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Abstract—Compared with traditional latency, age of informa-
tion (AoI) is regarded as a more sufficient metric to measure
the freshness of information. In this paper, we investigate the
AoI-aware unmanned aerial vehicle (UAV) aided multi-access
edge computing (MEC) system, where the UAVs, equipped with
MEC servers, provide computing service to the ground IoT
devices, which have heterogeneous average peak AoI (APAoI)
requirements. According to the Poisson process model, the
probabilistic LoS channel model and the M/D/1 queue model, the
APAoI of each IoT device is derived, which involves the hovering
locations of the UAVs and the communication and computing
resources. Then, considering the APAoI requirements of the
IoT devices, we formulate the energy consumption minimization
problem, in which the offloading strategy and the transmit
power of the devices, and the communication and computing
resources allocation as well as the hovering locations of the UAVs
are jointly optimized. The formulated optimization problem is
non-convex. To efficiently solve it, we decompose it into five
subproblems and propose an alternative algorithm based on the
traditional mathematical method, KKT conditions, and successive
convex approximation technique. Extensive simulation results
are provided to show the performance gain of the proposed
algorithm.

Index Terms—Age of information, unmanned aerial vehicle,
multi-access edge computing, resource allocation.

I. INTRODUCTION

THE unprecedented proliferation of Internet of Things
(IoT) devices leads to the explosive growth in the num-

ber of computation-intensive and latency-sensitive applica-
tions, such as face recognition, automatic navigation, and
virtual/augmented reality [1]. However, IoT devices are nor-
mally equipped with limited battery capacity and computing
capability, which may not meet the requirements of these so-
phisticated applications. Although cloud computing can relieve
the workload of IoT devices, the massive offloading data raises
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the load of the core network, thereby increasing the computing
latency.

Multi-access edge computing (MEC) is regarded as a
promising technology to alleviate the network congestion
and improve the computation efficiency, through deploying
computing resource at the edges of networks in proximity to
IoT devices [2]. Usually, MEC servers are configured in the
base stations (BSs) and access points (APs). By offloading the
computing tasks to the nearby infrastructures, the round-trip
latency and the energy consumption of the IoT devices can be
effectively reduced [3]. However, the locations of these ter-
restrial infrastructures are fixed, and their coverage is limited.
The quality of computing service can not be guaranteed in
the scenarios with remote IoT devices or sparsely distributed
infrastructures.

Fortunately, due to the high flexibility and maneuverability,
unmanned aerial vehicles (UAVs) provide a solution to the
above issues. Carrying MEC servers, UAVs can act as aerial
computing platforms to provide resilient and reliable comput-
ing service for ground IoT devices [4]. The locations of UAVs
can be configured according to the requirements of network
applications. Through allocating the resource of UAVs reason-
ably, the system performance can be significantly improved.
Owing to these exclusive characteristics, UAVs have been
widely employed in various scenarios, such as environmental
monitoring, traffic surveillance, and aerial imaging [5].

So far, the research on MEC systems mainly focuses on the
latency caused by the communication, queuing, and comput-
ing. The latency of information refers to the time elapsed from
the start of transmission to the completion of execution, which
is not a sufficient measurement of freshness [6]. However, the
freshness of the computing tasks’ information is also crucial
for the systems where the status updates must be disseminated
timely, such as intelligent transportation and remote surgery
systems [7]. To characterize the freshness of information,
a new metric, called age of information (AoI), has been
proposed [8], which is defined as the time elapsed since the
generation of the latest processed computing task in MEC
systems.

A. Related Work

As a key technology to provide efficient computing service
for IoT devices, MEC has been extensively investigated. The
main focuses are the energy efficiency [9] [10] and the
latency [11] [12]. The research fields include vehicular edge
computing systems [13] [14], wireless power transfer (WPT)
enabled MEC systems [15] [16], and non-orthogonal multiple



access based MEC systems [17], etc. Given the paramount 
significance o f c ommunication a nd c omputing r esources in 
MEC systems, prior literature has predominantly focused on 
the joint allocation of these resources.

Due to the advantage of flexibility and mobility, the configu-
ration of UAVs is more on-demand and diverse compared with 
the fixed i nfrastructures. S ince UAVs c an e fficiently improve 
IoT devices’ quality of the experience, the UAV-aided MEC 
systems have attracted much attention. However, restricted by 
the battery capacity of UAVs and IoT devices, the energy 
efficiency i s s till a  c hallenge f or U AV-aided M EC systems. 
In [18], Pervez et al. proposed an optimization framework to 
minimize the energy consumption and latency in a multi-UAV 
aided MEC system under time-varying channel. Considering 
the channel uncertainty, Mao et al. investigated the robust 
and secure task transmission and computation scheme in 
multi-antenna UAV-assisted MEC networks, where the UAV is 
empowered with MEC and relay functions [19]. In [20], Dai 
et al. studied the energy-efficient s cheduling i n a  UAV-and-
BS hybrid enabled MEC system where the computing tasks 
can be executed locally, offloaded to the UAVs directly or the 
BS indirectly. By integrating WPT into traditional systems, 
Hu et al. proposed a wireless-powered UAV-assisted MEC 
architecture to support the energy consumption of MEC, in 
which the UAV functions as a MEC server and an information 
and energy relay [21].

In the field of UAV-aided systems, the latency is commonly 
regarded as the metric [22]–[25]. However, traditional latency 
methods are insufficient t o m easure t he r ecency o f d ata re-
ceived. As a more precise metric, the concept of AoI is pro-
posed to characterize the freshness of information. It has been 
exploited in many fields, such as vehicular networks [26] [27], 
WPT enabled networks [28] [29], and UAV-assisted networks 
[30] [31], etc. In MEC networks, AoI has also raised a lot of 
attention. In [32], Ning et al. designed a MEC-enabled health 
monitoring system and minimized the system cost which relies 
on the medical criticality, AoI and energy consumption. Con-
sidering the random energy arrivals, heterogeneous harvesting 
modes, and the stochastic transmission and computing process, 
Liu et al. investigated an AoI minimization problem in MEC-
assisted WPT-enabled networks and proposed an online age-
aware status update scheme [33]. To guarantee the fair access 
and low AoI, Wu et al. proposed a multi-objective optimization 
scheme for MEC-assisted vehicle-to-infrastructure networks 
[34]. However, there are few researches on the AoI-aware 
UAV-aided MEC networks at present. In [35], Qin et al. 
investigated the AoI-aware scheduling for air-ground collabo-
rative MEC networks to minimize the weighted AoI of users, 
considering the computing resource and the UAV’s energy 
constraints. To address the security issues in UAV-aided MEC 
networks, Wang et al. studied an channel access-based AoI 
optimization problem under channel access attacks with a 
game theory viewpoint [36]. In [37], Han et al. developed 
a UAV-aided intelligent transportation system and minimized 
the average peak AoI by optimizing the deployment of UAVs.

