1, then

n

□
i=1

ΛiVaR(X) = inf
xn−1∈Rn−1

Λ
xn−1

VaR(X);

If in addition, all λ
±
i are attainable, then

n

□
i=1

ΛiVaR(X) = Λ
∗
VaR(X);

(ii) If
∑n

i=1 λ
−
i < n− 1, then □n

i=1 ΛiVaR = −∞;

(iii) If
∑n

i=1 λ
−
i > n− 1 and xn−1 ∈ argminxn−1∈Rn−1 Λ

xn−1
VaR(X), the optimal allocation

is given in (iii) of Theorem 1 by replacing 1− Λxk−1(xk) by Λ
xk−1

(xk).

� For Λi : R → [0, 1] being decreasing and right-continuous with 0 < λ
−
i ⩽ λ

+

i < 1, we have

the following conclusion.

(i) If
∨n

i=1(n− λ
+

i −
∑

j ̸=i λ
−
j ) < 1, then

n
□
i=1

ΛiVaR(X) = inf
xn−1∈Rn−1

Λ
xn−1

VaR(X);

11



If in addition, all λ
±
i are attainable, then

n
□
i=1

ΛiVaR(X) = Λ
∗
VaR(X);

(ii) If
∨n

i=1(n− λ
+

i −
∑

j ̸=i λ
−
j ) > 1, then □n

i=1 ΛiVaR = −∞;

(iii) If
∨n

i=1(n−λ
+

i −
∑

j ̸=i λ
−
j ) < 1 and xn−1 ∈ argminxn−1∈Rn−1 Λ

xn−1
VaR(X), the optimal

allocation is given in (iii) of Theorem 2 by replacing 1− Λxk−1(xk) by Λ
xk−1

(xk).

4 Inf-convolution of ΛVaR and a risk measure without cash-

additivity

In this section, we consider the inf-convolution of one ΛVaR and a general monotone risk

measure without cash-additivity. Here we do not impose any monotonicity or measurability as-

sumptions on Λ. We only assume that Λ is right-continuous. Note that many well-known risk

functionals do not satisfy cash-additivity such as expected utility (EU) with convex utility func-

tion and rank-dependent expected utility (RDEU). As our main concern, ΛVaR is another example

of risk measure without cash-additivity.

Theorem 3. Suppose Λ ∈ H with 0 < λ− ⩽ λ+ < 1, and ρ is monotone. If either (i) X = L∞

and ρ is law-invariant, or (ii) X is unbounded and ρ is an ε-tail risk measure for some ε ∈ (0, 1),

we have

ΛVaR□ ρ(X) = inf
x∈R

inf
y∈R

{x+ ρ (Xx,y)} , (12)

where Xx,y = (X − x)1{UX⩽1−Λ(x)} + y1{UX>1−Λ(x)}.

Moreover, the optimal allocation exists if and only if the minimizer of (12) exists. If (x∗, y∗)

is the minimizer of (12), then one optimal allocation is given by

X∗
1 = X −Xx∗,y∗ , X∗

2 = Xx∗,y∗ . (13)

Remark 5. The conclusion in Theorem 3 also holds for all Λ ∈ HD with 0 < λ− ⩽ λ+ < 1. The

right-continuity of Λ is only used to derive FX1
(x1) ⩾ 1− Λ(x1) if ΛVaR(X1) = x1. Clearly, this

inequality still holds for Λ ∈ HD.

Note that our result in Theorem 3 converts the risk sharing problem to an optimization

problem with two real parameters. Our findings generalize Theorem 2 of Liu et al. (2022), where

the inf-convolution of VaR and a monetary ε-tail risk measure is considered.
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Applying Theorem 3 recursively, we can arrive at the following conclusion on the inf-convolution

of multiple ΛVaR with general Λ functions.

Theorem 4. For Λi ∈ H with 0 < λ−
i ⩽ λ+

i < 1, we have the following conclusion.

(i) If
∑n

i=1 λ
+
i < 1 , then

n
□
i=1

ΛiVaR(X) = inf
xn−1∈Rn−1

Λxn−1VaR(X); (14)

If in addition, all Λi are continuous and λ±
i are attainable, then

n

□
i=1

ΛiVaR(X) = Λ∗VaR(X); (15)

(ii) If
∨n

i=1(λ
+
i +

∑
j ̸=i λ

−
j ) > 1, then □n

i=1 ΛiVaR = −∞;

(iii) If
∑n

i=1 λ
+
i < 1, then the existence of the optimal allocation is equivalent to the existence of the

minimizer of (14). If xn−1 ∈ argminxn−1∈Rn−1 Λxn−1VaR(X), then one optimal allocation

is given by (iii) of Theorem 1.

We notice that there is a gap between cases (i) and (ii) in Theorem 4. However, due to the

heterogeneity of the Λ functions and the pathological issue caused by the general Λ functions,

we currently cannot fill in this gap. It is worth pointing out that the case with the mixture of

increasing and decreasing Λ functions is covered by Theorem 4, which represents different type of

risk appetites of the agents in the risk sharing problem.

We next consider a special case of Theorem 3: ρ = EU, which is defined as

ρ(X) = E(u(X)), (16)

where u : R → R is an increasing function. Note that EU can also be used to quantify the risk if

u is a convex function. Note that EU is monotone and law-invariant but it does not satisfy cash-

additivity generally. To avoid the integrability issue, we set X = L∞ in the following proposition.

Proposition 5. Suppose Λ ∈ H with 0 < λ− ⩽ λ+ < 1 and ρ is an EU defined in (16). If

a := limx→−∞ u(x) > −∞, then

ΛVaR□ ρ(X) = inf
x∈R

{
x+ aΛ(x) +

∫ 1−Λ(x)

0

u(F−1
X (t)− x)dt

}
; (17)

Otherwise, ΛVaR□ ρ(X) = −∞.
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Moreover, if a is attainable (u(x0) = a for some x0 ∈ R) and x∗ is the minimizer of (17),

then one optimal risk allocation is given by

X1 = X −Xx∗,y, X2 = Xx∗,y

with y ⩽ x0.

Note that the above proposition is also valid on unbounded X if a is attainable.

Another example is the rank-dependent expected utility (RDEU) (see, e.g., Quiggin (1982)

and Quiggin (1993)). We set X = L∞ and for X ∈ X , define

ρ(X) =

∫ ∞

0

g(P(u(X) > x))dx+

∫ 0

−∞
(g(P(u(X) > x))− 1)dx, (18)

where u is an increasing and left-continuous function and g : [0, 1] → [0, 1] is an increasing and

left-continuous function satisfying g(0) = 0 and g(1) = 1. Under the above assumption, RDEU can

be rewritten in a Lebesgue–Stieltjes integral form: ρ(X) =
∫ 1

0
u(VaRt(X))dg(t). Note that REDU

is monotone and law-invariant but it is not cash-additive. If u is the identity function, then (18)

is reduced to a distortion risk measure denoted by ρg, where ρg(X) =
∫ 1

0
VaRt(X)dg(t); see e.g.,

Yaari (1987) and Föllmer and Schied (2016) for more discussions on the distortion risk measures.

Proposition 6. Let Λ ∈ H with 0 < λ− ⩽ λ+ < 1 and ρ be a RDEU defined in (18). Moreover,

suppose λ+ is attainable. If g(1− λ+) = 1, then

ΛVaR□ ρ(X) = inf
x∈R

{
x+

∫ 1−Λ(x)

0

u(F−1
X (1− t− Λ(x))− x)dg(t))

}
; (19)

If g(1− λ+) < 1 and a := limx→−∞ u(x) > −∞, then

ΛVaR□ ρ(X) = inf
x∈R

{
x+ a(1− g(1− Λ(x)) +

∫ 1−Λ(x)

0

u(F−1
X (1− t− Λ(x))− x)dg(t))

}
; (20)

Otherwise, ΛVaR□ ρ(X) = −∞.

For g(1− λ+) = 1, if x∗ is the minimizer of (19), then the optimal risk allocation is given by

X1 = X −Xx∗,y, X2 = Xx∗,y, y ∈ R; (21)

For g(1−λ+) < 1, if a is attainable (u(x0) = a for some x0 ∈ R) and x∗ is the minimizer of (20),

then the optimal allocation has the form of (21) with y < x0 ∧ (ess-infX − x∗).

It is worth pointing out that Proposition 6 can also be extended to unbounded X . The
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conclusion in Theorem 3 holds on unbounded X requiring that ρ is an ε-tail risk measure for some

ε ∈ (0, 1). This is equivalent to the condition that g(1− ε) = 1 with some 0 < ε < 1 for RDEU.

