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GLOSSARY OF TERMS

1. Property "Q": A sampling plan has property "Q" if, and only if,

there is no pair of sample configurations such that the first sample

leads to rejection and the second to acceptance of a batch, but the

first sample is preferred to the second. One sample is preferred

to another of the sarnie sample size, n, if the units can be arranged

into n pairs, one from each sample, so that in every pair the unit

from the preferred sample is at least as good as the unit from the

other sample and is strictly better in at least one pair.

2. Lower Specification Limit, A: This is the value of the tested

characteristic such that an inspected item in a sample is classified

as defective if its characteristic has a value less than A.

3. Upper Classification Limit, B: This is the value of the tested

characteristic such that an inspected item from a batch is classified

as marginal if its characteristic has a value between A and B,

and an item is classified as effective if its characteristic has a

value greater than B.

4. Attribute Sampling Schemes and Sampling By-Variables Schemes: In the

decision making process the observation or the unit in the sample

can either be on a quantitative basis or a qualitative basis, e.g.

defective, effective and marginal. An acceptance sampling scheme

which uses the qualitative characteristic is called an attribute

sampling scheme. An acceptance sampling scheme which bases the

decision on the values taken by a quantitative characteristic is 

called a by-variables sampling scheme. Typically the attribute
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sampling schemes will require larger sample sizes than by-variables

schemes which have broadly similar power.

5. BS6001 and BS6002: These are the British Standards relating to

acceptance sanpling procedures for by-attributes and by-variables

schemes respectively. They conprise parameters, decision rules and

algorithms with examples of applications of the schemes and tables

and operating characteristics curves.

MIL-STD-105D: This is the American Military Standard for acceptance

sampling by-attribute. It is broadly equivalent to BS6001.

MIL-STD—414: is the by-variables counterpart and is broadly equivalent

to BS6002.

DEF-131: The British Ministry of Defence Standard for acceptance

sanpling schemes replaced by BS6001.

6. Acceptable Quality Level (AQL): The proportion of defective items

in a batch which is regarded as acceptable by the consumer of the

batch. A batch with quality at AQL has a high probability of

acceptance. The exact probability depends on the sanpling plan used,

but for sanpling schemes such as BS6001 and BS6002 the values of

AQL are used to index the plans within the scheme so that the

probability of acceptance is greater than 0.88.

7. Quality Scoring Functions, Q(x): These are functions for scoring

the quality of an item in a batch depending on the value of the

characteristic X. Denoted by Q(x) these quality functions are
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simple monotonic functions non-decreasing with X.

8. Robustness: Many test procedures involving probability levels

depend for their correctness on assumptions concerning the data

generating mechanism (e.g. that the parent distribution of the sample

is Normal). If the inferences are but little affected by departures

from those assumptions, e.g. if the significance points of a test

vary little if the population departs quite substantially from the

normality the test is said to be robust. Distinction has been made

between criterion robustness which refers to the probability distribution

of the various decisions being little affected by the assumption

and inferential robustness which refers to the inference on a

particular occasion depending little on the assumed form of the

distribution. The thesis is concerned with criterion robustness.

9. Robustness Measure: Robustness is the degree of insensitivity of a

procedure to changes in the assumption not under test with the

condition that the procedure is powerful for the parameters under

test. It relates to the changes in power of the procedure when the

assumptions on which it is theoretically based are violated. One

measure of this robustness is given by the size of the deviation of

the operating characteristic curve under specific background

assumptions different from those assumed when deriving the test.

