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A B S T R A C T 

Weak gravitational lensing of distant galaxies provides a powerful probe of dark energy. The aim of this study is to investigate 
the application of convolutional neural networks (CNNs) to precision shear estimation. In particular, using a shallow CNN, we 
explore the impact of point spread function (PSF) misestimation and ‘galaxy population bias’ (including ‘distribution bias’ and 

‘morphology bias’), focusing on the accuracy requirements of next generation surveys. We simulate a population of noisy disc 
and elliptical galaxies and adopt a PSF that is representative of a Euclid -like surv e y. We quantify the accuracy achieved by the 
CNN, assuming a linear relationship between the estimated and true shears and measure the multiplicative ( m ) and additive ( c ) 
biases. We make use of an unconventional loss function to mitigate the effects of noise bias and measure m and c when we 
use either: (i) an incorrect galaxy ellipticity distribution or size–magnitude relation, or the wrong ratio of morphological types, 
to describe the population of galaxies (distribution bias); (ii) an incorrect galaxy light profile (morphology bias); or (iii) a PSF 

with size or ellipticity offset from its true value (PSF misestimation). We compare our results to the Euclid requirements on the 
knowledge of the PSF model shape and size. Finally, we outline further work to build on the promising potential of CNNs in 

precision shear estimation. 

Key words: gravitational lensing: weak – methods: data analysis – cosmology: observations. 
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 I N T RO D U C T I O N  

n the late 1990s, astronomers observing distant Type 1a supernovae 
ade the astonishing disco v ery that the expansion of the Universe

s accelerating (Riess et al. 1998 ; Perlmutter et al. 1999 ). This was
ontrary to the expectation that the gravitational pull of all the matter
n the Universe should cause the expansion rate to decrease over 
ime. The accelerated expansion implies the existence of a new form
f energy, dubbed ‘dark energy’ which, according to the standard 
osmological model, makes up around 68 per cent of the energy 
ensity of the Universe (Abbott et al. 2019 ; Planck Collaboration 
020 ), with the remainder cold dark matter (CDM) and ordinary 
baryonic) matter. 

Within this ‘concordance’ model, known as � CDM, dark energy is 
 constant energy density filling space homogeneously and resulting 
n a cosmological constant, � , or ‘vacuum energy’. Extensions to the
oncordance model include, most notably, ‘quintessence’, in which 
ark energy is a dynamic quantity with energy density that varies 
n space and time and with an equation of state parametrized by
( z), the pressure to energy density ratio. Precision measurements 

f w can help distinguish between a cosmological constant, in which 
 = −1 and quintessence, where w( z) ≥ −1. For a universe with

ccelerated expansion, w < −1/3. 
Alternative theories have been posed that do not postulate an 

dditional energy density to explain the accelerated expansion (i.e. 
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on-standard cosmological models), for example, modifications to 
eneral relatively at cosmological scales (e.g. Joyce, Lombriser & 

chmidt 2016 ), although results from gravitational wave astronomy 
ave made this less popular (Lombriser & Lima 2017 ). 
One of the most promising probes of the cosmological model is

eak gravitational lensing (see, for example Albrecht et al. 2006 ), in
hich light emitted by distant galaxies is coherently distorted as it

ravels through the intervening large-scale structure of the Universe 
owards the observer. Gravitational lensing is sensitive to distance 
atios between the source, lens and observer, as well as the evolution
f the matter power spectrum (Bartelmann & Schneider 2001 ). Given
hat dark energy affects the growth of structure (on large scales,
ompeting with gravity), the statistics of the distortions to galaxy 
hapes (or ‘shear field’), together with the source and lens redshift
nformation, thus puts constraints on the dark energy equation of 
tate (Hu 1999 ; Van Waerbeke & Mellier 2003 ). 

Weak lensing is a primary science driver for several Stage IV
urv e ys, including the European Space Agency’s Euclid 1 satellite 
Laureijs et al. 2011 ; Amendola et al. 2013 ), launched on 2023 July
, and the ground-based Le gac y Surv e y of Space and Time 2 (LSST) at
he Vera C. Rubin Observatory in Chile (LSST Dark Energy Science
ollaboration 2012 ), with expected first light in August 2024. In
ddition, the Chinese Surv e y Space Telescope (CSST or Xuntian;
.g. Gong et al. 2019 ) and NASA’s Nancy Grace Roman Space
 https:// www.euclid-ec.org/ 
 https:// rubinobservatory.org/ 
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elescope 3 (formerly the Wide-Field Infra-Red Surv e y Telescope or
FIRST; Spergel et al. 2015 ), are due for launch in 2024 and 2027,

espectively. In order to realize the full potential of these surv e ys,
eak lensing systematics must be understood and controlled. This is
 highly non-trivial task that involves: modelling effects associated
ith the telescope’s optical system and detector (Cypriano et al.
010 ; Voigt et al. 2012 ; Cropper et al. 2016 ; Eriksen & Hoekstra
018 ); o v ercoming model-fitting bias (Voigt & Bridle 2010 ), noise
ias (Kacprzak et al. 2012 ; Refregier et al. 2012 ), and their interaction
Kacprzak et al. 2014 ); accurate measurements of galaxy photometric
edshifts; and the appropriate treatment of intrinsic allignments (e.g.
oachimi & Bridle 2010 ), selection effects (e.g. Jarvis et al. 2016 ),
nd object blending (Samuroff et al. 2018 ; MacCrann et al. 2021 ). 

Much progress has been made within the weak lensing community
o impro v e shear estimation methods. In particular, the Shear TEsting
rogramme (STEP; Heymans et al. 2006 ; Massey et al. 2007 ) and
Ravitational lEnsing Accuracy Testing (GREAT) Challenges (Bri-
le et al. 2010 ; Kitching et al. 2012 ; Mandelbaum et al. 2015 ) put the
tate-of-the art methods to the test. Following the GREAT3 challenge,
ethods including Bayesian Fourier Domain (BFD; Bernstein et al.

016 ) and METACALIBRATION (Huff & Mandelbaum 2017 ; Sheldon &
uff 2017 ) have been developed that reduce biases below the levels

equired in ne xt-generation surv e ys, assuming the noise and PSF are
ufficiently well understood. 

In recent years, machine learning (ML) has also been applied to
hear measurement, utilizing feed-forward artificial neural networks
ANNs) with properties measured from the galaxy images (e.g.
llipticities, fluxes, sizes) as input features (Gruen et al. 2010 ;
ewes et al. 2019 ; Pujol et al. 2020 ), or, alternatively, the galaxy

mages themselves (e.g. Ribli, Dobos & Csabai 2019 ; Springer
t al. 2020 ; Zhang et al. 2023 ). ML has long been used to estimate
alaxy photometric redshifts (Collister & Lahav 2004 ; Brescia et al.
021 , and references therein) and is increasingly being utilized in
osmology (e.g. Fluri et al. 2022 ) and other areas of astronomy, for
xample to identify transients (Lopez Portilla et al. 2020 ; Ayyar et al.
022 ). 
In this paper, we look at using a convolutional neural network

CNN) for precision weak lensing measurements in a Euclid -like
urv e y. CNNs are used to capture information from pixellated input
mages, extracting features from the images and mapping them to
utput values or target labels. These models are often applied to
lassification problems, but can also be used in regression tasks, as
n this work. In supervised ML, the parameters of the network are
earnt from labelled ‘training’ data, and then the model’s performance
s assessed using ‘test data’, usually a random sub-set of the training
ata for which the predicted and true labels can be compared.
ommon to all ML methods is the dependence on the fidelity of the

raining set; in this application, if the training set does not accurately
epresent observed galaxies in the Universe then, when it is deployed
n surv e y images, there will be a bias, known in the ML community
s ‘domain bias’ or ‘data set shift’. ANNs can fail dramatically when
pplied to out-of-distribution data. 

