
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

RSTNet: Recurrent Spatial-Temporal Networks for
Estimating Depth and Ego-Motion

Tuo Feng1 and Dongbing Gu1

Abstract—Depth map and ego-motion estimations from monoc-
ular consecutive images are challenging to unsupervised learning
Visual Odometry (VO) approaches. This paper proposes a novel
VO architecture: Recurrent Spatial-Temporal Network (RST-
Net), which can estimate the depth map and ego-motion from
monocular consecutive images. The main contributions in this
paper include a novel RST-encoder layer and its corresponding
RST-decoder layer, which can preserve and recover spatial and
temporal features from inputs. Our RSTNet extracts appearance
features from input images, and extracts structure and temporal
features from intermediate results for ego-motion estimation. Our
RSTNet also includes a pre-trained network to detect dynamic
objects from the difference between full and rigid optical flows.
A novel auto-mask scheme is designed in the loss function to
deal with some challenging scenes. Our evaluation results on
the KITTI odometry benchmark show our RSTNet outperforms
some of the existing unsupervised learning approaches.

Index Terms—Localisation, Visual Odometry, SLAM, Depth
and Ego-Motion Estimation, Deep Learning SLAM.

I. INTRODUCTION

AUTONOMOUS navigation of mobile robots or self-
driving cars heavily depends on vision perception to

understand their operation environments. Visual Odometry
(VO) emerges as a technique to provide the key information
for autonomous navigation from images or videos. Accurate
depth and ego-motion estimations become the primary target
of research works in the research area.

In recent years, deep learning methods have been proven
to be more effective in processing robust and efficient esti-
mation tasks. Researchers strive to create an end-to-end deep
learning VO system for depth and ego-motion estimation [1]–
[3].Unsupervised deep learning methods for depth or ego
motion estimation do not need to label the data sets to train
the learning systems. They use geometric constraints and
unlabeled data sets to train and become one of the popular
research approaches [4]–[7]. Unsupervised deep learning VO
methods are able to provide even better results than classical
geometric algorithms in some challenging scenes [8]. Monoc-
ular VO methods also demonstrate promising results under the
framework of unsupervised learning [9]–[13].

In this paper, we make a few innovations in estimating
depth, and ego-motion from monocular images. Firstly we
propose novel RST-encoder and RST-decoder layers to build
an unsupervised end-to-end deep learning VO system to
estimate the depth and ego-motion from monocular videos.

Manuscript received 05/2022, revised 08/2022, accepted 12/2023
1Tuo Feng and Dongbing Gu are with the School of Computer Science

and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK.
{tfeng, dgu}@essex.ac.uk

This is inspired by the 3D packing block [11] but our RST
layers include additional channels to capture and retain tem-
poral features. The results demonstrate our depth estimation
outperforms some of the state of the art systems. This is due
to the reason that the RST layers are able to preserve and
retain high resolution features. Secondly our proposed system
takes original images, estimated depth maps, and estimated
optical flow as input for ego-motion estimation. Most existing
systems only use the combination of original images and
estimated depth maps [1], [3], [12], [14] as input for ego-
motion estimation. Some utilises the optical flow estimation
as mask in the cost function [9], [15], [16]. Some only use
their estimated depth image and estimated optical flow for ego-
motion estimation [17]. Our proposed system is able to provide
appearance features from images, structure features from depth
map, and temporal features from optical flow for ego-motion
estimation. Thirdly we design an auto-mask scheme which
adds a mask component constructed from the depth error on
the top of the minimum reprojection loss [10]. We found they
can better remove the objects moving at similar speeds to
the camera and the scenes where the camera is temporarily
static in our evaluation. We also use a semantic segmentation
network to detect dynamic objects. Our innovation is the use
of the difference between full optical flow and rigid flow as
inputs to the segmentation network.

Our novel recurrent spatial-temporal network (RSTNet) is
shown in Fig. 1. The details of this architecture is elaborated
in Section III. The outline of this paper is organized as
follows: We introduce the related work in Section II. Section
III provides a detailed illustration to the RST-encoder and
RST-decoder layers. Section IV gives an overview of our
proposed RSTNet architecture and its dynamic auto-masking
loss function. Section V presents our experimental results
on the KITTI odometry dataset with comparisons of some
previous works. Finally, the conclusion and future work are
drawn in Section VI.

II. RELATED WORK

A. Unsupervised depth and ego-motion estimation networks
Unsupervised stereo depth estimation networks were pro-

posed in [4], [5] where the left-right consistency was used as
the supervision signal. Exploring temporal features between
two consecutive images leads to the ego-motion estimation
under unsupervised learning frameworks, as proposed in [1].
UnDeepVO [3] extended to learn depth and ego-motion es-
timations by using stereo image pairs with additional loss
functions. SfMLearner++ [2] enforced a further epipolar con-
straint on the loss. Zhan et al. [18] explored the use of

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2

dense features as an additional supervision signal in monocular
depth and ego-motion estimations. GANVO [14] formulated
the monocular depth and ego-motion learning framework into
a GAN learning mechanism. SGANVO [19] put forward a
stacked generative adversarial network to capture high-level
spatial and temporal features.

B. Ego-motion estimation with optical flow and geometrical
methods

The rigid optical flow of a static scene caused by camera
motion is able to provide temporal feature correspondences
between two consecutive images. DF-Net [13] can jointly learn
depth, ego-motion, and optical flow estimations. Ranjan et al.
[20] proposed four networks to predict monocular depth, ego-
motion, optical flow and dynamic object masks. UnOS [15]
also used separate networks for depth, ego-motion, and optical
flow estimations. In [21], the flow estimation was used to
enforce robust and direct constraints for end-to-end learning
of camera pose.

In some other works, the depth was estimated from network,
but the ego-motion was estimated directly from geometrical
methods. In [22], an encoder-decoder network for depth esti-
mation and a differentiable Direct Visual Odometry (DDVO)
module for ego-motion estimation were proposed. A 3D
geometric constraint was used in [6]. In [7] the ego-motion
was estimated by using a geometrical method but a network
was used to predict the pose correction.

C. Dynamic object masks

The assumption of unsupervised learning frameworks is a
moving camera and a static scene. It is necessary to mask
out the occlusion and non-rigidity to improve the estimation
performance. The early work in [1] proposed to use a network
to predict the uncertain mask. SC-SfMlearner [23] proposed a
geometry consistency loss and a self-discovered mask with
the depth inconsistency map for handling dynamic objects
and occlusions. Godard et al. [10] proposed an auto-masking
loss function to only select the pixels that remain the same
between adjacent frames. Jiang [12] extended the minimum
reprojection loss by adding the statistical information of pho-
tometric errors. Optical flow was explicitly exploited to mask
out dynamic objects and occlusion areas in [15]. Yin et al.
[9] proposed GeoNet to train a residual optical flow network
for non-rigid structure. In [16] occlusions were masked out
by using optical flow and depth map. Zhao et al. [17] used
an occlusion map computed from optical flow to remove the
occlusions. Wang et al. [24] explicitly segmented occlusion
areas and used the occlusion masks in unsupervised training.