5 Inf-convolution of ΛVaR+ and a SSD-consistent risk mea-

sure

In this section, we set L∞ ⊆ X ⊆ L1. As discussed in Frittelli et al. (2014) and Hitaj et

al. (2018), ΛVaR+ is able to capture the tail risk for decreasing Λ. Note that if Λ is increasing,

then ΛVaR+ = ΛVaR in light of Proposition 6 of Bellini and Peri (2022). However, this is not

valid for general Λ. The study the inf-convolution of two ΛVaR+ with decreasing Λ is beyond the

scope of this paper. We will give a comment on it later. Instead, in this section, we investigate the

inf-convolution of ΛVaR+ and another risk measure that is consistent with second-order stochastic

dominance(SSD). For two random variables X,Y ∈ X , we denote X ⩽icx Y if E(f(X)) ⩽ E(f(Y ))

for all increasing and convex function f . A mapping ρ : X → R is said to be SSD-consistent if

X ⩽icx Y implies ρ(X) ⩽ ρ(Y ). For any Λ ∈ H, we denote Λx(z) = infx⩽t⩽z Λ(t), z ⩾ x. Then

Λx(z) is decreasing and right-continuous for z ⩾ x. If Λ is decreasing and right-continuous, then

Λx(z) = Λ(z), z ⩾ x; and if Λ ∈ HI , then Λx(z) = Λ(x), z ⩾ x. The following result is valid for

general Λ ∈ H.

Theorem 5. Suppose Λ ∈ H with 0 < λ− ⩽ λ+ < 1, and ρ is SSD-consistent. If either (i)

X = L∞, or (ii) X is unbounded and ρ is additionally an ε-tail risk measure with 0 < ε < 1, then

ΛVaR+ □ ρ(X) = inf
x∈R

inf
y⩾x∨x0

{
x+ ρ

(
X − F−1

x,y(UX)
)}

, (22)

where x0 = 2F−1
X (1− λ−) and

Fx,y(z) =


0, z < x

1− Λx(z), x ⩽ z < y

FX(z − y/2), z ⩾ y

.

Moreover, the optimal allocation of the inf-convolution exists if and only if the minimizer of (22)

exists. If (x∗, y∗) is the minimizer, then one optimal allocation is given by

X∗
1 = F−1

x∗,y∗(UX), X∗
2 = X − F−1

x∗,y∗(UX). (23)

Remark 6. We notice that Fx,y is decreasing with respect to y for y ⩾ x∨x0. Hence ρ
(
X − F−1

x,y(UX)
)
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is also decreasing with respect to y. This means

inf
y⩾x∨x0

{
x+ ρ

(
X − F−1

x,y(UX)
)}

= x+ lim
y→∞

ρ
(
X − F−1

x,y(UX)
)
. (24)

This fact is very helpful to find more explicit expressions of the inf-convolution for some specific ρ.

Remark 7. It is worth mentioning that the inf-convolution in Theorem 5 involves the robust risk

aggregation of ρ for two random variables: infX∼F,Y∼G ρ(X + Y ) with two distributions F and

G. This is a very difficult problem and we only know some limited results except that ρ is SSD-

consistent. For for ρ = VaR, we refer to Wang and Wang (2016), Jakobsons et al. (2016) and

Blanchet et al. (2023). Note that the case ρ = VaR is covered by Theorem 3.

Remark 8. The optimal allocation given in Theorem 5 is very different from the ones in previous

sections and in the literature for the inf-convolution of convex risk measures or quantile-based risk

measures; see, e.g. Jouini et al. (2008), Filipović and Svindland (2008), Embrechts et al. (2018)

and Liu et al. (2022). Using Theorem 5, we have

X∗
1 = x∗1{UX⩽1−Λ(x∗)} + (1− Λx∗)−1(UX)1{1−Λ(x∗)<UX⩽1−Λx∗ (y)}

+ y1{1−Λx∗ (y)<UX⩽FX(y/2)} + (X − y/2)1{UX>FX(y/2)},

X∗
2 = (X − x∗)1{UX⩽1−Λ(x∗)} + (X − (1− Λx∗)−1(UX))1{1−Λ(x∗)<UX⩽1−Λx∗ (y)}

+ (X − y)1{1−Λx∗ (y)<UX⩽FX(y/2)} +
y

2
1{UX>FX(y/2)},

where y ⩾ y∗ and (1 − Λx)
−1(t) = inf{z ⩾ x : 1 − Λx(z) ⩾ t} for 1 − Λ(x∗) < t < 1 − Λx∗(∞)

with Λx∗(∞) = limy→∞ Λx∗(y). Over {1−Λ(x∗) < UX ⩽ 1−Λx∗(y)} with y > y∗, the relation of

(1−Λx∗)−1(UX) and X−(1−Λx∗)−1(UX) depends on the relation of FX and Λ, which is somehow

arbitrary. Hence in generalX∗
1 andX∗

2 are neither comonotonic nor possessing the similar structure

as in Theorems 2-5 (splitting the probability space).

Remark 9. For the case of X = L∞ in Theorem 5, the conclusion still holds if

Fx,y(z) =


0, z < x

1− Λx(z), x ⩽ z < y

1, z ⩾ y

.

We next illustrate our main result using two specific example of ρ: EU and distortion risk

measures. Here for simplicity, we suppose Λ ∈ H is decreasing. Hence Λx(z) = Λ(z), z ⩾ x. By

the application of Theorem 5 and Remark 9, we arrive at the following results.

Proposition 7. Suppose X = L∞, Λ ∈ H is decreasing with 0 < λ− ⩽ λ+ < 1 and ρ(X) =
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E(u(X)), where u is an increasing and convex function with a = limx→−∞ u(x). If a > −∞, then

ΛVaR+ □ ρ(X) = inf
x∈R

{
x+

∫ 1−Λ(x)

0

u(F−1
X (t)− x)dt

+

∫ 1−λ−

1−Λ(x)

u(F−1
X (t)− (1− Λ)−1(t))dt

}
+ inf

y∈R

∫ 1

1−Λ(y)

u(F−1
X (t)− y)dt;

If a = −∞, then ΛVaR+ □ ρ(X) = −∞.

Moreover, if (x∗, y∗) is the minimizer of above infimum, then the optimal allocation has the

form of (23).

Proposition 8. Suppose X = L∞, Λ ∈ H is decreasing with 0 < λ− ⩽ λ+ < 1 and ρ(X) = ρg(X),

where g is a concave distortion function. Moreover, we assume λ− is attainable (Λ(x1) = λ−). If

g(1− λ−) = 1, then

ΛVaR+ □ ρ(X) = inf
x∈R

{
x+

∫ 1−λ−

0

K−1
x (1− t)dg

}
,

where Kx(z) = λ−+FX(x+z)∧(1−Λ(x))+P(X−(1−Λ)−1(UX) ⩽ z, 1−Λ(x) < UX ⩽ 1−λ−), z ∈

R; Otherwise, ΛVaR+ □ ρ(X) = −∞. If x∗ is the minimizer of the above infimum, then the optimal

allocation has the form of (23) with (x∗, y∗) for y∗ > (ess-supX − ess-infX + x∗ ∨ x1) ∨ x0.

6 Conclusion

In this paper, we consider the inf-convolution of multiple ΛVaR for three different scenarios: all

Λi are increasing, decreasing, or right-continuous. Moreover, we also consider the inf-convolution of

two risk measures: i) ΛVaR and one law-invariant monotone risk measure without cash-additivity;

ii) ΛVaR+ and one SSD-consistent risk measure. For all these cases, we obtain the expressions of

the inf-convolution and the forms of the optimal allocations.

There are still some unsolved problems such as the inf-convolution of multiple ΛVaR+, and the

inf-convolution of multiple ΛVaR under heterogenous beliefs. They deserve future investigation.
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A Proof of Proposition 1

Proof of Proposition 1. The “only if” part follows directly from the property of VaR. We

next show the “if” part. We first focus on the case ρ = ΛVaR for some function Λ : R → (0, 1).

We will consider two scenarios separately. First, suppose Λ is an increasing function. We assume

by contradiction that there exist x1 < x2 such that Λ(x1) < Λ(x2). Let X ∈ X with the following

distribution

FX(x) =
2− Λ(x1)− Λ(x2)

2
1{x2⩽x<x2+a} + 1{x⩾x2+a}, x ∈ R

for some a > 0. It follows that ρ(X) = x2. Note that

FX−(x2−x1+a)(x) =
2− Λ(x1)− Λ(x2)

2
1{x1−a⩽x<x1} + 1{x⩾x1}, x ∈ R.