Studies quantifying the distributions of galaxy properties, such
s morphology, bulge fraction, colour, surface brightness, and their
orrelations are numerous (e.g. Conselice 2006 ; Calvi et al. 2012 ;
hang & Yang 2019 ); ho we ver, there is a limit to how well these
istributions can be measured (e.g. Davari, Ho & Peng 2016 ) and
hey will depend on the galaxy environment (D’Eugenio et al. 2015 ;
hen, Hwang & Ko 2016 ) and specific surv e y parameters, including,
NRAS 528, 3217–3231 (2024) 
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o  

o  
or example, the survey depth, redshift bins, colour bands and
election criteria (Lee, Chary & Wright 2018 ; H ̈außler et al. 2022 ).
hus, it is important to understand the sensitivity of a particular
L model to differences between the training set galaxy images

nd the actual distribution of observed galaxy morphologies in the
niverse. 
Shape estimation is also sensitive to how well the point spread

unction (PSF; see Section 3.2 ) can be estimated using stars in the
eld (Paulin-Henriksson et al. 2008 ; Bertin 2011 ; Cropper et al.
013 ). Notably, Schmitz et al. ( 2020 ) find that propagation of the
ame modelling errors in the PSF through to galaxy ellipticity
stimates is dependent on the specific shape measurement method
mployed. 

In this paper, we build on previous work applying ANNs to shear
easurement by investigating the impact of using shifted or out-

f-distribution data to train the network. Specifically, we look at
he effect on the accuracy of shear estimates from using either an
ncorrect galaxy population, referred to here as ‘population bias’, or
he wrong PSF model (PSF misestimation), in the training sets. 

The paper is organized as follows. In Section 2 , we briefly review
he effect of gravitational shear on an elliptical source and summarize
he shear bias requirements for Euclid . In Section 3 , we describe
he galaxy and PSF models and the simulations used to generate
ixellated images on postage stamps. In Section 4 , we describe the
NN model architecture and define the shear estimator. Section 5
rovides details about the galaxy population used in the training
ets. In Section 6 , we outline the test set simulations and explain
ow the shear biases are calculated. In Section 7 , we optimize the
NN model. In Sections 8 and 9 , we quantify the impact of PSF
isestimation and galaxy population bias, respectively . Finally , in
ection 10 , we discuss the results and future work. 

 G R AV I TAT I O NA L  SHEAR  

.1 The lensed ellipticity 

or an elliptical source galaxy with minor to major axis ratio b / a and
osition angle φ, measured counter-clockwise from the x -axis to the
ajor axis, the intrinsic source (i.e. unlensed) complex ellipticity is: 

 

int = 

(
a − b 

a + b 

)
e 2 iφ = e int 

1 + ie int 
2 (1) 

here e int 
1 ( e int 

2 ) is the component of the ellipticity along (at 45 ◦ to)
he x -axis. Defining the complex shear, γ = γ 1 + i γ 2 , galaxy images
re distorted by a Jacobian magnification matrix, M , given by 

 = 

(
1 − κ − γ1 −γ2 

−γ2 1 − κ + γ1 

)
(2) 

uch that the observed (i.e. lensed) complex ellipticity, e len , is 

 

len = 

e int + g 

1 + g ∗e int 
, (3) 

here g = γ /(1 − κ) is the reduced shear and κ the convergence
Seitz & Schneider 1997 ). In the weak lensing regime, κ � 1 and g

γ , so that 

 

len 
1 ≈ e int 

1 + γ1 , e 
len 
2 ≈ e int 

2 + γ2 . (4) 

In the standard cosmological model, the universe is homogeneous
n large scales, and thus we do not e xpect an y preferential orientation
f galaxies on the sk y. Av eraging o v er galaxies, we find that the two

https://roman.gsfc.nasa.gov/
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omponents of the observed shear are given by 

obs 
i ≈ 〈

e len 
i − e int 

i 

〉 = 

〈
e len 
i 

〉 ± σ int 
i √ 

n gal 
, (5) 

here σ int 
i = 

√ 

〈 (e int 
i 

)2 〉 , with i = { 1, 2 } , is the dispersion of the
ource ellipticity distribution for component i , referred to as ‘shape 
oise’, and n gal is the number of galaxies. Shape noise is ∼0.3 (see,
.g. D’Eugenio et al. 2015 ; Li et al. 2023 ), approximately an order
f magnitude larger than the shear signal. 
In addition to a shear, the Jacobian matrix causes an enlargement 

f the image such that a galaxy with unlensed area given by ab
ecomes a lensed galaxy with area ab /(1 − | γ | 2 ). 

.2 Shear bias definition and r equir ements 

n practice, measurements of galaxy ellipticities, ˆ e i , are biased 
stimates of e len 

i . Thus, the shear estimator, ˆ γi = 〈 ̂ e i 〉 , is a biased
stimate of γ obs 

i . Following the analysis in STEP (Heymans et al. 
006 ) and subsequent weak lensing studies, we assume a linear 
elationship between the estimated shear, ˆ γi , and true shear, such 
hat: 

ˆ i = (1 + m i ) γi + c i , (6) 

here m i and c i are referred to as the multiplicative and additive
iases, respectively. 4 The requirements on m and c depend on the 
urv e y parameters, including the surv e y area, galaxy surface density,
nd median redshift (Amara & R ́efr ́egier 2008 ). For Euclid , the top-
evel requirements (i.e. including all potential sources of bias, as 
ummarized in Section 1 ) are | m i | < 2 × 10 −3 and | c i | < 2 × 10 −4 .
or a comprehensive summary of the various bias contributions to 
eak-lensing shear estimation with Euclid see Cropper et al. ( 2013 ).
or comparison, we also include in the plots bias requirements for the
round-based Dark Energy Surv e y (DES; 2013–2019) 5 , representing 
 recent (completed) surv e y. 

 SIMULATING  T H E  PSF-CONVO LV ED  

A L A X Y  IMAG ES  

n this section, we describe the galaxy and PSF models and the
imulations used to generate PSF-convolved galaxy images on 
ostage stamps. 

.1 The galaxy model 

ypically, galaxy light distributions are represented by a family of 
 ́ersic profiles (Sersic 1968 ) with intensity I ( x ) at position x given
y 

 ( x ) = I 0 exp 
{ 

−k 
[
( x − x 0 ) 

T C( x − x 0 ) 
]1 / 2 n s 

} 

, (7) 

here n s is the S ́ersic index, I 0 is the intensity at the galaxy centre,
 0 , and the covariance matrix, C , given by 

 = 

(
C 11 C 12 

C 21 C 22 

)
, (8) 

as elements 

 11 = 

cos 2 ( φ) 

a 2 
+ 

sin 2 ( φ) 

b 2 
, (9) 
 Also, 〈 ̂ e i 〉 = (1 + m i ) 〈 e len 
i 〉 + c i 

 https://www.darkenergysurv e y.org/

c
m
7

S

 12 = C 21 = 

1 

2 

(
1 

a 2 
− 1 

b 2 

)
sin (2 φ) , (10) 

 22 = 

sin 2 ( φ) 

a 2 
+ 

cos 2 ( φ) 

b 2 
, (11) 

ith a , b, and φ as defined in Section 2.1 . 
In this work, we simulate a population of disc galaxies, represented

y an exponential profile ( n s = 1) and ellipticals, modelled by a de
aucouleurs profile ( n s = 4), with constant ellipticity isophotes. 
efining k = 1.9992 n s − 0.3271, then for a circular galaxy the half-

ight radius, r h = a = b (also known as the effective radius), is the
adius enclosing half the total flux. 6 The full-width at half-maximum 

ntensity (FWHM) is related to the half-light radius (for a circular
rofile) through the equation: 

WHM = 2 r h 

(
ln 2 

k 

)n s 

. (12) 

The galaxy half-light radii and ellipticity distributions used in this 
ork are described in Section 5 and summarized in Table 1 . 

