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Explainable Early Prediction of Gestational Diabetes Biomarkers by
Combining Medical Background and Wearable Devices: A Pilot Study

with a Cohort Group in South Africa
Şefki Kolozali, Sara L White, Shane Norris, Maria Fasli, Alastair van Heerden

Abstract— This study aims to explore the potential of Internet
of Things (IoT) devices and explainable Artificial Intelligence (AI)
techniques in predicting biomarker values associated with GDM
when measured 13 - 16 weeks prior to diagnosis. We developed a
system that forecasts biomarkers such as LDL, HDL, triglycerides,
cholesterol, HbA1c, and results from the Oral Glucose Tolerance
Test (OGTT) including fasting glucose, 1-hour, and 2-hour post-
load glucose values. These biomarker values are predicted based
on sensory measurements collected around week 12 of pregnancy,
including continuous glucose levels, short physical movement
recordings, and medical background information.

To the best of our knowledge, this is the first study to forecast
GDM-associated biomarker values 13 to 16 weeks prior to the GDM
screening test, using continuous glucose monitoring devices, a
wristband for activity detection, and medical background data.
We applied machine learning models, specifically Decision Tree
and Random Forest Regressors, along with Coupled-Matrix Tensor
Factorisation (CMTF) and Elastic Net techniques, examining all
possible combinations of these methods across different data
modalities. The results demonstrated good performance for most
biomarkers. On average, the models achieved Mean Squared Error
(MSE) between 0.29 and 0.42 and Mean Absolute Error (MAE)
between 0.23 and 0.45 for biomarkers like HDL, LDL, cholesterol,
and HbA1c. For the OGTT glucose values, the average MSE ranged
from 0.95 to 2.44, and the average MAE ranged from 0.72 to 0.91.
Additionally, the utilisation of CMTF with Alternating Least Squares
technique yielded slightly better results (0.16 MSE and 0.07 MAE
on average) compared to the well-known Elastic Net feature se-
lection technique. While our study was conducted with a limited
cohort in South Africa, our findings offer promising indications
regarding the potential for predicting biomarker values in pregnant
women through the integration of wearable devices and medical
background data in the analysis. Nevertheless, further validation
on a larger, more diverse cohort is imperative to substantiate these
encouraging results.

Index Terms— Internet of Things Healthcare, Gestational
Diabetes Mellitus, Remote Sensing, Coupled-Matrix Tensor
Factorisation, Tree-based Regressors, Explainable AI Mod-
els.

I. INTRODUCTION

Diabetes is a disorder of carbohydrate (glucose) metabolism.
Gestational diabetes mellitus (GDM) is defined as glucose intolerance
with onset or first diagnosis during pregnancy. Median estimates
of GDM prevalence suggest that globally it complicates between
6 and 13 percent of all pregnancies. This is of significant public
health importance as GDM is a risk factor for pregnancy-related
maternal and perinatal morbidity and increases the risk that both
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the mother and her child may develop Type 2 Diabetes. Increasing
age and BMI, a family history of type 2 diabetes, ethnicity, and an
unhealthy diet and sedentary lifestyle are all factors that increase
the risk of developing GDM [1], [2]. The National Institute for
Health and Care Excellence (NICE) guidelines recommend that all
women with NICE risk factors1: BMI ≥ 30, high-risk ethnicity,
previous GDM, family history of diabetes (i.e. first-degree relative
with diabetes), a previous macrosomic baby weighing 4.5 kg or more,
should have an oral glucose tolerance test (OGTT) between 24-28
gestational weeks to detect GDM. However, recent trials in [3]–[5]
suggest that early prediction of GDM risk in the first trimester allows
for timely interventions, potentially preventing the condition with
moderate lifestyle changes, such as dietary adjustments and increased
physical exercise. We hypothesise that it may be possible to identify
risk factors in pregnant women early in pregnancy using Internet
of Things (IoT) devices and advanced Artificial Intelligence (AI)
techniques.

This study aims to forecast biomarker values to help identify
pregnant women at an increased risk of GDM based on short Physical
Activity (PA) recordings, medical backgrounds, including mental
health records, and continuous glucose monitoring (CGM) data col-
lected from participants. For this purpose, we monitored participants
between weeks 12 and 14 using Freestyle Libre glucose sensors
and Empatica E4 wearable sensors to record physical activities such
as sleeping, sitting, eating, walking, climbing stairs, and talking on
the mobile phone. These activities were monitored in a controlled
environment for three minutes each. We also collected participants’
medical history and physiological measurements, such as Body Mass
Index (BMI), and blood biomarkers. The primary goal of our study is
to investigate the feasibility of using diverse digital data to increase
the accuracy of early prediction of biomarker values that are used in
the diagnosis of GDM.

The paper is organised as follows: in Section II, we present
related medical and telemedicine studies that discuss early detection
of GDM. In Section III, we provide details about our proposed
framework and the methodology used in data collection and analysis.
Section IV presents our evaluations and the results of the proposed
methodology for early detection of biomarker values. Finally, in
Section V, we discuss the challenges faced during this research, and
in Section VII, we conclude and outline our future work.

II. BACKGROUND

A. Understanding Gestational Diabetes Mellitus
Urbanisation, economic growth, nutritional and food systems

changes in Sub-Sahara Africa are all contributing to a rapid increase
in obesity and sedentary behaviours [6]. These and other behavioural
risk factors have dramatically increased the risk of cardio-metabolic
disease. A recent National survey in [7], [8] suggested that 68% of
South African women and 31% of men, aged 15 years and older are
overweight or obese, with recently published findings suggesting a

1https://www.nice.org.uk/guidance/qs22/chapter/
Quality-statement-6-Risk-assessment-gestational-diabetes
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GDM prevalence of 9.1%. Several observational studies have reported
an association between higher levels of Physical Activity (PA) in pre-
pregnancy and early pregnancy and a lower prevalence of GDM. The
impact of different intensities and duration of exercise on glucose
concentration was examined in a study [9], in which an acute effect
of PA (i.e. treadmill walking) on blood glucose concentrations in
pregnancy in 46 women was reported. It has been reported in a
meta-analysis [10] that PA in pre-pregnancy was associated with a
greater than 50% reduction in risk of GDM, and early pregnancy PA
was associated with a decrease of 25%. Hinkle reported in [11] that
pregnant women who suffer from depression during the first trimester
had a 1.72-fold higher risk of developing GDM, and a 4.62-fold
increased risk of subsequent postpartum depression. In another study
[12], worsening sleep patterns were also found to be associated with
disturbances in maternal glucose metabolism.

In 2015, the UPBEAT study [13], [14], explored how a lifestyle
intervention to improve diet and PA might improve clinical outcomes
in pregnant women with obesity. The complex intervention led to a
reduction in dietary glycemic load intake and an increase in physical
activity which were associated with modest reductions in gestational
weight gain and maternal sum-of-skin fold thicknesses. The UPBEAT
study provides a baseline for this study. We measured similar
biomarkers (e.g, glycated haemoglobin (HbA1c) and adiponectin).
However, unlike the UPBEAT study, we also collected continuous
glucose measurements in this study. While an individual patient data
meta-analysis did not demonstrate an effect of lifestyle interventions
on the prevalence of GDM, targeting women at higher risk may
be more effective. Indeed, the ESTEEM [3]–[5] and RADIEL [15]
trials showed that, in contrast to earlier studies where targeting was
heterogeneous, the number of women developing GDM was reduced
by a moderate lifestyle intervention in pregnant women identified
as being at high risk for the disease. In our questionnaire data
collection process, alongside survey instruments like the RAND 36-
Item Health Survey (SF-36) and the Patient Health Questionnaire
(PHQ-9) [16], our study also incorporated the Pregnancy Physical
Activity Questionnaire (PPAQ) and the Eating Attitudes Test (EAT-
26).

B. Remote Monitoring and Explainable AI for Gestational
Diabetes Mellitus Management

Utilisation of AI techniques along with remote monitoring sys-
tems, such as wearable devices and smartphones, can provide a
great deal of information about the behaviour and well-being of
GDM patients in uncontrolled environments. In [17], a systematic
review and meta-analysis of telemedicine technologies for diabetes
in pregnancy showed streamlined clinical care delivery and improved
maternal satisfaction. To date, some studies have focused on using
either only the medical background of participants [18] or only
blood glucose levels to predict GDM [19], while others have used
medical background plus OGTT result to predict Type 2 diabetes
after GDM [20], where they found that OGTT results and weight gain
during pregnancy are significant variables in the prediction of Type
2 diabetes. Recently, a study was published [21] on the prediction
of GDM from medical history and fasting glucose results, in which
the authors developed a smartphone app to collect patient data. They
applied seven different traditional machine learning techniques in the
analysis of the data, including Decision Tree, K-nearest neighbours,
Random Forest, and obtained reasonable results for GDM prediction,
which varied between 65% and 78% accuracy.

The OGTT screening is usually conducted between weeks 24
and 28, unless a healthcare professional determines high-risk (e.g.
previous GDM) at booking in the first trimester. There have been

other studies as well, but none of them aimed at forecasting biomarker
values based on medical backgrounds, physical activity recordings,
and CGM values captured around gestational week 12. For in-
stance, in [22], the authors conducted causal analysis on medical
records and a prerecorded dataset. Similarly, in another study [23],
a conceptual framework for a telemedicine system was proposed.
However, neither of these studies involved the use of sensory devices
or machine learning techniques. While some generic telemedicine
systems have been proposed in [24], they lack detailed research
and do not incorporate the use of sensory devices. In contrast, in
[25], a diabetes dataset from the Kaggle Machine Learning repository
was utilised. However, this dataset only includes a limited number
of attributes, such as pregnancies, skin thickness, excessive thirst,
blood pressure, glucose, smoking, insulin, body mass index, age, and
diabetes pedigree function. It is not an extensive dataset and does
not encompass the variables used in our study. Additionally, sensory
devices were not employed in this study. Importantly, none of these
studies aimed to predict GDM biomarker values, neither conceptually
nor experimentally.

When selecting an approach, it is essential to strike a balance
between interpretability and predictive performance [26]. Given the
inherent complexity of deep learning methods and their ”black
box” nature, recent efforts have been directed towards develop-
ing techniques for their interpretability, including methods such as
Local Interpretable Model-agnostic Explanations (LIME) [27] and
Knowledge Distillation [28] and even the integration of decision
trees for explanation purposes [29]–[31]. However, it is important
to acknowledge that these interpretability approaches come at a
cost, introducing additional computational overhead alongside the
primary deep learning model. While deep learning methods have
gained significant popularity in recent years, traditional techniques
continue to demonstrate their effectiveness in extracting meaningful
patterns and making predictions from large datasets. Notable among
these traditional approaches are k-Nearest Neighbors (k-NN), Bayes
Classifiers (BC), and Decision Trees (DT) [32]–[34]. Decision Trees,
in particular, stand out as highly powerful and explainable models
in this context [26], [33]–[35], making them a suitable choice for
our healthcare study. Therefore, the explainable methods, such as
decision trees, continue to offer valuable insights and make accurate
predictions for large datasets [36], and even outperform [37] or
provide competitive results compared to deep learning methods in
some of the studies [38]. Furthermore, they are gaining popularity
across various application domains, particularly in healthcare, where
the need for explainable techniques is growing [39].

In this study, our primary objective revolves around predicting
biomarker values from multimodal datasets between 13 and 16
weeks in advance of the GDM screening test. To achieve this,
we have utilised Coupled-Matrix and Tensor Factorisation (CMTF)
technique, which facilitates the joint factorisation of multiple datasets
represented in the form of higher-order tensors and matrices [40]–
[42]. It is particularly valuable for multi-modal data analysis and
fusion, as well as for integrating information from diverse datasets,
uncovering latent structures, and ensuring model explainability. We
have employed it in conjunction with tree-based regression tech-
niques, specifically Decision Tree Regression and Random Forest
Regression. It’s important to note that while Random Forest (RF)
is a robust traditional technique still utilised in recent studies [35],
[43], it is not inherently explainable. Therefore, we employed it for
comparison with Decision Trees, as both are tree-based methods.

To the best of our knowledge, this is the first GDM study that
aims to forecast biomarker values associated with the presence of
GDM between 13 and 16 weeks in advance using physical activity
data (i.e., eating, sitting, walking, walking upstairs, talking on the
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mobile phone, lying down; E4 Empatica wearable wristband in
controlled environment), 2-4 weeks CGM, as well as detailed medical
background information (diet and eating behaviour, PHQ, physical
activity, and demographic questions).

III. PROPOSED METHODOLOGY

Figure 1 illustrates the proposed framework, comprising several
key components. We provide a detailed explanation of these com-
ponents in this section. Firstly, Section III-A details the initial and
essential step in training our system: data collection. Subsequently,
Section III-B involves feature extraction, which focuses on capturing
acute, cumulative, and magnitude changes using statistical features
such as kurtosis, spectral flux, and spectral energy. Section III-C
provides the details of the feature aggregation and feature selection
processes utilised to summarise the extracted data and choose the
most effective features for the regression models. Alternatively, as
discussed in Section III-D, Data Fusion with Coupled Matrix Tensor
Factorisation-Alternating Least Squares provides an alternative for
this crucial phase, preserving all features in their original form within
a 3rd order tensor shape with no requirement for feature aggrega-
tion and selection. Lastly, Section III-E explains the application of
Decision Tree Regression and Random Forest Regression, providing
a clear demonstration of how these models are utilised to predict
continuous biomarker values effectively.