Hence, by (4), we have ρ(X − (x2 − x1 + a)) = x1. However, cash-additivity implies ρ(X − (x2 −

x1 + a)) = ρ(X)− (x2 − x1 + a) = x1 − a, leading to a contradiction. Hence, Λ is a constant on R.

If Λ is a decreasing function, suppose by contradiction that there exist x1 < x2 such that

Λ(x1) > Λ(x2). Let X ∈ X with the following distribution

FX(x) = (1− Λ(x1))1{x1−1⩽x<x1} + 1{x⩾x1}, x ∈ R.

Direct calculation gives ρ(X) = x1−1. Moreover, by definition, we have ρ(X+x2−x1+1) = x2+1.

Using cash-additivity, it follows that ρ(X + x2 − x1 + 1) = ρ(X) + x2 − x1 + 1 = x2, which yields

a contradiction. Hence Λ is a constant.

For ρ = ΛVaR+, we could similarly show that cash-additivity implies that Λ is a constant.

This completes the proof.

B Proof of Section 3.1

In this section, we display all the proofs of the results from Section 3.1.

Proof of Theorem 1. The proof of (8) is a direct application of Proposition 9, which will

be given later. Now, we consider all the other conclusions. We first consider cases (i) and (ii). Let
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us start with the case n = 2. For any X1 ∈ X , we denote x1 = Λ1VaR(X1). For some m ∈ R, let

X2 = x11{UX1
⩽1−Λ1(x1)} + (x1 ∨X1 ∨ (X +m))1{UX1

>1−Λ1(x1)}.

By the definition of ΛVaR, we have FX1(x1) ⩾ 1 − Λ1(x1), which implies x1 ⩾ F−1
X1

(1 − Λ1(x1)).

Hence we have Λ1VaR(X2) = x1 and X1 ⩽ X2. By monotonicity of Λ2VaR, we have

Λ1VaR(X1) + Λ2VaR(X −X1) ⩾ Λ1VaR(X2) + Λ2VaR(X −X2).

Observe that

X −X2 = (X − x1)1{UX1
⩽1−Λ1(x1)} + ((X − x1) ∧ (X −X1) ∧ (−m))1{UX1

>1−Λ1(x1)}.

Direct computation shows P(X −X2 ⩽ −m) ⩾ Λ1(x1). If λ+
1 + λ+

2 > 1, there exists x1 ∈ R such

that Λ1(x1) > 1 − λ+
2 . This implies that P(X − X2 ⩽ −m) ⩾ 1 − Λ2(−m) if m > m0 for some

m0 ∈ R. Hence Λ2VaR(X−X2) ⩽ −m. Consequently, limm→∞(Λ1VaR(X2)+Λ2VaR(X−X2)) ⩽

limm→∞(x1 −m) = −∞. This implies Λ1VaR□Λ2VaR(X) = −∞.

We next consider the case λ+
1 + λ+

2 < 1. Let

X3 = x11{UX⩽1−Λ1(x1)} + (X +m)1{UX>1−Λ1(x1)}, (25)

where m > x1 − F−1
X (1−Λ1(x1)). Using the fact that P(X ⩽ x+ x1, UX1 ⩽ 1−Λ1(x1)) ⩽ P(X ⩽

x+ x1, UX ⩽ 1− Λ1(x1)), we have for x ⩾ −m,

P(X −X2 ⩽ x) = Λ1(x1) + P(X ⩽ x+ x1, UX1
⩽ 1− Λ1(x1))

⩽ Λ1(x1) + P(X ⩽ x+ x1, UX ⩽ 1− Λ1(x1)) = P(X −X3 ⩽ x).

We set

m > x1 − F−1
X (1− λ+

1 − λ+
2 ). (26)

For x < −m, it follows that

P(X −X2 ⩽ x) ⩽ FX(x+ x1) ∧ (1− Λ1(x1)) + Λ1(x1) < 1− Λ2(x),

P(X −X3 ⩽ x) = FX(x+ x1) ∧ (1− Λ1(x1)) < 1− Λ2(x).

This indicates that Λ2VaR(X−X2) ⩾ −m and Λ2VaR(X−X3) ⩾ −m. Hence we have Λ2VaR(X−
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X3) ⩽ Λ2VaR(X −X2). Direct computation yields P(X −X3 ⩽ x) = (Λ1(x1) + FX(x + x1)) ∧ 1

for x ⩾ −m. Note also that Λ1(x1) + FX(x + x1) < 1 − Λ2(x) for x < −m, and Λ2VaR(X3) =

Λ2VaR(X2) = x1. Consequently, we have

Λ1VaR(X3) + Λ2VaR(X −X3) = x1 + inf{x : P(X −X3 ⩽ x) ⩾ 1− Λ2(x)}

= x1 + inf{x : Λ1(x1) + FX(x+ x1) ⩾ 1− Λ2(x)}

= x1 + inf{y − x1 : FX(y) ⩾ 1− Λ2(y − x1)− Λ1(x1)}

= inf{y : FX(y) ⩾ 1− Λ2(y − x1)− Λ1(x1)} = Λx1VaR(X),

where the last three equalities are actually the so-called Λ cash-additivity in Frittelli et al. (2014).

Therefore, for any X1 ∈ X with x1 = Λ1VaR(X1) , we have

Λ1VaR(X1) + Λ2VaR(X −X1) ⩾ Λx1VaR(X) ⩾ inf
x1∈R

Λx1VaR(X).

This implies Λ1VaR□Λ2VaR(X) ⩾ infx1∈R Λx1VaR(X). Moreover, for any x1 ∈ R, we could

construct X3 as in (25) such that Λ1VaR(X3) + Λ2VaR(X −X3) = Λx1VaR(X). Hence

Λ1VaR□Λ2VaR(X) ⩽ inf
x1∈R

Λx1VaR(X).

We establish the claim for n = 2.

We next prove the result for n ⩾ 3 by induction. Suppose the conclusion holds true for n ⩽ k,

where k ⩾ 2. We next show that the conclusion is also correct for n = k + 1. For n = k + 1, we

first consider the case
∑k+1

i=1 λ+
i < 1. Using Lemma 2 in Liu et al. (2020) and the conclusion for

n ⩽ k, we have

k+1

□
i=1

ΛiVaR(X) =

(
k

□
i=1

ΛiVaR

)
□Λk+1VaR(X)

=

(
inf

xk−1∈Rk−1
Λxk−1VaR

)
□Λk+1VaR(X)

= inf

{
Y ∈ X : inf

xk−1∈Rk−1
Λxk−1VaR(Y ) + Λk+1VaR(X − Y )

}
= inf

xk−1∈Rk−1
inf {Y ∈ X : Λxk−1VaR(Y ) + Λk+1VaR(X − Y )}

= inf
xk∈Rk

ΛxkVaR(X).

Next, we consider the case
∑k+1

i=1 λ+
i > 1. If

∑k
i=1 λ

+
i > 1, then by the assumption, we have

□k
i=1 ΛiVaR(X) = −∞. It follows from Lemma 2 in Liu et al. (2020) that □k+1

i=1 ΛiVaR(X) =

−∞. If
∑k

i=1 λ
+
i ⩽ 1, for i = 1, . . . , k, let Λ̃i = Λi − ε with ε <

min(∧k+1
j=1λ

−
j ,

∑k+1
j=1 λ+

j −1)

k+1 . Using
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monotonicity of ΛVaR with respect to Λ, we have

k+1

□
i=1

ΛiVaR(X) ⩽

(
k

□
i=1

Λ̃iVaR

)
□Λk+1VaR(X).

It follows from the fact that
∑k

i=1 λ
+
i −kε < 1 and the conclusion for n = k that □k

i=1 Λ̃iVaR(X) =

infxk−1∈Rk−1 Λ̃xk−1VaR(X), where Λ̃xk−1(x) =
(
Λ̃k(x− xk−1) +

∑k−1
i=1 Λ̃i(xi − xi−1)

)
. Hence, for

any xk−1 ∈ Rk−1,
k+1
□
i=1

ΛiVaR(X) ⩽ Λ̃xk−1VaR□Λk+1VaR(X).

We could choose xk−1 ∈ Rk−1 such that supx∈R Λ̃xk−1(x) ⩾
∑k

i=1 λ
+
i − (k + 1)ε, which indicates

λ+
k+1 + supx∈R Λ̃xk−1(x) ⩾

∑k+1
i=1 λ+

i − (k + 1)ε > 1. The conclusion for n = 2 above implies

Λ̃xk−1VaR□Λk+1VaR(X) = −∞, which further indicates □k+1
i=1 ΛiVaR(X) = −∞. We establish

the claim for n ⩾ 3.