.2 The PSF model 

n addition to shot noise, images of astronomical objects are distorted
nd degraded due to (i) astmospheric seeing (for ground-based 
issions), (ii) the optical system (iii) telescope pointing stability 

iv) image pixellization and (v) detector effects, including charge 
ransfer leaking and inefficiency and radiation damage. Here, we 
gnore detector effects and model the PSF by a convolution with the
ource intensity profile. Following Voigt & Bridle ( 2010 ) and others
e.g. Ribli, Dobos & Csabai 2019 ), we use a single Gaussian ( n s =
.5) to model the PSF profile. We simulate Euclid -like observations
ith a 0.1 arcsec pixel scale (Laureijs 2017 ) and a PSF with FWHM
f 0.17 arcsec and ellipticity ≈0.022 ( e PSF 

1 = 0 . 01 and e PSF 
2 = 0 . 02).

e assume the PSF is constant across the field of view (FoV) and
 v er time and ignore the effects of colour dependence (see Section 10
or further comments). 

.3 Simulating the pixellated images 

he process of simulating the PSF-convolved galaxy images on 
ixellated postage stamps is depicted in the flow diagram in 
ig. 1 and follows the procedure used in Voigt & Bridle ( 2010 )
nd Voigt et al. ( 2012 ). Galaxy and PSF images are first simulated
n separate grids each 17 2 pixels in size. Prior to convolution, each
ixel is divided into a grid with n 2 bin ‘sub-pixels’ and the intensity
alculated at the centre of each of these sub-pix els. F or the disc
nd elliptical galaxies, we use n bin = 3 and 5, respectively (where
 finer grid is used for the de Vaucouleurs profile to take account
f the more ‘peaky’ light profile). Convolution between the galaxy 
ntensity profile and the PSF is performed numerically on this finer
rid. 7 Following the convolution, the flux in each pixel of the PSF-
onvolved galaxy image is found by summing the intensity from 

ach sub-pixel. Finally, the 17 2 pixels grid is cut down to provide
mage postage stamps which are 15 2 pixels in size. We find that
he results do not change when we use the same, finer binning
MNRAS 528, 3217–3231 (2024) 

hangeably. We note that ‘size’ is often used to refer to the galaxy ‘area’ 
easured using quadrupole moments (see Section 10 ). 
 The numerical convolution is performed using signal.convolve2d from the 
ciPy open-source PYTHON library. 

https://www.darkenergysurvey.org/
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M

Table 1. A summary of the PSF and galaxy parameters used in the training set. The value shown for the galaxy half-light 
radius is the mode, with minimum and maximum allo wed v alues sho wn in square brackets. R( σ ) is a Rayleigh distribution 
with mode σ . The subscript in square brackets shows the lower and upper allowed ellipticities. See Sections 3.2 and 5 for 
further details. 

S ́ersic index Half-light radius Ellipticity Ellipticals:discs Size–magnitude relation 
(arcsec) ( αr , βr ) 

PSF 0.5 0.08372 0.022 – –
Galaxies 1, 4 0.3 [0.2, 0.8] R(0 . 25) [0 , 0 . 7] 1:4 ( −0.1286, 2.65) 

Figure 1. Flow diagram showing the steps involved in simulating a noisy PSF-convolved galaxy image on a 15 by 15 pixel postage stamp (see Section 3.3 ): 
(1) galaxy image simulated on a 17 by 17 pixel grid with each pixel divided into n 2 bin sub-pixels; (2) PSF simulated on the same ‘fine’ grid used in step 1; (3) 
galaxy convolved numerically with the PSF on the fine grid; (4) fine grid binned up by a factor of n bin ; (5) binned grid cut down to central 15 by 15 pixels; (6) 
noise map generated, and (7) added to the postage stamp, creating the final image. Shown for a disc galaxy ( n s = 1) and S / N = 34. 
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 n bin = 5 and 7 for the disc and elliptical galaxies, respectively), or a
arger grid (19 by 19 pixels) for the convolution, in both the training
nd the test sets. We note, ho we ver, that the biases are sensitive to
hese choices when the v alues dif fer in the training and test sets
see also a discussion of the ‘pixel integration level’ in Voigt &
ridle 2010 ) and would need to be tested before using the CNN to
stimate shears from real data. This is beyond the scope of this paper,
ut we discuss in Section 10 possible further work to address this
ssue. 

 T H E  C N N  M O D E L  

.1 The model ar chitectur e 

e train two separate ANNs: one to label each galaxy with an
ˆ  1 estimate and another to label each galaxy with an ˆ e 2 estimate.

he networks are built using Keras Sequential models, provided
y TensorFlow (Abadi et al. 2015 ) and have the same shallow
rchitecture, shown in Fig. 2 . 

Input images contain a single PSF-convolved galaxy on a 15 by
5 pixel postage stamp, simulated using the Gaussian PSF described
n Section 3.2 . In the test sets, we assume a constant PSF which is
ither the same as the one used in the training sets (Sections 7 and
 ), or has a different size or ellipticity to the PSF used in the training
ets (Section 8 ). In practice, the PSF varies with position and time,
NRAS 528, 3217–3231 (2024) 
s well as depending on the spectral energy distribution (SED) of the
ource. We discuss this further in Section 10 . 

The first layer in each network is a convolutional layer 8 with n fil 

lters (or kernels), each 3 by 3 pixels in size, and with a stride of one.
e do not pad the images and therefore the output ‘feature maps’

re each 13 by 13 pixel grids. The grid values in each feature map,
 i , f , where f denotes the filter, are found by sliding the kernel across

he input image, moving along and then down one pixel at a time,
nd, at each kernel position, computing 

 i,f ( j, k) = g( w i,f · I( j : j + 2 , k : k + 2) + b i,f ) , (13) 

here j , k ∈ { 0, 1, . . . , 12 } , w i , f are the filter weights, b i , f the bias,
nd g is the acti v ation function, chosen here to be a Rectified Linear
nit (ReLU; Nair & Hinton 2010 ), such that g ( y ) = max(0, y ). The
umber of fitted parameters in this layer is 10 × n fil (i.e. 3 2 weights
nd one bias for each filter). 

The feature maps are then passed through the next layer, 9 

hich flattens the output from the previous layer, with shape
 batch size , 13 , 13 , n fil ), where batch size is the number of samples
sed per gradient update, into a tensor with shape ( batch size , N ),
here N = 13 2 × n fil . 
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Figure 2. Diagram showing the CNN architecture for a single 15 by 15 pixel input image containing a PSF-convolved galaxy. The network is trained on n gal 

images using the same PSF for each galaxy, described in Section 3.2 . Two different filters are shown for illustration, with 30 filters used in the actual model. ˆ e i 
and e len 

i are the estimated and true lensed galaxy ellipticities, defined in Section 2 . See Section 4 for a detailed description of each layer. 
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The next layer is a dense layer 10 connecting the output values 
 i , p , where p = { 1, 2, . . . , N } , from the previous (flattened) layer
o a single output, which is the ellipticity estimator, ˆ e i , for each
nput galaxy image in the batch. We use a hyperbolic tangent for the
cti v ation function to ensure the output takes values between −1 and
. The output label, or ellipticity estimate, is thus 

ˆ  i = tanh z i , (14) 

ith 

 i = 

N ∑ 

p= 1 

( W i,p u i,p + B i ) , (15) 

here W i , p and B i are the weights and the bias connecting the dense
ayer to the output. We do not include any pooling or dropout layers
n the network. The fiducial CNN model hyperparameters are shown 
n Table 2 . 