A. Data collection and dataset description
Figure 2 illustrates the data collection and monitoring timeline

for the participants in our study. This data was gathered during
two critical time windows: between the 12th and 14th weeks and
between the 24th and 26th weeks of pregnancy. It is worth noting
that we only used the benchmark data acquired at the onset of the
12th week, as a significant portion of participants refrained from
wearing our devices despite reminder calls. Our study’s participants
were recruited from the antenatal clinic associated with the Chris
Hani Baragwanath Teaching Hospital in Johannesburg, South Africa.
Eligible participants, defined as those between 12-14 weeks pregnant,
overweight or obese, and capable of providing written consent,
underwent a comprehensive assessment protocol, including a baseline
health questionnaire, anthropometric measurements (weight, height,
mid-upper arm circumference, and blood pressure), venous blood
sampling for HbA1c, adiponectin, and cholesterol levels, wearing an
E4 wristband (Empatica, Boston, USA) for real-time physiological
data collection (including heart rate, actigraphy, and temperature),
and the application of the Freestyle Libre 2 (Abbott Laboratories,
Alameda, CA) CGM sensor to the upper arm. Freestyle Libre 2
uses enzymatic electrochemical reactions. Enzymatic electrochemical
glucose sensors typically involve an enzyme, often glucose oxidase,
that reacts with glucose in the blood. This reaction generates an
electrical signal proportional to the glucose concentration, which the
sensor detects and measures [44]–[46]. We opted for the upper arm
for our recordings based on studies [47] that demonstrated its superior
accuracy compared to the back and chest. The Freestyle Libre 2 stores
14 days’ continuous data in its in-device memory, with participants
receiving a second sensor for application after 14 days.

The devices were either collected by the research assistant or
returned by the participant during a scheduled clinic visit. At the
end of the second and beginning of the third trimester (i.e. between
week 25 and 28), an OGTT was conducted to identify individuals
with GDM. The study received approval by the University of the
Witwatersrand [M190318] and University of Essex Ethics Committee.

The dataset includes information from three sources: background
health information, CGM, and Empatica E4 data. Health background

data were collected using a survey consisting of multiple validated
scales. These included the 1) Eating Attitudes Test (EAT-26) -
used to identify the presence of eating disorder risk based on
attitudes, feelings and behaviours related to eating, 2) Patient Health
Questionnaire (PHQ-9) - a multipurpose instrument for screening,
diagnosing, monitoring and measuring the severity of depression, 3)
Pregnancy Physical Activity Questionnaire (PPAQ) - a widely used
tool for the assessment and measurement of physical activity levels
amongst pregnant women, 4) Global Physical Activity Questionnaire
(GPAQ) - a WHO tool for the surveillance of physical activity, 5)
RAND 36-Item Health Survey (SF-36) - a set of generic, coherent,
and easily administered quality-of-life measures, 6) Demographics
and Historical Health Questions including questions about smoking,
alcohol use, family history of diabetes, and previous pregnancy
history or parity. Data was collected from 17 mothers at their
enrolment visit.

Continuous Glucose readings were collected using the Freestlye
Libre sensor. This is placed on the upper arm and uses subcutaneous,
wired enzyme glucose sensing technology to detect glucose levels in
interstitial fluid [48]. A reading is taken every 15 minutes and stored
on the sensor. An external reader is used to swipe at least every 8
hours by the individual to capture all the data. The data is stored
on the reader. We collected data from nine women for 14 complete
days, and only four of them continued to complete 28 days worth of
continuous glucose data. The other eight mothers were not able to
receive sensors due to COVID-19 lockdown restrictions.

The Empatica E4 reads and stores data from multiple sensors in
a wrist worn device. The Photoplethysmography (PPG) sensor mea-
sures Blood Volume Pulse (BVP), from which heart rate variability
can be derived. The Electrodermal activity (EDA) sensor measures
the constantly fluctuating changes in certain electrical properties of
the skin. The Infrared Thermopile collects peripheral skin temperature
and a 3-axis Accelerometer captures motion-based activity. Sampling
frequency for all sensors is 64Hz. Three minutes of recordings were
collected in a controlled environment for each of the following
activities: eating, sitting, walking, walking upstairs and downstairs,
talking on the phone, and lying down.

B. Feature Extraction
We used Discrete Wavelet Transform (DWT) to decompose and

reduce the resolution of the time series data collected by wearable
devices and CGM sensors. Afterwards, we extracted magnitude, acute
and cumulative spectral and statistical features, such as Spectral
Flux, Spectral Centroid, Spectral Energy, Average, Median, Kurtosis,
Variance, and Skewness. Our goal was to predict the biomarkers
fasting glucose measurements, High-density lipoprotein (HDL), Low-
density lipoprotein cholesterol (LDL), Triglycerides, Cholesterol, and
HbA1c mmol/mol values. The window size was set to 60 seconds
and step size was 30 seconds for the E4 measurements; whereas
the window size was set as 4 hours for the continuous glucose
measurements. Furthermore, we utilised the medical background
responses from the participants, which were presented in numerical
form within a predefined range. As illustrated in Figure 1, these
numerical representations were subsequently employed as vector
inputs for either the feature selection process or were directly used
as inputs for the CMTF technique.

C. Feature Aggregation and Feature Selection
To simplify the data representation and reduce the tensor’s order

from 3rd to 2nd, we employed feature aggregation by calculating
the average and variance of the features. This transformation played
a crucial role in streamlining the data. Subsequently, we employed
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Fig. 1: The proposed framework for the early prediction of biomarker values associated with the presence of GDM involves several key
components: data collection as the initial step; followed by feature extraction, capturing acute, cumulative, and magnitude changes; feature
aggregation and selection, or Data Fusion with Coupled Matrix Tensor Factorisation-Alternating Least Squares; and concluding with tree-based
regression models for effective continuous biomarker value prediction.
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Fig. 2: Illustration of benchmark data collection at 12 and 24 weeks,
remote monitoring in the first round between weeks 12-14, and in
the second round between weeks 24-26, along with GDM screening
between week 25 and 28 during pregnancy at a South African
antenatal clinic. The dashed red line represents the forecasting period
for the biomarker values collected between week 25 and 28, based
on the benchmark data collected in week 12.

the Elastic Net technique for feature selection [49]. Elastic Net is
a powerful traditional statistical tool commonly used for feature
selection that combines the L1 (Lasso) and L2 (Ridge) regularisation
techniques. It balances between feature selection and handling cor-
related features by adding both the absolute value of the coefficients
(L1) and the squared value of the coefficients (L2) to the loss
function. This regularisation method helps in achieving sparse models
while maintaining stability and handling multicollinearity in the data.
Our objective was to identify the most relevant features to be utilised
in our Decision Tree Regression and Random Forest Regression
Models. The selection of these optimal features was a pivotal step in
enhancing the performance and accuracy of our regression models.

D. Data Fusion with Coupled-Matrix and Tensor
Factorisation-Alternating Least Squares

The coupled-matrix and tensor factorisation (CMTF) algorithms
jointly factorise multiple data sets in the form of higher-order tensors
and matrices by extracting a common latent structure from the shared
mode [40]–[42]. There are two main tensor decomposition techniques
used in CMTF, namely CP/PARAFAC decomposition and Tucker
decomposition. While tucker decomposition is frequently used in
relational data analysis, the CP/PARAFAC decomposition is a popular
and effective technique to extract the true latent factors forming a
tensor [50]. In our study, we chose the PARAFAC decomposition

for our analysis, since it has an intuitive interpretation of its latent
factors: each component can be seen as soft co-clustering of the
tensor, using the high values of vectors ak, bk, ck as the membership
values to co-clusters. Given a tensor X, CP/PARAFAC decomposition
can decompose X as a sum of rank-one tensors. The matrix form
representation of CP/PARAFAC is [A, B, C], where the columns of
matrix A, B, C are ak, bk, ck vectors, respectively. In the general
case, a three mode tensor X may be coupled with at most three
matrices Yi, i = 1...3, in the manner illustrated in Figure 3 for one
mode. The optimisation function that encodes this decomposition is
given below:
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Fig. 3: Coupled Matrix - Tensor example: Tensors often share one
or more modes (i.e. A, participants): X is the Activity monitoring
sensor recording tensor and Z is the medical background matrix.
As the vertical line indicates, these two datasets are coupled in the
“participants” dimension.

min
A,B,C,D

||X−
K∑
k=1

ak ◦ bk ◦ ck||2F + ||Z1 −AFT ||2F (1)

where ||.||F represents the Frobenius norm calculation and ak
is the k−th column of A. The idea behind the coupled matrix-
tensor decomposition is that we seek to jointly analyse X and Zi,
decomposing them to latent factors who are coupled in the shared
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dimension. For instance, the first mode of X shares the same low
rank column subspace as Z1. It is expressed through the latent factor
matrix A, which jointly provides a basis for that subspace. The CP-
Alternating Least Squares is one of the most popular algorithms for
fitting the CP model [42]. It aims to reduce the challenge into a linear
least-squares problem by solving one factor matrix at a time by fixing
others. While it can be computed in an unconstrained way, it can also
be computed by using non-negative least-squares solvers if the tensor
contains non-negative values and if one wants to improve the factors’
interpretability. In this study, we apply Fast CMTF-ALS technique
as proposed in [42].

In order to obtain initial estimates for matrices: A, B, C, we take
the PARAFAC decomposition of X. As for matrix D (and similarly
for the rest), it suffices to solve a simple Least Squares problem, given
the PARAFAC estimate of A, we initialise as F = Z1(A†)T , where
† denotes the Moore-Penrose Pseudoinverse. The Moore-Penrose
Pseudoinverse of a matrix is computed as X† = V Σ−1UT given
the Singular Value Decomposition of a matrix X = V ΣUT . The
Khatri-Rao product of matrices is shown by using �, which is a
column-wise Kronecker product, ⊗, of two matrices.

We applied CMTF in two distinct multi-aspect learning scenarios.
In Algorithm 1, our proposed system leverages the power of CMTF
to simultaneously learn from two 3rd order tensors and one matrix.
While the matrix represents the medical background of partici-
pants, tensors were used for the representation of physical activity
recordings and continuous glucose measurements of participants. The
equation used in this algorithm is given below:

min
A,B,C,D,E,F

||X−
K∑
k=1

ak ◦ bk ◦ ck||2F + ||Y−
K∑
k=1

ak ◦dk ◦ek||2F

+ ||Z−AFT ||2F (2)

where A, B, C, D, E, F represent the participants, physical activity
features, physical activity time, continuous glucose features, contin-
uous glucose monitoring time, medical background of participants,
respectively. The input X represents the physical activity tensor, Y
denotes the continuous glucose monitoring tensor, and Z corresponds
to the medical background matrix utilised in the algorithms. In
Algorithm 2, our proposed system similarly learns from a 3rd-order
tensor and a matrix, employing CMTF to extract valuable insights
from both data structures. The optimisation equation used in this
algorithm is given below:

min
A,B,C,F

||X−
K∑
k=1

ak ◦ bk ◦ ck||2F + ||Z−AFT ||2F (3)

After applying the CMTF-ALS algorithm, we utilised the compo-
nent that represents the participants (referred to as matrix A) as an
input for Decision Tree and Random Forest Regressors. Our objective
was to utilise these techniques to predict the biomarker values of
participants collected between week 25 and 28.

E. Regression Models

We utilised Decision Tree and Random Forest Regressors to esti-
mate biomarker values. Both of these algorithms effectively partition
the data based on predictor variables, capturing complex relationships
and enabling reliable predictions of biomarker values.

1) Decision Tree Regression: The DTR algorithm utilises if-
then statements to make predictions, which are easily interpretable
[51]. Figure 4 illustrates the application of Decision Tree Regres-
sion in our experiments. We consider input features represented by

Algorithm 1: CP-CMTF ALS-I
Input: X of size I × J ×K, Y of size I × L×M , matrix Z

of size I ×N number of factor R
Output: A of size I ×R, B of size J ×R, C of size

K ×R, D of size L×R, E of size M ×R, F of
size N ×R.

1 Unfold X into X(1), X(2), X(3) and unfold Y into Y(1),
Y(2), Y(3)

2 Initialise A, B, C using PARAFAC of X, and D, E using
PARAFAC of Y .

3 Initialize F using SVD of Z.
4 while convergence criterion is not met AND maximum

iteration number is not exceeded do

5 A =

X(1)

Y(1)

P

T(B� C
D� E

F

†)T
6 B =

[
X(2)

]T([C� A
]†)T

7 C =
[
X(3)

]T([A� B
]†)T

8 D =
[
Y(2)

]T([A� E
]†)T

9 E =
[
Y(3)

]T([A� F
]†)T

10 F = Z(A†)T

Algorithm 2: CP-CMTF ALS-II
Input: X of size I × J ×K, matrix Z of size I ×N number

of factor R
Output: A of size I ×R, B of size J ×R, C of size K ×R,

F of size I2 ×R.
1 Unfold X into X(1), X(2), X(3).
2 Initialise A, B, C using PARAFAC of X.
3 Initialize F using SVD of Z.
4 while convergence criterion is not met AND convergence

criterion is not met AND maximum iteration number is not
exceeded do

5 A =

[
X(1)

P

]T([B� C
F

]†)T
6 B =

[
X(2)

]T([C� A
]†)T

7 C =
[
X(3)

]T([A� B
]†)T

8 F = Z(A†)T

A = {a1, a2, a3}, which correspond to the participants component
obtained from our CMTF model, and R represents the rank used
in the CMTF model. The threshold values used for comparison are
denoted as T = {t1, t2, t3, t4, t5}, and the predicted biomarker
values are denoted as Ŷ = {ŷ1, ŷ2, ŷ3, ŷ4, ŷ5, ŷ6}. The predictions
are made using straightforward ”if-then” rules applied to the feature
vectors. This decision tree approach enables clear decision-making
based on the provided thresholds and input features.