In summary, there exists extensive researches on the latency-
oriented UAV-aided MEC networks, but few on the AoI-aware
ones. The rare literature predominantly aims at minimizing

AoI, often overlooking the fact that AoI merely requires stay-
ing below an acceptable threshold. Excessive reduction in AoI
may increase the burden on systems. Additionally, the majority
of the existing works regard the computing resource as a fixed
entity. Only the authors in [35] considered the impact of the
computing resource allocation on AoI. However, they ignored
the influence of the communication resource. In practical
systems, AoI relies on both the communication and computing
resources. To the best of our knowledge, there is still no work
studying the jointly optimization of the hovering locations of
UAVs, the communication and computing resources in the
AoI-aware UAV-aided MEC system.

B. Our Contribution

Different from the above work, we regard the AoI metric
as a requirement of the IoT device. The average peak AoI
(APAoI) of the devices can not exceed their requirements. In
this paper, we aim to minimize the total energy consumption
of the UAVs and the IoT devices for processing the tasks gen-
erated in unit time by jointly optimizing the offloading strategy
and the transmit power of the devices, and the bandwidth and
computing resource allocation as well as the hovering locations
of the UAVs, subject to the APAoI, the communication and
computing constraints. The main contributions of this paper
are summarized as follows.

1) Based on the Poisson process model of the task genera-
tion, the probabilistic LoS channel model of the ground-
UAV links and the M/D/1 queue model, we derive the
mathematical expression of the APAoI for each IoT
device.

2) Considering the practical scenario, we treat the APAoI of
each IoT device as a constraint rather than an objective. In
the constraint, the offloading strategy, the transmit power
and the channel bandwidth of the devices, as well as
the computing resource and the hovering locations of the
UAVs are all included.

3) With the heterogeneous APAoI requirements of the IoT
devices, we formulate the energy consumption minimiza-
tion problem. This is a non-convex optimization problem,
which is difficult to solve directly. To efficiently obtain
the high-quality solution, we decompose the optimization
problem into five subproblems: the offloading strategy,
the transmit power, the frequency bandwidth, the com-
puting resource and the hovering location optimization
problems. The first and the last subproblems are still
non-convex. We solve them through successive convex
approximation (SCA) technique. For the second sub-
problem, it is solved by the traditional mathematical
method. The third and the fourth subproblems are convex
optimization problems, and thus we derive their solutions
through the interoir-point method and the KKT condi-
tions, respectively. Finally, by combining the solutions of
these subproblems, we propose an alternative algorithm.

The reminder of this paper is organized as follows. In
Section II, the AoI-aware UAV-aided MEC system model is
presented and the energy consumption minimization problem
is formulated. The proposed algorithm is presented in Section
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Fig. 1. AoI-aware UAV-aided MEC system.

III. Section IV provides numerical results to analyze the
features of the system, and certify the performance of the
proposed algorithm. The conclusion is drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the AoI-aware UAV-
aided MEC system model. Then, the energy consumption
minimization problem is formulated.

A. System Model

As shown in Fig. 1, consider a multi-UAV aided MEC
system with K UAVs and M ground IoT devices. Each UAV
carries a MEC server to provide computing service for the
IoT devices. The set of the UAVs and the devices are denoted
as K and M, respectively, and thus the cardinalities of them
are |K| = K and |M| = M . Without loss of generality,
the locations of the UAVs and the IoT devices are repre-
sented by the three-dimensional (3D) Cartesian coordinates
qk = [xk, yk, zk]

T ∈ R3×1 and wm = [xm, ym, 0]
T ∈

R3×1, respectively. We assume that different IoT devices have
different types of computing tasks, and the tasks generated
by one device are the same. Denote Dm as the data size
of each computing task generated by the m-th IoT device,
and Fm = CmDm as the number of CPU cycles required
to execute the task, where Cm (in cycle/bit) represents the
number of CPU cycles for computing 1 bit data offloaded
from the m-th IoT device. The computing task generation of
each device can be modeled as a Poisson process with the
generation rate λm independently. It is assumed that once the
tasks are generated, the devices transmit them to the UAV
immediately. Hence, the arrival of each device’s tasks at the
UAV is also a Poisson process with arrival rate λm.

B. Communication Model

We adopt the probabilistic LoS channel model for the
ground-air links [38], where the channel is modeled as a com-
bination of LoS and NLoS links. The occurrence probability of
LoS link depends on the elevation angle and the propagation
environment. Assuming that the antennas on the UAVs and the
IoT devices are placed vertically, the LoS probability is given
by

PLoSm,k =
1

1 + a exp(−b[θm,k − a])
, (1)

where a and b are the constants determined by the en-
vironment, and θm,k = 180

π arcsin( zk
dm,k

) is the elevation
angle between the m-th IoT device and the k-th UAV, with
dm,k = ∥qk−wm∥ denoting the distance between them. Then,
the NLoS probability is obtained as PNLoSm,k = 1− PLoSm,k .

The LoS and NLoS channel power gain between the m-th
IoT device and the k-th UAV are respectively given by [39]

hLoSm,k = ρ0d
−αL

m,k , h
NLoS
m,k = κρ0d

−αN

m,k , (2)

where ρ0 is the path loss at the reference distance d0 = 1m,
κ < 1 is the additional attenuation factor due to the NLoS
propagation, αL and αN are the LoS and NLoS path loss
exponents respectively. Then, the achievable rate between the
m-th IoT device and k-th UAV under the LoS and NLoS states
can be respectively expressed as

RLoSm,k = Bm,k log2(1 +
pmh

LoS
m,k

Bm,kN0
)

= Bm,k log2(1 +
pmγ

Bm,kd
αL

m,k

), (3)

RNLoSm,k = Bm,k log2(1 +
pmh

NLoS
m,k

Bm,kN0
)

= Bm,k log2(1 +
κpmγ

Bm,kd
αN

m,k

), (4)

where Bm,k is the channel bandwidth that k-th UAV allocates
to the m-th IoT device, pm is the transmit power of the m-
th IoT device, and γ = ρ0

N0
with N0 representing the power

spectral density of the additive white Gaussian noise (AWGN)
at the receiver. As a result, the expected rate between the m-th
IoT device and k-th UAV can be expressed as

R̄m,k = E[Rm,k] = PLoSm,k R
LoS
m,k + PNLoSm,k RNLoSm,k . (5)

It is assumed that each computing task offloaded from
one IoT device can be partitioned into several smaller-size
tasks that can be separately offloaded to multiple UAVs, and
executed in parallel [40]. The offloading strategy of the m-th
IoT device is denoted as am,k, which represents the proportion
of each task offloaded from the m-th IoT device to the k-th
UAV. Therefore, the duration for the m-th IoT device to offload
one computing task to the k-th UAV is

TOm,k =
am,kDm

R̄m,k
. (6)

Then, the energy consumed by the m-th IoT device to offload
a task to the k-th UAV can be obtained as

EOm,k = pm
am,kDm

R̄m,k
. (7)