Using semantic segmentation networks can provide more
accurate object information as introduced in [25]. Casser et
al. [26] used instance segmentation masks to estimates motion
objects. Klingner et al. [27] estimated depth and ego-motion
with a semantic segmentation network. Using predicted depth
maps together with original images as input to estimate ego-
motion was also observed in [28].

Fig. 1: Our proposed RSTNet architecture for self-supervised
learning. The RST-encoder and RST-decoder components con-
sist of multiple RST-encoder and RST-encoder layers. The
depth is estimated from the network consisting of a RST-
encoder component and a RST-decoder component. The ego-
motion is estimated from the RNN network with inputs from
appearance features in input images, structure features from
depth maps, and dynamic features from optical flows. A pre-
trained PWC-Net [33] is used to estimate the full optical flow.
The dynamic objects are detected by a pre-trained SegNet [34]
with input from the difference between full and rigid flows.

Sub-pixel: space2depth

[B, H, W, C]

[B, H/2, W/2, C*4]

Expand Dimension

[B, 1, H/2, W/2, C*4]

Conv3d (d=4)

[B, d, H/2, W/2, C*4]

ConvLSTM (n=2)

[B, d, H/2, W/2, C*8]

Transpose & Reshape

[B, H/2, W/2, d*C*8]

Conv2d (k=3)

[B, H/2, W/2, C]

Sub-pixel: depth2space

[B, H, W, C]

[B, H/2, W/2, C*(2**2)]

Transpose & Reshape

[B, d, H/2, W/2, C*(2**2)/d]

ConvLSTM (n=2)

[B, d, H/2, W/2, C*(2**2)/d]

Conv3d (d=4)

[B, 1, H/2, W/2, C*(2**2)/d]

Expand Dimension

[B, H/2, W/2, C*(2**2)/d]

Conv2d (k=3)

[B, H/2, W/2, C]

(a) RST-Encoder (b) RST-Decoder

Fig. 2: Recurrent Spatial-Temporal layers: (a) a single RST-
encoder layer and (b) a single RST-decoder layer.

D. High resolution features

It is well known that input images could lose high resolu-
tion features after pooling and striding operations in CNNs.
Inspired by the sub-pixel network [29], Superdepth [30] and
Zhou et al. [31] used a sub-pixel network to improve the
performance for monocular depth estimation. Further digging
into the network architecture, Packnet-SfM [11] proposed 3D
packing and unpacking blocks to replace the max-pooling
layer and bilinear upsample layer of traditional depth net-
works. Its detail-preserving property of the architecture could
reconstruct the near-lossless features of images. In [32], a
Recurrent Modulation Unit (RMU) was used for feature fusion
in the depth network.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 3

III. RECURRENT SPATIAL-TEMPORAL LAYERS

Most convolutional layers in CNNs pursue enhancing its
receptive field size through aggressive striding and pooling op-
erations. But these operations potentially could lead to the loss
of detailed pixel representations and the resize-convolution
operation in upsampling layers could not recover the details.
We propose a novel recurrent spatial-temporal encoder layer
(RST-encoder layer) which can preserve detailed spatial and
temporal features from its inputs. We also proposes an RST-
decoder layer, which is symmetrical to the RST-encoder layer.
Both of them are the building blocks in our RSTNet.

A. RST-encoder layer

In Fig. 2a, the RST-encoder layer starts with a space2depth
operation, which is taken from the sub-pixel network in [29].
This layer can fold the height (H) and width (W) dimensions of
a feature map into extra feature channels (C∗4). This operation
is a reversible transformation without any loss, which is
different from striding or pooling operations. This is followed
by a dimension expanding operation which adds an extra
dimension to the tensor for a 3D convolution layer (Conv3d)
with d = 4. This extra dimension is used to retain the detailed
spatial features. The 3D convolution layer is used to compress
the concatenated features and outputs the same size tensor.
Then a convolutional LSTM layer (ConvLSTM) consisting of
two ConvLSTM cells (n = 2) is used to capture the temporal
features. The ConvLSTM layer outputs the same size tensor
with feature channels (C ∗ 8). After that, we transpose and
reshape the extra dimension (d) of the tensor to the channel
dimension (d ∗C ∗ 8), which includes the detailed spatial-
temporal features. In the end, a 2D convolution layer (Conv2d)
is used to produce the tensor with the desired number of
feature channels. This structure of cascading multiple complex
convolutional layers allows the RST-encoder layer to preserve
the detailed spatial and temporal features extracted from input
tensor.

B. RST-decoder layer

The RST-decoder layer is a symmetrical architecture with
cascading multiple deconvolution layers as shown in Fig. 2b.
The compressed concatenated features from the RST-encoder
layer are the input tensor to the first layer (Conv2d). This
layer is to adjust the number of channel dimensions (C ∗4/d)
to adapt to the following 3D convolutional layer (Conv3d).
Then this 3D convolution layer expands back the compressed
spatial features to a ConvLST M layer. The ConvLST M layer
also consists of two ConvLST M cells to preserve the temporal
features. The channel dimension in its output is c∗4/d. Next,
we transpose and reshape the tensor to d ∗ c ∗ 4/d = c ∗ 4
channels. This layer ends with a depth2space operation that
reduces the channel dimensions to the original C.

C. RST layers for Depth Estimation

Our RST-encoder and decoder layers can be used to estimate
the depth from monocular consecutive images. To show the

Input image RST-SfMlearner SfMlearner

Fig. 3: Depth estimation from our RST layers compared with
SfMlearner [1]. The images on the first row show a small and
distant view scene. The images on the second, third, and fourth
rows show dynamic objects and irregular objects. The images
on the fifth, sixth, and seventh rows show high resolution
scenes such as dense foliage and car parts.

capability of our RST layers in recovering lossless spatial-
temporal features, we use the RST encoder and decoder layers
to replace the pooling, striding, and upsampling layers of
the depth estimation network in [1] without changing any
other data processing, loss function and network parameters.
The input images are shown in the first column in Fig. 3.
The estimated depth maps from the network in [1] replaced
with our RST layers are shown in the second column (RST-
SfMlearner). The estimated depth maps from [1] are shown
in the third column (SfMlearner). These results show our
RST layers can learn more dynamic structures and detailed
spatial features than other networks for specific tasks. In Fig.
3, the depth estimation with our RST layers has more spatial
details than the original network, such as road sign, vehicles,
and irregular branches. In addition, the results also show our
RST layers perform much better on dynamic objects, such as
persons by motorcycle or by bike.

