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Abstract. The paper proposes a deep learning model based on Chebyshev Network Gated Recurrent Units, which is called
Spectral Graph Convolution Recurrent Neural Network, for multichannel electroencephalogram emotion recognition. First, in
this paper, an adjacency matrix capturing the local relationships among electroencephalogram channels is established based on
the cosine similarity of the spatial locations of electroencephalogram electrodes. The training efficiency is improved by
utilizing the computational speed of the cosine distance. This advantage enables our method to have the potential for real-time
emotion recognition, allowing for fast and accurate emotion classification in real-time application scenarios. Secondly, the
spatial and temporal dependence of the Spectral Graph Convolution Recurrent Neural Network for capturing
electroencephalogram sequences is established based on the characteristics of the Chebyshev network and Gated Recurrent
Units to extract the spatial and temporal features of electroencephalogram sequences. The proposed model was tested on the
publicly accessible dataset DEAP. Its average recognition accuracy is 88%, 89.5%, and 89.7% for valence, arousal, and
dominance, respectively. The experiment results demonstrated that the Spectral Graph Convolution Recurrent Neural Network
method performed better than current models for electroencephalogram emotion identification. This model has broad
applicability and holds potential for use in real-time emotion recognition scenarios.

Keywords: Electroencephalogram, emotion recognition, Chebyshev Network Gated Recurrent Units, Spectral Graph
Convolution Recurrent Neural Network, adjacency matrix

1. Introduction

Emotion recognition has become a research focus
in the fields of psychology, neuroscience, and
medicine [1]. In order to accurately capture and
interpret human emotions, researchers have adopted
various measurement methods, primarily including
audiovisual techniques and physiological techniques
[2]. Audiovisual techniques rely on external
expressions such as facial expressions, language, and
gestures, which are prone to overlooking subtle
emotions and are influenced by human control and
deception. In contrast, physiological techniques
based on electroencephalography (EEG) provide a
more reliable and objective approach to emotion
recognition [3]. As a result, there has been increasing
attention to emotion recognition based on EEG
signals.

Mehrabian expanded the emotion model from two-
dimensional to three-dimensional [4]. The three-
dimensional emotion model includes the addition of
dominance to the V-A model initially proposed by
Russel [5]. It involves describing the emotional state
of individuals based on three dimensions: valence

(i.e., calm/excited), arousal (i.e., unpleasant/pleasant),
and dominance (i.e., uncontrollable/controllable).
This study employs a three-dimensional emotion
model to evaluate the classification performance of
the system. This model provides a more
comprehensive representation of emotions and
possesses enhanced capabilities for emotion analysis.

Deep learning methods have been widely applied
in emotion recognition research based on EEG. Due
to the temporal characteristics of EEG signals, some
researchers utilize recurrent convolutional networks
to capture the temporal dependencies of EEG signals
and better explore the temporal correlations within
the signals. Chowdary, MK et al. used three
architectures, Recurrent Neural Network (RNN),
Long Short Term Memory (LSTM), and Gated
Recurrent Unit (GRU), to identify emotions with
EEG signals. It was finally concluded that RNN
improved the recognition results compared with
traditional classification methods [6].

However, these methods focus solely on temporal
features while neglecting the spatial dimension. Xu,
GX et al. introduced a hybrid GRU and CNN deep
learning framework called GRU-Conv to extract



critical spatial and temporal features from EEG data,
with an average accuracy of 70.07% on the DEAP
dataset Valence [7]. In reality, the distribution of
EEG channels is not grid-like but rather exhibits
irregular connections. This poses limitations for CNN
in capturing structural information from the
electrodes.

To overcome this issue, researchers have proposed
methods to construct complex brain networks, where
electrodes are abstracted as nodes and their
connections are abstracted as edges. Graph Neural
Network (GNN) can be utilized to learn from this
type of graph-structured data. Zhu et al. [8] and Yin
et al. [9] employed distance-based approaches using
GCN to explore the relationships among EEG
channels. However, compared to computationally
intensive Euclidean distance, cosine similarity is
more suitable for describing the directionality and
correlation between channels. Demir et al. [10]
proposed the EEG-GNN algorithm, which utilizes
one-dimensional convolution in the temporal
dimension to calculate Pearson correlation
coefficients and employs them as functional
connection weights, achieving superior classification
performance compared to CNN architectures.
However, the Pearson correlation coefficient is
primarily suitable for measuring linear correlations
and may not accurately capture the similarity of
signals with non-linear relationships. To overcome
this issue, this study employs cosine similarity to
construct the adjacency matrix of EEG signals.
Cosine similarity does not rely on the assumption of
linear correlation in signals, resulting in higher
computational efficiency as it only involves inner
product operations between vectors. This approach is
applicable to real-time systems and enables better
capture of the similarity between signals.

To overcome the limitations of existing techniques,
this paper proposes a deep learning model called
Spectral Graph Convolutional Recurrent Neural
Network (SGCRNN) based on ChebNet and GRU,
specifically designed for emotion recognition from
multi-channel EEG data. The SGCRNN model
effectively extracts the spatiotemporal features of
EEG signals and captures the local relationships
between channels. In this study, ChebNet
approximates graph convolutional operations using
Chebyshev polynomials, enabling the effective
capture of local relationships among nodes in the
graph data. Modeling these local relationships is
crucial for capturing channel-to-channel correlations
in EEG signals and facilitates the extraction of more

accurate feature representations. The main
contributions of this paper are as follows:
 By utilizing the cosine similarity of the spatial

positions of the EEG electrodes, it is possible to
capture the local relationships between EEG
channels more accurately. This method takes
advantage of the computational efficiency of
cosine distance, effectively reducing training
time, and enhancing its practicality and value in
real-time monitoring applications.