C. Computing Model

The procedure of task execution consists of three parts:
offloading, queuing, and computing, as shown in Fig. 2. In
the offloading part, the IoT devices are assumed to transmit
data in non-overlapping frequency bands through frequency
division multiple access (FDMA). It is also assumed that the
UAV cache is divided into M sub-caches, each serving as a
queue for a type of task, i.e., an IoT device. Therefore, in



Fig. 2. Workflow of task offloading.
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Fig. 3. AoI of the m-th IoT device.

the queuing part, the tasks of each IoT device are temporarily
stored in its queue, then executed under first-come-first-served
(FCFS) discipline. Denoting fm,k as the CPU frequency (in
Hz) used by the k-th UAV to execute the tasks offloaded from
the m-th IoT device, the computing duration can be expressed
as

TCm,k =
am,kFm
fm,k

. (8)

Then, the energy consumption of the k-th UAV for executing
a task of the m-th IoT device can be obtained as

ECm,k = ηam,kFmf
2
m,k, (9)

where η denotes the effective switched capacitance.
As for the computing part, the MEC server processes the

tasks received from different queues simultaneously. Under
this workflow, given the transmit rate and computing resource
allocation, the offloading and the computing duration of each
task are deterministic. Hence, this is an M/D/1 queue model,
in which the average waiting time of the tasks generated by
the m-th IoT device is given by

TWm,k =
λm

2
fm,k

am,kFm
(

fm,k

am,kFm
− λm)

. (10)

D. AoI Model

AoI is a metric that measures the freshness of the informa-
tion generated by the IoT devices. The AoI of the m-th IoT
device at time t can be given by

∆m(t) = t− δm(t), (11)

where δm(t) denotes the time when the latest executed task
of the m-th IoT device is generated. As shown in Fig. 3, we

denote tm,n and t′m,n as the times that the n-th task of the m-
th IoT device is generated and executed, respectively1. Then,
the inter-generation time between two consecutive tasks of the
m-th IoT device can be expressed as

Xm,n = tm,n − tm,n−1, (12)

and the processing duration for the n-th task of the m-th IoT
device can be expressed as

Tm,n = t′m,n − tm,n. (13)

Since the task generation of the m-th IoT device is mod-
eled as a Poisson process with rate λm, its task generation
interval Xm,n is an independent and identically distributed
(i.d.d.) exponential random variable with E[Xm,n] = 1/λm.
Moreover, as mentioned in Section II-C, the execution duration
is composed of three parts. Therefore, the average execution
duration for the tasks of the m-th IoT device can be expressed
as E[Tm,n] = max{TOm,k + TWm,k + TCm,k,∀m ∈M,∀k ∈ K}.

The peak AoI is the AoI when the execution of a task is
completed. Observing from Fig. 3, the peak AoI of the n-th
task from the m-th IoT device can be derived as

Am,n = Xm,n + Tm,n. (14)

Then, the APAoI of the m-th IoT device can be obtained as

Γm = lim
N→∞

1

N

N∑
n=1

Am,n = E[Am,n]

= E[Xm,n] + E[Tm,n]. (15)

E. Problem Formulation

We aim to minimize the total energy consumption of the
system for executing the tasks generated in unit time by jointly
optimizing the offloading strategy A = {am,k,∀m ∈M,∀k ∈
K}, the transmit power P = {pm,∀m ∈ M}, the frequency
bandwidth B = {Bm,k,∀m ∈ M,∀k ∈ K}, the computing
resource F = {fm,k,∀m ∈ M,∀k ∈ K}, and the hovering
location Q = {qk,∀k ∈ K}. The optimization problem is

1The n-th task is one of the tasks generated by m-th IoT device. Since one
device generates only one type of task, the data size of the tasks generated
by one device are the same. Therefore, the size of the n-th task of the m-th
IoT device is Dm.



formulated as

min
A,P,B,F,Q

M∑
m=1

K∑
k=1

(ECm,k + EOm,k) (16)

s.t. qmin ≤ qk ≤ qmax,∀k ∈ K, (16a)

∥qk − qj∥2 ≥ d2min,∀k ∈ K, j ̸= k, (16b)
0 ≤ am,k ≤ 1,∀m ∈M,∀k ∈ K, (16c)
K∑
k=1

am,k ≥ 1, ∀m ∈M, (16d)

fm,k ≥ λmam,kFm,∀m ∈M,∀k ∈ K, (16e)
M∑
m=1

fm,k ≤ fmax,∀k ∈ K, (16f)

Bm,k ≥ 0, ∀m ∈M,∀k ∈ K, (16g)
M∑
m=1

Bm,k ≤ Bmax,∀k ∈ K, (16h)

0 ≤ pm ≤ Pmax,∀m ∈M, (16i)
Γm ≤ τm,∀m ∈M, (16j)

where constraint (16a) restricts the hovering range of the UAVs
with qmin = [xmin, ymin, zmin]

T ∈ R3×1 and qmax =
[xmax, ymax, zmax]

T ∈ R3×1, constraint (16b) is the collision
avoidance constraint with dmin denoting the minimum inter-
UAV distance, constraint (16d) ensures that the computing
tasks of each device are completely offloaded, constraint (16e)
is the queue stability constraint that guarantees a finite queue,
constraints (16f), (16h) and (16i) ensure that the allocation
of the computing resource, frequency bandwidth and transmit
power can not exceed their maximum value, with fmax, Bmax
and Pmax representing the maximum CPU frequency, channel
bandwidth and transmit power, respectively, and constraint
(16j) is the APAoI tolerance constraint which limits the APAoI
of each IoT device below their maximum tolerance, with τm
denoting the APAoI requirement of the m-th IoT device.

Note that problem (16) is a non-convex optimization prob-
lem, which is difficult to obtain the optimal solution efficiently
due to the non-convexity of R̄m. To tackle this difficulty, in
the following, we propose an alternative algorithm to obtain a
high-quality solution.

III. PROPOSED SOLUTION TO PROBLEM (16)

Since the achievable rates under LoS and NLoS states are
coupled through the LoS probability in (5), R̄m,k is a highly
complicated function with respect to the hovering locations.
However, the NLoS component is much smaller than the
LoS component in R̄m,k, due to the additional attenuation
factor κ and the larger path loss exponent αN [41]. To tackle
the complicated R̄m,k and guarantee the completion of the
computing tasks, we approximate the expected rate to its lower
bound as [41], which is given by

R̄m,k ≥ PLoSm,k R
LoS
m,k = R̂m,k. (17)

Then, problem (16) is transformed into

min
A,P,B,F,Q

M∑
m=1

K∑
k=1

(ECm,k + ÊOm,k) (18)

s.t. (16a)− (16i),

Γ̂m ≤ τm,∀m ∈M, (18a)

where ÊOm,k = pm
am,kDm

R̂m,k
and Γ̂m = 1

λm
+ max{T̂Om,k +

TWm,k + TCm,k,∀k ∈ K} with T̂Om,k =
am,kDm

R̂m,k
.