.2 The loss function 

or the loss function, in order to mitigate the effects of noise bias 11 ,
e follow Gruen et al. ( 2010 ) and Tewes et al. ( 2019 ) by adopting a

mean square bias’ (MSB), given by: 

SB = 

1 

n gal 

n gal ∑ 

n = 1 

[ 

1 

n real 

n real ∑ 

m = 1 

(
e len 
i − ˆ e i 

)] 2 

, (16) 

here n gal is the number of distinct, noise-free galaxy images in the
raining set, and n real is the number of noisy realizations of each of
hese images. Thus, the total number of noisy galaxy images in the
raining set is n gal × n real . We use a batch size = n real . 12 
0 tensorflow.keras.layers.Dense 
1 Because ellipticity ( e i ) is not a linear sum o v er pix el intensities, for noisy 
alaxy images, the ordinary least squares (OLS) estimators (in which the loss 
unction is the mean square error between the true and predicted e i values) 
re biased, i.e. the expected value of the error term in the regression is not 
ero. 
2 Note that for n real = 1, the loss function reduces to the mean square error 
MSE) and the batch size to 1. 
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a  

w

.3 The shear estimator 

e build multiple CNN models, where each model is trained on a
ifferent random set of noisy galaxy images (drawn from the same
nderlying distribution, described in Section 5 ). In addition, each 
NN model is given a different seed to start the training process. We
ote that we do not apply any shear to the galaxies in the training
ets. 

A given test set (representing observed galaxies, see Section 6 )
s passed through a ‘committee’ of trained CNN models, with each
odel providing a shear estimate, ˆ γ cnn 

i , which is the mean over all
redicted ellipticities in the test set, i.e. 

ˆ cnn 
i = 〈 ̂ e i 〉 . (17) 

For n cnn models in the committee, our shear estimator, ˆ γi , is given
y 

ˆ i = 

1 

n cnn 

n cnn ∑ 

q= 1 

ˆ γ cnn 
i,q ± s cnn 

i √ 

n cnn 
, (18) 

here s cnn 
i is the unbiased sample standard deviation o v er the shear

stimates, ˆ γ cnn 
i,q , for a given test set. By the Central Limit Theorem,

rovided that n cnn � 30, the distribution of the shear estimator is
pproximately normal. In practice, we use n cnn = 35. 

 T H E  T R A I N I N G  SETS  

n this section, we describe the properties of the training set galaxies
which are used to fit the CNN model weights and biases given
n equations ( 13 ) and 15 ). We simulate a population of galaxy
mages with 20 per cent de Vaucouleurs and 80 per cent exponential
rofiles, chosen to approximately represent the observed proportion 
f elliptical galaxies to galaxies containing discs. 
We adopt a power-law distribution for the number density of 

alaxies as a function of apparent magnitude, m AB , as follows: 

( m AB ) = ( m AB , u − m AB , l )( αm 

+ 1) m 

αm 
AB + m AB , l , (19) 

here we use αm 

= 0.36 (Hoekstra, Viola & Herbonnet 2017 )
nd magnitudes in the range m AB, l = 20.5 and m AB, u = 24.5,
ith the upper magnitude chosen to correspond to the performance 
MNRAS 528, 3217–3231 (2024) 
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equirement of Euclid ’s visible imager ( Euclid -VIS) for extended
ources of order 0.3 arcsec. 

It is known that the morphological properties of galaxies (e.g. size,
llipticity, surface brightness profile) and their apparent magnitudes
re correlated (see, e.g. Euclid Collaboration: Martinet et al. 2019 ).
n this paper, we consider the size-magnitude correlation, but a full
tudy including correlations between several galaxy properties is
eyond the scope of this work. 
We use a relationship between galaxy apparent magnitude and

ize from Hoekstra, Viola & Herbonnet ( 2017 ) (see their fig. 2), such
hat: 

 log 10 r h 〉 = αr m AB + βr (20) 

nd 

log 10 r h 
= ασ m AB + βσ , (21) 

ith αr = −0.12857, β r = 2.65, ασ = −0.0166, and βσ = 0.56 for
 h measured in arcsec. We draw half-light radii assuming a normal
istribution with 

log 10 r h ∼ N 

(
〈 log 10 r h 〉 , σ 2 

log 10 r h 

)
. (22) 

e make cuts on the pre-lensed galaxy size such that 0.2 ≤ ( r h /arcsec)
0.8. We comment on the lo wer cut-of f in Section 10 . A scatter

lot showing the relationship between the galaxy size and apparent
agnitude before and after cuts on signal-to-noise ( S / N ; see below)

s shown in Fig. 3 . 
The unlensed galaxy ellipticity is drawn from a truncated Rayleigh

istribution with mode e int = 0.25 and a maximum value e int = 0.7.
he major and minor axes lengths are calculated using ab = r 2 h and
 = ( a − b )/( a + b ), as in equation ( 1 ). Histograms showing the
istributions of galaxy apparent magnitude, size and ellipticity are
hown in Fig. 4 . 

The remaining four parameters in equation ( 7 ) defining the
alaxy intensity profile are orientation, peak intensity, and centroid.
he galaxy orientation is drawn from a uniform distribution with
 φ ∈ R : 0 ≤ φ < π} . The galaxy centroid position is randomized
niformly within the central pixel of the postage stamp image. The
eak intensity, I 0 , is related to the flux via the equation: 

 0 = 

F 

2 πn s k −2 n s r 2 h 
(2 n s ) 
, (23) 

here 
 is the gamma function and the flux, F , is given by: 

 = F 0 10 −0 . 4 m AB . (24) 

alaxies are simulated on pixellated grids and convolved with the
SF model as described in Section 3 . The galaxy and PSF model
arameters used in the training sets are summarized in Table 1 . We
pproximate the finite number of photons arriving on the detector
y adding uncorrelated noise to each pixel in the postage stamp
containing the PSF-convolved image), drawn from a Gaussian
istribution given by G (0 , σ 2 

n ), with σ n constant across pixels. We
ote, ho we ver, that undetected galaxies act as a source of correlated
oise (see Euclid Collaboration: Martinet et al. 2019 ). 
The signal-to-noise ratio is defined as: 

/N = 

√ ∑ 

I ( x) 2 

σn 
, (25) 

here the sum is taken o v er all the image pixels in the postage stamp.
e choose the ratio F 0 / σ n to give a signal-to-noise distribution with
ode ∼11 (see Fig. 4 ). We remo v e all galaxies with S / N < 10 or S / N
 100. Examples of noisy PSF-convolved galaxy images on postage

tamps are shown in Fig. 5 for a range of S / N values. 
NRAS 528, 3217–3231 (2024) 
 T H E  TEST  SETS  

alaxy test sets are simulated to represent observed galaxies. We first
imulate test sets with galaxies drawn from the same distribution as
he training set galaxies and with the same PSF (see Sections 5 ).

e then look at the effects of using either the wrong PSF model
Section 8 ) or an incorrect galaxy population (Section 9 ), in the
raining sets. In practice, we change the parameters used in the test
ets to be different from those in the training sets. We apply the same
ize and ellipticity restrictions to the pre-sheared test set galaxies as
sed in the training sets, except that the upper allowed ellipticity in
he test sets is 0.6, as opposed to 0.7 in the training sets. We note
hat we do not consider selection biases (see, for example, Jarvis
t al. 2016 ); all galaxies are simulated on individual postage stamps
nd included in the sample if they meet the signal-to-noise criteria
see Section 5 ). Cuts on galaxy size and ellipticity are made prior to
imulating the images. We do not investigate the impact of different
 / N , size or ellipticity cuts. 
We make the simplifying assumption that all galaxies in a test set

i.e. across the FoV) are subjected to the same constant shear. 25
est sets are generated using the following sets of values for each
omponent of the shear: γ 1 = { −0.025, −0.01, 0, 0.01, 0.025 }
nd γ 2 = { −0.05, −0.015, 0, 0.015, 0.05 } . We use all ( γ 1 , γ 2 )
ombinations from these shear sets. 