 The use of ChebNet as a replacement for matrix
multiplication in the GRU network, along with
the utilization of Chebyshev polynomials for
local approximation, avoids explicit matrix
multiplication operations. This approach
benefits the model's complexity and
computational efficiency. This method contains
the advantages of the Chebyshev network for
extracting spatial features of EEG sequences and
also utilizes the features of GRU for extracting
EEG sequences. SGCRNN solves the problem
of the weak spatial feature extraction ability of
RNN, achieving full capture of the spatial and
temporal dependence of EEG sequences.

 This study proposes preprocessing methods such
as time slicing and data augmentation and
demonstrates their effectiveness through
ablation experiments. By comparing with other
models, the results show that the SGCRNN
method achieves superior emotion recognition
performance in the three-dimensional emotion
model. These experiments validate the
effectiveness and superiority of the novel
method proposed in this paper.

2. Related Work

2.1. Feature extraction

In emotion recognition research, commonly used
representative EEG features are shown in Table 1.
De-
spite the existence of various manually extractable
EEG features, these traditional handcrafted features
are based on a significant accumulation of domain
knowledge, thus increasing the learning cost for
researchers. Furthermore, most of the current neural
signal features are still based on traditional time-
series signal analysis theories and methods. However,
the correlation between these signal features and
emotional states remains unclear and requires further



exploration, with certain limitations in their
effectiveness.

Table 1

Common Methods for EEG Feature Extraction

Feature Type Extracted Features
Time +

Frequency
Domain Features

1. Peak-to-Peak Interval. 2. Mean Square
Value. 3. Variance. 4. Mean Value. 5.
Skewness. 6. Kurtosis. 7. 1st/2nd Difference.
8. Hjorth Parameter: Mobility, Complexity,
Activity. 9. Higher-order Crossing. 10.
Maximum Power Spectral Frequency. 11.
Power Sum. 12. Maximum Power Spectral
Density. 13. Wavelet Energy. 14. Wavelet
Entropy. 15. Amplitude and latency of ERPs.
16. Shannon Entropy.

Nonlinear
Dynamical

System Features

1. Approximate Entropy. 2. C0 Complexity.
3. Correlation Dimension. 4. Kolmogorov
Entropy. 5. Lyapunov Exponent. 6.
Permutation Entropy. 7. Singular Entropy. 8.
Spectral Entropy. 9. Sample Entropy. 10.
Differential Entropy. 11. Fractal Dimension.
12. Hurst Exponent. 13. Lyapunov
Complexity. 14. Recurrence Plot: recurrence
rate, determinism, entropy, averaged diagonal
length, length of the longest diagonal line,
laminarity, trapping time, length of the
longest vertical line, recurrence time of 1st
type, recurrence time of 2nd type.

Brain
Asymmetry

Features

1. Difference Between Channels. 2. Ratio
Between Channels. 3. Asymmetry Index
(AsI).

High-level cognitive functions rely on subtle
coordination between local and global brain activities,
which are closely related to the network of neurons
and brain regions [11]. There is inherent correlation
in the brain electrical signals originating from
different brain regions, making the study of brain
networks a topic of extensive interest [12]. J. Jia et al.
proposed a method that combines the distance and
functional connectivity between EEG channels to
construct a graph network for emotion classification
in a two-dimensional emotion model [13]. However,
calculating Pearson correlation coefficients and
Euclidean distances is relatively complex, requiring
consideration of multiple factors such as means and
standard deviations. In contrast, cosine similarity
calculations are relatively simple and efficient,
involving only inner products between vectors. This
makes cosine similarity advantageous for processing
large-scale data and real-time systems.

The brain network constructed using cosine
similarity reflects the coupling correlation between
two EEG channels, making it insensitive to
amplitude changes. This characteristic reduces the
impact of inter-individual differences and helps

establish robust and accurate EEG-based recognition
models. Considering these factors, this study chooses
the method of constructing brain networks using
cosine similarity for extracting emotional features
from EEG signals.

2.2. Latest Research Method

Hand-engineered approaches have certain
limitations in the analysis of EEG signals for emotion
recognition. Firstly, they rely on domain knowledge,
which restricts their generalizability and applicability.
Secondly, these methods often focus only on local
feature extraction and fail to capture the global
dynamics and spatiotemporal relationships of EEG
signals comprehensively. Moreover, handcrafted
methods have limited expressive power, which may
result in the loss of important information and affect
the accuracy of emotion classification. They are also
highly dependent on specific tasks and datasets,
making them less applicable to new tasks and
datasets. Lastly, manual operations and subjectivity
can lead to uncertainties and irreproducibility. To
overcome these limitations, exploring methods based
on machine learning and deep learning can
automatically learn relevant features and patterns in
EEG signals, thereby improving the accuracy and
generalization capability of emotion analysis.