First, we divide the predictor space — that is, the set of possible
values for A1, A2, ..., Ap — into M distinct and non-overlapping
regions, S1, S2, ..., SM . For every observation that falls into the
region Sm , we make the same prediction, which is simply the mean
of the response values for the training observations in Sm. The goal
is to find boxes S1, ..., SM that minimise the Residual Sum Squares
(RSS), given by
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a1 > t1
<latexit sha1_base64="yBO8S3a4PxQcrtJrlZoAyH9IXUc=">AAAB9HicbVDLSgMxFL3T+qj1VXXpJtgKrsrEja6k4MZlBfuAdiiZNNOGZjJjkimUod/hxoUibv0Gv8GF4Ndopu1CWw/cy+Gce8nN8WPBtXHdLyeXX1vf2CxsFbd3dvf2SweHTR0lirIGjUSk2j7RTHDJGoYbwdqxYiT0BWv5o+vMb42Z0jySd2YSMy8kA8kDTomxklchvRRPr0zWK71S2a26M6BVghekXMt/fr8DQL1X+uj2I5qETBoqiNYd7MbGS4kynAo2LXYTzWJCR2TAOpZKEjLtpbOjp+jUKn0URMqWNGim/t5ISaj1JPTtZEjMUC97mfif10lMcOmlXMaJYZLOHwoSgUyEsgRQnytGjZhYQqji9lZEh0QRamxORRsCXv7yKmmeV7Fbxbe4XHNhjgIcwwmcAYYLqMEN1KEBFO7hAZ7g2Rk7j86L8zofzTmLnSP4A+ftB4hilCo=</latexit><latexit sha1_base64="B/oLHApPhDEWqoxsdlYSAg+cin4=">AAAB9HicbVA9SwNBEJ2LXzF+RS1tDhPBKtzaaCUBG8sI5gOSI+xtNsmSvb1zdy4QjvwOGwtFbP0xdv4b95IrNPHBDI/3ZtjZF8RSGPS8b6ewsbm1vVPcLe3tHxwelY9PWiZKNONNFslIdwJquBSKN1Gg5J1YcxoGkreDyV3mt6dcGxGpR5zF3A/pSImhYBSt5FdpPyXzW8x6tV+ueDVvAXedkJxUIEejX/7qDSKWhFwhk9SYLvFi9FOqUTDJ56VeYnhM2YSOeNdSRUNu/HRx9Ny9sMrAHUbalkJ3of7eSGlozCwM7GRIcWxWvUz8z+smOLzxU6HiBLliy4eGiXQxcrME3IHQnKGcWUKZFvZWl42ppgxtTiUbAln98jppXdWIVyMPpFL38jiKcAbncAkErqEO99CAJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w+yMpFS</latexit>

a1 > t1
<latexit sha1_base64="yBO8S3a4PxQcrtJrlZoAyH9IXUc=">AAAB9HicbVDLSgMxFL3T+qj1VXXpJtgKrsrEja6k4MZlBfuAdiiZNNOGZjJjkimUod/hxoUibv0Gv8GF4Ndopu1CWw/cy+Gce8nN8WPBtXHdLyeXX1vf2CxsFbd3dvf2SweHTR0lirIGjUSk2j7RTHDJGoYbwdqxYiT0BWv5o+vMb42Z0jySd2YSMy8kA8kDTomxklchvRRPr0zWK71S2a26M6BVghekXMt/fr8DQL1X+uj2I5qETBoqiNYd7MbGS4kynAo2LXYTzWJCR2TAOpZKEjLtpbOjp+jUKn0URMqWNGim/t5ISaj1JPTtZEjMUC97mfif10lMcOmlXMaJYZLOHwoSgUyEsgRQnytGjZhYQqji9lZEh0QRamxORRsCXv7yKmmeV7Fbxbe4XHNhjgIcwwmcAYYLqMEN1KEBFO7hAZ7g2Rk7j86L8zofzTmLnSP4A+ftB4hilCo=</latexit><latexit sha1_base64="B/oLHApPhDEWqoxsdlYSAg+cin4=">AAAB9HicbVA9SwNBEJ2LXzF+RS1tDhPBKtzaaCUBG8sI5gOSI+xtNsmSvb1zdy4QjvwOGwtFbP0xdv4b95IrNPHBDI/3ZtjZF8RSGPS8b6ewsbm1vVPcLe3tHxwelY9PWiZKNONNFslIdwJquBSKN1Gg5J1YcxoGkreDyV3mt6dcGxGpR5zF3A/pSImhYBSt5FdpPyXzW8x6tV+ueDVvAXedkJxUIEejX/7qDSKWhFwhk9SYLvFi9FOqUTDJ56VeYnhM2YSOeNdSRUNu/HRx9Ny9sMrAHUbalkJ3of7eSGlozCwM7GRIcWxWvUz8z+smOLzxU6HiBLliy4eGiXQxcrME3IHQnKGcWUKZFvZWl42ppgxtTiUbAln98jppXdWIVyMPpFL38jiKcAbncAkErqEO99CAJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w+yMpFS</latexit>

a2 > t2
<latexit sha1_base64="77W3l9I/Ia1RxtfJoggLuObDajY=">AAAB9HicbVDLSsNAFL1pfdT6qrp0E2wFVyXpRldScOOygn1ADWUynbRDJ5M4c1Mood/hxoUibv0Gv8GF4NfopO1CWw/cy+Gce5k7x48F1+g4X1Yuv7a+sVnYKm7v7O7tlw4OWzpKFGVNGolIdXyimeCSNZGjYJ1YMRL6grX90VXmt8dMaR7JW5zEzAvJQPKAU4JG8iqkl9aml5j1Sq9UdqrODPYqcRekXM9/fr8DQKNX+rjrRzQJmUQqiNZd14nRS4lCTgWbFu8SzWJCR2TAuoZKEjLtpbOjp/apUfp2EClTEu2Z+nsjJaHWk9A3kyHBoV72MvE/r5tgcOGlXMYJMknnDwWJsDGyswTsPleMopgYQqji5labDokiFE1ORROCu/zlVdKqVV2n6t645boDcxTgGE7gDFw4hzpcQwOaQOEeHuAJnq2x9Wi9WK/z0Zy12DmCP7DefgCLdJQs</latexit><latexit sha1_base64="R7W+GfNFTESYX2+oVAyn8s2j2s8=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsarQyJjSUmAiZwIXvLHmzY2zt350jIhd9hY6Extv4YO/+Ne0Ch4Etm8vLeTHb2BYkUBl332ylsbG5t7xR3S3v7B4dH5eOTtolTzXiLxTLWjwE1XArFWyhQ8sdEcxoFkneC8W3udyZcGxGrB5wm3I/oUIlQMIpW8qu0n9VnN5j3ar9ccWvuHGSdeEtSgSWa/fJXbxCzNOIKmaTGdD03QT+jGgWTfFbqpYYnlI3pkHctVTTixs/mR8/IhVUGJIy1LYVkrv7eyGhkzDQK7GREcWRWvVz8z+umGF77mVBJilyxxUNhKgnGJE+ADITmDOXUEsq0sLcSNqKaMrQ5lWwI3uqX10m7XvPcmnfvVRruMo4inME5XIIHV9CAO2hCCxg8wTO8wpszcV6cd+djMVpwljun8AfO5w+1RJFU</latexit>

a2 > t2
<latexit sha1_base64="77W3l9I/Ia1RxtfJoggLuObDajY=">AAAB9HicbVDLSsNAFL1pfdT6qrp0E2wFVyXpRldScOOygn1ADWUynbRDJ5M4c1Mood/hxoUibv0Gv8GF4NfopO1CWw/cy+Gce5k7x48F1+g4X1Yuv7a+sVnYKm7v7O7tlw4OWzpKFGVNGolIdXyimeCSNZGjYJ1YMRL6grX90VXmt8dMaR7JW5zEzAvJQPKAU4JG8iqkl9aml5j1Sq9UdqrODPYqcRekXM9/fr8DQKNX+rjrRzQJmUQqiNZd14nRS4lCTgWbFu8SzWJCR2TAuoZKEjLtpbOjp/apUfp2EClTEu2Z+nsjJaHWk9A3kyHBoV72MvE/r5tgcOGlXMYJMknnDwWJsDGyswTsPleMopgYQqji5labDokiFE1ORROCu/zlVdKqVV2n6t645boDcxTgGE7gDFw4hzpcQwOaQOEeHuAJnq2x9Wi9WK/z0Zy12DmCP7DefgCLdJQs</latexit><latexit sha1_base64="R7W+GfNFTESYX2+oVAyn8s2j2s8=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsarQyJjSUmAiZwIXvLHmzY2zt350jIhd9hY6Extv4YO/+Ne0Ch4Etm8vLeTHb2BYkUBl332ylsbG5t7xR3S3v7B4dH5eOTtolTzXiLxTLWjwE1XArFWyhQ8sdEcxoFkneC8W3udyZcGxGrB5wm3I/oUIlQMIpW8qu0n9VnN5j3ar9ccWvuHGSdeEtSgSWa/fJXbxCzNOIKmaTGdD03QT+jGgWTfFbqpYYnlI3pkHctVTTixs/mR8/IhVUGJIy1LYVkrv7eyGhkzDQK7GREcWRWvVz8z+umGF77mVBJilyxxUNhKgnGJE+ADITmDOXUEsq0sLcSNqKaMrQ5lWwI3uqX10m7XvPcmnfvVRruMo4inME5XIIHV9CAO2hCCxg8wTO8wpszcV6cd+djMVpwljun8AfO5w+1RJFU</latexit>

a3 > t3
<latexit sha1_base64="1NM0Kh9hZxGGrbpGvkSOXCK7MFM=">AAAB9HicbVDLSgNBEOw1PmJ8RT16GUwET2FXD3qSgBePEcwDkiXMTmaTIbMPZ3oDYcl3ePGgiFe/wW/wIPg1OpvkoIkF3RRV3UxPebEUGm37y1rJra6tb+Q3C1vbO7t7xf2Dho4SxXidRTJSLY9qLkXI6yhQ8lasOA08yZve8DrzmyOutIjCOxzH3A1oPxS+YBSN5JZpNz2fXGHWy91iya7YU5Bl4sxJqZr7/H4HgFq3+NHpRSwJeIhMUq3bjh2jm1KFgkk+KXQSzWPKhrTP24aGNODaTadHT8iJUXrEj5SpEMlU/b2R0kDrceCZyYDiQC96mfif107Qv3RTEcYJ8pDNHvITSTAiWQKkJxRnKMeGUKaEuZWwAVWUocmpYEJwFr+8TBpnFceuOLdOqWrDDHk4gmM4BQcuoAo3UIM6MLiHB3iCZ2tkPVov1utsdMWa7xzCH1hvP46GlC4=</latexit><latexit sha1_base64="AKrMf9r5N8AfSpV1sTEJ5EMcJbI=">AAAB9HicbVA9SwNBEJ3zM8avqKXNYiJYhTsttJKAjWUE8wHJEfY2m2TJ3t65OxcIR36HjYUitv4YO/+Ne8kVmvhghsd7M+zsC2IpDLrut7O2vrG5tV3YKe7u7R8clo6OmyZKNOMNFslItwNquBSKN1Cg5O1YcxoGkreC8V3mtyZcGxGpR5zG3A/pUImBYBSt5FdoL72a3WLWK71S2a26c5BV4uWkDDnqvdJXtx+xJOQKmaTGdDw3Rj+lGgWTfFbsJobHlI3pkHcsVTTkxk/nR8/IuVX6ZBBpWwrJXP29kdLQmGkY2MmQ4sgse5n4n9dJcHDjp0LFCXLFFg8NEkkwIlkCpC80ZyinllCmhb2VsBHVlKHNqWhD8Ja/vEqal1XPrXoPXrnm5nEU4BTO4AI8uIYa3EMdGsDgCZ7hFd6cifPivDsfi9E1J985gT9wPn8AuFaRVg==</latexit>

a3 > t3
<latexit sha1_base64="1NM0Kh9hZxGGrbpGvkSOXCK7MFM=">AAAB9HicbVDLSgNBEOw1PmJ8RT16GUwET2FXD3qSgBePEcwDkiXMTmaTIbMPZ3oDYcl3ePGgiFe/wW/wIPg1OpvkoIkF3RRV3UxPebEUGm37y1rJra6tb+Q3C1vbO7t7xf2Dho4SxXidRTJSLY9qLkXI6yhQ8lasOA08yZve8DrzmyOutIjCOxzH3A1oPxS+YBSN5JZpNz2fXGHWy91iya7YU5Bl4sxJqZr7/H4HgFq3+NHpRSwJeIhMUq3bjh2jm1KFgkk+KXQSzWPKhrTP24aGNODaTadHT8iJUXrEj5SpEMlU/b2R0kDrceCZyYDiQC96mfif107Qv3RTEcYJ8pDNHvITSTAiWQKkJxRnKMeGUKaEuZWwAVWUocmpYEJwFr+8TBpnFceuOLdOqWrDDHk4gmM4BQcuoAo3UIM6MLiHB3iCZ2tkPVov1utsdMWa7xzCH1hvP46GlC4=</latexit><latexit sha1_base64="AKrMf9r5N8AfSpV1sTEJ5EMcJbI=">AAAB9HicbVA9SwNBEJ3zM8avqKXNYiJYhTsttJKAjWUE8wHJEfY2m2TJ3t65OxcIR36HjYUitv4YO/+Ne8kVmvhghsd7M+zsC2IpDLrut7O2vrG5tV3YKe7u7R8clo6OmyZKNOMNFslItwNquBSKN1Cg5O1YcxoGkreC8V3mtyZcGxGpR5zG3A/pUImBYBSt5FdoL72a3WLWK71S2a26c5BV4uWkDDnqvdJXtx+xJOQKmaTGdDw3Rj+lGgWTfFbsJobHlI3pkHcsVTTkxk/nR8/IuVX6ZBBpWwrJXP29kdLQmGkY2MmQ4sgse5n4n9dJcHDjp0LFCXLFFg8NEkkwIlkCpC80ZyinllCmhb2VsBHVlKHNqWhD8Ja/vEqal1XPrXoPXrnm5nEU4BTO4AI8uIYa3EMdGsDgCZ7hFd6cifPivDsfi9E1J985gT9wPn8AuFaRVg==</latexit>