Finally, we focus on (iii). Suppose the optimal allocation of the inf-convolution is (X1, . . . , Xn),

i.e.,
∑n

i=1 Xi = X and□n
i=1 ΛiVaR(X) =

∑n
i=1 ΛiVaR(Xi). Then we have□k

i=1 ΛiVaR(
∑k

i=1 Xi) =∑k
i=1 ΛiVaR(Xi) for all k = 2, . . . , n. Using the above argument for n = 2, we could find

x1 ∈ R such that Λ1VaR(X1) + Λ2VaR(X2) ⩾ Λx1VaR(X1 + X2). Using the conclusion in

(i), Λ1VaR□Λ2VaR(X1 +X2) = infy1∈R Λy1VaR(X1 +X2) ⩽ Λx1VaR(X1 +X2). Consequently,

Λ1VaR□Λ2VaR(X1+X2) = Λx1VaR(X1+X2). Using the above argument for n = 2, we could find

x2 ∈ R such that Λx1VaR(X1+X2)+Λ3VaR(X3) ⩾ Λx2VaR(X1+X2+X3). Using the conclusion in

(i), we have□3
i=1 ΛiVaR(X1+X2+X3) = infy2∈R2 Λy2VaR(X1+X2+X3) ⩽ Λx2VaR(X1+X2+X3).

Hence we have □3
i=1 ΛiVaR(X1 +X2 +X3) = Λx2VaR(X1 +X2 +X3). We continue this process

and finally we could find xn−1 ∈ Rn−1 such that □n
i=1 ΛiVaR(X) = Λxn−1VaR(X). This implies

that xn−1 is the minimizer of (7).

Suppose xn−1 is the minimizer of (7), i.e., Λxn−1VaR(X) = □n
i=1 ΛiVaR(X). Let Yn = X

and for k = n− 1, . . . , 1,

Yk = xk1{UX⩽1−Λxk−1 (xk)} + (Yk+1 +mk)1{UX>1−Λxk−1 (xk)},

with mk satisfying mk > xk − F−1
X (1 −

∑n
i=1 λ

+
i ). Note that UX and Yk are comonotonic for

k = n, . . . , 1. Hence, direct calculation yields, for k = 2, . . . , n,

Λxn−kVaR(Yn−k+1) + Λn−k+2VaR(Yn−k+2 − Yn−k+1) = Λxn−k+1VaR(Yn−k+2).
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Adding up both sides of the above equalities, we have

Λ1(Y1) +

n∑
i=2

ΛiVaR(Yi − Yi−1) = Λxn−1VaR(X) =
n

□
i=1

ΛiVaR(X).

This implies the optimal allocation is

Xn = Yn − Yn−1, Xn−1 = Yn−1 − Yn−2, . . . , X1 = Y1.

We can obtain the expression of the optimal allocation by noting that for k = n− 1, . . . , 1,

Yk = xk1{UX⩽1−Λxk−1 (xk)} +

(
X +

n−1∑
i=k

mi

)
1{UX>1−Λxk−1 (xk)}.

This completes the proof.

The next proposition shows the validity of (8) in Theorem 1.

Proposition 9. For Λi ∈ HD with 0 < λ−
i ⩽ λ+

i < 1, we have

inf
xn−1∈Rn−1

Λxn−1VaR(X) ⩾ Λ∗VaR(X).

Moreover, the above inequality holds as an equality if all λ±
i are attainable.

Proof. First, note that Λ∗ is a decreasing function. Using the monotonicity of ΛVaR with respect

to Λ, we have Λxn−1VaR(X) ⩾ Λ∗VaR(X), which implies

inf
xn−1∈Rn−1

Λxn−1VaR(X) ⩾ Λ∗VaR(X).

Next, we show the equality holds under the assumption that all λ±
i are attainable. By

this assumption, there exist x−
i and x+

i such that Λi(x
−
i ) = λ−

i and Λi(x
+
i ) = λ+

i . Note that

Λ∗(x) = supxn−1∈Rn−1 Λxn−1(x) = supy1+···+yn=x(
∑n

i=1 Λi(yi))∧1. We next prove the existence of

the maximizer xn−1 or equivalently (y1, . . . , yn). By contradiction, we suppose the maximizer does

not exist. Then there exists a sequence (y
(k)
1 , . . . , y

(k)
n ), k ⩾ 1 such that y

(k)
1 + · · ·+ y

(k)
n = x and∑n

i=1 Λi(y
(k)
i ) ↑ Λ∗(x). By choosing a subsequence, we could force y

(k)
i to be monotone with respect

to k. Let A1 = {i ∈ {1, . . . , n} : limk→∞ y
(k)
i = ∞}, A2 = {i ∈ {1, . . . , n} : limk→∞ y

(k)
i = −∞}

and A3 = {i ∈ {1, . . . , n} : limk→∞ y
(k)
i ∈ (−∞,∞)}. Note that A1 = ∅ is equivalent to A2 = ∅.

Now, we suppose A1 ̸= ∅. Then A2 ̸= ∅ and we have
∑

i∈A1
y
(k)
i +

∑
i∈A2

y
(k)
i = x −

∑
i∈A3

y
(k)
i .

Let ỹ
(k)
i = x+

i +Mk,1 for i ∈ A1, ỹ
(k)
i = x−

i −Mk,2 for i ∈ A2, and ỹ
(k)
i = y

(k)
i for i ∈ A3. We can
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choose Mk,1 > 0 and Mk,2 > 0 such that

∑
i∈A1∪A2

ỹ
(k)
i =

∑
i∈A1

x+
i +

∑
i∈A2

x−
i + n1Mk,1 − n2Mk,2 = x−

∑
i∈A3

y
(k)
i ,

where n1 = Card(A1) and n2 = Card(A2). Note that Mk,1 and Mk,2 can be chosen to be bounded,

indicating that (ỹ
(k)
1 , . . . , ỹ

(k)
n ) is a bounded sequence. Moreover,

∑n
i=1 Λi(ỹ

(k)
i ) ↑ Λ∗(x), and we

force ỹ
(k)
i to be monotone by picking a subsequence. We denote y∗i = limk→∞ ỹ

(k)
i . If ỹ

(k)
i ⩽ y∗i

for all k ⩾ 1, by the left-continuity of Λi, we have limk→∞ Λi(ỹ
(k)
i ) = Λi(y

∗
i ); If ỹ

(k)
i ⩾ y∗i for all

k ⩾ 1, using the left-continuity and monotonicity of Λi, we have limk→∞ Λi(ỹ
(k)
i ) ⩽ Λi(y

∗
i ).

Then we have Λ∗(x) ⩽ (
∑n

i=1 Λi(y
∗
i )) ∧ 1, implying Λ∗(x) = (

∑n
i=1 Λi(y

∗
i )) ∧ 1. Denoting

xi =
∑i

j=1 y
∗
j , we have Λxn−1(x) = Λ∗(x). This shows the existence of the maximizer.

For simplicity, we denote x∗ = Λ∗VaR(X). If x∗ = −∞, then there exists a sequence yk → −∞

as k → ∞ such that FX(yk) ⩾ 1− Λ∗(yk). Using the previous conclusion, there exists a sequence

x
(k)
n−1 such that Λx

(k)
n−1(yk) = Λ∗(yk). This implies that FX(yk) ⩾ 1 − Λx

(k)
n−1(yk). Hence we have

infxn−1∈Rn−1 Λxn−1VaR(X) ⩽ Λx
(k)
n−1VaR(X) ⩽ yk → ∞ as k → ∞.

Next, we consider the case x∗ > −∞. By definition, FX(x∗) ⩾ 1 − Λ∗(x∗) or there exist

yk ↓ x∗ such that FX(yk) ⩾ 1 − Λ∗(yk). If FX(x∗) ⩾ 1 − Λ∗(x∗), using the previous conclusion,

there exists xn−1 ∈ Rn−1 such that Λxn−1(x∗) = Λ∗(x∗). Hence, we have FX(x∗) ⩾ 1−Λxn−1(x∗).

This implies Λxn−1VaR(X) ⩽ x∗. Hence, infxn−1∈Rn−1 Λxn−1VaR(X) ⩽ x∗.

If there exist yk ↓ x∗ such that FX(yk) ⩾ 1−Λ∗(yk), using the previous conclusion, there exists

a sequence of x
(k)
n−1 ∈ Rn−1 such that Λx

(k)
n−1(yk) = Λ∗(yk). Hence, we have FX(yk) ⩾ 1−Λx

(k)
n−1(yk).

This implies Λx
(k)
n−1VaR(X) ⩽ yk. Hence infxn−1∈Rn−1 Λxn−1VaR(X) ⩽ yk → x∗ as k → ∞. We

establish the claim.