EEG signals are a type of sequential data, and the
memory units and temporal feedback connections in
RNN enable it to effectively handle the temporal
characteristics of the signals. Moreover, the
emotional information in EEG signals may be
influenced by long-term dependencies, and RNN can
capture such dependencies and model the emotional
features more effectively. Therefore, many
researchers choose to apply RNN in the study of
EEG-based emotion recognition. J. X. CHEN et al.
proposed a hierarchical bidirectional recurrent unit
with an attention GRU network for human emotion
classification from continuous EEG signals. The
model showed a more robust classification
performance than the baseline LSTM model [14].
However, in EEG signals, the arrangement of
electrodes forms spatial relationships, which would
be overlooked if only RNN is used for analysis. To
fully leverage the spatial information in EEG signals,
we can introduce CNN, which can effectively capture
the local spatial features in EEG signals.

Through CNN, we can extract local spatial
features from EEG signals, such as the correlation
between electrodes and the topological structure.



This helps to analyze the emotional content of EEG
signals more accurately. S Tripathi et al. investigated
two neural network models, a simple Deep Neural
Network (DNN) and a CNN, to categorize user
emotions by EEG signals. It showed that neural
networks could effectively classify brain signals that
outperform traditional methods [15]. Yang et al.
proposed a method based on a multicolumn CNN
algorithm that can classify emotions based on EEG
signals obtained from a DEAP database [16]. Liao et
al. extracted statistical features of EEG and sent them
to CNN, and the accuracy of Valence in binary
classification reached 81.4% [17]. Salama et al. used
a 3D-CNN deep learning architecture to extract
spatiotemporal features from EEG signals and
proposed a combination of data augmentation and
integrated learning techniques to obtain the final
fusion prediction [18]. Cui et al. proposed a emotion
recognition method based on two-dimensional
convolution neural networks and three-dimensional
convolution neural networks, called ResNeXt
Attention 2D-3D Convolutional Neural Networks
(RA2-3DCNN). The results proved the spatio-
temporal effectiveness of the method for emotion
classification [19]. Iyer et al. developed a hybrid
model based on a combination of CNN and LSTM
for precise emotion detection. The results indicate
that the integration of CNN and LSTM outperforms
the use of a single CNN in feature extraction [20].
Kim et al. proposed integrating a CNN with an RNN
with skip connections, creating a superior predictive
model based on time-series data. The results indicate
the remarkable efficiency of GRU compared to
LSTM [21]. However, CNN is primarily designed to
handle flat-structured data and faces challenges in
directly processing the connectivity relationships
within EEG signals. EEG signals exhibit complex
connections between electrodes, forming a brain
network. In contrast, GCN can effectively capture the
inter-electrode connectivity relationships in EEG
signals and utilize graph structures for information
propagation.

An increasing number of researchers are utilizing
GCN [22] for EEG-based emotion recognition tasks.
P Zhong et al. proposed a regularized graph neural
network (RGNN) for EEG-based emotion
recognition, which considered the biotopology
among different brain regions and modeled the inter-
channel relationships in EEG signals by the
adjacency matrix in the graph neural network [23]. T
Song et al. proposed a novel dynamic graph
convolutional neural network (DGCNN)-based
method for multi-channel EEG emotion recognition,

which can be trained to dynamically learn the
intrinsic relationships among different EEG channels,
thus facilitating EEG feature extraction [24].

In summary, this paper proposes an innovative
approach that combines Chebnet with GRU. The
method leverages Chebnet to replace the matrix
multiplication operation in GRU, resulting in more
efficient computations. By introducing Chebnet, the
computational complexity is reduced, and the
training and inference speed of the model are
accelerated. This combined approach not only
improves computational efficiency but also retains
the advantages of GRU in sequence modeling,
enabling the model to better handle the temporal
relationships in EEG signals. Therefore, this method
has the potential advantage in tasks such as EEG
signal processing and emotion recognition.

3. Graph-based EEGs Modeling

This section presents a method of feature
extraction using brain networks, specifically by
constructing brain networks based on the cosine
similarity of electrode spatial positions in EEG data.
Additionally, we provide a detailed explanation of
the principles behind spectral graph convolution and
GRU, which form the foundational components of
the SGCRNN method.

3.1. Brain network construction

A graph structure in mathematical terms can be
written as the following expression.

 , ,G V E W （1）

where, V is the set of nodes of the graph, E is the set
of edges of the graph, N NW  is the adjacency
matrix of the graph, which represents the relationship
of EEG channels, N denotes the number of EEG
channels, and the value of ijW represents the
relationship between channel i and channel j .

Functional connectivity, distance-based and neural
networks can be employed to determine the value of
��� . This paper leverages the fast computation
advantage of cosine distance and adopts a method
based on cosine distance between EEG electrodes to
construct an adjacency matrix, which captures the
local relationship between EEG signals.

Due to the presence of noise in brain electrical
signals, using traditional Euclidean distance to



construct the adjacency matrix may result in a matrix
that is too sparse, leading to poor feature extraction
effectiveness. However, using cosine distance to
construct the edge matrix can better capture the local
relationships in the brain electrical signals and
effectively reduce the impact of noise interference.
Additionally, due to the fast calculation of cosine
distance, using cosine distance to construct the
adjacency matrix can effectively reduce the training
time of the model and be suitable for real-time
monitoring. To capture the local relationship among
EEG electrodes, the adjacency matrix W is
constructed using the cosine distance between the
EEG electrode position vectors. The cosine distance
between EEG electrodes is calculated as follows.