Then, due to the existence of the maximum function max{·}
in constraint (18a), problem (18) is difficult to solve. To
address this issue, we further transform the problem into a
more tractable form as follows.

min
P,B,F,Q

M∑
m=1

K∑
k=1

(ECm,k + ÊOm,k) (19)

s.t. (16a)− (16i),
Φm,k ≤ τm,∀m ∈M,∀k ∈ K, (19a)

where Φm,k = 1/λm + T̂Om,k + TWm,k + TCm,k. It is noted
that problem (19) is still a non-convex problem. To solve it
efficiently, we decompose problem (19) into five subproblems:
the offloading strategy, the transmit power, the frequency
bandwidth, the computing resource, and the hovering location
optimization problems.

A. Offloading Strategy Optimization

Given any feasible transmit power P, frequency bandwidth
B, computing resource F, and hovering location Q, problem
(19) is transformed into

min
A

M∑
m=1

K∑
k=1

(ECm,k + ÊOm,k) (20)

s.t. (16c)− (16e), (19a).

To address the non-convexity of the constraint (19a), we
introduce the slack variable X = {χm,k,∀m ∈ M,∀k ∈ K}.
Then, problem (20) is transformed into

min
A,X

M∑
m=1

K∑
k=1

(ECm,k + ÊOm,k) (21)

s.t. (16c)− (16e),
1

λm
+ T̂Om,k +

λm
2χm,k

+ TCm,k ≤ τm,

∀m ∈M,∀k ∈ K, (21a)

χm,k ≤
fm,k

am,kFm
(
fm,k

am,kFm
− λm),

∀m ∈M,∀k ∈ K. (21b)

However, constraint (21b) is still non-convex. To address this
issue, SCA technique is adopted to approximate the right-
hand-side (RHS) of the inequality in constraint (21b) by a
more tractable function at a given local point in each iteration.

It can be verified that the RHS of the inequality in constraint
(21b) is convex with respective to am,k. Since any convex
function is globally lower-bounded by its first-order Taylor



expansion at any given local point, its lower bound with given 
local point arm,k in the r-th iteration can be expressed as

fm,k
am,kFm

(
fm,k

am,kFm
− λm) ≥ Λrm,k +Ωrm,k(am,k − arm,k),

(22)

where Λrm,k =
fm,k

arm,kFm
(

fm,k

arm,kFm
− λm) and Ωrm,k =

fm,k(λmFma
r
m,k−2fm,k)

F 2
m(arm,k)

3 are constants.

With any given local point arm,k and the lower bound
expression in formula (22), problem (21) is approximated as

min
A,X

M∑
m=1

K∑
k=1

Om,kam,k (23)

s.t. (16c)− (16e),
1

λm
+Υm,kam,k +

λm
2χm,k

≤ τm,

∀m ∈M,∀k ∈ K, (23a)
χm,k ≤ Λrm,k +Ωrm,k(am,k − arm,k),
∀m ∈M,∀k ∈ K, (23b)

where Om,k = pmDm

R̄m,k
+ ηFmf

2
m,k and Υm,k = Dm

R̂m,k
+ Fm

fm,k

are constants. Note that the objective function and constraints
(16c), (16d), (16e) and (23b) are linear, and constraint (23a)
is convex. Therefore, problem (23) is convex, which can be
solved by standard optimization method, such as the interior-
point method.

B. Transmit Power Optimization

Given any feasible offloading strategy A, frequency band-
width B, computing resource F, and hovering location Q,
problem (19) is transformed into

min
P

M∑
m=1

K∑
k=1

ÊOm,k (24)

s.t. Gm,k ≤ pm ≤ Pmax,∀m ∈M,∀k ∈ K, (24a)

where Gm,k =
(
2Hm,k − 1

)
Bm,kd

αL

m,k/γ, with Hm,k =
am,kDm

Bm,kPLoS
m,k (τm− 1

λm
−TW

m,k−T
C
m,k)

being positive constant. Fur-
thermore, we have the following lemma.

Lemma 1: The objective function is monotonically increas-
ing with respect to pm.

Proof : Please refer to Appendix A. ■
Based on Lemma 1, the solution of problem (24) can be

obtained at the minimum transmit power Cm,k that satisfies
constraint (24a). Otherwise, pm can always be decreased to
decrease the objective value. Therefore, the solution can be
expressed as

p∗m = max {Cm,k,∀k ∈ K} . (25)

C. Frequency bandwidth Optimization

With any given feasible offloading strategy A, transmit
power P, computing resource F, and hovering location Q,
problem (19) is transformed into

min
B

M∑
m=1

K∑
k=1

ÊOm,k (26)

s.t. (16g), (16h), (19a).

It can be verified that this is a convex optimization problem,
which can be solved by standard method, such as the interior-
point method.

Remark 1: The bandwidth of each UAV is entirely allocated
to the IoT devices. With the increase in frequency bandwidth,
the energy consumption gradually decreases and approaches
an asymptotic constant.

Proof : Please refer to Appendix B. ■

D. Computing resource Optimization

With any given feasible offloading strategy A, transmit
power P, frequency bandwidth B, and hovering location Q,
problem (19) is transformed into

min
F

M∑
m=1

K∑
k=1

ECm,k (27)

s.t. (16e), (16f), (19a).

It can be verified that this is a convex optimization problem.
The solution of this problem can be obtained through KKT
conditions as follows.

f∗m,k =
[(Jm,kλm + 1) +

√
J2
m,kλ

2
m + 1]am,kFm

2Jm,k
, (28)

where Jm,k = τm − 1
λm
− T̂Om,k is a positive constant.

Proof : Please refer to Appendix C. ■

E. Hovering location Optimization

With any given feasible offloading strategy A, transmit
power P, frequency bandwidth B, and computing resource
F, problem (19) is transformed into

min
Q

M∑
m=1

K∑
k=1

ÊOm,k (29)

s.t. (16a), (16b), (19a).

Note that this problem is still non-convex due to the coupling
between the horizontal and vertical coordinates of the hovering
location. Therefore, we further decompose problem (29) into
the horizontal and vertical coordinate optimization problems.



1) Horizontal coordinate optimization problem: Given any 
feasible vertical coordinate zk, problem (29) is transformed 
into

min
qh
k

M∑
m=1

K∑
k=1

ÊOm,k (30)

s.t. (19a),

qhmin ≤ qhk ≤ qhmax,∀k ∈ K, (30a)

∥qhk − qhj ∥2 ≥ Dh,∀k ∈ K, j ̸= k, (30b)

where qhk = [xk, yk]
T ∈ R2×1 denotes the horizontal coordi-

nate of the k-th UAV’s location, qhmin = [xmin, ymin]
T ∈

R2×1 and qhmax = [xmax, ymax]
T ∈ R2×1 denote the

horizontal hovering range, and Dh = d2min − (zk − zj)
2 is

constant. Then, we introduce slack variables µm,k and θm,k,
∀m ∈M, ∀k ∈ K, and thus problem (30) is transformed into

min
qh
k ,µm,k,θm,k

M∑
m=1

K∑
k=1

pm
am,kDm

µm,k
(31)

s.t. (30a), (30b),
am,kDm

µm,k
≤ Sm,k,∀m ∈M,∀k ∈ K, (31a)

µm,k ≤ R̂m,k,∀m ∈M,∀k ∈ K, (31b)

θm,k ≤
180

π
arcsin(

zk
dm,k

),

∀m ∈M,∀k ∈ K, (31c)

where Sm,k = τm − 1
λm
− TWm,k − TCm,k. It can be verified

that the objective function of problem (31) and R̂m,k are
monotonically decreasing and increasing with respect to µm,k
and θm,k, respectively. Therefore, at the optimal solution of
problem (31), the constraints (31b) and (31c) can be met with
equality, otherwise the objective value of problem (31) can
always be decreased by increasing θm,k and µm,k. Therefore,
solving problem (31) is equivalent to solving problem (30).