The deviations are standardised to measure the bias in terms of the

standard error of the single test decision which sets a random

variable D to 0 or 1 as follows:

accept = 1, reject = 0.
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10. Splines: Splines are piece-wise polynomials to fit a continuous

function to a set of grid-points representing a functional relation

f(x). They are used for interpolation purposes. To interpolate

function values f(x) at the points x = t,, t„, ..., t a spline 1 2  m
S(x) of order n with prescribed interior knots (or nodes)

x,, x„, ..., x„ . could be found, such that it satisfies the 1 2 N -l

condition that

S(x^) = f(x^), j = 1, 2, ..., N-l

and certain smoothness constraints on the derivatives of S(x) are

also satisfied. As, e.g., in cubic splines this may

that the first derivative of S exists.

be
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ABSTRACT

Existing acceptance sampling schemes have diverse advantages and

disadvantages with the two main considerations of economy by sample

savings and robustness to prior assumptions, conflicting. The thesis

, provides for a new class of schemes which preserves most of the advantages

of the current schemes and sheds some of the disadvantages.

The thesis sets out the properties to be maintained in the proposed

new schemes, in the order of priority: robustness, sample savings,

Property "Q" and ease of practice and application. The research deals

extensively with robustness and sample savings of the existing "orthodox"

schemes from simple two-class attributes schemes (which are "ideally"

robust but with large sample sizes) to sampling-by-variables schemes

(which are not robust but do save on sample sizes). The designs are

formulated with Property "Q" as well as these two properties in mind.

This shaped the use of scoring functions such as the Ramp, Logistic and //

Cumulative Normal quality scoring functions where we define the notion

of "quality function" (denoted by Q(X)) as a monotonic function of the

process quality r.v., X.

One characteristic of the two-class attribute plans is the leap .

from defective to effective quality. The "by-variables" schemes, on 

the other hand, have a gradually changing "score" with the measured

variable. This makes the by-attribute plans susceptible to sometimes 

costly errors as a consequence of misclassifications based on sharp 

division into "0"'s and "l"'s. This disadvantage does not arise in the

by-variables schemes. The use of quality functions, Q(XJ , provides
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the sampling plans with the Property "Q" if monotonicity in X^ is maintained 

as is the case in our "new" schemes.

The new schemes in this thesis set out to fulfil the following

criteria:

(1) Fill in the gap between the two existing extreme schemes by

enumerating alternatives, and hence satisfy the demands of industry

which is currently stranded on the two extremes.

(2) Incorporate revised forms of the orthodox schemes in the new design

hence preserving almost all of the properties and levels of

discrimination of quality that are already experienced in the practice.

(3) Allow more flexibility and versatility by giving some wide choice

of trade-offs between robustness and sample savings. This was achieved

by using a design parameter B with which one can change from a 

"by-variables" to a "by-attributes" or vice versa.

(4) Theoretically, give an assessment of the robustness and equivalence

properties of the old schemes compared with the new ones.

For the new designs,computational procedures are devised to derive 

the distributions of the test statistic (average Q(X)). Equivalences

are then established between the "new" and "orthodox" schemes in terms

of O.C. curves for some typical plans. Sample sizes were compared for

possible savings.

On the basis of these equivalences, tests for robustness are made
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using a representative range of non-normal assumptions. Conclusions

about the performance of different, equivalent, schemes are linked with

the sample savings results.

Robustness studies are made using analytical procedures, whenever

possible, otherwise simulation is adopted. Thus, analytical methods are

used in the two cases of non-normal process model of the uniform

distribution, and the two-point distribution. Simulation is used for

the Contaminated Normal and the Lognormal process models.

Some developments and extensions of the "new" schemes into double

sampling are considered and compared with attri-var plans by simulation

of an example.

Some concluding remarks are made with recommendations which are

highlighted in terms of B (to reflect on robustness) and of n (to reflect

on sample saving).

Volume II of this thesis is an extension of the appendices. Some

technical articles and notes which have some bearing on the aspects of

the thesis are put there. Also, in Volume II are the important computer

programs and subroutines with detailed comments, especially in the

simulation computer programs and as much as possible of the main tables

and figures.
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CHAPTER 1

INTRODUCTION

1.1 The General Background

Acceptance sampling schemes deal with assessing the quality of

batches or lots of products by inspection of a sample of the items of these

batches or lots as they are supplied in the market. Normally the outcome

of the assessment is acceptance or rejection of the batch. Sometimes the

fate of the batch is negotiated between the producer and consumer as far

as their interests (or risks) can tolerate, or alternatively the batch

can possibly undergo a remedial process.