Proof of Proposition 2. Using
∑n−1

i=1 λ+
i < 1, Lemma 2 in Liu et al. (2020) and the

expression in Theorem 1, we have

(
n−1

□
i=1

ΛiVaR

)
□ΛnVaR(X) = inf

xn−2∈Rn−2
(Λxn−2VaR□ΛnVaR(X)) .

We first show case (i). Note that Λxn−2(x) = Λ1(x1)+Λ2(x2−x1)+ · · ·+Λn−1(x−xn−2). We can

choose xn−2 ∈ Rn−2 such that Λxn−2(x) =
∑n−2

i=1 λ+
i +Λn−1(x− xn−2). We fix xn−2. Then there

exists xn−1 ∈ R such that Λxn−2(xn−1) =
∑n−1

i=1 λ+
i . Moreover, let xn ∈ R such that Λn(xn) = λ+

n .

We define X1 as

X1 = xn−11{UX⩽1−Λxn−2 (xn−1)} + (X +m)1{UX>1−Λxn−2 (xn−1)}.
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It follows that

P(X −X1 ⩽ −m) = Λxn−2(xn−1) + P(X ⩽ −m+ xn−1, UX ⩽ 1− Λxn−2(xn−1))

⩾
n−1∑
i=1

λ+
i = 1− Λn(−m),

implying ΛnVaR(X −X1) ⩽ −m. Hence we have

Λxn−2VaR□ΛnVaR(X) ⩽ Λxn−2VaR(X1) + ΛnVaR(X −X1)

⩽ xn−1 + ΛnVaR(X −X1) ⩽ xn−1 −m → −∞

as m → ∞, implying
(
□n−1

i=1 ΛiVaR
)
□ΛnVaR(X) = −∞.

We next consider case (ii). We denote λ′ = supx∈R Λxn−2(x). Our assumption implies λ′ +

λ+
n ⩽ 1. For any X,X1 ∈ X , we denote y1 = Λxn−2VaR(X1) and let

X2 = y11{UX1
⩽1−Λxn−2 (y1)} + y1 ∨X1 ∨ (X +m)1{UX1

>1−Λxn−2 (y1)}.

Then we have Λxn−2VaR(X2) = y1 and X1 ⩽ X2. This implies Λxn−2VaR(X1)+ΛnVaR(X−X1) ⩾

Λxn−2VaR(X2) + ΛnVaR(X −X2). Let

X3 = y11{UX⩽1−Λxn−2 (y1)} + (X +m)1{UX>1−Λxn−2 (y1)},

where m > y1 − F−1
X (1 − Λxn−2(y1)). Then we have Λxn−2VaR(X3) = y1. For x ⩾ −m, we have

P(X − X2 ⩽ x) ⩽ P(X − X3 ⩽ x). Note that our assumption implies λ+
n + Λxn−2(y1) < 1. By

setting m > y1 − F−1
X (1− λ+

n − Λxn−2(y1)), it follows that for x < −m,

P(X −X2 ⩽ x) ⩽ Λxn−2(y1) + P(X ⩽ x+ y1, UX1
⩽ 1− Λxn−2(y1)) < 1− Λn(x),

P(X −X3 ⩽ x) = P(X ⩽ x+ y1) ∧ (1− Λxn−2(y1)) < 1− Λn(x).

This implies ΛnVaR(X−X2) ⩾ −m and ΛnVaR(X−X3) ⩾ −m. Hence, we have ΛnVaR(X−X3) ⩽

ΛnVaR(X − X2). Following the same argument as in the proof of Theorem 1 for n = 2, we can

show Λxn−2VaR□ΛnVaR(X) = infxn−1∈R Λxn−1VaR(X). This completes the proof.

Proof of Example 1. Applying Theorem 1, we have

n

□
i=1

ΛiVaR(X) = Λ∗VaR(X).

In order to compute Λ∗, we split Rn−1 into 2n−1 disjoint subsets. Let Ni ⊂ {1, . . . , n − 1}, i =
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1, . . . , 2n−1, be distinct sets. We denote Bi = {xn−1 ∈ Rn−1 : xj − xj−1 ⩽ bj only for j ∈ Ni}.

Then we have Bi are disjoint and ∪2n−1

i=1 Bi = Rn−1. Without loss of generality, we suppose N1 = ∅

and N2 = {1, . . . , n− 1}. Over Bi, we have

Λxn−1(x) = Λn(x− xn−1) +
∑
j∈Ni

λ+
j +

∑
j∈N∁

i

λ−
j ,

where N∁
i = {1, . . . , n − 1} \ Ni. Note that for i ⩾ 3, under the constraint xn−1 ∈ Bi, xn−1 can

take any value in R. Moreover, over B1, the range of xn−1 is (
∑n−1

j=1 bj ,∞), and over B2, the range

of xn−1 is (−∞,
∑n−1

j=1 bj ]. Direct computation shows for i = 1,

sup
xn−1∈Bi

Λxn−1(x) = λ+
n +

n−1∑
i=1

λ−
i ;

for i = 2,

sup
xn−1∈Bi

Λxn−1(x) =

n−1∑
i=1

λ+
i + Λn(x−

n−1∑
i=1

bi) = Λ⋄(x);

and for i ⩾ 3,

sup
xn−1∈Bi

Λxn−1(x) = λ+
n +

∑
j∈Ni

λ+
j +

∑
j∈N∁

i

λ−
j .

These equations imply Λ∗(x) = λ∗ ∨ Λ⋄(x). Hence, by Theorem 1, we have

n

□
i=1

ΛiVaR(X) = (λ∗ ∨ Λ⋄)VaR(X).

C Proof of Section 3.2

This section is devoted to the proofs of all the results in Section 3.2.

Proof of Theorem 2. The proof of (10) is given by Proposition 10. Now we only focus on

the proof of other conclusions. The proof is similar to that of Theorem 1. We first consider cases

(i) and (ii). Let us start with the case n = 2. For any X1 ∈ X , we denote x1 = Λ1VaR(X1). For

some m ∈ R, let

X2 = x11{UX1
⩽1−Λ1(x1)} + (x1 ∨X1 ∨ (X +m))1{UX1

>1−Λ1(x1)}.
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Note that Λ1VaR(X2) = x1 and X1 ⩽ X2. Hence, by monotonicity of Λ2VaR, we have

Λ1VaR(X1) + Λ2VaR(X −X1) ⩾ Λ1VaR(X2) + Λ2VaR(X −X2).

Observe that

X −X2 = (X − x1)1{UX1
⩽1−Λ1(x1)} + ((X − x1) ∧ (X −X1) ∧ (−m))1{UX1

>1−Λ1(x1)}.

Direct computation shows P(X −X2 ⩽ −m) ⩾ Λ1(x1). If λ+
1 + λ−

2 > 1, there exists x1 ∈ R such

that Λ1(x1) > 1 − λ−
2 . This implies that P(X − X2 ⩽ −m) > 1 − λ−

2 ⩾ 1 − Λ2(−m). Hence

Λ2VaR(X −X2) ⩽ −m. Consequently, limm→∞(Λ1VaR(X2) + Λ2VaR(X −X2)) ⩽ limm→∞(x1 −

m) = −∞. This implies Λ1VaR□Λ2VaR(X) = −∞. We could analogously obtain the same

conclusion if λ−
1 + λ+

2 > 1.

We next consider the case (λ−
1 + λ+

2 ) ∨ (λ+
1 + λ−

2 ) < 1. Let

X3 = x11{UX⩽1−Λ1(x1)} + (X +m)1{UX>1−Λ1(x1)}, (27)

where

m > x1 − F−1
X (1− Λ1(x1)). (28)

It follows that for x ⩾ −m,

P(X −X2 ⩽ x) = Λ1(x1) + P(X ⩽ x+ x1, UX1
⩽ 1− Λ1(x1))

⩽ Λ1(x1) + P(X ⩽ x+ x1, UX ⩽ 1− Λ1(x1)) = P(X −X3 ⩽ x).

Note that we could find m ∈ R such that

Λ1(x1) + FX(−m+ x1) < 1− Λ2(−m). (29)

For x < −m, it follows that

P(X −X2 ⩽ x) ⩽ P(X ⩽ x+ x1, UX1 ⩽ 1− Λ1(x1)) + Λ1(x1) < 1− Λ2(x),

P(X −X3 ⩽ x) = FX(x+ x1) ∧ (1− Λ1(x1)) < 1− Λ2(x).