a3 > t4
<latexit sha1_base64="nMYCCGBjSI/RI5gNcLbv0vND6go=">AAAB9HicbVDLSsNAFL1pfdT6qrp0M9gKrkqigq6k4MZlBfuANoTJdNIOnUzizKRQQr7DjQtF3PoNfoMLwa/R6WOhrQcuHM65l3vv8WPOlLbtLyuXX1ldWy9sFDe3tnd2S3v7TRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35w+uJ3xpRqVgk7vQ4pm6I+4IFjGBtJLeCvfQsu9Jeep5VvFLZrtpToGXizEm5lv/8fgeAulf66PYikoRUaMKxUh3HjrWbYqkZ4TQrdhNFY0yGuE87hgocUuWm06MzdGyUHgoiaUpoNFV/T6Q4VGoc+qYzxHqgFr2J+J/XSXRw6aZMxImmgswWBQlHOkKTBFCPSUo0HxuCiWTmVkQGWGKiTU5FE4Kz+PIyaZ5WHbvq3Drlmg0zFOAQjuAEHLiAGtxAHRpA4B4e4AmerZH1aL1Yr7PWnDWfOYA/sN5+AJAMlC8=</latexit><latexit sha1_base64="UN2mGNNJCpwa/E1Ml4DtxyZaeck=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBhPBU9hVQU8S8OIxgnlAsiyzk0kyZPbhTG8gLPsdXjwo4tWP8ebfOEn2oIkFDUVVN91dfiyFRtv+tgpr6xubW8Xt0s7u3v5B+fCopaNEMd5kkYxUx6eaSxHyJgqUvBMrTgNf8rY/vpv57QlXWkThI05j7gZ0GIqBYBSN5Fapl15mt+ilV1nVK1fsmj0HWSVOTiqQo+GVv3r9iCUBD5FJqnXXsWN0U6pQMMmzUi/RPKZsTIe8a2hIA67ddH50Rs6M0ieDSJkKkczV3xMpDbSeBr7pDCiO9LI3E//zugkObtxUhHGCPGSLRYNEEozILAHSF4ozlFNDKFPC3ErYiCrK0ORUMiE4yy+vktZFzbFrzoNTqdt5HEU4gVM4BweuoQ730IAmMHiCZ3iFN2tivVjv1seitWDlM8fwB9bnD7nckVc=</latexit>

a3 > t4
<latexit sha1_base64="nMYCCGBjSI/RI5gNcLbv0vND6go=">AAAB9HicbVDLSsNAFL1pfdT6qrp0M9gKrkqigq6k4MZlBfuANoTJdNIOnUzizKRQQr7DjQtF3PoNfoMLwa/R6WOhrQcuHM65l3vv8WPOlLbtLyuXX1ldWy9sFDe3tnd2S3v7TRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35w+uJ3xpRqVgk7vQ4pm6I+4IFjGBtJLeCvfQsu9Jeep5VvFLZrtpToGXizEm5lv/8fgeAulf66PYikoRUaMKxUh3HjrWbYqkZ4TQrdhNFY0yGuE87hgocUuWm06MzdGyUHgoiaUpoNFV/T6Q4VGoc+qYzxHqgFr2J+J/XSXRw6aZMxImmgswWBQlHOkKTBFCPSUo0HxuCiWTmVkQGWGKiTU5FE4Kz+PIyaZ5WHbvq3Drlmg0zFOAQjuAEHLiAGtxAHRpA4B4e4AmerZH1aL1Yr7PWnDWfOYA/sN5+AJAMlC8=</latexit><latexit sha1_base64="UN2mGNNJCpwa/E1Ml4DtxyZaeck=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBhPBU9hVQU8S8OIxgnlAsiyzk0kyZPbhTG8gLPsdXjwo4tWP8ebfOEn2oIkFDUVVN91dfiyFRtv+tgpr6xubW8Xt0s7u3v5B+fCopaNEMd5kkYxUx6eaSxHyJgqUvBMrTgNf8rY/vpv57QlXWkThI05j7gZ0GIqBYBSN5Fapl15mt+ilV1nVK1fsmj0HWSVOTiqQo+GVv3r9iCUBD5FJqnXXsWN0U6pQMMmzUi/RPKZsTIe8a2hIA67ddH50Rs6M0ieDSJkKkczV3xMpDbSeBr7pDCiO9LI3E//zugkObtxUhHGCPGSLRYNEEozILAHSF4ozlFNDKFPC3ErYiCrK0ORUMiE4yy+vktZFzbFrzoNTqdt5HEU4gVM4BweuoQ730IAmMHiCZ3iFN2tivVjv1seitWDlM8fwB9bnD7nckVc=</latexit>

a3 > t5
<latexit sha1_base64="OThiI4kivlsjp896V5YlyxRyuIM=">AAAB9HicbVDLSsNAFL1pfdT6qrp0M9gKrkqiiK6k4MZlBfuANoTJdNIOnUzizKRQQr7DjQtF3PoNfoMLwa/R6WOhrQcuHM65l3vv8WPOlLbtLyuXX1ldWy9sFDe3tnd2S3v7TRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35w+uJ3xpRqVgk7vQ4pm6I+4IFjGBtJLeCvfQsu9Jeep5VvFLZrtpToGXizEm5lv/8fgeAulf66PYikoRUaMKxUh3HjrWbYqkZ4TQrdhNFY0yGuE87hgocUuWm06MzdGyUHgoiaUpoNFV/T6Q4VGoc+qYzxHqgFr2J+J/XSXRw6aZMxImmgswWBQlHOkKTBFCPSUo0HxuCiWTmVkQGWGKiTU5FE4Kz+PIyaZ5WHbvq3Drlmg0zFOAQjuAEHLiAGtxAHRpA4B4e4AmerZH1aL1Yr7PWnDWfOYA/sN5+AJGSlDA=</latexit><latexit sha1_base64="8N4sQUFG4laqSLMR3mQDB48/j2U=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBhPBU9hVRE8S8OIxgnlAsiyzk0kyZPbhTG8gLPsdXjwo4tWP8ebfOEn2oIkFDUVVN91dfiyFRtv+tgpr6xubW8Xt0s7u3v5B+fCopaNEMd5kkYxUx6eaSxHyJgqUvBMrTgNf8rY/vpv57QlXWkThI05j7gZ0GIqBYBSN5Fapl15mt+ilV1nVK1fsmj0HWSVOTiqQo+GVv3r9iCUBD5FJqnXXsWN0U6pQMMmzUi/RPKZsTIe8a2hIA67ddH50Rs6M0ieDSJkKkczV3xMpDbSeBr7pDCiO9LI3E//zugkObtxUhHGCPGSLRYNEEozILAHSF4ozlFNDKFPC3ErYiCrK0ORUMiE4yy+vktZFzbFrzoNTqdt5HEU4gVM4BweuoQ730IAmMHiCZ3iFN2tivVjv1seitWDlM8fwB9bnD7tikVg=</latexit>

a3 > t5
<latexit sha1_base64="OThiI4kivlsjp896V5YlyxRyuIM=">AAAB9HicbVDLSsNAFL1pfdT6qrp0M9gKrkqiiK6k4MZlBfuANoTJdNIOnUzizKRQQr7DjQtF3PoNfoMLwa/R6WOhrQcuHM65l3vv8WPOlLbtLyuXX1ldWy9sFDe3tnd2S3v7TRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35w+uJ3xpRqVgk7vQ4pm6I+4IFjGBtJLeCvfQsu9Jeep5VvFLZrtpToGXizEm5lv/8fgeAulf66PYikoRUaMKxUh3HjrWbYqkZ4TQrdhNFY0yGuE87hgocUuWm06MzdGyUHgoiaUpoNFV/T6Q4VGoc+qYzxHqgFr2J+J/XSXRw6aZMxImmgswWBQlHOkKTBFCPSUo0HxuCiWTmVkQGWGKiTU5FE4Kz+PIyaZ5WHbvq3Drlmg0zFOAQjuAEHLiAGtxAHRpA4B4e4AmerZH1aL1Yr7PWnDWfOYA/sN5+AJGSlDA=</latexit><latexit sha1_base64="8N4sQUFG4laqSLMR3mQDB48/j2U=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBhPBU9hVRE8S8OIxgnlAsiyzk0kyZPbhTG8gLPsdXjwo4tWP8ebfOEn2oIkFDUVVN91dfiyFRtv+tgpr6xubW8Xt0s7u3v5B+fCopaNEMd5kkYxUx6eaSxHyJgqUvBMrTgNf8rY/vpv57QlXWkThI05j7gZ0GIqBYBSN5Fapl15mt+ilV1nVK1fsmj0HWSVOTiqQo+GVv3r9iCUBD5FJqnXXsWN0U6pQMMmzUi/RPKZsTIe8a2hIA67ddH50Rs6M0ieDSJkKkczV3xMpDbSeBr7pDCiO9LI3E//zugkObtxUhHGCPGSLRYNEEozILAHSF4ozlFNDKFPC3ErYiCrK0ORUMiE4yy+vktZFzbFrzoNTqdt5HEU4gVM4BweuoQ730IAmMHiCZ3iFN2tivVjv1seitWDlM8fwB9bnD7tikVg=</latexit>

ŷ3
<latexit sha1_base64="0WXFMJgn30K/y1YQeTQ3w9WbFko=">AAAB9HicbVC7TsNAEFzzTMIrQEljkSBRRTYUUEaioQwSeUiJFZ3Pl+SU89ncrSNZlms+gYYiCNHyMXT8DZdHAQkjrTSa2dXujh8LrtFxvq2Nza3tnd1CsbS3f3B4VD4+aekoUZQ1aSQi1fGJZoJL1kSOgnVixUjoC9b2x3czvz1hSvNIPmIaMy8kQ8kHnBI0klftjQhmaT+7zvNqv1xxas4c9jpxl6RSLz4HUwBo9MtfvSCiScgkUkG07rpOjF5GFHIqWF7qJZrFhI7JkHUNlSRk2svmR+f2hVECexApUxLtufp7IiOh1mnom86Q4EivejPxP6+b4ODWy7iME2SSLhYNEmFjZM8SsAOuGEWRGkKo4uZWm46IIhRNTiUTgrv68jppXdVcp+Y+uJW6AwsU4AzO4RJcuIE63EMDmkDhCV5gCm/WxHq13q2PReuGtZw5hT+wPn8A13yTlw==</latexit><latexit sha1_base64="Ognqmu27ooCWU4w1PghY+7VR2og=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BFvBU0n0oMeCF48V7Ae0oWy2m3bpZhN3J4UQ8ju8eFDEqz/Gm//GbZuDtj4YeLw3w8w8PxZco+N8W6WNza3tnfJuZW//4PCoenzS0VGiKGvTSESq5xPNBJesjRwF68WKkdAXrOtP7+Z+d8aU5pF8xDRmXkjGkgecEjSSVx9MCGbpMLvO8/qwWnMazgL2OnELUoMCrWH1azCKaBIyiVQQrfuuE6OXEYWcCpZXBolmMaFTMmZ9QyUJmfayxdG5fWGUkR1EypREe6H+nshIqHUa+qYzJDjRq95c/M/rJxjcehmXcYJM0uWiIBE2RvY8AXvEFaMoUkMIVdzcatMJUYSiyaliQnBXX14nnauG6zTcB7fWdIo4ynAG53AJLtxAE+6hBW2g8ATP8Apv1sx6sd6tj2VrySpmTuEPrM8fX/GRww==</latexit>

ŷ3
<latexit sha1_base64="0WXFMJgn30K/y1YQeTQ3w9WbFko=">AAAB9HicbVC7TsNAEFzzTMIrQEljkSBRRTYUUEaioQwSeUiJFZ3Pl+SU89ncrSNZlms+gYYiCNHyMXT8DZdHAQkjrTSa2dXujh8LrtFxvq2Nza3tnd1CsbS3f3B4VD4+aekoUZQ1aSQi1fGJZoJL1kSOgnVixUjoC9b2x3czvz1hSvNIPmIaMy8kQ8kHnBI0klftjQhmaT+7zvNqv1xxas4c9jpxl6RSLz4HUwBo9MtfvSCiScgkUkG07rpOjF5GFHIqWF7qJZrFhI7JkHUNlSRk2svmR+f2hVECexApUxLtufp7IiOh1mnom86Q4EivejPxP6+b4ODWy7iME2SSLhYNEmFjZM8SsAOuGEWRGkKo4uZWm46IIhRNTiUTgrv68jppXdVcp+Y+uJW6AwsU4AzO4RJcuIE63EMDmkDhCV5gCm/WxHq13q2PReuGtZw5hT+wPn8A13yTlw==</latexit><latexit sha1_base64="Ognqmu27ooCWU4w1PghY+7VR2og=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BFvBU0n0oMeCF48V7Ae0oWy2m3bpZhN3J4UQ8ju8eFDEqz/Gm//GbZuDtj4YeLw3w8w8PxZco+N8W6WNza3tnfJuZW//4PCoenzS0VGiKGvTSESq5xPNBJesjRwF68WKkdAXrOtP7+Z+d8aU5pF8xDRmXkjGkgecEjSSVx9MCGbpMLvO8/qwWnMazgL2OnELUoMCrWH1azCKaBIyiVQQrfuuE6OXEYWcCpZXBolmMaFTMmZ9QyUJmfayxdG5fWGUkR1EypREe6H+nshIqHUa+qYzJDjRq95c/M/rJxjcehmXcYJM0uWiIBE2RvY8AXvEFaMoUkMIVdzcatMJUYSiyaliQnBXX14nnauG6zTcB7fWdIo4ynAG53AJLtxAE+6hBW2g8ATP8Apv1sx6sd6tj2VrySpmTuEPrM8fX/GRww==</latexit>