IV. RECURRENT SPATIAL-TEMPORAL NETWORK:
RSTNET

A. RSTNet Overview

Our proposed RSTNet targets four main estimation tasks:
depth, ego-motion, optical flow, and dynamic objects. As
shown in Fig. 1, three monocular consecutive images
(Image1,2,3) are used as its inputs. The RSTNet estimates
three corresponding depth maps using three RST encoder and
decoder networks. It estimates two full optical flow maps
(Flow12,Flow23) using two pre-trained PWC-Nets [33]. It
estimates two ego-motions (R12, t12,R23, t23) from two RNNs,
each of which uses the features extracted from two monocular

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 4

C
o

n
v2

D
 (6

4
, 5

x5
)

C
o

n
v2

D
 (6

4
, 7

x7
)

R
ST-En

co
d

er

R
esid

u
al-B

lo
ck

R
esid

u
al-B

lo
ck

R
ST-En

co
d

er

R
esid

u
al-B

lo
ck

R
esid

u
al-B

lo
ck

R
ST-En

co
d

er

R
esid

u
al-B

lo
ck

R
esid

u
al-B

lo
ck

R
ST-En

co
d

er

R
esid

u
al-B

lo
ck

R
esid

u
al-B

lo
ck

R
ST-En

co
d

er

R
ST-D

eco
d

er

C
o

n
v-R

efle
ct

R
ST-D

e
co

d
e

r

C
o

n
v-R

eflect

Su
b

-p
ixel D

isp
arity

R
ST-D

eco
d

er

C
o

n
v-R

eflect

Su
b

-p
ixel D

isp
arity

R
ST-D

eco
d

er

C
o

n
v-R

eflect

Su
b

-p
ixel D

isp
arity

R
ST-D

eco
d

er

C
o

n
v-R

eflect

Su
b

-p
ixel D

isp
arity

[B
, H

, W
, C

]

[B
, H

, W
, 4

]

[B, H/8, W/8, 4]

[B, H/4, W/4, 4]

[B, H/2, W/2, 4]

Fig. 4: The depth estimation network is constructed with an encoder-decoder architecture by using multiple RST-encoder and
RST-decoder layers.

consecutive images, two estimated depth maps, and one esti-
mated optical flow as the inputs. Two dynamic object maps
(Ob ject1,Ob ject2) are detected from two pre-trained networks
(SegNet) [34], each of which uses the difference between a
full flow from PWC-Net and a rigid flow computed from the
depth and ego-motion estimations. The RST encoder and RST
decoder layers are used as the building blocks in constructing
our RSTNet.

B. Depth Estimation Network

Our depth network (Fig. 4) is constructed with the sym-
metrical encoder and decoder network structure, including
multiple RST-encoder and RST-decoder layers. The monocular
image input is a tensor with [B,H,W,C] shape where B is
the batch size dimension, H is the height dimension, W
is the width dimension, and C is the channel dimension.
The first two 2D convolution layers extract the features as
64 output channels. The first RST-encoder layer folds the
feature tensor and expands the spatial-temporal features for
the next level. Starting from the second level of encoding,
each of the following encoding layers begins with two residual
blocks and ends with a RST-encoder layer, shrinking with
a scale of 2 times. The residual block is composed of two
stacked 2D Convolution layers, Batch Normalization, and
RELU Activation Function. After five RST encoder layers,
the height and width of the input tensor are compressed by 16
times.

The decoder part begins with a RST-decoder layer to
extend the size of its input tensor to 4 times. Afterwards, the
Convolution Reflect block combines its output and the skip
features to decode the tensor. Then each of the following four
decoder layers consists of a RST-decoder layer, a Convolution
Reflect block and a sub-pixel disparity layer. Each of them

outputs a tensor 2 times larger in height and width of its input
so that the decoder part can obtain the depth maps with four
scales. The Convolution Reflect block is a 2D Convolution
layer with the half size of filter pad. The sub-pixel disparity
layer is the same architecture as the Convolution Reflect block
with four output channels. The decoder part of this network
can produce the disparity maps with 4 scales [H/8,W/8],
[H/4,W/4], [H/2,W/2], and [H,W]. Its output resolution on
each scale is four times larger than most published depth
estimation networks so it can estimate more details.

C. Ego-Motion Estimation Network

Depth map carries the structural information of scenes,
optical flow represents the dynamic information, and original
image provides a large number of appearance features in the
view. To estimate the ego-motion with good accuracy, we use
two adjacent images, their depth maps, and the corresponding
optical flow as the source of feature extraction.

In the ego-motion network of RSTNet (see Fig. 1), we reuse
the appearance features of two consecutive images extracted in
the encoder part of the depth estimation network as inputs. We
also use the structural features extracted from two consecutive
depth maps as inputs. Furthermore, we use the dynamic
features extracted from the estimated optical flow as inputs.
The optical flow is estimated from the pre-trained PWC-Net.
All these features are concatenated on the channel dimension
of inputs and fed into a RNN network to estimate the ego-
motion. The RNN network consists of two convolution LSTM
cells with 256 output channels for decoding the rotation R and
the translation t.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 5

Fig. 5: The first row includes the input image (left) and
our estimated depth (right). Our auto-mask (µd) (left) are
compared with the self-discovered mask [23] (right) in the
second row. The projected image errors from our RSTNet and
[10] are shown in the third row. Our auto-mask µt + µs is
shown in the bottom two rows. The vehicle with a similar
velocity as the camera is shown in the red circle (left) and
eliminated as shown in the black (right) in the fourth row. The
static distant sky (left) is shown in the fifth row and eliminated
as shown in the black (right).

Fig. 6: The first row includes two input images. Our auto-
masks (µd) are shown in the second row and the self-
discovered mask [23] are shown in the third row.

D. Loss Functions and Auto-Masking Scheme

The synthetic target view Ii
s→t is generated from the ith

source view Ii
s:

Ii
s→t(x,y) = KT̂s→td−1

t (x,y)K−1Ii
s(x,y) (1)

where K is the camera intrinsic matrix, dt(x,y) is the estimated
disparity, T̂s→t is the camera coordinate transformation matrix
from the ith source frame to the target frame and estimated
by the ego-motion network. Our photometric reprojection loss
function Lp is defined as below:

Lp =
N

∑
i=1

min
t

pe
(
It , Ii

s→t
)
+

N

∑
i=1

min
s

pe
(
Ii
s, I

i
t→s

)
(2)

where N is the number of source views and N = 2 for three
consecutive input frames. The pe is a photometric reconstruc-
tion error computed from SSIM [35] and L1 [26] [16]:

pe(Ia, Ib) =
α × (1−SSIM(Ia, Ib))

2
+(1−α)×∥Ia − Ib∥1 (3)

We also use a depth edge-aware smooth loss function to
regularize the depth in texture-less and low-image gradient
regions.