This indicates that Λ2VaR(X−X2) ⩾ −m and Λ2VaR(X−X3) ⩾ −m. Hence we have Λ2VaR(X−

X3) ⩽ Λ2VaR(X −X2). Direct computation yields P(X −X3 ⩽ x) = (Λ1(x1) + FX(x + x1)) ∧ 1

28



for x ⩾ −m. Note also that Λ1VaR(X3) = Λ1VaR(X2) = x1. Consequently, we have

Λ1VaR(X3) + Λ2VaR(X −X3) = x1 + inf{x : P(X −X3 ⩽ x) ⩾ 1− Λ2(x)}

= x1 + inf{x : Λ1(x1) + FX(x+ x1) ⩾ 1− Λ2(x)}

= inf{y : FX(y) ⩾ 1− Λ2(y − x1)− Λ1(x1)} = Λx1VaR(X).

Therefore, for any X1 ∈ X with x1 = Λ1VaR(X1) , we have

Λ1VaR(X1) + Λ2VaR(X −X1) ⩾ Λx1VaR(X) ⩾ inf
x1∈R

Λx1VaR(X).

This implies Λ1VaR□Λ2VaR(X) ⩾ infx1∈R Λx1VaR(X). Moreover, for any x1 ∈ R, we could

construct X3 as in (27) such that Λ1VaR(X3) + Λ2VaR(X −X3) = Λx1VaR(X). Hence

Λ1VaR□Λ2VaR(X) ⩽ inf
x1∈R

Λx1VaR(X).

We establish the claim for n = 2. We could prove the result for n ⩾ 3 by induction analogously as

in the proof of Theorem 1. Following the same argument as in the proof of (iii) of Theorem 1, we

can show (iii) by noting (27), (28) and (29). The detailed proof is omitted.

The conclusion in next proposition is sufficient to show (10) in Theorem 2.

Proposition 10. For Λi ∈ HI with 0 < λ−
i ⩽ λ+

i < 1, we have

inf
xn−1∈Rn−1

Λxn−1VaR(X) ⩾ Λ∗VaR(X).

Moreover, the above inequality holds as an equality if all λ±
i are attainable.

Proof. First, note that
∑n

i=1 λ
−
i ⩽ Λ∗(x) ⩽ 1. Moreover, one can easily check that Λ∗ is an

increasing function. Using the monotonicity of ΛVaR with respect to Λ, we have Λxn−1VaR(X) ⩾

Λ∗VaR(X), which implies infxn−1∈Rn−1 Λxn−1VaR(X) ⩾ Λ∗VaR(X).

Next, we show the equality holds under the assumption. By the assumption, there exist x−
i and

x+
i such that Λi(x

−
i ) = λ−

i and Λi(x
+
i ) = λ+

i . Note that Λ∗(x) = supy1+···+yn=x(
∑n

i=1 Λi(yi)) ∧ 1.

In the proof of Proposition 9, we have shown that there exists a bounded sequence (y
(k)
1 , . . . , y

(k)
n )

such that y
(k)
1 + · · · + y

(k)
n = x and

∑n
i=1 Λi(y

(k)
i ) ↑ Λ∗(x) as k → ∞. Moreover, we can force

y
(k)
i to be monotone by picking a subsequence. We denote y∗i = limk→∞ y

(k)
i . If y

(k)
i ⩾ y∗i , by the

right continuity of Λi, we have limk→∞ Λi(y
(k)
i ) = Λi(y

∗
i ). If y

(k)
i ⩽ y∗i , by the monotonicity of

Λi, we have limk→∞ Λi(y
(k)
i ) ⩽ Λi(y

∗
i ). Consequently, Λ∗(x) ⩽ (

∑n
i=1 Λi(y

∗
i )) ∧ 1, which implies

Λ∗(x) = (
∑n

i=1 Λi(y
∗
i )) ∧ 1. Denoting xi =

∑i
j=1 y

∗
j , we have Λxn−1(x) = Λ∗(x). This shows the

existence of the maximizer. Following exactly the same argument as in the proof of Proposition 9,
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we obtain infxn−1∈Rn−1 Λxn−1 ⩽ Λ∗VaR(X). This completes the proof.

Proof of Proposition 3. Note that Λxn−1 and Λ∗ are increasing functions. Hence, in light

of Theorem 3.1 in Han et al. (2021) and Theorem 2, we have if
∨n

i=1(λ
−
i +

∑
j ̸=i λ

+
j ) < 1,

n
□
i=1

ΛiVaR(X) = inf
xn−1∈Rn−1

Λxn−1VaR(X)

= inf
xn−1∈Rn−1

inf
xn∈R

VaRΛxn−1 (xn)(X) ∨ xn

= inf
y1,...,yn∈R

(
VaR∑n

i=1 Λi(yi)(X)
∨

(

n∑
i=1

yi)

)
.

If in addition, all λ±
i are attainable, then□n

i=1 ΛiVaR(X) = Λ∗VaR(X) = infx∈R
(
VaRΛ∗(x)(X) ∨ x

)
.

This completes the proof.

Proof of Proposition 4. The proof is the same as that of Proposition 2. Hence it is

omitted.

Proof of Example 2. Applying Proposition 10, we only need to compute supxn−1∈Rn−1 Λxn−1(x).

To compute this value, we split Rn−1 into 2n−1 disjoint subsets. Let Ni ⊂ {1, . . . , n − 1}, i =

1, . . . , 2n−1, be distinct sets. We denote Bi = {xn−1 ∈ Rn−1 : xj − xj−1 < bj only for j ∈ Ni}.

Then we have Bi are disjoint and ∪2n−1

i=1 Bi = Rn−1. Without loss of generality, we suppose B1 = ∅

and B2 = {1, . . . , n− 1} . Over Bi, we have

Λxn−1(x) =

Λn(x− xn−1) +
∑
j∈Ni

λ−
j +

∑
j∈N∁

i

λ+
j

 ∧ 1,

where N∁
i = {1, . . . , n − 1} \ Ni. Note that for i ⩾ 3, under the constraint xn−1 ∈ Bi, xn−1 can

take any value in R. Moreover, over B1, the range of xn−1 is [
∑n−1

j=1 bj ,∞), and over B2, the range

of xn−1 is (−∞,
∑n−1

j=1 bj). It follows that, for i = 1,

sup
xn−1∈Bi

Λxn−1(x) = Λ⋄(x);

for i = 2,

sup
xn−1∈Bi

Λxn−1(x) = λ+
n +

n−1∑
i=1

λ−
i ;

and for i ⩾ 3,

sup
xn−1∈Bi

Λxn−1(x) = λ+
n +

∑
j∈Ni

λ−
j +

∑
j∈N∁

i

λ+
j .

Combing the above equalities, we have supxn−1∈Rn−1 Λxn−1(x) = λ∗ ∨ Λ⋄(x). In light of Theorem

2, we establish the claim.
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D Proof of Section 4

In this section, we give all the proofs of the results in Section 4.

Proof of Theorem 3. For any x, y ∈ R, define X1 = x1{UX⩽1−Λ(x)}+(X−y)1{UX>1−Λ(x)}.

Note that P(X1 ⩽ x) ⩾ 1− Λ(x), implying ΛVaR(X1) ⩽ x. Hence we have

ΛVaR(X1) + ρ(X −X1) ⩽ x+ ρ (Xx,y) .

This implies ΛVaR□ ρ(X) ⩽ x+ ρ (Xx,y). As x, y are chosen arbitrarily, we have

ΛVaR□ ρ(X) ⩽ inf
x∈R

inf
y∈R

{x+ ρ (Xx,y)} .

We next show the inverse inequality. For any X1 ∈ X , note that ΛVaR(X1) ∈ (−∞,∞). Let

x1 = ΛVaR(X1). Define X2 = x11{UX1
⩽1−Λ(x1)} + (x1 ∨X1 ∨ (X −m))1{UX1

>1−Λ(x1)}. Clearly,

FX2(x1) ⩾ 1 − Λ(x1). This implies that ΛVaR(X2) = x1 and X1 ⩽ X2 a.s.. By monotonicity of

ρ, we have ΛVaR(X1) + ρ(X − X1) ⩾ x1 + ρ(X − X2). Define X3 = x11{UX⩽1−Λ(x1)} + (X −

m)1{UX>1−Λ(x1)} with m < F−1
X (1 − Λ(x1)) − x1 and recall Xx1,m = (X − x1)1{UX⩽1−Λ(x1)} +

m1{UX>1−Λ(x1)}. For x ⩾ m, it follows that

P(X −X2 ⩽ x) = Λ(x1) + P(X − x1 ⩽ x, UX1 ⩽ 1− Λ(x1))

⩽ Λ(x1) + P(X − x1 ⩽ x, UX ⩽ 1− Λ(x1))

= P(X −X3 ⩽ x) = P(Xx1,m ⩽ x).