Each test set is a different random realization of galaxies and
oise maps. For each pre-sheared galaxy in a test set, a second is
enerated that is orthogonal to the first. This remo v es the shape
oise 13 , described in Section 2 (see also Massey et al. 2007 ), so that,
or a perfect shear measurement method, the estimated ellipticity, ˆ e i ,
v eraged o v er all galaxies in the test set, will be equal to the shear γ i .
s such, we need only generate enough galaxies in each test set to

airly represent the distribution of galaxy shapes (e.g. morphologies,
rientations, sizes and ellipticities) and to reduce the uncertainty
rom noise to the required level (i.e. to reach the required precision).
n practice, for noise-free images (which we use to optimize the CNN
odel hyperparameters and choose the number of galaxies required

n the training set), we use 4 × 10 4 rotated (or ‘matched’) pairs of
alaxies in each test set (i.e. 8 × 10 4 galaxies). For noisy images,
e use 4 × 10 5 rotated pairs (i.e. 8 × 10 5 galaxies). We note that,

or the unsheared test set and in the absence of pixellization, the
re-PSF convolved galaxies in a pair are identical apart from the
0 ◦ rotation. 
For each one of the 25 test sets, we obtain shear estimates ˆ γ1 and ˆ γ2 ,

hich are the mean estimates from the committee of trained CNN
odels (see equation ( 18 )). Multiplicative and additive biases are

hen calculated using ordinary least squares regression (see equation
 6 ) and Section 7 ). 

We note that the CNN models are built using unsheared training
et galaxies (see Section 4 ). The test sets containing sheared galaxies
re thus drawn from a different distribution to the galaxies in the
raining sets, even for the same galaxy parameter distributions and
SF. 

 OPTI MI ZI NG  T H E  C N N  

n this section, we find the number of training set galaxies ( n gal ) and
oise realizations per galaxy ( n real ) required in the training set in order
o reduce the multiplicative and additive biases to an acceptable level.

e also optimize the CNN model hyperparameters; specifically, the
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Table 2. CNN fiducial hyperparameters. Note that we use n real = 1 (500) for noise-free (noisy) training set images. See Sections 4 and 7 for 
further details. 

Number of filters Filter width Filter stride Number of epochs Batch size Learning rate Number of galaxies 
n fil (pixels) (pixels) n gal 

30 3 1 100 n real 0.001 10 5 

Figure 3. Relationship between half-light radius and apparent magnitude before (left) and after (right) cuts on signal-to-noise ( S / N ≥ 10; both plots exclude 
S / N > 100). Results shown for 10 4 galaxies using the parameters adopted for the training sets (see Section 5 for details). Each point represents a galaxy. Curves 
in the left-hand plot show the size–magnitude relation given in equation ( 20 ) using the slope adopted in the training set (black solid; αr = −0.1286) and with 
a 2 per cent (red dotted; αr = −0.1311) and 4 per cent (green dashed; αr = −0.1337) steeper slope. βr = 2.65 is fixed. The blue dash–dotted curve shows the 
size–magnitude relation adopted in Euclid Collaboration: Martinet et al. ( 2019 , see their fig. 1), corresponding approximately to a 3 per cent steeper slope. See 
Section 9 for a discussion of the shear biases arising from using an incorrect slope for the galaxy size–magnitude relation in the training set. 
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umber of epochs used in the training process and the number of
lters in the first layer of the network. 
For this, we use the same galaxy distribution in the training and

est sets, with parameters described in Section 5 , and with the correct
SF model (see Sections 8 and 9 for the biases when we use either the

ncorrect PSF model, or a different galaxy distribution, respectively, 
n the test sets). Using noise-free images in both the training and
est sets, we show in Fig. 6 the dependence of the biases on n gal , as
ell as on the number of epochs and filters. We find that, for the
odel architecture we use here, we require � 10 5 galaxies to reduce

he biases below those required for a Euclid -like surv e y. We find
hat the biases flatten for epochs � 100 and number of filters � 20.
n practice, we use n gal = 10 5 to train the model, with 30 filters
nd 100 epochs (see Table 2 for a summary of the fiducial CNN
odel hyperparameters). We note that, for the model architecture 

nd galaxy population adopted in this study, the multiplicative biases 
atten for n gal � 10 5 and that future work should explore methods to
educe the biases further, for example by using a deeper network. 

Finally, we simulate noisy galaxies using the S / N distribution
hown in Fig. 4 , with S / N ≥ 10. In Fig. 7 , we show the errors
n the estimated shears from each individual test set, as a function
f the true input shears, for dif ferent v alues of n real . Multiplicati ve
nd additive biases are calculated by fitting the linear model given 
n equation ( 6 ) to the shear estimates ( ̂  γi ), calculated using equation
 18 ). Results showing the dependence of m and c on the number
f noise realizations per galaxy are plotted in Fig. 6 . Notably,
or n real = 1, the MSB loss function, given in equation ( 16 ) and
escribed in Section 4.2 , reduces to the MSE loss function. We
ee that, with noisy images, the biases are high when we use the
SE loss function ( n real = 1), with | m i | > 0.1 (see also, e.g.
acprzak et al. 2012 ; Refregier et al. 2012 , for the noise bias

evels found in other studies using the MSE loss function). In Fig.
 , we find that we need � 500 noise realizations per training set
alaxy in order to reduce the noise bias by approximately two
rders of magnitude, reaching the required levels and consistent 
ith the biases found in noise-free images. We note that each trained
NN takes < 0.05 ms to make an ellipticity prediction and thus a
ommittee of 35 models provides a shear estimate per galaxy image
n < 1.75 ms. 

In Sections 8 and 9 , we use CNN models built using n gal = 10 5 and
 real = 500, which is sufficient to explore the potential impact of PSF
isestimation and galaxy population bias. Ho we ver, as discussed 

n Section 10 , in future work, the shear measurement biases will
eed to be reduced even further below the top-level requirements 
o allow for additional sources of systematics (e.g. Cropper et al.
013 ). 

 PSF  MISESTIMATION  BI AS  

n this section, we quantify the biases arising from an inaccurate
odelling of the PSF in the training sets. Specifically, we consider

he impact on the multiplicative and additive biases when we use
ither an incorrect PSF size, or an incorrect component of the PSF
llipticity, parameterised by 

 i = β0 ,i + β1 ,i 

(
δr PSF 

h 

r PSF 
h 

)
(26) 
MNRAS 528, 3217–3231 (2024) 
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M

Figure 4. Histograms showing the galaxy apparent magnitude (top left), S / N (top right), half-light radius (bottom left), and intrinsic ellipticity (bottom right) 
distributions. Grey shaded areas show the distributions used in the training sets (see Section 5 ; 10 ≤ S / N ≤ 100). Black solid lines show the distributions before 
the lower signal-to-noise cut. Green dashed and red dotted lines (see Fig. 3 caption for details) show the magnitude, S / N , and size distributions used in the test 
sets to investigate the impact of a shift in the size–magnitude relation (see Section 9 ). Similarly, the blue lines in the bottom right plot show the impact of an 
incorrect ellipticity distribution in the training set; specifically, dashed (dotted) lines are for a peak e int of 0.2 (0.3) in the test sets (with 0.25 used in the training 
sets; see Table 1 ). Histograms are shown for 10 4 galaxies. Note that ∼1 per cent of galaxies have S / N values above the upper limit shown on the x -axis in the 
top right plot. The correlation between apparent magnitude and size is shown in Fig. 3 . We do not include any correlation between the galaxy’s ellipticity and 
size or magnitude. 