Ls = |δxd∗
t |e−|δxIt |+ |δyd∗

t |e−|δyIt | (4)

where d∗
t = dt/d̄t is the mean-normalized disparity, δx and δx

are the gradient.
Finally, our total loss function includes the photometric

reprojection loss with a dynamic auto-masking weight µ and
the edge-aware depth smooth loss:

Ltotal = µLp +λLs (5)

This loss function performs very well for the training
under the assumption of static scenes with a moving camera.
However, its performance could deteriorate rapidly when the
camera is stationary or there are dynamic objects in the scene
[10]. The auto-masking loss function in [10] alleviates some
of these problematic scenes. It can mask the target image to
reduce the influence of objects when moving at the same
velocity as the camera or ignore the whole image when
the camera stops moving. But it does not exploit dynamic
information provided by moving objects.

We propose a novel dynamic auto-masking scheme. The full
mask includes three parts µ = µt + µs + µd . The first part µt
is the same as the one purposed in [10].

µt =

[
N

∑
i=1

(min
t

pe
(
It , Ii

s→t
)
< min

t
pe

(
It , Ii

s
)
)

]
(6)

This mask can remove the pixels representing other objects
moving at a similar velocity as the camera or all pixels when
the camera is static.

The second part µs plays a similar role as µt but with reverse
projection Ii

t→s:

µs =

[
N

∑
i=1

(min
s

pe
(
Ii
s, I

i
t→s

)
< min

s
pe

(
Ii
s, It

)
)

]
(7)

The third part µd is defined as a depth error between the
estimated depth map dt and its warped map di

s→t from the ith
source depth based on optical flow:

µd =
N

∑
i=1

(
1− ∥dt −di

s→t∥
dt +di

s→t

)
(8)

Different from the auto-masks [10] and the self-discovered
masks [23], we use a full optical flow to warp a depth map
to generate the full dynamic auto-masks. A full optical flow
could record all the dynamic information within a scene. In
Fig. 5, there is a clear dynamic object (motorcycling) in the
input image (left on the first row). Our depth estimation clearly
shows the scene (right on the first row). Our auto-mask (µd)
and the self-discovered mask [23] are shown on the left and
right of the second row, respectively. It is clear that our mask
can provide a much more distinct figure and also a thinner

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 6

Target Image Dynamic Object

Forward Flow

Backward Flow

Rigid Flow Difference Flow

Fig. 7: Dynamic object detection in our RSTNet. The forward flow Flow12 and backward flow Flow21 are predicted by the
PWC-Net [33]. The rigid flow is computed through the estimated depth and ego-motion. The flow difference is the difference
between full and rigid flows. The pre-trained SegNet uses the flow difference to estimate the dynamic objects.

outline of the trees than the self-discovered mask. Given a
more precise object detection, the mask used in the loss
function could avoid the information loss. The projected image
errors from our RSTNet and [10] are shown in the left and
right of the third row, respectively. It is clearly demonstrated
that our mask detects dynamic objects much better. In the
last two rows, the performance of our auto-mask (µt +µs) is
shown. The vehicle with a similar velocity as the camera is
shown in the red circle (left) and eliminated as shown in the
black (right) in the fourth row. The static distant sky (left) is
shown in the fifth row and eliminated as shown in the black
(right).

Two additional images for our auto-mask (µd) and the self-
discovered mask [23] are shown in Fig. 6. The moving parts
between two consecutive images are detected in mask images.
We can find that much clearer outlines of the cars can be
observed in our masks (the second row) than self-discovered
mask [23](the third row).

E. Dynamic Object Estimation

We use a pre-trained network (SegNet) to detect the dy-
namic objects in our RSTNet. The SegNet is an encoder-
decoder architecture and used here to classify each pixel as
two classes: static and dynamic. The input is the difference
between the full flow estimated from the PWC-Net and the
rigid flow reconstructed by using the estimated depth and ego-
motion (see Fig. 1). This is a different use against the work in
[9] [36] where they estimate the residual flow using a network,
then reconstruct the full flow with a rigid flow.

Some results from this network are shown in Fig. 7. We use
an image with a size of 384×184. The forward flow (Flow12)
and backward flow (Flow21) are predicted by the PWC-Net.
The rigid flow is computed by using the estimated depth and
ego-motion. The flow difference is the full flow minus the
rigid flow. The dynamic object is separated from the static
background by the SegNet. The result shows the profile of a
moving car is clearly detected. There are three cars far away
from the camera, which are not detected in Fig. 7. The main
reason is due to the fact that their displacements projected in
2D image from 3D motion are too small for detection.

V. EXPERIMENTS

We implemented the proposed RSTNet by using the Tensor-
flow framework and trained it with one NVIDIA GTX 1080TI
GPU. The Adam optimizer was employed to speed up the net-
work convergence for up to 30 epochs with parameter β1 = 0.9.
The learning rate started from 0.0001 and decreased to 0.00001
after 3/4 of total iterations. Because of our GPU’s memory
size limitation, the size of input images was 416×128 under
the consideration of comparison with other networks. For data
prepossessing, we used different kinds of data augmentation
methods introduced in the previous work [1] [10] that can
enhance the performance and mitigate possible over-fitting.

A. Depth Estimation Evaluation

For depth estimation, we chose the KITTI dataset [37] with
a benchmark split from [38] as the benchmark. The camera
parameters are required for constructing the loss function, and
reconstructing 3D scenes. As shown in Fig. 8, we compared
our method with the state-of-the-art unsupervised depth esti-
mation methods, such as Monodepth2 [10], SC-SfMLearner
[23], and Packnet-SfM [11]. The dynamic challenging scenes
including pedestrians are shown in the first and second rows.
Our RSTNet performs best compared with the other three
methods such as the shape details for pedestrians. This can also
be seen in the third to the sixth rows where the motorcycle
and vehicles are dynamic objects. In addition, the RSTNet
depth estimation of static objects, such as the trees, street
lights, and signposts, has a higher resolution and a clearer
view of structures. These results are from a smaller size
image (416×128) than others (Packnet-SfM (640×192), SC-
SfMLearner (832×256), and Monodepth2 (640×192)).