1 1 2 2 3 3

2 2 2 2 2 2
1 2 3 1 2 3

* * *
i jv v

x y x y x ydist
x x x y y y

 


    
（2）

where, 1 2 3 1 2 3[ , , ], [ , , ]i jv x x x v y y y  are the three-
dimensional coordinates of the two electrodes
according to the standard 10-20 EEG electrode
placement [25,26].

The equation for constructing the adjacency matrix
W is as follows.

, ,,     

0,               
i j i jv v v v

ij

dist dist
W

otherwise

 


（3）

where, ,  1,  2,    , , ij i j NW   , denotes the cosine
distance between nodes i and j , and  is the
threshold of matrix sparsity.

Based on preliminary experiments, 1.5  is
chosen to construct the adjacency matrix for all EEG
fragments used in the experiment. The resulting
universal undirected weighted graph is shown in
Figure 1.

The brain network we have constructed reflects the
coupling correlation between two EEG channels. As
a result, the network is not highly sensitive to
changes in amplitude. This characteristic helps
reduce the impact of inter-individual differences on
the results, thus facilitating the establishment of a
robust and accurate EEG-based recognition model.

Fig. 1. The Undirected Weighted Graph Generated at 1.5  .

3.2. Spectral graph convolution

Spectral graph convolution is an algorithm for
processing graph data using neural networks. It
combines the concepts of graph theory and neural
networks by using graph convolutional operations to
model and process graph data, such as Laplace
transform and Fourier transform. Graph data is
represented as a frequency spectrum matrix, which
combines the frequency information of each node
with the graph structure information. Then, through
convolutional operations on the frequency spectrum
matrix, graph features are extracted, and graph
Laplace matrix is used to study the properties of the
graph. The symmetric normalized Laplace matrix of
graphG is defined as follows.

( 1/2) ( 1/2)L E D WD   (4)

where, E is the unit matrix;
1( ,  ... , ) N N

ND diag d d   is called the Degree

matrix of the graph, herein,
1

N
i ijj
d W


 , that is the

number of neighbors of each node; and W is the
adjacency matrix.

For a given spatial signal N FNx  , FN is the
characteristic number, and its graph Fourier
transform is

ˆ Tx U x (5)

Where x̂ is the frequency domain transformed signal;
U is the orthogonal matrix obtained by the singular
value decomposition of L . The process is as follows

TL U U  (6)

The convolution operation for two signals x and
y on graph G is defined as



[ , ] (( ) ( ))T TG x y U U x U y   (7)

where,  is the Hadamard product.
( )g  denotes a filter function, and the

signal x filtered by ( )g L can be expressed as

( ) ( ) ( )T Ty g L x g U U x Ug U x     (8)

where, ( )g  is expressed as follows

1( ) 0
( )

0 ( )N

g
g

g





 
    
  


  


(9)

where, 1 2,    , N  , are the eigenvalues of  L .
Since the step of doing the eigendecomposition of

L is time-consuming, the K-order Chebyshev
polynomial is used instead of the spectral domain
convolution kernel, that is the approximation ( )g  , to
reduce the parameter complexity. The derivation
equation is as follows

1

0
( ) ( )

K

k k
k

g T




    (10)

where, k is the Chebyshev polynomial coefficient
and kT is the calculation of Chebyshev polynomial,
which is calculated as follows

0 ( ) 1T x  (11)

1( )T x x (12)

1 2( ) 2 ( ) ( ),    2k k kT x xT x T x k    (13)

Combined with equation (8), it can be
converted as follows

11

0

1

0

( )
( ) 0

   
0 ( )

  ( )

T

k kK
T

k
k k N

K

k k
k

y Ug U x
T

U U x
T

T L x

 

 











 

 
   
  








  





(14)

where, 2

MAX

LL E


  , and E is the unit matrix.

3.3. GRU

GRU is a variant of RNN with a gating mechanism,
which is a gated recurrent neural network to better
capture the dependencies with larger intervals in the
temporal data. Its input contains: input tx at t , hidden
layer state 1th  at 1t  , and output structure contains:
hidden node output ty at t , hidden layer state
th passed to the next node. The process of obtaining

the state of reset gate  tx and update gate 1t  by the
state 1th  of the previous layer and the current input
tx is as follows.

1( )t
t t xr hr rr xW h W b    (15)

1( )t
t t xz hz zxW hu W b    (16)

where,  is a Sigmoid function that transforms the
data to a value in the range of 0 to 1, thus to act as a
gating signal.

The candidate hidden layer states are
( 1)( )t

t t hx t hh hc tanh xW r h W b   (17)

where, tc is the candidate hidden state, 1th  contains
the past information, tr is the reset gate, and  is the
multiplication by elements.

The final hidden state is
1(1 ) t

t t t th u h u c    (18)

where, tu is the update gate. The past hidden state is
combined with the current candidate information by
updating the state of the gate to get the result of the
final hidden state.

4. SGCRNN for EEG Emotion Recognition

This section provides a detailed overview of the
SGCRNN model for addressing EEG emotion
recognition.

4.1. SGCRNN model

Inspired by DCRNN [27], this paper uses a
recurrent neural network with spectral graph
convolution as an EEG signal sentiment feature
extractor to simulate the spatial and temporal
dependence of EEG signals. In this paper, ChebNet
[28] is employed instead of matrix multiplication in
GRU for spatial and temporal modeling of EEG



signals (referred to as CNGRU). CNGRU has the
advantage of both GRU for extracting temporal
correlation and spectral graph convolution for
extracting frequency and spatial domain features.