In problem (31), constraints (30b), (31b) and (31c) are
still non-convex due to the non-convexity of R̂m,k and
180
π arcsin( zk

dm,k
). To address this issue, SCA technique is

adopted to approximate them respectively by a more tractable
function at a given local point in each iteration.

It can be verified that the left-hand-side (LHS) of constraint
(30b) is convex with respect to qhk and qhj , which is globally
lower-bounded by its first-order Taylor expansion at any given
local point. Therefore, its lower bound at the given local points
qh,rk and qh,rj in the r-th iteration can be given by

∥qhk − qhj ∥2 ≥− ∥q
h,r
k − qh,rj ∥

2

+ 2(qh,rk − qh,rj )T (qhk − qhj ) = dh,lbk,j . (32)

To address the non-convexity of constraint (31b), we first
introduce a lemma as follows.

Lemma 2: Given A1 ≥ 0 and A2 ≥ 0, ψ(t1, t2) =
A1

t1
log2(1 +

A2

t2
) is a convex function for t1 > 0 and t2 > 0.

Proof : Please refer to Appendix D. ■
Based on Lemma 2, it can be verified that R̂m,k is a convex

function with respect to 1 + a exp(−b[θm,k − a]) and dαL

m,k.
Hence, the lower bound of R̂m,k at the given local point

qh,rk = [xrk, y
r
k]
T ∈ R2×1 and θrm,k in the r-th iteration can be

expressed as

R̂m,k ≥R̂rm,k − V rm,k(d
αL

m,k − (drm,k)
αL)

− Irm,ka(exp(−b[θm,k − a])− exp(−b[θrm,k − a]))
= R̂lbm,k, (33)

where drm,k = ∥qh,rk − wm∥, R̂rm,k =
Bm,k

1+a exp(−b[θm,k−a]) log2(1 + pmγ
Bm,k(drm,k)

αL
), Irm,k =

Bm,k

(1+a exp(−b[θm,k−a]))2 log2(1 + pmγ
Bm,k(drm,k)

αL
),

V rm,k =
Bm,kpmγ

ln 2(1+a exp(−b[θm,k−a]))(drm,k)
αL [Bm,k(drm,k)

αL+pmγ]

are positive constants.
Similarly, since the RHS of the inequality in constraint (31c)

is convex with respect to dm,k, its lower bound at the given
local point qh,rk in the r-th iteration can be expressed as

180

π
arcsin(

zk
dm,k

) ≥ Qrm,k −Orm,k(dm,k − drm,k), (34)

where Qrm,k = 180
π arcsin( zk

drm,k
), and Orm,k =

zk

(drm,k)
2
√

1− zk
(dr

m,k
)2

are positive constants.

According to the lower bounds expressions in (32), (33) and
(34), with any given local points qh,rk and θrm,k, problem (31)
can be approximated as

min
qh
k ,µm,k,θm,k

M∑
m=1

K∑
k=1

pm
am,kDm

µm,k
(35)

s.t. (30a), (31a),

dh,lbk,j ≥ D
h,∀k ∈ K, j ̸= k, (35a)

µm,k ≤ R̂lbm,k,∀m ∈M,∀k ∈ K, (35b)

θm,k ≤ Qrm,k −Orm,k(dm,k − drm,k),
∀m ∈M,∀k ∈ K. (35c)

Since the objective function and the constraints are all convex,
problem (35) is a convex optimization problem. Therefore, the
solution can be obtained by the interior-point method.

2) Vertical coordinate optimization problem: Given any
feasible horizontal coordinate xk and yk, problem (29) is
transformed into

min
zu

M∑
m=1

K∑
k=1

ÊOm,k (36)

s.t. (19a),
zmin ≤ zk ≤ zmax,∀k ∈ K, (36a)

(zk − zj)2 ≥ Dv,∀k ∈ K, j ̸= k, (36b)

where Dv = dmin − ∥qhk − qhj ∥2 is constant. Note that this
problem is similar to problem (30). Hence, a similar approach
can be adopted to solve problem (36), i.e., introducing slack
variable and applying SCA technique. In this way, given the
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Algorithm 1 Overall algorithm for problem (18)
1: r ← 0
2: Initialize the offloading strategy arm,k, the transmit power
prm, the frequency bandwidth Brm,k, the computing re-
source frm,k, and the hovering locations of the UAVs qrk.

3: repeat
4: Solve problem (23) with the local points prm, Brm,k,

frm,k and qrk by the interior-point method, and obtain
the solution a∗m,k.

5: Update the local point ar+1
m,k ← a∗m,k.

6: Solve problem (24) with the local points ar+1
m,k , Brm,k,

frm,k and qrk by formula (25), and obtain the solution
p∗m.

7: Update the local point pr+1
m ← p∗m.

8: Solve problem (26) with the local points ar+1
m,k , pr+1

m ,
frm,k and qrk by the interior-point method, and obtain
the solution B∗

m,k.
9: Update the local point Br+1

m,k ← B∗
m,k.

10: Solve problem (27) with the local points ar+1
m,k , pr+1

m ,
Br+1
m,k and qrk by formula (28), and obtain the solution

f∗m,k.
11: Update the local point fr+1

m,k ← f∗m,k.
12: Solve problem (29) with the local points ar+1

m,k , pr+1
m ,

Br+1
m,k and fr+1

m,k by solving problems (35) and (37), and
obtain the solution q∗

k.
13: Update the local point qr+1

k ← q∗
k.

14: r ← r + 1.
15: until The objective value converges.

local points zrk and ϕrm,k in the r-th iteration, problem (36)
can be transformed into

min
zk,νm,k,ϕm,k

M∑
m=1

K∑
k=1

pm
am,kDm

νm,k
(37)

s.t. (36a),

− (zrk − zrj )2 + 2(zrk − zrj )(zk − zj) ≥ Dz,

∀k ∈ K, j ̸= k, (37a)
am,kDm

νm,k
≤ Sm,∀m ∈M,∀k ∈ K, (37b)

νm,k ≤ R̃lbm,k,∀m ∈M,∀k ∈ K, (37c)

ϕm,k ≤
180

π
arcsin(

zk
dm,k

),

∀m ∈M,∀k ∈ K, (37d)

where the LHS of the inequality in constraint (37a) is the lower
bound of that in constraint (36b) at the given zrk, and R̃lbm,k
is the lower bound of R̂m at the given zrk and ϕrm,k. They
are obtained by the SCA technique similar to formula (32)
and (33), respectively. In this problem, the objective function
is convex, constraint (36a) is linear, and the other constraints
are convex. Therefore, problem (37) is a convex optimization
problem, which can also be solve by the interior-point method.