We list the quantitative depth estimation results in Table
I, where M stands for using monocular image sequence for
training and S stands for using segmentation inputs for train-
ing. Compared with the existing state-of-the-art unsupervised
learning-based methods, our RSTNet has a better performance
in terms of the metrics used (see the smallest values in Abs
Rel, Sq Rel, RMSE, RMSE log columns and the highest values
δ of the last three columns in the table). Our RSTNet uses
the smallest image size but achieves better depth estimation
results without additional inputs like work in [26] and [16].

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 7

Input Image RSTNet Monodepth2 Packnet-SfM SC-SfMlearner

Fig. 8: Illustrated above are qualitative comparisons of our RSTNet depth estimation (image size: 416×128) with Monodepth2
[10] (image size: 640× 192), SC-SfMLearner [23] (image size: 832× 256), and Packnet-SfM [11] (image size: 640× 192).
The depth map comparisons show that our approach produces qualitatively better estimations with crisper boundaries and finer
details.

The above results show own proposed RST-encoder and
RST-decoder layers play an important role in the depth estima-
tion. These layers replaced the normal pooling, striding, and
upsampling layers of encoder-decoder architectures. They are
able to preserve the detailed features in spatial and temporal
domains from input image sequence. Consequently, our depth
network can estimate more accurate results than some other
methods which are based on normal pooling, striding, and
upsampling layers.

B. Ego-Motion Estimation Evaluation

We used the KITTI dataset [37] to test the performance
for ego-motion estimation. The KITTI dataset only provides
the ground truth of 6-DoF poses for Sequence 00-10. We
used Sequence 00-08 for training and Sequence 09-10 for
testing. The metrics are the average translational root-mean-
square error (RMSE) drift and average rotational RMSE drift
(◦/100m) on length of 100m−800m. The results are shown in
Table II. We compared the results with SGANVO [19], Zhao et
al. [17], ORB-SLAM2 (without loop closure) [40], UndeepVO
[3], and UnOS [15]. SGANVO is based on monocular image
training. UndeepVO and Undepthflow are based on stereo
image training. ORB-SLAM2 is a geometry method. Zhao et
al. [17] used the geometry-based methods and deep learning
to estimate the ego-motion. It can be seen that our RSTNet
shows a better performance in the testing sequences (09, 10)
with these state-of-the-art methods in terms of the translational
and rotational RMSE drift metrics. It outperforms other end-to-

end learning-based methods (SGANVO, UndeepVO, and Un-
depthflow). But the average rotational drifts of learning based
methods (RSTNet, SGANVO, UndeepVO, and Undepthflow)
are rifely larger than the geometric methods such as ORB-
SLAM2 and Zhao et al. [17]. This shows that the deep learning
method has a limited learning capability on rotation estimation
compared with the geometry methods.

Another metric used is the absolute trajectory error (ATE)
averaged over all overlapping 5-frame snippets. We concate-
nated all the estimations together for the entire sequences
without any post-processing. The estimated trajectories of
sequences 09 and 10 from our RSTNet and its ground truth
are shown in Fig. 9. Although the estimated results include
some drifts, our RSTNet can estimate all the features of the
trajectory and performs well when no loop closure detection
was used. The quantitative results are shown in Table III where
we compare our results with ORB-SLAM2(Full) [40], SfM-
Learner [1], GeoNet [9], and Monodepth2 [10]. In comparison,
our RSTNet produced a good result. This is mainly due to the
use of better depth estimation result which is important in
computing the cost function in Eq. (1), the use of optical flow
estimation which is directly related to the pose estimation,
and the use of mask estimation which is able to provide more
dynamic information in the scenes.

C. Dynamic Object Estimation Evaluation

The pre-trained SegNet was used for detecting dynamic
objects. The performance of using this network for dynamic

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 8

TABLE I: Depth estimation results on the KITTI dataset using the split of Eigen et al. [38]. For training data, K = KIT T I,
CS =Cityscapes [39], M = Monocular and S = Segmentation Inputs. For testing data, our RSTNet uses monocular images.

Method Data size Dataset Train Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ <1.252 δ <1.253

Garg et al. [4] 620 × 188 K M 0.169 1.080 5.104 0.273 0.740 0.904 0.962

SfMLearner [1] 416 × 128 K M 0.208 1.768 6.856 0.283 0.678 0.885 0.957

SfMLearner [1] 416 × 128 CS+K M 0.198 1.836 6.565 0.275 0.718 0.901 0.960

GeoNet [9] 416 × 128 K M 0.155 1.296 5.857 0.233 0.793 0.931 0.973

GeoNet [9] 416 × 128 CS+K M 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Vid2Depth [25] 416 × 128 K M 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Vid2Depth [25] 416 × 128 CS+K M 0.159 1.231 5.912 0.243 0.784 0.923 0.970

GANVO [14] 416 × 128 K M 0.150 1.414 5.448 0.216 0.808 0.939 0.975

SC-SfMLearner [23]416 × 128 K M 0.137 1.089 5.439 0.217 0.830 0.942 0.975

Monodepth2 [10] 640 × 192 K M 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Packnet-SfM [11] 640 × 192 K M 0.111 0.785 4.601 0.189 0.878 0.960 0.982

Struct2Depth [26] 416 × 128 K S + M 0.183 1.730 6.570 0.268 - - -

Gordon et al. [16] 640 × 192 K S + M 0.129 1.112 5.180 0.205 0.851 0.952 0.978

RSTNet 416 × 128 K M 0.108 0.767 4.524 0.188 0.891 0.974 0.991

TABLE II: Ego-motion estimation results on the KITTI dataset with our proposed RSTNet. We also compare with four learning
methods (Monocular: SGANVO [19], Zhao et al. [17]; Stereo: UndeepVO [3], Undepthflow [15]), and one geometric based
methods (ORB-SLAM2 [40]). RSTNet, SGANVO, and UndeepVO use images with 416×128. Zhao et al. and Undepthflow
use 832×256 images. ORB-SLAM2 uses 1242×376 images. The best results among the learning methods are made in bold.

Seq.