The internal computations of G are represented
as shown in Figure 2. The input concatx consists of the
concatenation of the input at time t , tx , and the
hidden layer 1th  at time 1t  . The output is the
result of the Chebnet operation.

Fig. 2. Internal computation representation of “ G ”

The CNGRU network structure is shown in
Figure 3. According to equations (15)-(18), they can
be expressed as follows.

1( [ , ] )t r t t rr G x h b     (19)

1( [ , ] )t u t t uu G x h b     (20)

1tanh( [ , ( )] )t c t r t cc G x r h b    (21)

1(1 )t t t t th u h u c    (22)

where, tx and th denote the input and output of
CNGRU at moment t , respectively;  denotes the
Sigmoid function;  denotes the Hadamard
product; t tr u、 and tc denote the reset gate, update
gate, and candidate gate at moment t , respectively;
G denotes the ChebNet spectral map

convolution; r r u u cb b  、、 、 、 and cb are the
corresponding convolution filters of the weights and
biases.

Fig. 3. CNGRU network architecture diagram.

The SGCRNN model consists of two stacked
CNGRU layers, a fully connected layer, and a
pooling layer for the EEG signal sentiment
identification work. The SGCRNN model is shown
in Figure 4.

Fig. 4. SGCRNN model diagram.

The input section of the model involves handling
32-channel raw EEG signals, each characterized by a
specified duration. After applying preprocessing
procedures, discrete signals are generated.
Subsequently, cosine similarity is employed to
construct adjacency matrices for each second,
facilitating the creation of a brain network adept at
capturing spatial features. It's important to highlight

that the attributes of each node originate from EEG
signal feature vector values associated with distinct
EEG electrodes.

Further insights into the model's fundamental
architecture are established. In this context, a two-
layer stacked CNGRU network assumes a pivotal
role as the encoder. Sharing similarities with a GRU
but featuring enhanced complexities, this network



operates through iterative computations executed via
time loops. Elaboration on this operational
mechanism can be found in Section 4.1, alongside
pertinent formulas. Within the encoder module, the
“Time2” parameter is set to encompass 12 layers,
mirroring the concept of 12 time-based iterations.
Consequently, the outputs of the hidden layers adopt
a specific structure of (seq_len, hidden_units *
num_nodes). For clarity enhancement, topology
maps are employed as visual aids, effectively
illustrating data formatted as (hidden_units *
num_nodes, ). Within this visualization, each
individual node encapsulates hidden_units data. By
leveraging the “Last Relevant Output” component,
the model extracts the ultimate pertinent output from
the sequence. This output structure takes the form of
(num_nodes, hidden_units), thereby delineating the
configuration of subsequent “Out” components in
terms of hidden_units layers.

The subsequent transition involves the FC layer,
employing a Linear function to convert the data into
a format denoted as (num_nodes, num_classes).
Conclusively, post-processing through a max-pooling
layer drives data transformation into the
configuration of (num_classes, ).

In summation, the model adeptly amalgamates
spatial aspects of EEG signals with temporal
considerations, resulting in an all-encompassing
examination of brain networks. This methodology
culminates in precise predictions as the model
adeptly deciphers intricate patterns and
interconnectedness within the brain network.

4.2. SGCRNN algorithm description

In this study, the network parameters are iterated
to their optimum values using the backpropagation
approach. Therefore, a loss function is defined based
on the mean square error, and the SGCRNN model's
loss function is defined as follows.

1( , ) || ||Loss mse p l W  (23)

where,  p and l denote the predicted value of the
model and the actual label value of the training data,
respectively; W denotes all parameters of the model;
 denotes the regularization coefficient. The mean
square error function  ( , )mse p l aims to measure the
difference between the model prediction and the
actual sentiment label value, and the regularization
term 1|| ||W aims to prevent the model from
overfitting during the parameter learning process.

The SGCRNN algorithm is described in
Algorithm 1.
Algorithm 1 SGCRNN description
Input: EEG sample T N MX   data label l , Chebyshev

polynomial order K , learning rate  , maximum
number of epochs MAX, early stop patienc  ,
regularization weight  , number of GRU hidden layer
units num_unit, number of CNGRU structures
gru_layers;

Output: Ideal parameters for SGCRNN;
1 epoch=0;
2 while patience<ε|| epoch<MAX do
3 Reshape input_seq into (T, batch, N, M);
4 Initialize the GRU hidden layer input;
5 for i=1,…,gru_layers do
6 for i=1,…,T do
7 Calculate the adjacency matrix according to equation

(3);
8 Calculate the symmetrically normalized Laplacian

matrix according to equation (4);
9 Calculate the Chebyshev polynomials according to

equation (13);
10 Concat 1( ) tx t h 、 ;
11 Calculate the result of spectral graph convolution based

on equation (14);
12 Calculate the output of the hidden layer based on

equations (19) to (22);
13 end
14 end
15 Calculate the output of the FC (Fully Connected) layer;
16 Calculate the output of the Max-pooling layer;
17 Calculate the value of the loss function according to

equation (23);
18 Update the model parameters;
19 epoch=epoch+1;
20 end while

5. Experiments and results analysis

5.1. Introduction to data sets

More than 85% of physiological signal emotion
recognition studies use the DEAP dataset [29]. The
DEAP database [30] is an experimentally gathered
multimodal dataset by researchers from Queen Mary
University of London in the UK and other
institutions to study human emotional states. The
researchers recorded EEG and peripheral
physiological signals from 32 participants while
watching 40 one-minute music videos. Each movie
was given a rating from 1 to 9 by participants based
on its valence, arousal, like, and dominance.