F. Alternative algorithm

Based on the above solutions, an alternative algorithm is
proposed to solve the original problem (18). According to the
degree of initialization difficulty, this algorithm first optimizes
the offloading strategy A, and then sequentially optimizes the
other variables. First, in the (r + 1)-th iteration, given the
transmit power Pr, the frequency bandwidth Br, computing
resource Fr, and hovering location Qr, problem (23) is solved
to obtain the offloading strategy Ar+1. Second, with Ar+1,
Br, Fr, and Qr, problem (24) is solved to obtain Pr+1 by
formula (25). Third, with Ar+1, Pr+1, Fr, and Qr, problem
(26) is solved to obtained the Br+1 through the interior-point
method. Fourth, with Ar+1, Pr+1, Br+1, and Qr, problem
(27) is solved to obtained the Fr+1 through formula (28).
Finally, with Ar+1, Pr+1, Br+1, and Fr+1, problem (29)
is solved to obtained Qr+1 by optimizing the horizontal and
vertical coordinates of the hovering locations, respectively.
The iteration continues until the objective value of problem
(18) converges. The details of the alternative algorithm is
summarized in Algorithm 1.

G. Convergence and Complexity Analysis

It can be verified that the objective value of problem (18) is
non-increasing after each iteration of Algorithm 1. Moreover,
the objective function of problem (18) is lower-bounded by
a finite value. Therefore, the convergence of Algorithm 1 is
guaranteed.

Note that the complexity of Algorithm 1 lies in solving
the problems (23), (26) and (29). They are solved by the
interior-point method. Therefore, their complexities of solv-
ing these problems are roughly given by O(L(2MK)3.5),
O(L(MK)3.5) and O(L((2MK + 2K)3.5 + (2MK +
K)3.5)), respectively, where L represents the number of it-
erations. Hence, the complexity of the overall algorithm is
O(L((2MK)3.5 + (MK)3.5 + (2MK + 2K)3.5 + (2MK +
K)3.5)).

IV. SIMULATION RESULTS

In this section, numerical results are provided to validate
the effectiveness of the proposed algorithm. We consider the
AoI-aware UAV-aided MEC system with M = 10 IoT devices
that are randomly and uniformly distributed within a square
area of 1 × 1 km2. For ease of analysis, the IoT devices are
assumed to be the same, i.e., they have the same parameters:
the task generation rate of each device is set as λm = 1; the
APAoI requirement of each device is set as τm = 50 s; the
data size of the computing task generated by each device is
set as Dm = 10 Kbits; the required number of CPU cycles
for executing 1 bit task is set as Cm = 1000 cycle/bit; the
maximum transmit power of each device is set as Pmax = 0.1
W. Then, the vertical coordinate range of the UAV hovering
location is set as [30, 100] m. The number of UAV is set as
K = 3. The maximum channel bandwidth and CPU frequency
of each UAV are set as Bmax = 20 MHz and fmax = 10 GHz,
respectively. The channel power gain at the reference distance
of d0 = 1 m is ρ0 = −60 dB. The LoS and NLoS path
loss components are αL = 2.5 and αN = 3.5, respectively.



TABLE I
SIMULATION PARAMETERS

Parameter Description Value

M Number of IoT devices 10
K Number of UAVs 3
λm Task generation rate 1
Dm Computing data size 10 Kbits
τm APAoI requirement 50 s

Cm
Required CPU cycles

for executing 1 bit data 1000 cycle/bit

Pmax Maximum transmit power 0.1 W
Bmax Maximum channel bandwidth 20 MHz
fmax Maximum CPU frequency 10 GHz

ρ0
Channel power gain

at the reference distance of 1m -60 dB

αL LoS path loss component 2.5
αN NLoS path loss component 3.5
a Environment parameter 11.95
b Environment parameter 0.14
N0 Noise power spectral density -169 dBm/Hz
η Efficient switched capacitance 10−26

ϵ Convergence accuracy 10−6
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Fig. 4. Convergence of Algorithm 1.

The environment parameters are a = 11.95 and b = 0.14.
The power spectral density of the noise at the receiver is
N0 = −169 dBm/Hz. The effective switched capacitance is
η = 10−26. The convergence accuracy of the Algorithm 1
is ϵ = 10−6. Unless otherwise stated, the main simulation
parameters are summarized in Table I. For ease of expression,
the energy consumption mentioned in this section refers to
the energy expended by the UAVs and the IoT devices in
processing tasks generated within a unit time.

For analysis, we consider other three algorithms: 1) Max-
imum transmit power (MTP) algorithm: all the IoT devices
offload data at the maximum power; 2) Random hovering
location (RHL) algorithm: the UAVs hover at any feasible
locations; 3) Equal task assignment (ETA) algorithm: the tasks
of each IoT device are equally offloaded to the UAVs.

First, the convergence of the proposed algorithm is shown

in Fig. 4. It can be observed that the objective value decreases
quickly and the proposed algorithm can converges in a few
iterations. This demonstrates the convergence analysis in Sec-
tion III-G.

For ease of expression, we define the energy minimization
schemes with AoI and latency constraints as Scheme I and
Scheme II, respectively. The average APAoI of the IoT devices
in these schemes is plotted in Fig. 5. It can be observed
that the average APAoI of Scheme I consistently meets the
APAoI requirements of the IoT devices, and is lower than
that of the Scheme II. The reason is that Scheme I needs
to minimize the energy consumption while considering the
APAoI requirements of the IoT devices. By contrast, Scheme
II minimizes the energy consumption just considering the
average latency of the tasks offloaded by the IoT devices,
which results in large APAoI of the devices. Moreover, one
can also see from Fig. 5 that the average APAoI decreases
with the increase in the maximum frequency bandwidth and
the number of UAVs, but increases as the other parameters
increase. That is because more bandwidth and UAVs results
in more communication and computing resources, but more
data size, task generation rate and number of IoT devices
results in more workload. With more resources, these schemes
can reduce the APAoI of the devices by reasonably allocating
the resource. However, with more workload, limited resource
increases the APAoI of the devices.

Then, we also simulate the energy consumption under
these schemes. However, the difference in energy consumption
between Scheme I and Scheme II is marginal. To illustrate the
performance of these schemes clearly, we only present some
representative results in Fig. 6. Notably, the energy consump-
tion in Scheme I and Scheme II appears proximate. However,
Scheme I demonstrates slightly higher energy consumption.
Consequently, in Scheme I, the IoT devices achieve a lower
APAoI while the system consumes similar energy with that in
Scheme II.