If X = L∞, by choosing m < (ess-inf(X −X1)) ∧ ess-inf(X − x1), it follows that for x < m,

P(X −X2 ⩽ x) = P(X − x1 ⩽ x, UX1
⩽ 1− Λ(x1))

⩽ P(X − x1 ⩽ x, UX ⩽ 1− Λ(x1))

= P(X −X3 ⩽ x) = P(Xx1,m ⩽ x) = 0.

By monotonicity and law-invariance of ρ, we have ρ(X −X2) ⩾ ρ(X −X3) = ρ(Xx1,m). If ρ is an

ε-tail risk measure, we choose m small enough such that P(X−X2 < m)∨P(X−X3 < m) < 1−ε.

Then we have, for x ∈ R,

(P(X −X2 ⩽ x)− 1 + ε)+ ⩽ (P(X −X3 ⩽ x)− 1 + ε)+ = (P(X −Xx1,m ⩽ x)− 1 + ε)+.

It follows from the monotonicity of ρ and the fact that ρ is an ε-tail risk measure that ρ(X−X2) ⩾

ρ(X−X3) = ρ(Xx1,m). Note that ΛVaR(X2) = ΛVaR(X3) = x1. Therefore, with m small enough,
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we have

ΛVaR(X1) + ρ(X −X1) ⩾ x1 + ρ(X −X2) ⩾ x1 + ρ(X −X3)

= x1 + ρ(Xx1,m) ⩾ inf
x∈R

inf
y∈R

{x+ ρ (Xx,y)} .

This implies the inverse inequality.

We next show that the existence of the optimal allocation implies the existence of the min-

imizer of (12). We assume that there exists X1 ∈ X such that ΛVaR(X1) + ρ(X − X1) =

ΛVaR□ ρ(X). Following the same argument as above to show the inverse inequality, there ex-

ists y1 ∈ R such that ΛVaR(X1) + ρ(X − X1) ⩾ x1 + ρ(Xx1,y1
) with x1 = ΛVaR(X1). Hence

ΛVaR□ ρ(X) ⩾ x1 + ρ(Xx1,y1) ⩾ infx∈R infy∈R {x+ ρ (Xx,y)} = ΛVaR□ ρ(X). This implies that

(x1, y1) is the minimizer of (12), leading to a contradiction.

If (x∗, y∗) is the minimizer of (12), then (X∗
1 , X

∗
2 ) is well defined. We have P(X∗

1 ⩽ x∗) ⩾

1− Λ(x∗). By the definition, we have ΛVaR(X∗
1 ) ⩽ x∗. Hence we have

ΛVaR(X∗
1 ) + ρ(X −X∗

1 ) ⩽ x∗ + ρ (Xx∗,y∗) = inf
x∈R

inf
y∈R

{x+ ρ (Xx,y)} = ΛVaR□ ρ(X).

Therefore, the optimal allocation exists and one of them is (X∗
1 , X −X∗

1 ).

Proof of Theorem 4. We first focus on the case n = 2. In light of Theorem 3, we have

Λ1VaR□Λ2VaR(X) = inf
x∈R

inf
y∈R

{x+ Λ2VaR (Xx,y)} ,

where Xx,y = (X − x)1{UX⩽1−Λ1(x)} + y1{UX>1−Λ1(x)}. Direct computation gives FXx,y (z) =

(FX(z+ x) +Λ1(x))∧ 1, z ⩾ y and FXx,y (z) = FX(z+ x)∧ (1−Λ1(x)), z < y. We first fix x and

let y < F−1
X (1− λ+

1 − λ+
2 )− x. Then for z < y,

FXx,y
(z) ⩽ FX(z + x) < 1− λ+

1 − λ+
2 ⩽ 1− Λ2(z).

This implies that Λ2VaR(Xx,y) ⩾ y. Moreover, for z ⩾ y,

FX(z + x) + Λ1(x) < 1− λ+
1 − λ+

2 + Λ1(x) ⩽ 1− Λ2(z).
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Hence for y < F−1
X (1− λ+

1 − λ+
2 )− x,

x+ Λ2VaR(Xx,y) = x+ inf{z ∈ R : FXx,y
(z) ⩾ 1− Λ2(z)}

= x+ inf{z ⩾ y : (FX(z + x) + Λ1(x)) ∧ 1 ⩾ 1− Λ2(z)}

= x+ inf{z ∈ R : FX(z + x) + Λ1(x) ⩾ 1− Λ2(z)}

= inf{z ∈ R : FX(z) ⩾ 1− Λ2(z − x)− Λ1(x)}

= ΛxVaR(X),

where Λx(z) = (Λ1(x) + Λ2(z − x)) ∧ 1. Using the monotonicity of Λ2VaR(Xx,y) with respect to

y, we have infy∈R {x+ Λ2VaR (Xx,y)} = ΛxVaR(X). Therefore, we conclude that if λ+
1 + λ+

2 < 1,

Λ1VaR□Λ2VaR(X) = inf
x1∈R

Λx1VaR(X).

Now we consider the case (ii). Without loss of generality, we suppose λ+
1 + λ−

2 > 1. For any

0 < ε < λ+
1 + λ−

2 − 1, we could find x0 ∈ R such that Λ1(x0) ⩾ λ+
1 − ε. Note that

FXx0,y
(y) = (FX(y + x0) + Λ1(x0)) ∧ 1

⩾ Λ1(x0) ⩾ λ+
1 − ε > 1− λ−

2 ⩾ 1− Λ2(y).

This implies Λ2VaR(Xx0,y) ⩽ y. Letting y → ∞, we have

inf
x∈R

inf
y∈R

{x+ Λ2VaR (Xx,y)} ⩽ x0 + Λ2VaR(Xx0,y) ⩽ x0 + y → −∞.

We have shown (i) and (ii) for case n = 2. Using the same argument as in the proof of Theorem

1, we can extend (i) to the case n ⩾ 3 by induction. For (ii), without loss of generality, suppose

λn +
∑n−1

i=1 λ−
i > 1. By the monotonicity of ΛVaR, we have ΛiVaR(X) ⩽ VaRλ−

i
(X). In light of

Lemma 2 in Liu et al. (2020), we have

n
□
i=1

ΛiVaR(X) = (
n−1
□
i=1

ΛiVaR)□ΛnVaR(X) ⩽ (
n−1
□
i=1

VaRλ−
i
)□ΛnVaR(X).

It follows from Theorem 1 and Proposition 2 that □n−1
i=1 VaRλ−

i
= −∞ if

∑n−1
i=1 λ−

i ⩾ 1, which in-

dicates that □n
i=1 ΛiVaR(X) = −∞. Moreover, if

∑n−1
i=1 λ−

i < 1, by Lemma 2 in Liu et al. (2020) or

Theorem 1, we have□n−1
i=1 VaRλ−

i
= VaR∑n−1

i=1 λ−
i
. Hence, □n

i=1 ΛiVaR(X) ⩽ VaR∑n−1
i=1 λ−

i
□ΛnVaR(X).

It follows from the fact that λn +
∑n−1

i=1 λ−
i > 1 and the conclusion from the case n = 2 that

□n
i=1 ΛiVaR(X) ⩽ VaR∑n−1

i=1 λ−
i
□ΛnVaR(X) = −∞. We establish the claim for n ⩾ 3.

We can establish (15) using exactly the same argument as in the proof of Proposition 9.
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Moreover, we can also prove (iii) using the same argument as in the proof of (iii) of Theorem 1.

Hence the details are omitted.

Proof of Proposition 5. Applying Theorem 3, we have

ΛVaR□ ρ(X) = inf
x∈R

inf
y∈R

{
x+ E

(
u
(
(X − x)1{UX⩽1−Λ(x)} + y1{UX>1−Λ(x)}

))}
= inf

x∈R
inf
y∈R

{
x+ E

(
u
(
(X − x)1{UX⩽1−Λ(x)}

)
+ u(y)Λ(x)

)}
= inf

x∈R

{
x+ aΛ(x) + E

(
u
(
(X − x)1{UX⩽1−Λ(x)}

))}
.

Note that ΛVaR□ ρ(X) = −∞ if a = −∞. This completes the proof.

Proof of Proposition 6. First, applying Theorem 3, we have

ΛVaR□ ρ(X) = inf
x∈R

inf
y∈R

{
x+

∫ 1

0

u(VaRt(Xx,y))dg

}
,

where Xx,y = (X − x)1{UX⩽1−Λ(x)} + y1{UX>1−Λ(x)}. We now let y < ess-infX − x. Direct

calculation gives

VaRt(Xx,y) =

 F−1
X (1− t− Λ(x))− x, t < 1− Λ(x)

y, t ⩾ 1− Λ(x)
.