5.2. Data Preprocessing

The 32 channels of labeled EEG signals acquired
from this dataset were used for the experiments in
this paper, and the data were preprocessed as follows.



First, the data were downsampled to 128 Hz, EOG
artifacts were removed, and a band-pass frequency
filter of 4.0-45.0 Hz was applied to average the data
to the same reference. Delete the first three seconds
of the baseline signal. In general, the duration of
human emotional states is 1 second to 12 seconds. To
increase the amount of training data, the 60-second
EEG experiment is divided into 12-second time slices.
The divided data 1 2{ , ,  ... , }nS S S S ,

where, *M T
iS R , the number of EEG

channels 32M  , the number of sampling
points 1536T  , and the number of time slices 5n  .
Apply the "fft" function from the Scipy python
package to each t-second window and retain the
logarithmic amplitude of the non-negative frequency
components. During the training process, data
augmentation can be used by applying random
reflections along the scalp midline. This method
increases the diversity and randomness of the data by
applying random reflections to the EEG sequence
and scaling the amplitude of the EEG signal

randomly in the range [0.8, 1.2]. This improves the
reliability and accuracy of data analysis.

The shape of the data in the dataset is shown in
table 2.

5.3. Evaluation metrics and parameter settings

The prediction accuracy and mean absolute error
are used to evaluate the SGCRNN model
performance, and they are calculated as follows.

 cNAccuracy
N

 (24)

1
ˆ| |N

i li
Y Y

MAE
N




  (25)

where, cN is the number of correctly predicted
samples, which is defined as the number of samples
that satisfy ˆ| | 2i lY Y  ; N is the total number of test

sets; iY is the dataset label value; l̂Y is the model
prediction value.

Table 2

Dataset format

Array name Array shape Array contents
data 6400 × 12 × 32 × 128 samples × seq_lenths × channel × data
labels 6400 × 3 samples × label(valence, arousal, dominance)

The SGCRNN model consists of two stacked
CNGRU layers and 64 hidden units. The Chebyshev
polynomial order is set to 2K  , and the number of
graph nodes is 32. The activation function is the
ReLU activation function. The maximum number of
epochs MAX is 300. The dropout probability is 0
(i.e., no dropout). The learning rate ( 4)1e  . The
batch size for the training set is 512, while the batch
size for the validation set and test set is 128. The
regularization coefficient of the loss function is

0.001  . The optimizer uses the Adam optimizer.
During training, if the loss value after 5  epochs is
higher than the previous epoch, the training is
terminated. CosineAnnealingLR learning rate
scheduler is used to train the deep learning model.
The scheduler adjusts the learning rate periodically
based on the time function of the learning rate.
During training, the learning rate gradually decreases
with time, achieving better training results. The
learning rate curve is shown in Figure 5. The model
was trained and tested on RTX 3090, implemented
using Python 3.8.10 and Pytorch 1.11.0. The training

set, validation set and test set were divided in the
ratio of 8:1:1 in the experiments.

Fig.5. Learning Rate Scheduler Curve.

5.4. Ablation experiments

Ablation experiments are performed in this section
to explore the contribution of several important
components used in this article to the approach. The
first ablation experiment was conducted to verify the
effect of the fast Fourier transform, time slice and
data enhancement methods used in this paper on the
improvement of prediction ability. The second
ablation experiment is to test whether the proposed



method of establishing the adjacency matrix can
further improve the prediction accuracy.

5.4.1. Different ways to process data
After experimental comparison, this study

obtained four sets of data. Experiment 1 directly used
time-domain features for training, without FFT;
experiment 2 used 60 seconds of data for training,
without time slicing; experiment 3 did not perform
data augmentation. Experiment 4 used fast Fourier
transform and divided the data into 12-second time
slices, while also performing data augmentation. We
obtained corresponding results through accuracy tests
in the three dimensions of valence, arousal, and
dominance, as shown in Figure 6. In addition, the
MAE values of various methods have been listed in
Figure 7.

Fig. 6. Accuracy of Validation Set in Three Dimensions.

Fig. 7. MAE of Different Methods on the Test Set

The three line graphs in Figure 6 illustrate how the
validation set accuracy of the model across three
sentiment dimensions changes with an increase in
training epochs. They offer a visual understanding of
the model's performance and learning progress. The
horizontal axis of the line graphs represents the
number of training epochs, while the vertical axis
represents the accuracy of the model on the
validation set. The accuracy on the validation set
serves as a measure of the model's performance in
this sentiment analysis task. A higher accuracy
signifies a better match between the model's
predictions and the actual sentiment labels. The bar
chart in Figure 7 provides a summary of the model's
accuracy on the test set for each sentiment dimension,
allowing for a quick comparison of the model's
performance across different emotion categories.

Through the comparison of the four experiments
mentioned above, it can be observed that the
approach used in Experiment 1 had lower accuracy
and relatively larger errors in all emotional
dimensions, performing worse compared to
Experiments 3 and 4. Similarly, Experiment 2's
approach exhibited lower accuracy and larger errors



in all emotional dimensions, indicating poorer
performance. This suggests that using longer data
segments for training is not conducive to improving
the accuracy of emotion prediction. On the other
hand, Experiment 3's approach had relatively smaller
errors in Valence and Arousal, but slightly larger
errors in Dominance. Experiment 4 achieved the
highest accuracy and lowest loss values by utilizing
techniques such as FFT, time slicing, and data
augmentation.