To demonstrate the analysis of the bandwidth allocation in
Remark 1 of Section III-C, we simulate the proposed algorithm
with respect to the maximum frequency bandwidth of each
UAV under different APAoI requirements. The results are
depicted in Fig. 7. As can be seen, the energy consumption
decreases as the maximum bandwidth increases, and the rate
of decrease progressively diminishes. This is consistent with
the analysis in Remark 1. Since all the bandwidth is allocated
to the IoT devices, the bandwidth allocated to each device
increases with the increase in the maximum bandwidth. This
reduces the offloading duration, and thus decreasing the energy
consumption. However, the impact of the bandwidth on the
energy consumption is limited. As the maximum bandwidth
continuously increases, the energy consumption gradually ap-
proaches a constant value. Moreover, it can be also observed
from Fig. 7 that the energy consumption of the system with
low APAoI tolerance is larger than that of the system with high
APAoI tolerance, and the system with low APAoI tolerance
exhibits a slower convergence of energy consumption. The
reason is that the system with low APAoI tolerance needs more
resource to meet the APAoI requirements of the IoT devices,
which increases the energy consumption. Furthermore, more
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Fig. 5. Comparison of average APAoI in different schemes. (a) Maximum Ffequency bandwidth Bmax. (b) Number of UAVs K. (c) Task generation rate
λm. (d) Number of IoT devices M . (e) Data size of tasks Dm.

3 4 5 6 7 8 9 10

Number of UAVs

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Scheme I

Scheme II

5.98 6

1.00035

1.0004

(a)

1 2 3 4 5 6 7 8 9 10

Task generation rtate

1

2

3

4

5

6

7

8

9

10

11

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Scheme I

Scheme II

7 7.1

6.95

7

7.05

7.1

(b)

4000 5000 6000 7000 8000 9000 10000

Data size (Kbit)

1.004

1.005

1.006

1.007

1.008

1.009

1.01

1.011

1.012

1.013

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

5990 5995 6000

1.00747

1.00748

1.00749

Scheme I

Scheme II

(c)
Fig. 6. Comparison of energy consumption in different schemes. (a) Number of UAVs K. (b) Task generation rate λm. (c) Data size of tasks Dm.

allocated resource (i.e., the transmit power) leads to the
increase in the numerator of the energy consumption ÊOm,k for
offloading, thereby decelerating the convergence of the energy
consumption.

To valid the effectiveness of the proposed algorithm, we
compare it with three other algorithms in Fig. 8. Similar
to Fig. 5, the energy consumption increases as the data
size and the number of IoT devices increase. This is due
to the increased demand for communication and computing
resources. Furthermore, from Fig. 8(b), one can see that the
increase rate of energy consumption first increases and then
decreases with respect to the number of IoT devices. This is
because that the system needs to consume more energy to

process the additional tasks generated by the extra devices.
However, as the number of devices continues to increase,
the computing resource is gradually being fully utilized. The
further increase of the number of devices can only results
in a small increase in the energy consumption. In Fig. 8(c),
the energy consumption obtained by the proposed, the MTP
and the RHL algorithms decreases as the number of UAV
increases, but the decrease rate progressively diminishes. The
reason is that the increase in the number of the UAVs implies
the increase in the network resource, and then the tasks of
the IoT devices can be assigned more properly to reduce
the energy consumption while satisfying the their APAoI
requirements. However, the resource demand of the system has
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Fig. 7. Energy consumption versus maximum frequency bandwidth.

an upper bound. When the resource of the UAVs reaches the
bound, additional resource becomes redundant. Therefore, the
decrease rate of the energy consumption gradually decelerates.
As for the ETA algorithm, the energy consumption increases
with respect to the number of UAVs. That is because the
tasks are assigned equally to the UAVs. The increase in the
number of UAVs may paradoxically reduce the rationality of
the offloading strategy.

Compared with other algorithms, it can also be observed
that the proposed algorithm achieves the best performance in
Fig. 8, since all the resources are optimized in it. In contrast,
the IoT devices always offload at the maximum power in the
MTP algorithm. Although maximum transmit power reduces
the offloading duration, it generates excessive transmission
consumption for the devices close to the connected UAV. As
for the RHL algorithm, the stationary UAVs are equivalent
to the BSs. They can not provide large transmit rate for the
far devices, and thus increasing the energy consumption of
transmission. Furthermore, these devices need more computing
resource to meet their APAoI requirement, thereby increasing
the computing consumption. Finally, due to the equal task
assignment, the ETA algorithm can not allocate the resource
of the UAVs properly to the IoT devices. Therefore, these
algorithms perform worse than the proposed algorithm.

V. CONCLUSION

In this paper, we have investigated the AoI-aware UAV-
aided MEC system, where the UAVs provide computing
service for the ground IoT devices with heterogeneous APAoI
requirements. Based on the Poisson process model, the prob-
abilistic LoS channel model and the M/D/1 queue model, we
have derived the mathematical expression of the APAoI for
each IoT device. It consists of four parts: task generation
interval and the duration of transmission, waiting, and com-
puting. Then, we have formulated the optimization problem to
minimize the energy consumption of the system for executing
the tasks generated in unit time by jointly optimizing the
offloading strategy and the transmit power of the devices, and
the bandwidth and computing resource allocation as well as

the hovering locations of the UAVs, subject to the APAoI,
hovering location, communication and computing constraints.
This is a non-convex problem, and thus being challenging to
solve. As such, to solve the original problem efficiently, we
have decomposed it into five suproblems and proposed an iter-
ative algorithm to alternatively solve these subproblems, based
on the traditional mathematical method, the KKT conditions,
and the SCA technique. Numerical results have shown that
the energy minimization scheme with APAoI constraint has
advantages, and the proposed algorithm can reduce the energy
consumption compared to the benchmark algorithms.

APPENDIX A
PROOF OF LEMMA 1

Define f(x) = log2(1 + x) − x
ln 2(1+x) . The first-order

derivative of f(x) is given by f ′(x) = x
ln 2(1+x)2 . Note that

f ′(x) ≥ 0 for x ≥ 0. Therefore, f(x) is a monotonically
increasing function for x ≥ 0. Since f(0) = 0, one can have
f(x) ≥ 0 for x ≥ 0.

Then, let Ω =
∑M
m=1

∑K
k=1 Ê

O
m,k. The first-order deriva-

tives of Ω with respect to pm is given by

∂Ω

∂pm
=

K∑
k=1

log2(1 +Xm,kpm)− Xm,kpm
ln 2(1+Xm,kpm)

Um,k[log2(1 +Xm,kpm)]2
, (38)

where Um,k =
Bm,kP

LoS
m,k

am,kDm
and Xm,k = γ

Bm,kd
αL
m,k

are non-
negative constants.

Let Xm,kpm = t, then the numerator of the RHS of the
equality in (38) can be transformed into g(t) = log2(1 + t)−

t
ln 2(1+t) . According to the previous proof, we have g(t) ≥ 0

for t ≥ 0. Thus, ∂Ω
∂pm

≥ 0 for pm ≥ 0. Therefore, Ω is
monotonically increasing with respect to pm. The proof is
completed.