Figure 5. Example noisy (bottom) and corresponding noise-free (top) PSF-convolved galaxy images on 15 by 15 pixel postage stamps. The type ( n s ), size ( r h 
in pixels), and ellipticity ( e int ) of each galaxy (from left to right) are, respectively, as follows: (1, 3.7, 0.35); (1, 3.4, 0.17); (1, 3.7, 0.17); (1, 3.8, 0.64); (4, 3.0, 
0.58); (4, 4.2, 0.39). The signal-to-noise ratio (see equation ( 25 )) is shown in the top left-hand corner of each noisy image. 
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nd 

 i = α0 ,i + α1 ,i δe 
PSF 
i , (27) 

here r PSF 
h is the PSF size used in the test sets and δr PSF 

h ( δe PSF 
i ) is the

ifference between the PSF size (ellipticity component) used in the
raining and test sets. In each case, a positi ve dif ference corresponds
NRAS 528, 3217–3231 (2024) 
o a larger value in the test sets (i.e the ‘true’ value) than in the
raining sets. 

We obtain shear estimates by running the test sets through the CNN
odels built as described in Section 7 , using 10 5 galaxies and with

he PSF model and galaxy distributions described in Sections 3.2
nd 5 , respectively. Results are obtained for both noisy (using CNN
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Figure 6. Absolute values for the multiplicative m i (upper panels) and additive c i (lower panels) biases for i = 1 (crosses; solid) and i = 2 (open squares; 
dashed). Plots are shown (from left to right) as a function of the number of galaxies used in the training set ( n gal ), number of epochs used to train the network, 
number of filters ( n fil ), and number of noisy realizations used per galaxy ( n real ) in the training sets. The first three plots are shown for noise-free simulations. 
The reference biases, shown in red in the left-most plots are: m 1, ref = 1.4 × 10 −3 , m 2, ref = 1.0 × 10 −3 , c 1, ref = 6.3 × 10 −5 , and c 2, ref = 5.0 × 10 −5 ; see 
Section 8 ). The fiducial hyperparameters used are shown in Table 2 . The dark shaded region depicts the bias requirements for Euclid and the lighter shaded 
region for recent surveys, such as DES (see Section 2.2 ). 
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odels trained on 500 noise realizations per galaxy) and noise-free 
mages. 

In Fig. 8 , we plot the increase in m and c ( � m = m i − m i , ref 

nd � c = c i − c i , ref , respectively) relative to the biases we obtain
n the fiducial setting for noise-free images ( m i , ref , c i , ref ; see Fig.
 ), with only one parameter at a time offset from the values used
n the training sets. We plot relative biases in order to remove any
ffsets in Fig. 8 and subsequent plots (see Section 9 ), given that
he noise-free biases we obtain are not zero, even when we use the
ame PSF in the training and test sets. We note that � m i ≈ m i , cal 

nd � c i ≈ c i , cal , where m i , cal = � m i /(1 + m i , ref ) and c i , cal = � c i /(1
 m i , ref ), are the biases that would be obtained if we calibrated the

stimated shears using the reference biases. In practice, before using 
n surv e y data, we would expect to impro v e the CNN model (in
ddition to addressing other issues, outlined in Section 10 ) to reduce
 i , ref and c i , ref to, ef fecti v ely, zero, thereby remo ving the need for

ny calibration. 
We find that, as e xpected (e.g. He ymans et al. 2006 ), an error in a

omponent of the PSF ellipticity affects the additive shear bias, with 
n error in e PSF 

1 increasing c 1 , but having negligible effect on c 2 , and
ice versa for e PSF 

2 . The multiplicative biases are not significantly 
ffected by an incorrect e PSF 

i in the training set and are consistent
etween noisy and noise-free simulations within the error bars. 

F or the additiv e biases, we find that � c i can be kept below the
uclid upper limit of 2 × 10 −4 if the error in either component of

he ellipticity meets the requirement | δe PSF 
i | � 10 −3 . We find some

eviation between the additive biases obtained for noisy and noise- 
ree simulations for | δe PSF 

i | � 10 −3 , with a stronger dependence on
he PSF ellipticity misestimation for noisy images. We fit a regression
ine to the additive biases for both the noise-free and noisy images
or | δe PSF 

i | ≤ 2 × 10 −3 . We find α1, 1 = 0.12, α1, 2 = 0.11 ( α0, 1 =
2.2 × 10 −5 , α0, 2 = −1.4 × 10 −5 ) for the noise-free images and
 e
1, 1 = α1, 2 = 0.17 ( α0, 1 = −3.7 × 10 −5 , α0, 2 = −5.1 × 10 −5 ) for
he noisy images. 

We now consider the impact of an incorrect PSF size. We offset
he true PSF size (used in the test set) by an amount δr PSF 

h from
he half-light radius used in the training set, given in Table 1 .

e plot the biases on the true shear in Fig. 8 as a function of
r PSF 

h /r PSF 
h , where r PSF 

h is the PSF size in the test sets. The results
re consistent between the noisy and noise-free simulations within 
he error bars, though we note that the biases found for m 1 appear
o be affected more by the presence of noise than those for m 2 ,
ith m 1 consistently lower in the noisy, as compared to the noise-

ree, simulations. We find that there is a significant impact on the
ultiplicative biases, with � m i rising above the Euclid requirements 

or | δr PSF 
h | /r PSF 

h � 5 × 10 −3 . We fit regression lines to the mean
f � m 1 and � m 2 in the noisy and noise-free simulations and find
hat β1 = 〈 β1, i 〉 i ∈ { 1, 2 } = −0.24 in both cases. We measure β0 =
 β0, i 〉 i ∈ { 1, 2 } = −6.7 × 10 −4 and 5.8 × 10 −5 in the noisy and
oise-free simulations, respectively. The additive biases are relatively 
naffected. 
The results presented here quantify the sensitivity of the CNN 

odel to inaccuracies in the training images, specifically as a result of
n incorrect PSF. We compare our results to the Euclid requirements
n the tolerated root mean square (RMS) errors in the PSF model
arameters in Section 10 . 

 G A L A X Y  POPULATI ON  BI AS  

n this section, we consider contributions to the galaxy popula- 
ion bias (caused by differences between the galaxy populations 
n the training and test sets), arising from two distinct effects:
i) incorrect parameter values used to describe either the galaxy 
llipticity distribution, size–magnitude relation, or ratio of galaxy 
MNRAS 528, 3217–3231 (2024) 
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M

Figure 7. Plots showing the differences between the estimated ( ̂  γi ) and true ( γ i ) shears for each test set as a function of the true input shears. Crosses (squares) 
are for the first (second) components of the shear and blue solid (dashed) lines the OLS regression fits. Results are shown for noisy images with an increasing 
number of noise realizations per galaxy: n real = 1 (top left), n real = 3 (top right), n real = 10 (middle left), n real = 30 (middle right), n real = 100 (bottom left), and 
n real = 500 (bottom right). 
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ypes, referred to here as ‘galaxy distribution bias’; and (ii) incorrect
r insufficient modelling of galaxy light intensity profiles, which we
all ‘morphology bias’ (see also ‘model-fitting bias’, e.g. Voigt &
ridle 2010 ). 