This result indicates that using these technologies
can effectively improve the effectiveness of
sentiment analysis. Specifically, the fast Fourier
transform can convert time-domain signals into
frequency-domain signals, thereby better capturing
signal characteristics in different frequency ranges.
Time slicing can divide long time series into multiple
short time periods for processing, avoiding the
complexity and difficulty brought by long time series,
and better grasping the dynamic changes in
instantaneous situations. In addition, using randomly
reflected signals along the midline of the scalp can be
used for data augmentation, which can extend the
dataset, increase the diversity of data, and thus
improve the model's generalization ability. Therefore,
the experimental results demonstrate the advantages
of the methods used in the data processing process in
this paper.

5.4.2. Different ways to build adjacency matrix
The experiment compared three methods for

constructing adjacency matrices, including the
method based on Euclidean distance of EEG
electrode spatial positions, the method based on
cosine similarity of EEG electrode spatial positions,
and the method based on correlation of EEG channel
features. As shown in Figure 8, the corresponding
accuracy results were achieved in three dimensions
valence, arousal, and dominance. The MAE values
for different methods, as well as the total training
time and testing set evaluation time, are shown in
Table 3.

Fig. 8. Accuracy of Validation Set in Three Dimensions.

The three line graphs in Figure 8 illustrate the
changes in validation set accuracy across three
sentiment dimensions as the training epochs progress,
considering the variations resulting from different
methods used to construct the adjacency matrix.

Method 1 had MAE values of 1.792, 1.700, and
1.668 in the three-dimensional emotional dimensions.
The total training time was 3.1192 hours, and the
testing set evaluation time was 4 seconds. Method 2
had MAE values of 1.794, 1.700, and 1.652 in the
three-dimensional emotional dimensions. The total
training time was 14.7242 hours, and the testing set
evaluation time was 20 seconds. Method 3 had MAE
values of 1.787, 1.694, and 1.650 in the three-



dimensional emotional dimensions. The total training
time was 2.8892 hours, and the testing set evaluation
time was 3 seconds.

Compared to the other two methods, the method of
constructing graph adjacency matrix based on cosine
similarity of EEG electrode spatial positions shows
superiority in training time, accuracy, and loss value.
Specifically, the proposed method in this paper has a
significantly shorter training duration compared to

the other two methods. This will significantly
improve training efficiency and reduce the time and
energy costs for researchers. Furthermore, in terms of
accuracy and loss value, our proposed method
outperforms the other two methods, significantly
improving the predictive performance and
generalization ability of the model. Therefore, our
proposed method has high practical value in the
application of real-time monitoring.

Table 3

Test set MAE of different methods

Methods Valence Arousal Dominance Train Time Test Time
Euclidean-dist 1.792 1.700 1.668 3.1192h 4s
Pearson-corr 1.794 1.700 1.652 14.7242h 20s
Cosine-dist 1.787 1.694 1.650 2.8892h 3s

5.5. Contrastive experiments

This study evaluated eight EEG emotion
recognition models by comparing their prediction
accuracy on the validation and test sets. The first
model is an Long Short-Term Memory (LSTM)
model based on LSTM recurrent neural networks.
The second model is a CNN-LSTM model that
combines Convolutional Neural Networks with
LSTM. The third model is an ACRNN [31] model
that combines CNN, LSTM, and attention. The fourth
model is a Mean_fusion model that combines the
SGCRNN model with the ACRNN model and
averages the fusion of EEG signals with peripheral
physiological signals. The fifth model is a
Attention_fusion model that utilizes attention for
multimodal mental signal fusion. The sixth model is a
DGCNN [24] model based on Dynamic Graph
Convolutional Neural Networks. The seventh model
is a GRU model without the ChebNet operation.
Additionally, a novel SGCRNN model proposed in
this paper is included. All models were trained using
the data preprocessing methods proposed earlier. On
the validation set, the eight models' accuracy in
predicting Valence, Arousal, and Dominance is
shown in Figure 9, while their prediction accuracy on
the test set is shown in Figure 10.

Incorporating Chebyshev polynomials as a
replacement for matrix multiplication in the GRU
architecture results in a notable enhancement of
parameter efficiency for the SGCRNN model.
Specifically, the SGCRNN model exhibits a reduced
number of trainable parameters, with a total count of
748,562, as opposed to the GRU model which boasts
1,098,817 trainable parameters. This difference

underscores the efficacy of our proposed approach in
achieving parameter reduction while maintaining
model performance. This superiority can be analyzed
from two critical perspectives. Firstly, the reduction
in trainable parameters contributes to alleviating
model complexity, consequently mitigating the risk
of overfitting to a certain extent. Secondly, the
diminished parameter count translates to reduced
computational load and memory requirements,
potentially leading to accelerated inference speeds.
That is a key advantage, especially in real-time
applications.

Moreover, the decrease in trainable parameters
does not substantially compromise the performance
of the SGCRNN model. Despite the reduced
parameter count, the incorporation of Chebyshev
polynomials enables the model to preserve its ability
to capture spatiotemporal features and handle
sequential data, thus ensuring model accuracy and
efficacy.