ŷ6
<latexit sha1_base64="GQWY2oJtxRuQwukhynmfvACkfDs=">AAAB9HicbVC7TsNAEFzzTMIrQEljkSBRRTYFUEaioQwSeUiJFZ3Pl+SU89ncrSNZlms+gYYiCNHyMXT8DZdHAQkjrTSa2dXujh8LrtFxvq2Nza3tnd1CsbS3f3B4VD4+aekoUZQ1aSQi1fGJZoJL1kSOgnVixUjoC9b2x3czvz1hSvNIPmIaMy8kQ8kHnBI0klftjQhmaT+7zvNqv1xxas4c9jpxl6RSLz4HUwBo9MtfvSCiScgkUkG07rpOjF5GFHIqWF7qJZrFhI7JkHUNlSRk2svmR+f2hVECexApUxLtufp7IiOh1mnom86Q4EivejPxP6+b4ODWy7iME2SSLhYNEmFjZM8SsAOuGEWRGkKo4uZWm46IIhRNTiUTgrv68jppXdVcp+Y+uJW6AwsU4AzO4RJcuIE63EMDmkDhCV5gCm/WxHq13q2PReuGtZw5hT+wPn8A3BGTmg==</latexit><latexit sha1_base64="moZObsztgy4uwSxiElMhkGoORbk=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BFvBU0k8qMeCF48V7Ae0oWy2m3bpZhN3J4UQ8ju8eFDEqz/Gm//GbZuDtj4YeLw3w8w8PxZco+N8W6WNza3tnfJuZW//4PCoenzS0VGiKGvTSESq5xPNBJesjRwF68WKkdAXrOtP7+Z+d8aU5pF8xDRmXkjGkgecEjSSVx9MCGbpMLvO8/qwWnMazgL2OnELUoMCrWH1azCKaBIyiVQQrfuuE6OXEYWcCpZXBolmMaFTMmZ9QyUJmfayxdG5fWGUkR1EypREe6H+nshIqHUa+qYzJDjRq95c/M/rJxjcehmXcYJM0uWiIBE2RvY8AXvEFaMoUkMIVdzcatMJUYSiyaliQnBXX14nnauG6zTcB7fWdIo4ynAG53AJLtxAE+6hBW2g8ATP8Apv1sx6sd6tj2VrySpmTuEPrM8fZIaRxg==</latexit>

ŷ6
<latexit sha1_base64="GQWY2oJtxRuQwukhynmfvACkfDs=">AAAB9HicbVC7TsNAEFzzTMIrQEljkSBRRTYFUEaioQwSeUiJFZ3Pl+SU89ncrSNZlms+gYYiCNHyMXT8DZdHAQkjrTSa2dXujh8LrtFxvq2Nza3tnd1CsbS3f3B4VD4+aekoUZQ1aSQi1fGJZoJL1kSOgnVixUjoC9b2x3czvz1hSvNIPmIaMy8kQ8kHnBI0klftjQhmaT+7zvNqv1xxas4c9jpxl6RSLz4HUwBo9MtfvSCiScgkUkG07rpOjF5GFHIqWF7qJZrFhI7JkHUNlSRk2svmR+f2hVECexApUxLtufp7IiOh1mnom86Q4EivejPxP6+b4ODWy7iME2SSLhYNEmFjZM8SsAOuGEWRGkKo4uZWm46IIhRNTiUTgrv68jppXdVcp+Y+uJW6AwsU4AzO4RJcuIE63EMDmkDhCV5gCm/WxHq13q2PReuGtZw5hT+wPn8A3BGTmg==</latexit><latexit sha1_base64="moZObsztgy4uwSxiElMhkGoORbk=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BFvBU0k8qMeCF48V7Ae0oWy2m3bpZhN3J4UQ8ju8eFDEqz/Gm//GbZuDtj4YeLw3w8w8PxZco+N8W6WNza3tnfJuZW//4PCoenzS0VGiKGvTSESq5xPNBJesjRwF68WKkdAXrOtP7+Z+d8aU5pF8xDRmXkjGkgecEjSSVx9MCGbpMLvO8/qwWnMazgL2OnELUoMCrWH1azCKaBIyiVQQrfuuE6OXEYWcCpZXBolmMaFTMmZ9QyUJmfayxdG5fWGUkR1EypREe6H+nshIqHUa+qYzJDjRq95c/M/rJxjcehmXcYJM0uWiIBE2RvY8AXvEFaMoUkMIVdzcatMJUYSiyaliQnBXX14nnauG6zTcB7fWdIo4ynAG53AJLtxAE+6hBW2g8ATP8Apv1sx6sd6tj2VrySpmTuEPrM8fZIaRxg==</latexit>

ŷ5
<latexit sha1_base64="izQBGBPpETnAI9aAJfgIydJGzoY=">AAAB9HicbVBNS8NAEJ342davqkcvwVbwVBJB9Fjw4rGC/YA2lM1m2y7dbOLupBBCzv4ELx4q4tUf481/4/bjoK0PBh7vzTAzz48F1+g439bG5tb2zm6hWNrbPzg8Kh+ftHSUKMqaNBKR6vhEM8ElayJHwTqxYiT0BWv747uZ354wpXkkHzGNmReSoeQDTgkayav2RgSztJ9d53m1X644NWcOe524S1KpF5+DKQA0+uWvXhDRJGQSqSBad10nRi8jCjkVLC/1Es1iQsdkyLqGShIy7WXzo3P7wiiBPYiUKYn2XP09kZFQ6zT0TWdIcKRXvZn4n9dNcHDrZVzGCTJJF4sGibAxsmcJ2AFXjKJIDSFUcXOrTUdEEYomp5IJwV19eZ20rmquU3Mf3ErdgQUKcAbncAku3EAd7qEBTaDwBC8whTdrYr1a79bHonXDWs6cwh9Ynz/aipOZ</latexit><latexit sha1_base64="0O6aiEzbkZMo7De3Y6BmwYEccJI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BFvBU0kE0WPBi8cK9gPaUDbbTbt0s4m7k0II+R1ePCji1R/jzX/jts1BWx8MPN6bYWaeHwuu0XG+rdLG5tb2Tnm3srd/cHhUPT7p6ChRlLVpJCLV84lmgkvWRo6C9WLFSOgL1vWnd3O/O2NK80g+YhozLyRjyQNOCRrJqw8mBLN0mF3neX1YrTkNZwF7nbgFqUGB1rD6NRhFNAmZRCqI1n3XidHLiEJOBcsrg0SzmNApGbO+oZKETHvZ4ujcvjDKyA4iZUqivVB/T2Qk1DoNfdMZEpzoVW8u/uf1EwxuvYzLOEEm6XJRkAgbI3uegD3iilEUqSGEKm5utemEKELR5FQxIbirL6+TzlXDdRrug1trOkUcZTiDc7gEF26gCffQgjZQeIJneIU3a2a9WO/Wx7K1ZBUzp/AH1ucPYv+RxQ==</latexit>

ŷ5
<latexit sha1_base64="izQBGBPpETnAI9aAJfgIydJGzoY=">AAAB9HicbVBNS8NAEJ342davqkcvwVbwVBJB9Fjw4rGC/YA2lM1m2y7dbOLupBBCzv4ELx4q4tUf481/4/bjoK0PBh7vzTAzz48F1+g439bG5tb2zm6hWNrbPzg8Kh+ftHSUKMqaNBKR6vhEM8ElayJHwTqxYiT0BWv747uZ354wpXkkHzGNmReSoeQDTgkayav2RgSztJ9d53m1X644NWcOe524S1KpF5+DKQA0+uWvXhDRJGQSqSBad10nRi8jCjkVLC/1Es1iQsdkyLqGShIy7WXzo3P7wiiBPYiUKYn2XP09kZFQ6zT0TWdIcKRXvZn4n9dNcHDrZVzGCTJJF4sGibAxsmcJ2AFXjKJIDSFUcXOrTUdEEYomp5IJwV19eZ20rmquU3Mf3ErdgQUKcAbncAku3EAd7qEBTaDwBC8whTdrYr1a79bHonXDWs6cwh9Ynz/aipOZ</latexit><latexit sha1_base64="0O6aiEzbkZMo7De3Y6BmwYEccJI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BFvBU0kE0WPBi8cK9gPaUDbbTbt0s4m7k0II+R1ePCji1R/jzX/jts1BWx8MPN6bYWaeHwuu0XG+rdLG5tb2Tnm3srd/cHhUPT7p6ChRlLVpJCLV84lmgkvWRo6C9WLFSOgL1vWnd3O/O2NK80g+YhozLyRjyQNOCRrJqw8mBLN0mF3neX1YrTkNZwF7nbgFqUGB1rD6NRhFNAmZRCqI1n3XidHLiEJOBcsrg0SzmNApGbO+oZKETHvZ4ujcvjDKyA4iZUqivVB/T2Qk1DoNfdMZEpzoVW8u/uf1EwxuvYzLOEEm6XJRkAgbI3uegD3iilEUqSGEKm5utemEKELR5FQxIbirL6+TzlXDdRrug1trOkUcZTiDc7gEF26gCffQgjZQeIJneIU3a2a9WO/Wx7K1ZBUzp/AH1ucPYv+RxQ==</latexit>

ŷ4
<latexit sha1_base64="stF8/AMK6K1rwrXyVFtAk4xKRUs=">AAAB9HicbVBNS8NAEJ342davqkcvwVbwVBIR9Fjw4rGC/YA2lM1m2y7dbOLupBBCzv4ELx4q4tUf481/4/bjoK0PBh7vzTAzz48F1+g439bG5tb2zm6hWNrbPzg8Kh+ftHSUKMqaNBKR6vhEM8ElayJHwTqxYiT0BWv747uZ354wpXkkHzGNmReSoeQDTgkayav2RgSztJ9d53m1X644NWcOe524S1KpF5+DKQA0+uWvXhDRJGQSqSBad10nRi8jCjkVLC/1Es1iQsdkyLqGShIy7WXzo3P7wiiBPYiUKYn2XP09kZFQ6zT0TWdIcKRXvZn4n9dNcHDrZVzGCTJJF4sGibAxsmcJ2AFXjKJIDSFUcXOrTUdEEYomp5IJwV19eZ20rmquU3Mf3ErdgQUKcAbncAku3EAd7qEBTaDwBC8whTdrYr1a79bHonXDWs6cwh9Ynz/ZA5OY</latexit><latexit sha1_base64="iUnnjXTFigAT7HvRLdrN5o0k2dg=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BFvBU0lE0GPBi8cK9gPaUDbbTbt0s4m7k0II+R1ePCji1R/jzX/jts1BWx8MPN6bYWaeHwuu0XG+rdLG5tb2Tnm3srd/cHhUPT7p6ChRlLVpJCLV84lmgkvWRo6C9WLFSOgL1vWnd3O/O2NK80g+YhozLyRjyQNOCRrJqw8mBLN0mF3neX1YrTkNZwF7nbgFqUGB1rD6NRhFNAmZRCqI1n3XidHLiEJOBcsrg0SzmNApGbO+oZKETHvZ4ujcvjDKyA4iZUqivVB/T2Qk1DoNfdMZEpzoVW8u/uf1EwxuvYzLOEEm6XJRkAgbI3uegD3iilEUqSGEKm5utemEKELR5FQxIbirL6+TzlXDdRrug1trOkUcZTiDc7gEF26gCffQgjZQeIJneIU3a2a9WO/Wx7K1ZBUzp/AH1ucPYXiRxA==</latexit>

ŷ4
<latexit sha1_base64="stF8/AMK6K1rwrXyVFtAk4xKRUs=">AAAB9HicbVBNS8NAEJ342davqkcvwVbwVBIR9Fjw4rGC/YA2lM1m2y7dbOLupBBCzv4ELx4q4tUf481/4/bjoK0PBh7vzTAzz48F1+g439bG5tb2zm6hWNrbPzg8Kh+ftHSUKMqaNBKR6vhEM8ElayJHwTqxYiT0BWv747uZ354wpXkkHzGNmReSoeQDTgkayav2RgSztJ9d53m1X644NWcOe524S1KpF5+DKQA0+uWvXhDRJGQSqSBad10nRi8jCjkVLC/1Es1iQsdkyLqGShIy7WXzo3P7wiiBPYiUKYn2XP09kZFQ6zT0TWdIcKRXvZn4n9dNcHDrZVzGCTJJF4sGibAxsmcJ2AFXjKJIDSFUcXOrTUdEEYomp5IJwV19eZ20rmquU3Mf3ErdgQUKcAbncAku3EAd7qEBTaDwBC8whTdrYr1a79bHonXDWs6cwh9Ynz/ZA5OY</latexit><latexit sha1_base64="iUnnjXTFigAT7HvRLdrN5o0k2dg=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BFvBU0lE0GPBi8cK9gPaUDbbTbt0s4m7k0II+R1ePCji1R/jzX/jts1BWx8MPN6bYWaeHwuu0XG+rdLG5tb2Tnm3srd/cHhUPT7p6ChRlLVpJCLV84lmgkvWRo6C9WLFSOgL1vWnd3O/O2NK80g+YhozLyRjyQNOCRrJqw8mBLN0mF3neX1YrTkNZwF7nbgFqUGB1rD6NRhFNAmZRCqI1n3XidHLiEJOBcsrg0SzmNApGbO+oZKETHvZ4ujcvjDKyA4iZUqivVB/T2Qk1DoNfdMZEpzoVW8u/uf1EwxuvYzLOEEm6XJRkAgbI3uegD3iilEUqSGEKm5utemEKELR5FQxIbirL6+TzlXDdRrug1trOkUcZTiDc7gEF26gCffQgjZQeIJneIU3a2a9WO/Wx7K1ZBUzp/AH1ucPYXiRxA==</latexit>