.1 Distribution bias 

ere, we introduce shifts in the distributions describing the galaxy
opulations used in the test sets, as compared to those used in the
raining sets (see Table 1 for the parameter values used in the training
ets). Specifically , we consider, separately , the effects of using: (i)
 shifted ellipticity distribution, in which the mode of the Rayleigh
istribution is offset from the value used in the training set, but with
he same upper and lower bounds; (ii) a different slope for the size–
NRAS 528, 3217–3231 (2024) 
agnitude relation, given by αr in equation ( 20 ); and (iii) a different
llipticals to disc galaxies ratio. We use the correct galaxy intensity
rofiles (i.e. both the training and test sets contain de Vaucouleurs
nd exponential profiles only), as well as the correct PSF. 

We plot the relative biases (see Section 8 ) in Fig. 9 and find that
he results are approximately consistent between the noise-free and
oisy images for both the additive and multiplicative biases. We see
hat a ‘data set shift’, arising from differences in the distributions
escribing the galaxy populations in the training and test sets, has a
egligible effect on the additive biases. However, there is a significant
mpact on the multiplicative biases. We find that a shift in the mode
f the galaxy ellipticity distribution by more than ∼10 per cent raises
he biases abo v e the Euclid requirements. The impact from using
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Figure 8. Increase in the multiplicative ( � m i ; upper panels) and additive ( � c i ; lower panels) biases with respect to the fiducial setting (see Fig. 6 and Section 8 ) 
for i = 1 (crosses) and 2 (open squares) as a function of the misestimation in the PSF parameter values: δr PSF 

h /r PSF 
h (left-hand panels), δe PSF 

1 (middle panels), 
and δe PSF 

2 (right-hand panels). δr PSF 
h ( δe PSF 

i ) is the PSF half-light radius (component of the ellipticity) used in the test set images minus the value used in the 
training set images (see Table 1 and Section 5 for values used in the training sets). Black (blue) points show the values obtained from noise-free (noisy) images. 
Black (blue) lines are linear regression fits to the noise-free (noisy) data, with dash–dotted lines showing fits to the mean of � m 1 and � m 2 (top left) and solid 
and dashed lines showing fits to � c 1 (bottom middle) and � c 2 (bottom right), respectively. Grey shaded regions as in Fig. 6 . 

Figure 9. Increase in the multiplicative ( � m i ; upper panels) and additive ( � c i ; lower panels) biases with respect to the fiducial setting (see Fig. 6 and Section 8 ) 
for i = 1 (crosses; solid) and 2 (open squares; dashed) as a function of the galaxy distribution parameter values used in the test sets: fraction of elliptical galaxies 
to total number of galaxies (left-hand panels), mode of the ellipticity distribution (middle panels), and δαr / αr (right-hand panels), where αr is the slope of the 
size–magnitude relation (see equation ( 20 )) used in the training sets and δαr is the value used in the test sets minus the value used in the training sets. The 
galaxy distribution parameter values in the training sets are described in Section 5 and summarized in Table 1 . Black (blue) points show the values obtained 
from noise-free (noisy) images, with lines joining the noise-free results. For comparison, green solid (dashed) lines show the biases for noise-free simulations 
when we used the same (offset) parameters in both the training and the test sets. Grey shaded regions as in Fig. 6 . 
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 different ratio of ellipticals to disc galaxies in the training and
est sets is less strong in percentage terms, with a tolerated shift of

25–50 per cent of the value adopted in the training set. For the
ize–magnitude relation, we consider increases in the magnitude of
he slope parameter αr by up to 4 per cent, with curves shown for
 and 4 per cent steeper 14 slopes in Fig. 3 . We keep the intercept,
r , constant and thus an increase in the absolute value of the
lope corresponds to a shift to smaller galaxies. We plot the shifted
istributions used in the test sets in Fig. 4 . We find that the biases
re unacceptably high for a 2–3 per cent steeper slope in the test sets
han used to train the CNN. For reference, we also plot in Fig. 3 the
ize–magnitude relation adopted in Euclid Collaboration: Martinet
t al. ( 2019 ), in which the authors quantify the impact of undetected
alaxies on shear measurements, corresponding approximately to a
 per cent steeper slope. 
We check that the larger biases are caused by the differences

etween the galaxy populations in the test and training sets, rather
han being inherent to the shifted galaxy size and S / N distributions
shown in Fig. 4 ), by plotting the biases when we use the same
hifted distributions in both the training and the test sets. The results,
hown in Fig. 9 , imply that the biases indeed result from the galaxy
istribution bias, rather then from the distributions themselves. In
ddition, we find that the distribution biases do not reduce when we
ncrease the training set size by a factor of five to n gal = 5 × 10 5 ,
ven in the noise-free case. 

.2 Morphology bias 

ere, we look briefly at the sensitivity of the CNN shear estimates
o morphology bias, in which the model is insufficient to describe
bserved galaxy light profiles. We begin by simulating a population
f galaxies in the test sets using S ́ersic indices with fixed offsets
rom the values used in the training sets e.g. for an offset of + 0.1
 −0.1), the S ́ersic indices used in the test sets are 1.1 (0.9) and 4.1
3.9) for the disc and elliptical galaxies, respectively (see Table 1
or the values used in the training sets). Results are shown both for
oise-free and noisy images in Fig. 10 . We find that the multiplicative
iases are significant and decrease (increase) if the S ́ersic index is
arger (smaller) in the test sets than in the training sets. For the
oise-free simulations, there is a relatively larger increase in the
agnitude of the bias when the S ́ersic index is smaller (as opposed

o larger) than the corresponding training set value. For the galaxy
opulation adopted here, we find that the morphology bias is smaller
n magnitude when the images are noisy. We use the correct PSF
n the training sets, and thus, as expected, the additive biases are
elati vely unaf fected. 

We explore the morphology bias further by simulating galaxy
ntensity profiles in the test sets with a range of S ́ersic indices.
pecifically, we draw galaxies for the test sets from a uniform
istribution, increasing the n s range from ±0.05 to ±0.65 around
he central values n s = 1 and 4. Results are shown in Fig. 10 . We see
hat the biases measured for the noise-free images remain below the
uclid requirements for S ́ersic indices within approximately ±0.2
f the values adopted in the training sets. Notably, the biases found
or the noisy images are approximately flat for a wide range in n s 
alues around those used in the training sets ( ∼±0.5); this relative
nsensitivity to the galaxy intensity profiles is encouraging, though
NRAS 528, 3217–3231 (2024) 

4 Note that we refer to the ‘steepness’ of the slope given in equation ( 20 ), not 
he gradient of r h as a function of m AB . 

r
(
1

1

1

e caution that the bias for a particular surv e y will depend on the
rue distribution of S ́ersic profiles relative to those used to build the
NN, as well as on the actual observed galaxy morphologies, which
re more complex than the single-component, elliptical isophote
rofiles we consider here. We discuss the issue of complex galaxy
orphologies and further tests of the morphology bias that would

uild on this work in Section 10 . Finally, we see a clear interaction
etween the morphology bias and the presence of noise, with the
iases for noisy images inconsistent with those found for noise-free
mages for both an ‘ n s offset’ between the training and test sets and
n ‘ n s range’ in the test sets. 