Figure 9 illustrates the changes in validation set
accuracy of the model across different sentiment
dimensions with an increase in training epochs. The
horizontal axis represents the number of training
epochs, while the vertical axis represents the
accuracy for the corresponding sentiment dimension.
As the number of training epochs increases, the curve
exhibits different trends and shapes, reflecting the
varying learning capacity and convergence of
different comparative models. Figure 10 displays the
test set accuracy of different models across three
sentiment dimensions, using three sets of bar graphs.
The horizontal axis represents the sentiment
dimensions, while the vertical axis represents the
accuracy. Each bar in the bar graphs represents the
accuracy of the corresponding model on the
respective sentiment dimension.



Fig. 9. Accuracy of Validation Set in Three Dimensions.

Fig. 10. MAE of Different Methods on the Test Set.

According to the experimental results above, it can
be found that the performance of SGCRNN model

exceeds that of other seven methods (LSTM, CNN-
LSTM, ACRNN, GRU, Mean_fusion,
Attention_fusion, and DGCNN) in all evaluation
indicators. In terms of Valence, Arousal, and
Dominance, SGCRNN achieved the highest scores of
88%, 89.5%, and 89.7%, respectively. This indicates
that SGCRNN has the best effect on emotion
recognition of EEG time series.

In terms of convergence speed, this paper
conducted an extensive comparison among seven
emotion analysis models. Specifically, the SGCRNN
model, due to its incorporation of the nonlinear
characteristics of Chebyshev networks, captures
emotion-related features within EEG signals more
rapidly, resulting in a relatively swift convergence
trend during the feature learning phase. On the other
hand, the fusion of convolutional and recursive
operations in the ACRNN model might require more
training iterations to achieve stability, thus fully
leveraging their role in feature extraction and
temporal modeling. Within the CNN_LSTM model,
the amalgamation of convolution and LSTM
operations might lead to a longer training process,
with the aim of better capturing the interaction
between temporal and spatial information.
Meanwhile, the LSTM model, due to its complex
cyclic structure, might exhibit a slightly slower
convergence trait when processing time-series data.
Significantly, the GRU model, benefiting from its
simplified gating mechanism, demonstrates a
relatively fast convergence speed when learning long
sequence data. In the case of fusion methods, the
training speeds of the Mean_fusion and
Attention_fusion models are similar, implying a
minor influence of fusion strategies on training speed.

Considering both the accuracy results and
convergence speeds of the models holistically, this
research explicitly demonstrates the superior
performance of the SGCRNN model in the task of
emotion analysis.

The SGCRNN model uses ChebNet instead of
matrix multiplication in GRU, which has the
following advantages. Firstly, SGCRNN model can
better capture the dynamic evolution of data by
combining spatiotemporal dependency, which greatly
improves its ability in extracting emotional features
from EEG signals. Secondly, the RNN architecture of
SGCRNN model can well preserve the sequential
relationship of emotion information, inherit the
strong sequence learning ability of RNN, and
adaptively adjust the parameters of its structure based
on feedback mechanism. In conclusion, SGCRNN



model is an efficient and accurate method for EEG
signal emotion recognition.

6. Conclusions

In this article, we propose a novel SGCRNN
model for EEG emotion recognition. Specifically, we
first construct a graph adjacency matrix based on the
cosine similarity of EEG electrode spatial locations.
Then, ChebNet is used to replace matrix
multiplication in GRU, resulting in the proposed
CNGRU. The EEG sequence is fed into the
SGCRNN model, which consists of two stacked
CNGRU layers, an FC layer, and a max-pooling layer,
to obtain the prediction results. Two ablation
experiments and a contrastive experiment were
conducted using the DEAP dataset, and the results
showed that the data preprocessing methods used in
this study, such as using FFT to extract frequency
domain features, segmenting time into 12-second
slices, and using randomly reflected signals along the
scalp for data augmentation, all contribute to
improving the model's accuracy. The novel method
proposed in this study to construct the graph
adjacency matrix can capture the local relationships
between EEG channels and effectively improve
training efficiency, outperforming existing methods
for constructing adjacency matrices. Moreover, the
new SGCRNN model for emotion recognition
proposed in this paper can simulate the
spatiotemporal dependencies of EEG time series and
performs better than other advanced emotion
recognition models.

In future research, we will consider the application
of real-time emotion recognition and explore how to
compress the SGCRNN model for real-time emotion
recognition scenarios. Additionally, further research
in emotion recognition should focus on addressing
individual differences and incorporating them into the
emotion recognition model to enhance personalized
emotion recognition accuracy and effectiveness.
Long-term variations in emotions should also be
considered, and models should be developed to
capture trends and patterns in long-term emotional
changes for long-term emotion recognition and
analysis. By delving into these issues, we can
strengthen the research and application of emotion
recognition based on EEG signals, expanding its
potential value in fields such as psychology, medicine,
and human-computer interaction.

By combining the expertise of manual engineering
with the powerful capabilities of deep learning, we

can develop more accurate, efficient, and
interpretable emotion recognition systems. These
systems can help businesses understand customer
emotions and needs, providing personalized products
and services. Additionally, they can play a crucial
role in psychology and medicine, aiding in the
diagnosis and treatment of emotional disorders, as
well as monitoring and intervening in emotional
states. Through further research and application of
these methods, we can explore novel domains and
contribute to society with more beneficial solutions.
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