Monocular Stereo
RSTNet SGANVO [19] Zhao et al. [17] ORB-SLAM2 [40] UndeepVO [3] Undepthflow [15]

(416×128) (416×128) (832×256) (1242×376) (416×128) (832×256)
trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦)

03 4.67 3.08 10.56 6.30 - - 0.67 0.18 5.00 6.17 - -
04 2.28 0.69 2.40 0.77 - - 0.65 0.18 4.49 2.13 - -
05 2.97 1.04 3.25 1.31 - - 3.28 0.46 3.40 1.50 - -
06 3.81 1.13 3.99 1.46 - - 6.14 0.17 6.20 1.98 - -
07 2.83 1.77 4.67 1.83 - - 1.23 0.22 3.15 2.48 - -

09∗ 4.75 2.22 4.95 2.37 6.93 0.44 15.30 0.26 7.01 3.61 13.98 5.36
10∗ 5.54 2.72 5.89 3.56 4.66 0.62 3.68 0.48 10.63 4.65 19.67 9.13
• trel: average translational RMSE drift (%) on length of 100m-800m.
• rrel: average rotational RMSE drift (◦/100m) on length of 100m-800m.
• train sequence: 03,04,05,06,07; test sequence: 09∗, 10∗

TABLE III: Absolute Trajectory Error (ATE) on the KITTI
odometry dataset. The results of other baselines are taken from
[9].

Method frames Sequence 09 Sequence 10

ORB-SLAM2(Full) [40] All 0.014±0.008 0.012±0.011

SfMLearner [1] 5 0.016±0.009 0.013±0.009

GeoNet [9] 5 0.012±0.007 0.012±0.009

Monodepth2 [10] 2 0.017±0.008 0.015±0.010

RSTNet 3 0.011±0.006 0.010±0.005

object detection is shown in Fig. 10. There are dynamic
objects such as vehicles and pedestrians in each input image.

Visually, our estimation has good accuracy and the outline and
shape of dynamic objects (car in the first to third rows and
pedestrians in the fourth row) are clear. It can be seen that the
shadow of a moving car in the second, third, and fourth rows
is also detected as the part of dynamic objects, which is a
reasonable result given the shadow was also moving with the
car. However, the detection network is still far from perfection.
Some static patches are misidentified as dynamic objects in the
second and third rows. One of the reasons for this could be
we just used the pre-trained SegNet without further training
on the dataset.

D. Network Complexity
Our RSTNet demonstrated a significant performance in

terms of various estimation tasks, such as depth, ego-motion

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 9

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

Sequence 09 Sequence 10

Fig. 9: Our proposed RSTNet estimates the trajectory on
the KITTI odometry benchmark, Sequence 02 (upper left),
Sequence 08 (upper right), Sequence 09 (lower left) and
Sequence 10 (lower right). Our results are coloured in blue
while the ground truth is coloured in red.

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

Sequence 09 Sequence 10

Fig. 10: Our proposed RSTNet to detect dynamic objects on
the KITTI odometry benchmark.

and dynamic objects. But it comes at a price of network
computational complexity. For a fair comparison, all of our
experiments were conducted under Tensorflow 1.14 version
with the same size (416× 128) for input image. We imple-
mented our RST-encoder and RST-decoder layers based on
the RES18 network. We replaced the striding, pooling and
upsampling operations in each layer of the RES18 network
with our RST layers. To demosntrate the network complexity,
we constructed five versions of networks (RST-V1 to RST-
V5) by replacing each of five filters in the RES18 network
with RST layers, and a full version (RST-FULL) by replacing
all five filters together. We implemented the 3D-Packenet [11]
in the same Tensorflow environment. Table IV presents the
network parameters and inference time on the NVIDIA GTX
1080TI GPU. The inference time is the average over the last
10 iterations in training epoch 2.

Table IV reveals the number of parameters for version V2
to V4 is larger than the RES18 network, and accordingly
longer inference time is required. The full version in the last
row shows both the number of parameters and inference time
became very large but produced good estimation results as
demonstrated in Fig. 3.

E. Ablation Analysis

We conducted three experiments for an ablation analysis
with three network versions (RST-V1, RST-V12 to RST-

TABLE IV: The number of parameters and inference time for
different versions of networks.

Network Number of parameters Time(s/it)

3D-Packnet [11] 23170736 1.24357

RST-V1 23125232 1.23886

RST-V2 37062512 1.42846

RST-V3 26444144 1.33599

RST-V4 23789168 1.30512

RST-V5 23125232 1.23902

RST-FULL 40863344 1.89274

V123). The version RST-V1 is a result of replacing the first
filter in the RES18 network with an RST layer. The version
RST-V12 is a result of replacing the first two filters in the
RES18 network with two RST layers. The version RST-
V123 is a result of replacing the first three filters in the
RES18 network with three RST layers. In Table V, we set the
same network and training parameters to explore the influence
of increasing the number of RST layers on the estimation
performance. The main evaluation is focused on the ego-
motion and depth estimation for sequence 09 and sequence
10.

It can be seen from Table V that both ego-motion and depth
estimations perform better and better when the number of RST
layers increases from 1 to 3. More RST layers could lead to
more accurate results, but with a longer computational time as
indicated before.

We also conducted seven experiments for an ablation anal-
ysis on the features used for ego-motion estimation in our
RSTNet. In Fig.1, the RNN ego-motion network uses three
kinds of input features extracted from two consecutive input
images, two estimated depth maps, and one optical flow map.
The input image features (Fi) provide the appearance informa-
tion and they are the most effective features for ego-motion
estimation as demonstrated in most research works. The depth
features (Fd) provide the structural information of scenes. The
flow features (Ff) provide the dynamic information of objects.

The average translational RMSE drift trel and rotational
RMSE drift rrel for Sequence 09 are used for evaluation in
Table VI. It can be seen the results are not improved when the
depth features (Fd) or flow features (Ff) are used individually
when comparing with image features (Fi). But the results can
be improved when the depth features or flow features are used
together with image features (see Fi+d and Fi+ f columns).

When the combination of depth features and flow features
are used (Fd+ f column), the results get worse, which implies
that the image features are the most effective factor. When all
three kinds of features are used (Fi+d+ f column), the results
are the best.

VI. CONCLUSION

In this paper, we propose a novel monocular recurrent
spatial-temporal network (RSTNet) for estimating depth, and
ego-motion from videos. Since our proposed RST layers can

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 10

TABLE V: Performance comparison for different versions of RSTNet. Sq.09 and Sq.10 (ATE) are the ego-motion estimation
results. From Abs Rel to δ<1.253 are the depth estimation results.

RST Versions Sq.09 (ATE) Sq.10 (ATE) Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ <1.252 δ <1.253

RST-V1 0.0123±0.0078 0.0121±0.0095 0.1162 1.083 5.114 0.197 0.860 0.957 0.980

RST-V12 0.0118±0.0070 0.0109±0.0061 0.1120 1.067 5.024 0.195 0.863 0.961 0.981

RST-V123 0.0116±0.0066 0.0106±0.0056 0.1103 0.794 4.623 0.191 0.880 0.963 0.984

RST-FULL 0.0112±0.0064 0.0104±0.0053 0.1084 0.767 4.524 0.188 0.891 0.974 0.991

TABLE VI: Impact of image features (Fi), depth features
(Fd), and flow features (Ff) on the ego-motion estimation of
Sequence 09.