0  DI SCUSSI ON  A N D  F U T U R E  WO R K  

easuring galaxy shear with the accuracy required for next-
eneration surv e ys is a non-trivial task that has been e xtensiv ely
ddressed by the weak lensing community, including collaborative
fforts to test existing pipelines. However, few methods (e.g. Huff &
andelbaum 2017 ) meet the stringent requirements on systematics

hat are needed to fully realize the potential of these surv e ys. It
s crucial therefore that no v el methods are developed, as well as
xisting methods refined, and that these are used to compare and
erify shear estimates from different shape measurement pipelines.
ore recently, ML and, in particular, ANNs, have been applied to

his task, with promising results (Gruen et al. 2010 ; Ribli, Dobos &
sabai 2019 ; Tewes et al. 2019 ; Zhang et al. 2023 ). In this work, we
av e e xplored the potential of CNNs in precision shear measurement;
n particular, employing a shallow network and an MSB loss function,
e have quantified the sensitivity of shear biases to the accuracy of

he PSF model and, separately, the fidelity of the galaxy population,
imulated in the training sets. 

For the PSF model, in order to meet the shear bias requirements
or Euclid (see Section 2.2 ), we find that: (i) each component of
he ellipticity, e PSF 

i , must be accurate to within 10 −3 and (ii) the
elative absolute error in the half-light radius, | δr PSF 

h | /r PSF 
h , must be

ess than 0.5 per cent. Quantifying how accurately the PSF must
e known, in terms of its size, ellipticity and profile shape is a
rimary driver to telescope design (e.g. Paulin-Henriksson et al.
008 ; Cropper et al. 2010 ; Massey et al. 2013 ; Racca et al. 2016 ).
e compare our results to the requirements on the knowledge of the

SF set out in Euclid ’s Definition Study Report (DSR; Laureijs et al.
011 , see their table 3.5) and quoted recently in Liaudat, Starck &
ilbinger ( 2023 ). 15 Converting between ellipticity and size measured

n the DSR using quadrupole moments and the definitions we use
ere 16 (see Sections 2.1 and 3.1 ), these translate to | δe PSF 

i | < 10 −4 

nd | δr PSF 
h | /r PSF 

h < 5 × 10 −4 . Thus, the requirements on the PSF
odel accuracy found in our simulations are considerably (by an

rder of magnitude) less stringent than those documented in Euclid ’s
SR. 
We caution, ho we ver, that the lo wer cut-of f to the galaxy sizes

e adopt ( r h ≥ 0.2 arcsec; see Section 5 ) corresponds to a larger
SF-convolved galaxy FWHM to PSF FWHM for the disc galaxies

han is quoted in the DSR. 17 Furthermore, the bounds on δe PSF 
i and
PSF PSF PSF 
espectively, the ellipticity and size measured using quadrupole moments 
see, for e.g. Paulin-Henriksson et al. 2008 ). 
6 δεPSF 

i ≈ 2 δe PSF 
i and δR 

2 
PSF /R 

2 
PSF ≈ 2 δr PSF 

h /r PSF 
h . 

7 In the DSR, the sample is quoted as being restricted to galaxies with FWHM 

.25 times larger than that of the PSF. 
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Figure 10. Increase in the multiplicative ( � m i ; upper panels) and additive ( � c i ; lower panels) biases with respect to the fiducial setting (see Fig. 6 and Section 8 ) 
for i = 1 (crosses; solid) and 2 (open squares; dashed) as a function of (i) the S ́ersic index used in the test sets minus the value used in the training sets (left; n s 
offset) and (ii) the range of S ́ersic indices used to represent disc (elliptical) galaxies in the test sets (right; n s range), with S ́ersic indices drawn from a uniform 

distribution around n s = 1 (4). See text in Section 9.2 for further details. Black (blue) points show the values obtained from noise-free (noisy) images, with lines 
joining the noise-free results. Grey shaded regions as in Fig. 6 . 
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r PSF 
h /r PSF 

h , we infer from our simulations are based on Euclid ’s
otal error budget and thus, in reality, will need to be stricter once
ther sources of bias (see Section 1 ) are also taken into account. In
ddition, we have made several simplifying assumptions concerning 
oth the PSF (see below) and the galaxies (which we discuss later in
his section). 

In this paper, we consider a non-varying PSF and quantify the 
equirements for the accuracy of the PSF model parameter values 
dopted in the training sets. Ho we ver, in reality, the PSF varies
patially across the FoV and over time and also depends on the
alaxy SED. A practicable CNN shear measurement pipeline will 
eed to address this issue, for example, by training a suite of CNNs,
ith each individual network built using a different PSF. 
Spatio-temporal effects on the PSF shape are typically captured 

sing observations of stars in the field and interpolating to the 
ositions of the galaxies. Refining current methods for reconstructing 
he PSF from stars will be important to ensure that requirements 
re met (e.g. Schmitz et al. 2020 ). Forward-modelling approaches 
sing ray-tracing through the telescope optics have also been adopted 
see Mandelbaum 2018 , and references therein). In terms of spectral 
ependence, in addition to accurate modelling of the instrumental 
SF as a function of wavelength, individual galaxy SEDs must be 
stimated sufficiently well. Eriksen & Hoekstra ( 2018 ) explore this
ssue and conclude that it is possible to achieve Euclid ’s accuracy
equirements on the PSF size using photometric data. We note that the 
bserved link between galaxy colour and morphology (e.g. Masters 
t al. 2019 ; Uzeirbe go vic, Martin & Kaviraj 2022 ) could be utilised in
he context of PSF size estimation for weak lensing shear estimation. 

We also explore the sensitivity of shear estimates to the fidelity 
f the galaxy population used to build the CNN model, considering 
eparately the impacts from galaxy distribution bias and morphology 
ias. We find that the multiplicative biases can be significant, 
epending on how well the training sets represent observed galaxies. 
n future work, it will be important to simulate more realistic
alaxy morphologies, for example, including a wider range of 
 ́ersic profiles, representing different galaxy types, as well as taking

nto account the complicating effects of non-elliptical isophotes in 
ulge plus disc galaxies, and including asymmetrical features and 
ubstructures. In particular, the widely-adopted, publicly available 
oftware package GALSIM 

18 (Rowe et al. 2015 ) can be used to
imulate galaxy images from real Hubble Space Telescope ( HST )
ata, as well as from simple parametric models. Furthermore, we 
nclude a galaxy size–magnitude relation, but it is known that 
orrelations exist between several galaxy properties, including, for 
xample, a dependence of half-light radius on magnitude and S ́ersic
ndex (Euclid Collaboration: Martinet et al. 2019 ) and an evolution
f galaxy type with redshift. If ignored in the training sets, these
orrelations may have a significant impact on the biases. Simulating 
ealistic galaxy populations and quantifying the potential impact 
rom galaxy distribution and morphology bias will be crucial to 
hear measurement pipelines using ANNs. 

ML has been applied to galaxy classification by morphological 
ype since the early 1990s (Storrie-Lombardi et al. 1992 ), using
oth a range of classic (e.g. Vavilova et al. 2021 ) and deep learn-
ng models, including CNNs (Cheng et al. 2020 , and references
herein). Recently, Li et al. ( 2022 ) have developed a CNN to
utput the S ́ersic profile parameters of galaxies from seeing-limited 
MNRAS 528, 3217–3231 (2024) 

https:// github.com/ GalSim-developers/ GalSim 
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round-based observations. Furthermore, deep learning has been
sed to generate realistic galaxy images using deep generative
odels (Euclid Collaboration: Bretonni ̀ere et al. 2022 ). Both of

hese ML applications may play a role in the development of an
ccurate and precise shear measurement pipeline using ANNs. In
articular, not only to simulate images for training and testing
he model, but also to enable galaxy classification prior to shear
stimation, allowing a separate CNN to be trained for each galaxy
ype. 
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