APPENDIX B
PROOF OF REMARK 1

Define Φ(x) = x log2(1 + C1

x ) with C1 being a positive
constant. The first-order and second-order derivatives of Φ(x)
are respectively given by

Φ′(x) = log2(1 +
C1

x
)− C1

(x+ C1) ln 2
, (39)

Φ′′(x) = − C2
1

x(x+ C1)2 ln 2
. (40)

Since Φ′′(x) ≥ 0 for x ≥ 0, Φ′(x) is a monotonically
increasing function for x ≥ 0. Moreover, lim

x→∞
Φ′(x) = 0.

Hence, we have Φ′(x) ≥ 0 for x ≥ 0, and thus Φ(x) is a
monotonically increasing function for x ≥ 0.

The objective function and the offloading duration can be
transformed into ÊOm,k = C2

Bm,k log2(1+
C3

Bm,k
)

and T̂Om,k =

C4

Bm,k log2(1+
C3

Bm,k
)
, respectively, with C2 =

am,kpmDm

PLoS
m,k

, C3 =

pmγ

d
αL
m,k

and C4 =
am,kDm

PLoS
m,k

being positive constants. Therefore,

ÊOm,k and T̂Om,k are both monotonically decreasing function
with respect to Bm,k for Bm,k ≥ 0. Furthermore, since
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Fig. 8. Comparison of energy consumption in different algorithms. (a) Data size of tasks Dm. (b) Number of IoT devices M . (c) Number of UAVs K.

lim
Bm,k→∞

ÊOm,k =
C2(1+

C3
Bm,k

) ln 2

C3
, the energy consumption

gradually decreases and converges to a constant. That is to say,
the energy consumption gradually decreases to an asymptotic
constant with respect to Bm,k. Therefore, to minimize the en-
ergy consumption, the bandwidth of each UAV is all allocated
to the IoT devices. The proof is completed.

APPENDIX C
PROOF OF THE SOLUTION OF PROBLEM (27)

The Lagrangian of problem (27) can be given by

L2(F,ν,ω,φ)

=

M∑
m=1

K∑
k=1

ECm,k +

K∑
k=1

νk(

M∑
m=1

fm,k − fmax)

+

M∑
m=1

K∑
k=1

φm,k(
λm

2
fm,k

am,kFm
(

fm,k

am,kFm
− λm)

+
am,kFm
fm,k

− Jm,k)

+
M∑
m=1

K∑
k=1

ωm,k(λmam,kFm − fm,k), (41)

where νk, φm,k and ωm,k are the nonnegative Lagrange
multipliers. Then, the KKT conditions can be expressed as

φm,k(
λm
2
·

λm

am,kFm
− 2

a2m,kF
2
m
fm,k

[
fm,k

am,kFm

( fm,k

am,kFm
− λm

)
]2
− am,kFm

f2m,k
)

+ 2µam,kFmfm,k + νk − ωm,k = 0,∀m ∈M,∀k ∈ K,
(42)

νk(
M∑
m=1

fm,k − fmax) = 0,∀k ∈ K, (43)

φm,k(
λm

2
fm,k

am,kFm
(

fm,k

am,kFm
− λm)

+
am,kFm
fm,k

− Jm,k) = 0,

∀m ∈M,∀k ∈ K, (44)
ωm,k(λmFmam,k − fm,k) = 0,∀m ∈M,∀k ∈ K, (45)
M∑
m=1

fm,k − fmax ≤ 0,∀k ∈ K, (46)

λmFmam,k − fm,k ≤ 0,∀m ∈M,∀k ∈ K, (47)

λm

2
fm,k

am,kFm
(

fm,k

am,kFm
− λm)

+
am,kFm
fm,k

− Jm,k ≤ 0,

∀m ∈M,∀k ∈ K, (48)
fm,k ≥ 0, νk ≥ 0, ωm,k ≥ 0, φm,k ≥ 0,∀m ∈M,∀k ∈ K.

(49)

From (48), we have λmFmam,k−fm,k ̸= 0. Thus, according
to (45), one can have ωm = 0. Moreover, it can be verified
that the first term of (42) is negative. In order to guarantee
that the equality of (42) holds, φm,k can not equal to zero,
i.e., φm,k ̸= 0. Therefore, we have λm

2
fm,k

am,kFm
(

fm,k
am,kFm

−λm)
+

am,kFm

fm,k
−Jm,k = 0 from (44), which can be transformed into

− 2Jm,k
a2m,kF

2
m

f2m,k +
2(Jm,kλm + 1)

am,kFm
fm,k − λm = 0. (50)

Then, fm,k can be obtained as

fm,k =
[(Jm,kλm + 1) +

√
J2
m,kλ

2
m + 1]am,kFm

2Jm,k
, (51)

or

fm,k =
[(Jm,kλm + 1)−

√
J2
m,kλ

2
m + 1]am,kFm

2Jm,k
. (52)

Since Jm,kλm ≥ 0, we have
√
J2
m,kλ

2
m + 1 ≥ 1. Then, for

(52), one can have

fm,k =
[(Jm,kλm + 1)−

√
J2
m,kλ

2
m + 1]am,kFm

2Jm,k

≤ λmFmam,k
2

, (53)

which contradicts (47). Therefore, the optimal solution of
problem (27) can be expressed as

f∗m,k =
[(Jm,kλm + 1) +

√
J2
m,kλ

2
m + 1]am,kFm

2Jm,k
. (54)

The proof is completed.



APPENDIX D
PROOF OF THE LEMMA 2

The second-order partial derivatives of ψ(t1, t2) are given
by

∂2ψ(t1, t2)

∂t21
=

2A1

ln 2t31
ln(1 +

A2

t2
), (55)

∂2ψ(t1, t2)

∂t22
=
A1A2t

−3
2 (2 +A2t

−1
2 )

ln 2t1(1 +A2t
−1
2 )2

, (56)

∂2ψ(t1, t2)

∂t1t2
=
∂2ψ(t1, t2)

∂t2t1
=

A1A2t
−2
2

ln 2t21(1 +A2t
−1
2 )

. (57)

One can see that ∂2ψ(t1,t2)
∂t21

> 0 for t1 > 0 and t2 > 0.
Moreover, we have

∂2ψ(t1, t2)

∂t21

∂2ψ(t1, t2)

∂t22
− ∂2ψ(t1, t2)

∂t1t2

∂2ψ(t1, t2)

∂t2t1

=
2A2

1A2t
−3
2 (2 +A2t

−1
2 ) ln(1 + A2

t2
)−A2

1A
2
2t

−4
2

(ln 2)2t41(1 +A2t
−1
2 )2

(a)

≥ A2
1A2t

−3
2

(ln 2)2t41(1 +A2t
−1
2 )2

· 3 +A2t
−1
2

t2 +B
> 0, (58)

where (a) is due to ln(1 + 1
t3
) ≥ 1

t3+1 for t3 > 0. Therefore,
the Hessian matrix of ψ(t1, t2) is positive definite. Thus,
ψ(t1, t2) is a convex function. The proof is completed.
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