Features Fi Fd Ff Fi+d Fi+ f Fd+ f Fi+d+ f

trel(%) 5.67 8.21 9.12 4.64 4.75 9.06 4.35

rrel(
◦/100m) 2.94 7.82 8.34 3.25 3.30 7.69 2.22

• trel: average translational RMSE drift (%) on length of 100m-
800m.

• rrel: average rotational RMSE drift (◦/100m) on length of
100m-800m.

capture detailed spatial and temporal features from consecutive
input frames, the RSTNet can generate more accurate depth
and ego-motion estimation results compared with other exist-
ing unsupervised learning networks. In addition, our proposed
network takes a holistic approach to estimating key visual
clues (dense depth, ego-motion, optical flow, and dynamic
object) with the combination of multiple features (appearance,
structure, and temporal features).
As demonstrated in the network complexity, our network
full version requires significant amount of time for compu-
tation. This is far from real time requirement. This is the
main limitation of our approach where real time inference is
infeasible in current computing platforms. In general, most
deep learning based VO approaches are short in term of real
time performance due to the use of deep neural networks.
But we believe the depth and ego-motion estimation with
deep learning still has the potential in long time perspective.
In the future, we would like to explore the opportunity to
improve the time efficiency. This could be explored with
new light weighted network architectures. Also we would like
to combine geometric methods with deep learning networks
together to not only improve the accuracy but also reduce
computational time.

REFERENCES

[1] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
Learning of Depth and Ego-Motion from Video,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1851–1858.

[2] V. Prasad and B. Bhowmick, “SfMLearner++: Learning Monocular
Depth & Ego-Motion using Meaningful Geometric Constraints,” in 2019
IEEE Winter Conference on Applications of Computer Vision (WACV).
IEEE, 2019, pp. 2087–2096.

[3] R. Li, S. Wang, Z. Long, and D. Gu, “UnDeepVO: Monocular Visual
Odometry through Unsupervised Deep Learning,” in 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2018,
pp. 7286–7291.

[4] R. Garg, V. K. BG, G. Carneiro, and I. Reid, “Unsupervised CNN for
Single View Depth Estimation: Geometry to the Rescue,” in European
Conference on Computer Vision. Springer, 2016, pp. 740–756.

[5] C. Godard, O. M. Aodha, and G. J. Brostow, “Unsupervised Monocular
Depth Estimation with Left-Right Consistency,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 270–279.

[6] R. Mahjourian, M. Wicke, and A. Angelova, “Unsupervised Learning
of Depth and Ego-Motion from Monocular Video Using 3D Geometric
Constraints,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 5667–5675.

[7] B. Wagstaff, V. Peretroukhin, and J. Kelly, “Self-Supervised Deep Pose
Corrections for Robust Visual Odometry,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
2331–2337.

[8] R. Li, D. Gu, and S. Wang, “DeepSLAM: A Robust Monocular SLAM
System With Unsupervised Deep Learning,” IEEE Transactions on
Industrial Electronics, vol. 68, no. 4, pp. 3577–3587, 2021.

[9] Z. Yin and J. Shi, “GeoNet: Unsupervised Learning of Dense Depth,
Optical Flow and Camera Pose,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 1983–1992.

[10] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
Into Self-Supervised Monocular Depth Estimation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
3828–3838.

[11] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, “3D
Packing for Self-Supervised Monocular Depth Estimation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2485–2494.

[12] H. Jiang, L. Ding, Z. Sun, and R. Huang, “DiPE: Deeper into Pho-
tometric Errors for Unsupervised Learning of Depth and Ego-motion
from Monocular Videos,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 10 061–
10 067.

[13] Y. Zou, Z. Luo, and J.-B. Huang, “DF-Net: Unsupervised Joint Learning
of Depth and Flow using Cross-Task Consistency,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 36–53.

[14] Y. Almalioglu, M. R. U. Saputra, P. P. de Gusmao, A. Markham, and
N. Trigoni, “GANVO: Unsupervised Deep Monocular Visual Odometry
and Depth Estimation with Generative Adversarial Networks,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 5474–5480.

[15] Y. Wang, P. Wang, Z. Yang, C. Luo, Y. Yang, and W. Xu, “UnOS:
Unified Unsupervised Optical-Flow and Stereo-Depth Estimation by
Watching Videos,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8071–8081.

[16] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova, “Depth from
Videos in the Wild: Unsupervised Monocular Depth Learning from
Unknown Cameras,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 8977–8986.

[17] W. Zhao, S. Liu, Y. Shu, and Y.-J. Liu, “Towards Better Generalization:
Joint Depth-Pose Learning without PoseNet,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9151–9161.

[18] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and I. Reid,
“Unsupervised Learning of Monocular Depth Estimation and Visual
Odometry with Deep Feature Reconstruction,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 340–349.

[19] T. Feng and D. Gu, “SGANVO: Unsupervised Deep Visual Odometry
and Depth Estimation with Stacked Generative Adversarial Networks,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4431–4437,
2019.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 11

[20] A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff, and
M. J. Black, “Competitive Collaboration: Joint Unsupervised Learning
of Depth, Camera Motion, Optical Flow and Motion Segmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 240–12 249.

[21] C. M. Parameshwara, G. Hari, C. Fermüller, N. J. Sanket, and Y. Aloi-
monos, “Diffposenet: Direct differentiable camera pose estimation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2022, pp. 6845–6854.

[22] C. Wang, J. M. Buenaposada, R. Zhu, and S. Lucey, “Learning Depth
from Monocular Videos using Direct Methods,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2022–2030.

[23] J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid,
“Unsupervised Scale-consistent Depth and Ego-motion Learning from
Monocular Video,” Advances in Neural Information Processing Systems,
vol. 32, pp. 35–45, 2019.

[24] Y. Wang, X. Ma, J. Wang, S. Hou, J. Dai, D. Gu, and H. Wang, “Robust
AUV visual loop closure detection based on variational auto-encoder
network,” IEEE Transactions on Industrial Informatics, 2022.

[25] P. Z. Ramirez, M. Poggi, F. Tosi, S. Mattoccia, and L. Di Stefano,
“Geometry Meets Semantics for Semi-supervised Monocular Depth
Estimation,” in Asian Conference on Computer Vision. Springer, 2018,
pp. 298–313.

[26] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Unsupervised
Monocular Depth and Ego-motion Learning with Structure and Seman-
tics,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2019, pp. 0–0.