ŷ1
<latexit sha1_base64="N3Cm9c4gS90ZySa1bMck+16IxwA=">AAACA3icbVC7SgNBFL0bX0l8RS1tFhPBKuzaaBmwsYxgHpAsYXZ2NhkyO7vM3BXCErARf8PKxkIRW3/Czp9RJ49CE88wl8M59zJzj58IrtFxPq3cyura+ka+UNzc2t7ZLe3tN3WcKsoaNBaxavtEM8ElayBHwdqJYiTyBWv5w4uJ37phSvNYXuMoYV5E+pKHnBI0koQKdGEABBAyGEHPVBfG5lS+vnulslN1prCXiTsn5VrhPngAgHqv9NENYppGTCIVROuO6yToZUQhp4KNi91Us4TQIemzjqGSREx72XSHsX1slMAOY2WuRHuq/p7ISKT1KPJNZ0RwoBe9ifif10kxPPcyLpMUmaSzh8JU2Bjbk0DsgCtGUYwMIVRx81ebDogiFE1sRROCu7jyMmmeVl2n6l655ZoDM+ThEI7gxMR5BjW4hDo0gMItPMIzvFh31pP1ar3NWnPWfOYA/sB6/wEuhZYq</latexit><latexit sha1_base64="hkxBH0ADoza6QqC8E4EykFSBDqk=">AAACA3icbVDLSgMxFL3js9ZX1aWbYCu4KjNudFlw47KCfUBbSibNtKGZzJDcEYah4MZfceNCEbf+hDt/Rk3bWWjrCbkczrmX5B4/lsKg6346K6tr6xubha3i9s7u3n7p4LBpokQz3mCRjHTbp4ZLoXgDBUrejjWnoS95yx9fTf3WHddGROoW05j3QjpUIhCMopUUVKALI6CAkEEKfVs9mNhT+frul8pu1Z2BLBMvJ2XIUe+XPrqDiCUhV8gkNabjuTH2MqpRMMknxW5ieEzZmA55x1JFQ2562WyHCTm1yoAEkbZXIZmpvycyGhqThr7tDCmOzKI3Ff/zOgkGl71MqDhBrtj8oSCRBCMyDYQMhOYMZWoJZVrYvxI2opoytLEVbQje4srLpHle9dyqd+OVa24eRwGO4QTObJwXUINrqEMDGNzDIzzDi/PgPDmvztu8dcXJZ47gD5z3H7brlFY=</latexit>

ŷ1
<latexit sha1_base64="N3Cm9c4gS90ZySa1bMck+16IxwA=">AAACA3icbVC7SgNBFL0bX0l8RS1tFhPBKuzaaBmwsYxgHpAsYXZ2NhkyO7vM3BXCErARf8PKxkIRW3/Czp9RJ49CE88wl8M59zJzj58IrtFxPq3cyura+ka+UNzc2t7ZLe3tN3WcKsoaNBaxavtEM8ElayBHwdqJYiTyBWv5w4uJ37phSvNYXuMoYV5E+pKHnBI0koQKdGEABBAyGEHPVBfG5lS+vnulslN1prCXiTsn5VrhPngAgHqv9NENYppGTCIVROuO6yToZUQhp4KNi91Us4TQIemzjqGSREx72XSHsX1slMAOY2WuRHuq/p7ISKT1KPJNZ0RwoBe9ifif10kxPPcyLpMUmaSzh8JU2Bjbk0DsgCtGUYwMIVRx81ebDogiFE1sRROCu7jyMmmeVl2n6l655ZoDM+ThEI7gxMR5BjW4hDo0gMItPMIzvFh31pP1ar3NWnPWfOYA/sB6/wEuhZYq</latexit><latexit sha1_base64="hkxBH0ADoza6QqC8E4EykFSBDqk=">AAACA3icbVDLSgMxFL3js9ZX1aWbYCu4KjNudFlw47KCfUBbSibNtKGZzJDcEYah4MZfceNCEbf+hDt/Rk3bWWjrCbkczrmX5B4/lsKg6346K6tr6xubha3i9s7u3n7p4LBpokQz3mCRjHTbp4ZLoXgDBUrejjWnoS95yx9fTf3WHddGROoW05j3QjpUIhCMopUUVKALI6CAkEEKfVs9mNhT+frul8pu1Z2BLBMvJ2XIUe+XPrqDiCUhV8gkNabjuTH2MqpRMMknxW5ieEzZmA55x1JFQ2562WyHCTm1yoAEkbZXIZmpvycyGhqThr7tDCmOzKI3Ff/zOgkGl71MqDhBrtj8oSCRBCMyDYQMhOYMZWoJZVrYvxI2opoytLEVbQje4srLpHle9dyqd+OVa24eRwGO4QTObJwXUINrqEMDGNzDIzzDi/PgPDmvztu8dcXJZ47gD5z3H7brlFY=</latexit>

ŷ2
<latexit sha1_base64="etzo2aQ2n3tXOeiG9JboRjXBGCQ=">AAAB9HicbVC7TsNAEFzzTMIrQEljkSBRRXYaKCPRUAaJPKTEis7nS3LK+Wzu1pEsyzWfQEMRhGj5GDr+hsujgISRVhrN7Gp3x48F1+g439bW9s7u3n6hWDo4PDo+KZ+etXWUKMpaNBKR6vpEM8ElayFHwbqxYiT0Bev4k7u535kypXkkHzGNmReSkeRDTgkayav2xwSzdJDV87w6KFecmrOAvUncFak0is/BDACag/JXP4hoEjKJVBCte64To5cRhZwKlpf6iWYxoRMyYj1DJQmZ9rLF0bl9ZZTAHkbKlER7of6eyEiodRr6pjMkONbr3lz8z+slOLz1Mi7jBJmky0XDRNgY2fME7IArRlGkhhCquLnVpmOiCEWTU8mE4K6/vEna9Zrr1NwHt9JwYIkCXMAlXIMLN9CAe2hCCyg8wQvM4M2aWq/Wu/WxbN2yVjPn8AfW5w/V9ZOW</latexit><latexit sha1_base64="UAF76y+3wv0qMZTTRQNZ8oOljYs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBhPBU9jNRY8BLx4jmAckS5idzCZDZh/O9AaWZb/DiwdFvPox3vwbJ8keNLGgoajqprvLi6XQaNvfVmlre2d3r7xfOTg8Oj6pnp51dZQoxjsskpHqe1RzKULeQYGS92PFaeBJ3vNmdwu/N+dKiyh8xDTmbkAnofAFo2gktz6cUszSUdbM8/qoWrMb9hJkkzgFqUGB9qj6NRxHLAl4iExSrQeOHaObUYWCSZ5XhonmMWUzOuEDQ0MacO1my6NzcmWUMfEjZSpEslR/T2Q00DoNPNMZUJzqdW8h/ucNEvRv3UyEcYI8ZKtFfiIJRmSRABkLxRnK1BDKlDC3EjalijI0OVVMCM76y5uk22w4dsN5cGotu4ijDBdwCdfgwA204B7a0AEGT/AMr/Bmza0X6936WLWWrGLmHP7A+vwBXmqRwg==</latexit>

ŷ2
<latexit sha1_base64="etzo2aQ2n3tXOeiG9JboRjXBGCQ=">AAAB9HicbVC7TsNAEFzzTMIrQEljkSBRRXYaKCPRUAaJPKTEis7nS3LK+Wzu1pEsyzWfQEMRhGj5GDr+hsujgISRVhrN7Gp3x48F1+g439bW9s7u3n6hWDo4PDo+KZ+etXWUKMpaNBKR6vpEM8ElayFHwbqxYiT0Bev4k7u535kypXkkHzGNmReSkeRDTgkayav2xwSzdJDV87w6KFecmrOAvUncFak0is/BDACag/JXP4hoEjKJVBCte64To5cRhZwKlpf6iWYxoRMyYj1DJQmZ9rLF0bl9ZZTAHkbKlER7of6eyEiodRr6pjMkONbr3lz8z+slOLz1Mi7jBJmky0XDRNgY2fME7IArRlGkhhCquLnVpmOiCEWTU8mE4K6/vEna9Zrr1NwHt9JwYIkCXMAlXIMLN9CAe2hCCyg8wQvM4M2aWq/Wu/WxbN2yVjPn8AfW5w/V9ZOW</latexit><latexit sha1_base64="UAF76y+3wv0qMZTTRQNZ8oOljYs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBhPBU9jNRY8BLx4jmAckS5idzCZDZh/O9AaWZb/DiwdFvPox3vwbJ8keNLGgoajqprvLi6XQaNvfVmlre2d3r7xfOTg8Oj6pnp51dZQoxjsskpHqe1RzKULeQYGS92PFaeBJ3vNmdwu/N+dKiyh8xDTmbkAnofAFo2gktz6cUszSUdbM8/qoWrMb9hJkkzgFqUGB9qj6NRxHLAl4iExSrQeOHaObUYWCSZ5XhonmMWUzOuEDQ0MacO1my6NzcmWUMfEjZSpEslR/T2Q00DoNPNMZUJzqdW8h/ucNEvRv3UyEcYI8ZKtFfiIJRmSRABkLxRnK1BDKlDC3EjalijI0OVVMCM76y5uk22w4dsN5cGotu4ijDBdwCdfgwA204B7a0AEGT/AMr/Bmza0X6936WLWWrGLmHP7A+vwBXmqRwg==</latexit>
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Fig. 4: Illustration of how a decision tree for regression was utilised
to predict biomarker values in our experiments.

|T |∑
m=1

∑
i∈Sm

(yi − ŷSm)2 + α|T | (4)

where ŷSm is the mean response for the training observations
within the m-th box. |T | indicates the number of terminal nodes
of the tree T , Sm is the rectangle or box corresponding to the m-th
terminal node, ŷSM is the predicted response associated with Sm,
α controls a trade-off between the subtree’s complexity and its fit
to the training data. Given that this is equivalent to constraining the
value of |T |, we obtain the following equations:

minŷSm

{∑
i

(yi − ŷSm)2
}

subject to |T | ≤ cα (5)

∆g′ = X(yi − ŷSm)2 + λ(|T |) (6)

where the overall goal is to find the minimum T, λ,∆g , which is
a discrete optimisation problem. However, since we’re minimising
over T and λ, this implies the location of the minimising T doesn’t
depend on cα. But each cα will imply an optimal value of λ.

2) Random Forest Regression: Random forests represent a
substantial modification of the bagging technique [51]. It constructs
a large ensemble of uncorrelated trees and then average their predic-
tions. Random forests often exhibit similar performance to boosting
on various problem domains, but they offer the advantage of being
simpler to train and fine-tune. The core idea behind bagging is to
average multiple models that are noisy yet approximately unbiased,
leading to a reduction in variance. To predict a new point using the
random forest algorithm, the following steps are involved: Firstly,
a bootstrap sample of size N is drawn from the training data.
Then, a random-forest tree is grown using the bootstrapped data
by recursively selecting random subsets of variables and finding the
best split points. The process continues until a minimum node size
is reached. The resulting ensemble of trees is then used to make
predictions. When a new point needs to be predicted, it is passed
through each tree in the random forest, and the predictions from all

the trees are combined to obtain the final prediction. This aggregation
can involve averaging the predictions for regression problems as
follows:

f̂Brf (x) =
1

B

B∑
b=1

Tb(x) (7)

where B stands for the number of bootstrap datasets generated
from the given tree, b represents bagging estimate over a collection
of bootstrap samples, Tb represents the grown random-forest tree Tb
from the bootstrapped data.

F. Parameter settings and forecasting biomarker values
We applied two regression models in our analysis: Decision Tree

(DT) and Random Forest (RF) Regressors to predict the biomarker
values collected between week 25 and 28 based on the data collected
between weeks 12–14. Our experiments were designed to compute
the biomarker values of participants collected between week 25 and
28 for the combinations of the following factors:
• Regression Models: Optimised DT and RF Regressors that are

tuned for hyper-parameters;
• Preprocessing: CMTF-ALS and Elastic Net;
• The multimodal input variations used as an input in the prepro-

cessing phase are as follows:
– E4: Physical activity recordings; eating, sitting, walking,

walking upstairs, talking on the mobile phone, and lying
down (i.e. 3 minutes recording for each activity);

– CG: Continuous Glucose Monitoring Values (i.e. 14 days
of recording per participant);

– HB: Medical/Health Background
– E4-HB: Physical Activities and Health Background;
– CG-HB: Continuous Glucose Monitoring Values and Health

Background;
– E4-CG-HB: Physical Activities, Continuous Glucose Mon-

itoring Values and Health Background;
• Two sets of biomarker values:

– Low-density lipoprotein cholesterol (LDL), High-density
lipoprotein (HDL), Triglycerides, Cholesterol, HbA1c

– OGTT biomarkers: Fasted Glucose, 1-hour Glucose, 2-hour
Glucose

By combining DT and RF with a random search based on the
preprocessed data obtained with Elastic Net and CMTF-ALS tech-
niques, we have boosted the performance of RF and DT models. We
have used the following parameters in the random search algorithm
to find the optimum parameters for the RF model. The number of
trees in the DT and RF: 20 random trees in a range from 10 to
200; number of features to consider at every split was automatic and
square root functions; 5 different maximum number of levels used
in a range from 2 and 100; minimum number of samples required to
split a node: 2, 5, 8, and 10; 4 different minimum number of samples
required for each leaf node: 2, 6, 8, 10; we activated the bootstrap
feature of the algorithm. The parameters used for elastic net were as
follows: α = 1, l1 − ratio = 0.8. We computed the Mean Squared
Error (MSE) and Mean Absolute Error (MAE) for each and overall
of the biomarker predictions.