Hence

∫ 1

0

u(VaRt(Xx,y))dg =

∫ 1−Λ(x)

0

u(F−1
X (1− t− Λ(x))− x)dg + u(y)(1− g(1− Λ(x))).

Note that if g(1−λ+) < 1, there exists x0 ∈ R such that g(1−Λ(x0)) < 1. If in addition, a = −∞,

we have

inf
y∈R

∫ 1

0

u(VaRt(Xx0,y))dg(t) = −∞.

For the cases of g(1− λ+) = 1, or g(1− λ+) < 1 and a > −∞, the conclusion can be obtained by

a direct computation.

E Proof of Section 5

This section is dedicated to the proof of all the results appeared in Section 5.

Proof of Theorem 5. First, note that SSD-consistency implies that ρ is monotone and law-

invariant. For any X1 ∈ X , let x = ΛVaR+(X1). Using the fact that X − F−1
X1

(UX) ⩽icx X −X1
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and ρ is SSD-consistent, we obtain ρ(X −X1) ⩾ ρ(X − F−1
X1

(UX)). Hence we have

ΛVaR+(X1) + ρ(X −X1) ⩾ x+ ρ(X − F−1
X1

(UX)).

For simplicity, we denote X2 = F−1
X1

(UX). Next, we will show ρ(X − X2) ⩾ infy⩾x∨x0 ρ(X −

F−1
x,y(UX)).

If X = L∞, let y > 2(ess-sup|X| ∨ ess-sup|X1| ∨ |x|). Then we have Fx,y(z) = FX1
(z) = 1

if z ⩾ y. By the definition of ΛVaR+ and the right-continuous of Λ, we have FX1(z) ⩾ 1 − Λ(z)

for z ⩾ x, which together with the monotonicity of FX1 implies FX1(z) ⩾ 1 − Λx(z) for z ⩾ x.

By noting that Fx,y(z) = FX1
(z) = 1 for z ⩾ y, we have Fx,y(z) ⩽ FX1

(z) for all z ∈ R, which

implies X2 ⩽ F−1
x,y(UX). Consequently, ρ(X −X2) ⩾ infy⩾x∨x0

ρ(X − F−1
x,y(UX)) by noting Fx,y is

decreasing in y.

Next, we consider the unbounded X . We set y ⩾ x ∨ x0. Then we can write

X − F−1
x,y(UX) = (X − F−1

x,y(UX))1{UX⩽FX1
(y)∧FX(y/2)}

+ (X − F−1
x,y(UX))1{FX1

(y)∧FX(y/2)<UX⩽FX(y/2)} + (X − F−1
x,y(UX))1{UX>FX(y/2)}

and X − X2 = (X − X2)1{UX⩽FX1
(y)∧FX(y/2)} + (X − X2)1{UX>FX1

(y)∧FX(y/2)}. It follows from

the definition of ΛVaR that FX1
(z) ⩾ 1 − Λ(z) for all z ⩾ x. This implies FX1

(z) ⩾ Fx,y(z)

for all z < y. Consequently, on {UX ⩽ FX1
(y) ∧ FX(y/2)}, we have X2 ⩽ F−1

x,y(UX), implying

X−X2 ⩾ X−F−1
x,y(UX). Let y > 2|F−1

X−X2
(1−ε)|. Then on {FX1(y)∧FX(y/2) < UX ⩽ FX(y/2)},

we have X − F−1
x,y(UX) = X − y ⩽ y/2− y = −y/2 < F−1

X−X2
(1− ε). Finally, over UX > FX(y/2),

X − F−1
x,y(UX) = −y/2 < F−1

X−X2
(1− ε).

Combing the above information, we have for z ⩾ F−1
X−X2

(1− ε),

P(X − F−1
x,y(UX) ⩽ z)

= 1− FX1
(y) ∧ FX(y/2) + P(X − F−1

x,y(UX) ⩽ z, UX ⩽ FX1
(y) ∧ FX(y/2))

⩾ 1− FX1
(y) ∧ FX(y/2) + P(X −X2 ⩽ z, UX ⩽ FX1

(y) ∧ FX(y/2)) ⩾ P(X −X2 ⩽ z).

This implies for z ⩾ F−1
X−X2

(1− ε), (P(X −X2 ⩽ z)− 1 + ε)+ ⩽ (P(X − F−1
x,y(UX) ⩽ z)− 1 + ε)+.

The above inequality also holds for z < F−1
X−X2

(1− ε) as (FX−X2
(z)− 1+ ε)+ = 0. Using the fact

that ρ is a monotone and ε-tail risk measure, we have ρ(X − X2) ⩾ ρ(X − F−1
x,y(UX)) for some

y ⩾ x ∨ x0. Hence, ρ(X −X2) ⩾ infy⩾x∨x0
ρ(X − F−1

x,y(UX)) also holds.
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This further implies

ΛVaR(X1) + ρ(X −X1) ⩾ x+ ρ(X −X2) ⩾ x+ inf
y⩾x∨x0

ρ(X − F−1
x,y(UX))

⩾ inf
x∈R

inf
y⩾x∨x0

{
x+ ρ

(
X − F−1

x,y(UX)
)}

.

As X1 is chosen arbitrarily, we can conclude that

ΛVaR□ ρ(X) ⩾ inf
x∈R

inf
y⩾x∨x0

{
x+ ρ

(
X − F−1

x,y(UX)
)}

.

We next show the inverse inequality. For x ∈ R and y ⩾ x ∨ x0, we have ΛVaR(F−1
x,y(UX)) = x.

Hence we have

x+ ρ
(
X − F−1

x,y(UX)
)
= ΛVaR(F−1

x,y(UX)) + ρ
(
X − F−1

x,y(UX)
)
⩾ ΛVaR□ ρ(X),

implying the desired inverse inequality.

The same argument as in the proof of Theorem 3 can show the existence of the optimal

allocation of the inf-convolution is equivalent to the existence of the minimizer of (22). Hence we

omit the details. Finally, one can easily check that the allocation (X∗
1 , X

∗
2 ) is optimal.

Proof of Proposition 7. In light of Theorem 5 and Remark 9, we have

ΛVaR+ □ ρ(X) = inf
x∈R

inf
y⩾x∨x0

{
x+ E

(
u(X − F−1

x,y(UX))
)}

,

where x0 = 2F−1
X (1 − λ−). Using (24), we only need to compute limy→∞ E

(
u(X − F−1

x,y(UX))
)
.

This can be done by noting

X − F−1
x,y(UX) = (X − x)1{UX⩽1−Λ(x)} + (X − (1− Λ)−1(UX))1{1−Λ(x)<UX⩽1−Λ(y)}

+ (X − y)1{UX>1−Λ(y)}.

The optimal allocation is easy to check using the result in Theorem 5.

Proof of Proposition 8. By Theorem 5 and Remark 9, we have

ΛVaR+ □ ρ(X) = inf
x∈R

inf
y⩾x∨x0

{
x+ ρg

(
X − F−1

x,y(UX)
)}

,

where x0 = 2F−1
X (1 − λ−). Using (24), we only need to compute limy→∞ ρg

(
X − F−1

x,y(UX)
)
.
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Recall that Λ(x1) = λ−. For y > x1, it follows that

X − F−1
x,y(UX) = (X − x)1{UX⩽1−Λ(x)} + (X − (1− Λ)−1(UX))1{1−Λ(x)<UX⩽1−λ−}

+ (X − y)1{UX>1−λ−}.

If y > ess-supX−ess-infX+x∨x1, we have P(X−F−1
x,y(UX) ⩽ z) = P(X−y ⩽ z, UX > 1−λ−) < λ−

for z < ess-supX − y; P(X − F−1
x,y(UX) ⩽ z) = λ− for z = ess-supX − y; and P(X − F−1

x,y(UX) ⩽

z) = Kx(z) for z > ess-supX − y. Hence, we have VaRt(X −F−1
x,y(UX)) = F−1

X (1− λ− +1− t)− y

for t ∈ [1 − λ−, 1] and VaRt(X − F−1
x,y(UX)) = K−1

x (1 − t) for t ∈ (0, 1 − λ−). Hence, for

y > ess-supX − ess-infX + x ∨ x1, we have

ρg
(
X − F−1

x,y(UX)
)
=

∫ 1−λ−

0

K−1
x (1− t)dg +

∫ 1

1−λ−
(F−1

X (1− λ− + 1− t)− y)dg.

Clearly, g(1−λ−) = 1 implies ρg
(
X − F−1

x,y(UX)
)
=
∫ 1−λ−

0
K−1

x (1−t)dg and g(1−λ−) < 1 implies

limy→∞ ρg
(
X − F−1

x,y(UX)
)
= −∞. This completes the proof.
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