[27] M. Klingner, J.-A. Termöhlen, J. Mikolajczyk, and T. Fingscheidt, “Self-
Supervised Monocular Depth Estimation: Solving the Dynamic Object
Problem by Semantic Guidance,” in European Conference on Computer
Vision. Springer, 2020, pp. 582–600.

[28] R. Ambrus, V. Guizilini, J. Li, and S. P. A. Gaidon, “Two Stream
Networks for Self-Supervised Ego-Motion Estimation,” in Conference
on Robot Learning. PMLR, 2020, pp. 1052–1061.

[29] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-Time Single Image and Video Super-
Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1874–1883.

[30] S. Pillai, R. Ambruş, and A. Gaidon, “SuperDepth: Self-Supervised,
Super-Resolved Monocular Depth Estimation,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
9250–9256.

[31] L. Zhou, J. Ye, M. Abello, S. Wang, and M. Kaess, “Unsupervised
Learning of Monocular Depth Estimation with Bundle Adjustment,
Super-Resolution and Clip Loss,” arXiv preprint arXiv:1812.03368,
2018.

[32] T.-W. Hui, “Rm-depth: Unsupervised learning of recurrent monocular
depth in dynamic scenes,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2022, pp.
1675–1684.

[33] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for Optical
Flow Using Pyramid, Warping, and Cost Volume,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 8934–8943.

[34] V. Badrinarayanan, A. Handa, and R. Cipolla, “SegNet: A Deep Convo-
lutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise
Labelling,” arXiv preprint arXiv:1505.07293, 2015.

[35] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
Quality Assessment: From Error Visibility to Structural Similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
2004.

[36] S. Lee, S. Im, S. Lin, and I. S. Kweon, “Learning Residual Flow as
Dynamic Motion from Stereo Videos,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
1180–1186.

[37] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[38] D. Eigen, C. Puhrsch, and R. Fergus, “Depth Map Prediction from
a Single Image using a Multi-Scale Deep Network,” arXiv preprint
arXiv:1406.2283, 2014.

[39] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset
for Semantic Urban Scene Understanding,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp.
3213–3223.

[40] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

Feng Tuo received the BSc. degree in commu-
nication and information system from University
of Electronic Science and Technology of China,
Chengdu, China, in 2013, the MSc. Degree in elec-
tronic engineering, and the PhD. degree in computer
science from University of Essex, Colchester, UK. in
2018 and 2021, respectively. His research interests
include deep learning, computer vision, simultane-
ous localization and mapping (SLAM).

LI et al.: DeepSLAM: A ROBUST MONOCULAR SLAM SYSTEM WITH UNSUPERVISED DL 3587

[36] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o:
A general framework for graph optimization,” in Proc. IEEE Int. Conf.
Robot. Autom., 2011, pp. 3607–3613.

[37] X. Gao and T. Zhang, “Unsupervised learning to detect loops using deep
neural networks for visual SLAM system,” Auton. Robots, vol. 41, no. 1,
pp. 1–18, 2017.

[38] J. Li, H. Zhan, B. M. Chen, I. Reid, and G. H. Lee, “Deep learning for
2D scan matching and loop closure,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2017, pp. 763–768.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Int. Conf. Learn. Representations, pp.
1–14, 2015.

[40] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[41] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for neural
networks for image processing” IEEE Trans. Computational Imaging, vol.
3, no. 1, pp. 47–57, Mar. 2017.

[42] A. Geiger, J. Ziegler, and C. Stiller, “StereoScan: Dense 3D reconstruction
in real-time,” in Proc. Intell. Veh. Symp., 2011, pp. 963–968.

[43] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in Proc. AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[44] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., 2012, pp. 3354–3361.

[45] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km:
The Oxford RobotCar dataset,” Int. J. Robot. Res., vol. 36, no. 1, pp. 3–15,
2017, doi: 10.1177/0278364916679498.

Ruihao Li received the B.Sc. degree in automa-
tion from the Beijing Institute of Technology,
Beijing, China, in 2012, the M.Sc. degree in con-
trol science and engineering from the National
University of Defense Technology, Changsha,
China, in 2014, and the Ph.D. degree in robotics
from the University of Essex, Colchester, U.K.,
in 2018.

He is currently an Assistant Professor with
the Artificial Intelligence Research Center,
National Innovation Institute of Defense Tech-

nology, Academy of Military Sciences, Beijing. His research interests
include robotics, simultaneous localization and mapping, deep learning,
and semantic scene understanding.

Sen Wang (Member, IEEE) received the Ph.D.
degree in robotics from the University of Essex,
Colchester, U.K., in 2015. He is an Assistant
Professor in Robotics and Autonomous Sys-
tems with Heriot-Watt University and a faculty
member of the Edinburgh Centre for Robotics,
Edinburgh, U.K. He was previously a Postdoc-
toral Researcher with the University of Oxford,
Oxford, U.K. His current research focuses on
robot perception and autonomy using proba-
bilistic and learning approaches, especially au-

tonomous navigation, robotic vision, simultaneous localization and map-
ping, and robot learning.

Dongbing Gu (Senior Member, IEEE) received
the B.Sc. and M.Sc. degrees in control engi-
neering from the Beijing Institute of Technology,
Beijing, China, in 1985 and 1988, respectively,
and the Ph.D. degree in robotics from the Uni-
versity of Essex, Colchester, U.K., in 2004.

From October 1996 to October 1997, he was
an Academic Visiting Scholar with the Depart-
ment of Engineering Science, University of Ox-
ford, Oxford, U.K. In 2000, he joined the Uni-
versity of Essex as a Lecturer. He is currently a

Professor of Robotics with the School of Computer Science and Elec-
tronic Engineering, University of Essex. His research interests include
robotics, multiagent systems, cooperative control, model predictive con-
trol, visual simultaneous localization and mapping, wireless sensor net-
works, and machine learning.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on January 07,2021 at 13:25:17 UTC from IEEE Xplore. Restrictions apply.

Dongbing Gu (SM’07) received the BSc. and MSc.
degrees in control engineering from the Beijing
Institute of Technology, Beijing, China, in 1985 and
1988, respectively, and the PhD. degree in robotics
from the University of Essex, Colchester, U.K., in
2004.

From October 1996 to October 1997, he was an
Academic Visiting Scholar with the Department of
Engineering Science, University of Oxford, Oxford,
UK. In 2000, he joined the University of Essex as
a Lecturer. He is currently a Professor of Robotics

with the School of Computer Science and Electronic Engineering, University
of Essex. His research interests include robotics, multiagent systems, cooper-
ative control, model predictive control, visual simultaneous localization and
mapping, wireless sensor networks, and machine learning.