For each regression model, we conducted ten experiments for each
set of biomarkers including combinations of the three data modalities
as input; sensory recordings collected by Empatica E4 for six different
physical activities in a clinical environment (i.e. 3 minutes recording
of per activity): CGM data for 2 weeks; Medical/Health background
collected in the recruitment process. We obtained the first set of
biomarkers (i.e. LDL, HDL, Triglycerides, Cholesterol, HbA1c) for
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9 participants, but only collected OGTT biomarkers from 5 out of 9
participants. More importantly, there was complete physical activity
recordings and fasting biomarker data for only 4 participants. This
was due to COVID-19 affecting our recruitment and data collection
process. Thus, to reduce bias in training and testing, we randomly
selected participants for training and testing (i.e. seed was fixed) and
ran each regression model 10 times, measuring the Mean Squared
Error (MSE) and Mean Absolute Error (MAE) between the predicted
and actual biomarker values. In all our experiments, we used 60%
of the dataset for training and 40% for testing. We used Python
programming language and conducted these experiments on an Apple
MacBook Pro with the following specifications: 32GB of RAM, an
Apple M1 Max chip featuring 10 cores (8 performance cores and 2
efficiency cores), and 2TB of memory.

IV. EVALUATIONS

The results are presented in Table I for the predictions of blood
test results, and in Table II for the predictions of OGTT results based
on the data collected in week 12. We will evaluate our results in
three categories: regression models, preprocessing techniques, and
biomarkers.

1) Regression Models: When we applied the models on the
HbA1c, the error rates for Decision Tree were 0.34 (∓0.06) MSE
and 0.44 (∓0.04) MAE, and for Random Forest were 0.36 (∓0.0.09)
MSE and 0.43 (∓0.04) MAE. On the other hand, when we applied
the models to the OGTT biomarkers, which include glucose measure-
ments obtained before and after a glucose load (i.e. fasting glucose,
one-hour glucose, two-hour glucose), the Decision Tree regressor
outperformed the Random Forest Regressor with 0.69 MSE and 0.01
MAE. The error rates were 1.46 (∓0.25) MSE and 0.78 (∓0.11)
MAE for Random Forest, and 0.77 (∓1.11) MSE and 1.20 (∓0.15)
MAE for Decision Tree. Overall, the error rates on average were
0.78 (∓0.51) MSE and 0.58 (∓0.13) MAE for Decision Tree, and
0.92 (∓0.60) MSE and 0.61 (∓0.20) MAE for the Random Forest
Regression Model for the overall biomarkers of OGTT and HbA1c
predictions. There was only a 0.14 MSE and 0.03 MAE difference
between the two models. While the difference was very small, the
DT model outperformed the RF model in our experiments.

2) Preprocessing Techniques: When we take into account mul-
timodal models for preprocessing approaches, namely, E4-CG-HB,
E4-HB, CG-HB, for the HbA1c biomarkers collected between week
25 and 28, the error rates were 1.19 (∓1.86) MSE and 0.68 (∓0.50)
MAE for CMTF-ALS and were 1.47 (∓1.95) MSE and 0.80 (∓0.50)
MAE for Elastic Net. Similarly, CMTF-ALS slightly outperformed
Elastic Net for the OGTT biomarkers as well (see Table II). The error
rates were 0.36 (∓0.22) MSE and 0.43 (0.12) MAE for CMTF-ALS
and 0.38 (∓0.19) MSE and 0.46 (0.09) MAE for Elastic Net.

Figure 5 depicts the overall results obtained for CMTF-ALS and
Elastic Net. Overall, when we compared the results obtained with
CMTF-ALS and Elastic-Net, we found that CMTF-ALS outper-
formed Elastic Net with an average error rate of 0.16 MSE and 0.07
MAE for all biomarkers. The error rate on average was 0.77 (∓1.04)
MSE and 0.56 (∓0.31) MAE for the models involving CMTF-ALS,
and 0.93 (∓1.07) MSE and 0.63 (∓0.30) MAE on average for the
models involving Elastic Net. However, it is worth pointing out that
while we used 10 participants for the models involving CG-HB, we
had only 4 participants with physical activity recordings and fasting
biomarkers.

3) Biomarkers: Amongst all the biomarkers, the best results were
obtained using CG-E4-heath data to predict MSE for LDL and MAE

(a) Mean Absolute Error obtained in the predictions with CMTF
and Elastic Net

(b) Mean Squared Error obtained in the predictions with CMTF
and Elastic Net

Fig. 5: Overall mean absolute error and mean squared error obtained
in the predictions when we used CMTF-ALS and Elastic Net ap-
proaches.

for HDL at the time of the OGTT at 25 weeks, which were 0.29
(∓ 0.23) MSE and 0.43 (∓ 0.18) MAE on average for LDL and
0.32 (∓ 0.34) MSE and 0.41 (∓ 0.23) MAE on average for HDL.
Triglycerides had the third-best results with an average MSE of 0.34
(∓ 0.35) and an average MAE of 0.43 (∓ 0.21). The error rate for
Cholestrol was 0.33 (∓ 0.29) MSE and 0.44 (∓ 0.21) MAE on
average, and for HBA1C, it was 0.42 (∓ 0.48) MSE and 0.45 (∓
0.26) MAE on average. The error rate varied for the prediction of
the fasting glucose values with an average of 2.44 (∓ 4.28) MSE
and an average of 0.91 (∓ 0.86) MAE. In contrast, the error rates
were 0.95 (∓1.19) MSE and 0.70 (∓ 0.48) MAE for 1-hour post-load
glucose values, and 1.08 (∓1.65) MSE and 0.72 (∓ 0.51) MAE for
2-hour post-load glucose values.

Overall, we obtained the best results for the first set of biomarkers
with 0.07 (∓ 0.10) MSE and 0.04 (∓ 0.03) MAE, while the error
rates for the OGTT glucose biomarkers were 1.49 (∓ 2.05) MSE
and 0.78 (∓ 0.49) MAE in total. Additionally, we predicted both
Diabetes Control and Complications Trial (DCCT) units (i.e., %
) and International Federation of Clinical Chemistry (IFCC) units
(i.e. mmol/mol) for HbA1c. Figure 6 displays the results obtained
for both DCCT and IFCC units. We observed comparable outcomes
for HbA1c measurements using both DCCT and IFCC units in our
experiments. This similarity could be attributed to the utilisation of
min-max scaling for both input and target values in our analysis.
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Monitoring of Week 12-14
Classifier Preprocessing LDL mmol/L HDL mmol/L Triglycerides Cholesterol HbA1c mmol/mol Overall (MSE)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE n

DT

CMTF (CG-E4-HB) 0.23 (0.13) 0.39 (0.12) 0.38 (0.29) 0.48 (0.21) 0.49 (0.65) 0.51 (0.36) 0.31 (0.19) 0.45 (0.17) 0.2 (0.21) 0.33 (0.19) 0.3 (0.17) 0.42 (0.12) 9
CMTF (CG-HB) 0.18 (0.09) 0.35 (0.12) 0.56 (0.69) 0.55 (0.4) 0.63 (0.74) 0.58 (0.4) 0.46 (0.51) 0.49 (0.34) 0.22 (0.15) 0.35 (0.14) 0.38 (0.23) 0.45 (0.14) 9
CMTF (E4-HB) 0.28 (0.24) 0.42 (0.17) 0.4 (0.65) 0.45 (0.34) 0.33 (0.27) 0.44 (0.19) 0.28 (0.23) 0.4 (0.21) 0.36 (0.37) 0.44 (0.24) 0.34 (0.14) 0.43 (0.09) 9
E-Net (CG-E4-HB) 0.34 (0.17) 0.5 (0.15) 0.3 (0.23) 0.4 (0.19) 0.4 (0.31) 0.51 (0.2) 0.44 (0.42) 0.51 (0.25) 0.48 (0.45) 0.53 (0.24) 0.4 (0.09) 0.49 (0.05) 9
E-Net (CG-HB) 0.53 (0.4) 0.6 (0.27) 0.54 (0.55) 0.55 (0.31) 0.27 (0.23) 0.4 (0.17) 0.29 (0.38) 0.4 (0.28) 0.28 (0.2) 0.41 (0.16) 0.36 (0.11) 0.46 (0.07) 9
E-Net (E4-HB) 0.45 (0.29) 0.55 (0.21) 0.31 (0.22) 0.45 (0.18) 0.38 (0.19) 0.49 (0.14) 0.31 (0.25) 0.44 (0.16) 0.64 (0.54) 0.61 (0.31) 0.44 (0.17) 0.52 (0.1) 9
E-Net (CG) 0.33 (0.23) 0.47 (0.19) 0.28 (0.2) 0.41 (0.19) 0.29 (0.33) 0.39 (0.24) 0.47 (0.42) 0.55 (0.3) 0.31 (0.37) 0.39 (0.28) 0.33 (0.14) 0.43 (0.1) 9
E-Net (E4) 0.34 (0.25) 0.48 (0.19) 0.2 (0.08) 0.35 (0.09) 0.39 (0.38) 0.47 (0.22) 0.43 (0.23) 0.53 (0.16) 0.37 (0.3) 0.47 (0.2) 0.35 (0.13) 0.46 (0.08) 9
E-Net (HB) 0.16 (0.11) 0.32 (0.1) 0.16 (0.11) 0.31 (0.13) 0.15 (0.12) 0.33 (0.15) 0.3 (0.19) 0.44 (0.16) 0.24 (0.36) 0.33 (0.24) 0.21 (0.12) 0.35 (0.08) 9

RF

CMTF (CG-E4-HB) 0.39 (0.34) 0.49 (0.24) 0.37 (0.54) 0.42 (0.31) 0.18 (0.11) 0.33 (0.11) 0.29 (0.21) 0.43 (0.2) 0.35 (0.28) 0.42 (0.23) 0.32 (0.12) 0.42 (0.09) 9
CMTF (CG-HB) 0.15 (0.08) 0.32 (0.08) 0.18 (0.2) 0.3 (0.2) 0.56 (1.13) 0.47 (0.47) 0.37 (0.35) 0.48 (0.23) 0.28 (0.22) 0.37 (0.17) 0.3 (0.24) 0.38 (0.12) 9
CMTF (E4-HB) 0.39 (0.46) 0.48 (0.31) 0.4 (0.6) 0.46 (0.34) 0.28 (0.2) 0.39 (0.14) 0.17 (0.16) 0.32 (0.14) 1.08 (1.57) 0.75 (0.54) 0.55 (0.44) 0.52 (0.16) 9
E-Net (CG-E4-HB) 0.26 (0.23) 0.4 (0.21) 0.22 (0.23) 0.33 (0.2) 0.28 (0.33) 0.39 (0.19) 0.27 (0.18) 0.4 (0.16) 0.91 (1.54) 0.66 (0.53) 0.46 (0.44) 0.47 (0.15) 9
E-Net (CG-HB) 0.17 (0.1 ) 0.33 (0.12) 0.38 (0.5) 0.46 (0.29) 0.45 (0.5) 0.48 (0.28) 0.16 (0.15) 0.31 (0.15) 0.59 (0.63) 0.55 (0.36) 0.38 (0.21) 0.44 (0.13) 9
E-Net (E4-HB) 0.19 (0.13) 0.33 (0.11) 0.35 (0.5) 0.41 (0.3) 0.22 (0.12) 0.37 (0.12) 0.32 (0.47) 0.44 (0.31) 0.34 (0.28) 0.45 (0.19) 0.29 (0.13) 0.41 (0.09) 9
E-Net (CG) 0.35 (0.37) 0.47 (0.26) 0.26 (0.2) 0.4 (0.16) 0.31 (0.29) 0.41 (0.2) 0.3 (0.21) 0.42 (0.15) 0.36 (0.52) 0.39 (0.31) 0.31 (0.17) 0.41 (0.11) 9
E-Net (E4) 0.19 (0.11) 0.35 (0.13) 0.19 (0.16) 0.34 (0.16) 0.2 (0.12) 0.37 (0.1) 0.52 (0.51) 0.55 (0.3) 0.27 (0.31) 0.36 (0.23) 0.27 (0.08) 0.39 (0.05) 9
E-Net (HB) 0.45 (0.5) 0.52 (0.33) 0.39 (0.3) 0.48 (0.24) 0.34 (0.36) 0.43 (0.25) 0.31 (0.27) 0.43 (0.2) 0.35 (0.39) 0.42 (0.29) 0.36 (0.18) 0.45 (0.13) 9

TABLE I: The average and variance Mean Squared Error and Mean Absolute Error values of each regression and preprocessing model
obtained in the forecasting of the biomarker measurements of LDL, HDL, Triglycerides, Cholesterol, and HbA1c, based on the sensor
recordings collected between week 12-14. The average values are presented outside the parenthesis and variance values are presented in the
parenthesis. Corresponding meanings of the abbreviations are as follows: DT: Decision Tree, RF: Random Forest; CG: Continuous Glucose;
HB: Health/Medical Background; E4: Physical Activity Recordings; E-Net: Elastic Net; CMTF-ALS: Coupled-Matrix Tensor Factorisation
with Alternating Least Squares; LDL: Low-density lipoprotein; HDL: High-density lipoprotein. The results are considered to be better when
the value of MSE is close to zero. The values indicated in bold font show the best performance obtained for each biomarker and regression
model. Old HBA1C values.

Monitoring of Week 12–14
Classifier Preprocessing Fasted Glucose (mmol/L) 1 hour Glucose (mmol/L) 2 hours Glucose (mmol/L) Overall (MSE)

MSE MAE MSE MAE MSE MAE MSE MAE n

DT

CMTF (CG-E4-HB) 1.2 (2.68) 0.53 (0.75) 1 (1.85) 0.64 (0.61) 1.19 (1.99) 0.72 (0.61) 1.13 (2.16) 0.63 (0.64) 6
CMTF (CG-HB) 0.93 (1.59) 0.58 (0.53) 0.76 (0.89) 0.63 (0.45) 0.65 (0.64) 0.63 (0.31) 0.78 (0.74) 0.61 (0.32) 6
CMTF (E4-HB) 1.7 (2.92) 0.75 (0.79) 1.14 (1.84) 0.75 (0.64) 1.01 (1.96) 0.7 (0.6) 1.28 (2.13) 0.73 (0.62) 6
E-Net (CG-E4-HB) 1.05 (1.56) 0.72 (0.46) 0.63 (0.48) 0.63 (0.26) 0.59 (0.32) 0.66 (0.19) 0.76 (0.46) 0.67 (0.14) 6
E-Net (CG-HB) 1.86 (2.87) 0.8 (0.79) 1.08 (1.86) 0.69 (0.64) 1.17 (2) 0.71 (0.63) 1.37 (2.12) 0.73 (0.63) 6
E-Net (CG-HB) 4.41 (8.88) 1.3 (1.29) 0.67 (0.6) 0.64 (0.3) 0.54 (0.44) 0.58 (0.24) 1.87 (2.91) 0.84 (0.43) 6
E-Net (E4-HB) 4.41 (8.88) 1.3 (1.29) 0.67 (0.6) 0.64 (0.3) 0.54 (0.44) 0.58 (0.24) 1.87 (2.91) 0.84 (0.43) 6
E-Net (CG) 3.71 (8.4) 1.05 (1.33) 0.87 (0.45) 0.77 (0.25) 0.69 (0.65) 0.68 (0.28) 1.76 (2.68) 0.84 (0.38) 6
E-Net (E4) 8.32 (11.48) 1.95 (1.68) 1 (1.56) 0.72 (0.54) 1 (1.65) 0.68 (0.57) 3.44 (3.94) 1.12 (0.69) 6
E-Net (HB) 1.47 (2.59) 0.79 (0.64) 1.48 (1.88) 0.92 (0.67) 1.24 (1.97) 0.77 (0.62) 1.4 (2.11) 0.82 (0.61) 6

RF

CMTF (CG-E4-HB) 3.67 (8.42) 1.03 (1.34) 0.5 (0.49) 0.55 (0.32) 0.32 (0.19) 0.49 (0.16) 1.5 (2.76) 0.69 (0.43) 6
CMTF (CG-HB) 1.06 (1.56) 0.65 (0.53) 0.88 (0.84) 0.71 (0.46) 1.57 (3.08) 0.8 (0.77) 1.17 (1.25) 0.72 (0.41) 6
CMTF (E4-HB) 1.85 (2.85) 0.83 (0.74) 1.13 (1.89) 0.72 (0.69) 0.93 (1.98) 0.63 (0.61) 1.3 (2.13) 0.73 (0.62) 6
E-Net (CG-E4-HB) 2.73 (3.25) 1.16 (0.81) 1.05 (1.6) 0.7 (0.6) 1.14 (1.58) 0.75 (0.56) 1.64 (1.98) 0.87 (0.6) 6
E-Net (CG-HB) 1.66 (2.57) 0.86 (0.65) 1.78 (1.85) 1.06 (0.63) 2.43 (3.4) 1.09 (0.86) 1.96 (2.23) 1.01 (0.62) 6
E-Net (E4-HB) 2.07 (3.24) 0.93 (0.8) 0.91 (1.56) 0.61 (0.59) 0.82 (1.5) 0.63 (0.55) 1.27 (2.01) 0.72 (0.59) 6
E-Net (CG) 1.47 (1.97) 0.72 (0.64) 0.52 (0.42) 0.53 (0.25) 1.6 (3.11) 0.83 (0.77) 1.19 (1.24) 0.69 (0.38) 6
E-Net (E4) 3.46 (8.88) 0.99 (1.33) 0.69 (0.47) 0.64 (0.3) 0.49 (0.31) 0.59 (0.26) 1.54 (2.87) 0.74 (0.4) 6
E-Net (HB) 1.45 (1.41) 0.85 (0.45) 1.1 (0.97) 0.82 (0.44) 2.23 (3.02) 1.05 (0.76) 1.59 (1.19) 0.91 (0.39) 6

TABLE II: The Mean Squared Error values of each regression and preprocessing model obtained in the forecasting of the biomarker
measurements of fasting glucose, fasting glucose for 1 hour, and fasting glucose for 2 hours. Corresponding meanings of the abbreviations
are as follows: DT: Decision Tree, RF: Random Forest; CG: Continuous Glucose; HB: Health/Medical Background; E4: Physical Activity
Recordings; E-Net: Elastic Net; CMTF-ALS: Coupled-Matrix Tensor Factorisation with Alternating Least Squares. The results are considered
to be better when the value of MSE is close to zero. The values indicated in bold font show the best performance obtained for each biomarker
and regression model.

V. DISCUSSION

Overall, none of our participants developed GDM. We obtained
promising results when predicting fasting glucose, lipids, and HbA1c
biomarkers, one-hour and two-hour post-load glucose values. Unlike
the forecasting model applied to health questionnaire data in [21],
our model made predictions based on not only health background of
participants but also included their physical activity and continuous
glucose monitoring recordings.

Figure 7 shows the results obtained for OGTT and HbA1c
biomarker values. The diagnostic parameters for GDM are fasting
glucose values, and 1-hour and 2-hours post-load glucose values from

the OGTT. While HbA1c is not used in the same way for diagnosis
of GDM at 24–28 weeks, it provides information about glycaemic
status. When we only focus on these biomarkers, we can see that
while CMTF outperformed Elastic Net in the OGTT and HbA1c
biomarkers, there was slightly lower performance in the prediction of
the OGTT biomarker values. This could be explained by the fact that
we had a very small dataset for the glucose biomarkers, whereas there
was larger data set for the LDL, HDL, Triglycerides, Cholesterol,
and HbA1c measurements. While we will continue investigating the
performance of CMTF on larger GDM datasets once we obtain further
project funding, it may be possible to argue that traditional statistical
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Fig. 6: The error rates in the prediction of IFCC and DCTT units of
HbA1c biomarker values.

Fig. 7: The OGTT and hba1c results for different modalities. The
graph represents the summary of predictions for the OGTT and
HbA1c values for different combination of data modalities.

techniques perform as well as sophisticated techniques. While we
were expecting to see significantly higher results when we used multi-
modal data sources simultaneously, our results indicated in Fig 7
that utilising only rich medical background can produce competitive
results to multi-modal data sources and sensory recordings, including
continuous glucose recordings.

Fig. 8: The most frequently selected features in the feature selection
process.

Figure 8 depicts the most important 25 features selected by Elastic
Net, and Figure 9 shows an example of tensor used in the testing
phase, which helps interpret the model used in the predictions. It
is worth pointing out that some of the notable frequently selected
features in our preprocessing stage with Elastic Net were totalmet-
perweek – total physical activity MET2 minutes (totalmetperweek:
sum of the total MET minutes of activity computed for each setting)
– and total mins sedentary, which reports the mean or median amount
of sedentary activity in minutes. In addition, totalminutesactive was
another variable that was frequently selected, indicating self-reported
activity levels of participants. Thus, this small data set shows that self
reported sedentary lifestyle information may provide important data
for GDM prediction. Similarly, it is also possible to see some spikes
for totalminutesactive and totalminutessedentary in the 10th and 11th
position of x-axis in the Medical/Health Background component
of the decomposed tensor in Figure 9. Furthermore, similar spikes
are noticeable for continuous glucose monitoring values - flux and
continuous glucose monitoring values - variance in the 3rd and 4th
position of x-axis as well as continuous glucose monitoring values
- variance in the 8th position of the x-axis for Continuous Glucose
Monitoring features. Moreover, the highest peaks in the E4 Activity
features are represented by temperature flux and temperature kurtosis,
which are not visible in the selected features of Elastic Net. However,
it’s important to note that this particular visualisation represents only
one of the testing datasets used out of the 10-fold experiments.

Figure 8 demonstrates that other notable selected features were sen-
sory recordings from the accelerometer, PPG, and continuous glucose
sensors. It was interesting to see that sf36 role lim emotional was
also a notable feature in our predictions, indicating the importance
of participants’ emotional state and mental health in the prediction of
biomarker values associated with the presence of GDM. This finding
is in line with the study in [11] that pregnant women who suffer from
depression during their first trimester had a 1.72 fold higher risk of
developing GDM.

Our study collected data at week 12 and produced highly predictive
models for OGTT values, as well as LDL, HDL, Triglycerides,
Cholesterol, and HbA1c biomarkers. Figure 10 presents the top four
results based on mean absolute error for the OGTT biomarkers
obtained using our multimodal systems. Among these, the DT-CMTF-
(E4-CG-HB) model achieved the best results compared to DT-CMTF-
(CG-HB), DT-E-Net-(E4-CG-HB), RF-E-Net-(CG). However, it is
important to note that all systems had a mean absolute error of less
than 0.83 for predicting all biomarker values, underscoring the robust
predictive capability of our models.

Currently, GDM is diagnosed through a fasted glucose tolerance
test administered between 24 and 28 weeks of pregnancy. This leaves
little time for lifestyle or behavioural interventions to have an effect.
It is worth pointing out that the ESTEEM [3]–[5] and RADIEL
[15] trials showed that, in contrast to earlier studies where targeting
was heterogeneous, GDM can be prevented by a moderate lifestyle
intervention in pregnant women, who are identified as being at high
risk for the disease. Contrary to diagnosis made at the end of the
second trimester, predictions made for OGTT values in the first
trimester would mean that the women identified as at risk have more
time to implement activities and dietary changes [3]–[5], [15] that
could prevent GDM in the remaining period of pregnancy.

2METs (Metabolic Equivalents) are commonly used to express the intensity
of physical activities and are also used for the analysis of GPAQ data. MET is
the ratio of a person’s working metabolic rate relative to the resting metabolic
rate.
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Fig. 9: The visualization of the coupled tensor, E4-CG-HB, was used in the testing phase of HbA1c biomarkers for the Decision Tree
representing participants 2, 3, 5, and 7 in the 9th fold.

Fig. 10: Comparison of the top four results based on mean absolute
error for the OGTT biomarkers.

VI. LIMITATIONS

It should be noted that our original goal was to monitor physical
activities of participants in their daily lives in addition to the
recordings obtained in clinical conditions. However, most of the
participants, with an exception of one, did not use the E4 wristband
wearable devices in their daily lives even though they received
notification to actively use these devices. This issue remains one of
the biggest challenges in remote monitoring of participants in Internet
of Things Healthcare projects, as the goal is to monitor participants
in “uncontrolled environments”. Instead, we were only able to use
the physical activity recordings collected in the clinical environment.

The significant limitations of our study include racial and ethnic
disparities and the small sample size, which resulted from COVID-
19 lockdown restrictions in South Africa during the data collection
period. To address these limitations, future steps will involve replicat-
ing these results in a larger sample and assessing whether the same
predictive signal emerges earlier than week 12. Utilising this data as
an early trigger for health and lifestyle adjustments could potentially
contribute to reducing the prevalence of gestational diabetes mellitus.

VII. CONCLUSIONS

The early prediction of GDM is an important and active area of
research. The use of OGTT and blood based biomarkers, medical
history, and IoT data collected at the end of the first trimester appear
to be a promising approach towards this goal. In this study, we present
our results using remote monitoring and forecasting of biomarker
values to help in prediction of GDM. The forecasting were made
for biomarker values collected between week 25 and week 28 based
on the sensory recordings and medical/health background information
collected in week 12 of pregnancy. In general, we obtained promising
results for all biomarkers. While the mean squared error and mean
absolute error were very low for almost all of the biomarkers, namely,
LDL, HDL, Triglycerides, Cholesterol, fasting glucose, and HbA1c
values, the error rate was slightly higher for the prediction of the
fasting glucose values, an area for future investigation. We found that
there were no large differences between DT and RF regression models
or between CMTF-ALS and Elastic Net preprocessing models. It
should be noted that it is difficult to monitor physical activity
of participants in a free living cohort such as ours; participants
frequently chose not to use the wristbands. Nonetheless, we utilised
physical activity recordings obtained in the clinical environment. We
are aware of the fact that our biomarker value predictions are likely
to be affected by over-fitting, since they are trained with a relatively
small data set per participant, compared to other studies. Nonetheless,
we believe that the results are encouraging and first of their kind in
the prediction of GDM-associated biomarker values.
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