The science of statistics constantly provides refined techniques of

acceptance sampling schemes that would better protect the consumer from

accepting "rejectable" (or "bad") products and the producer from offering 
(*)them . These two view-points are translated in the statistical concepts

of producer's and consumer's risks. Simply, these are the minimum degree

of protection against rejection of given good quality that is tolerated

by the producer and against acceptance of given bad quality tolerated by

the consumer.

(*) It is worth mentioning hgre that, sometimes, the distinction between 
acceptance sampling and quality control is not properly made. The quality 
control is an internal "industrial" or production concern which is to do 
with the technical aspect of the production process of the item while 
acceptance sampling has a wider scope to be an "external" concern to do 
with the marketability (or utility) of ttoe overall batch of items (which 
may originate from same or different processes) . Deming (1982) and 
Shewhart (1931) and others would like more emphasis on control and support 
the idea that the goal is to "make the product right in the first place" 
and that without any exception the rule holds: "It is never cost-effective 
to inspect quality into a product"!
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Under these basic concepts many sampling schemes were set up and

used extensively. In fact most of today's users of such schemes give

almost all of their attention to these degrees of protection. We claim

that, although important, this is not enough to obtain effective results

in statistical acceptance schemes that penetrate to the core of the

problem. Other aspects and properties may be and indeed are as important

as the degree of protection and may even determine it. The appeal of this

point of view will become evident as we discuss the new properties which 
(*)are endorsed in this research, especially robustness and "Property Q" 

(Farlie 1981). ^The basic idea of Property "Q" is that it requires that 

the decision on batch quality should mirror the decision on sample quality.

One of our main intentions in this work is to try to weed out any chances

of decision-making in acceptance sampling that are made under the illusions

of false assumptions. The assumptions are usually (if not always) about

the background distributional forms that model the process or batch

conf iguration.

With existing acceptance schemes each possessing diverse advantages

and disadvantages, and with the two main attractive properties of sample

savings and robustness - unfortunately pulling in opposite directions -

our work set out in the quest for a new design of schemes that could

preserve most of the advantages of current schemes with few (if not none)

of the disadvantages. This is the objective we aspired to achieve with

the very satisfying and still promising results to be detailed later.

(*) A provisonal definition of robustness, in this context, could be: 
"the degree of insensitivity of the decision rules to the 'assumed' 
background form of distribution of the process under inspection". A more 
rigorous definition of this essential concept is given in Chapter 5 with 
some details and discussions.
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1.1.1 Some General Important Properties of Schemes

We set the favourable properties in any acceptance sampling schemes,

beside efficiency of maintaining the assumed degree of protection, to be:

a. Robustness.

b . Sample savings.

c . Property "Q".

d. Ease of operation and application.

in the natural order of priority and importance.

It was felt that the properties (c) and (d) could be acquired partly 

by design as in the "new" schemes proposed below. A comment on how the ■ '~

orthodox schemes fare in these two cases (of (c) and (d)) will be given

later.

jt
As there was little work (Anscombe (I960)) in assessing (a) and (b)

jointly, we need to study them rather rigorously, their paramount importance

in the field of acceptance sampling made it necessary to give them a lot

of emphasis and research. Anscombe (1960) argued that robust methods

could be treated as paying a premium for protection. Essentially this

argument was a perturbation type of argument for small departures from

assumptions. Some work has been done in each of these two areas separately.

Pearson et al (1977) and Owen (1964, 1969) worked on non-normality alone.

We are not aware of any serious efforts directed mainly at sample savings

per se except perhaps in the general context that relies on the inherent

savings of the by-variables scheme.
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1.2 Specification of the Problem and the Contribution of this Thesis

/ The research basically deals with the robustness of the existing

orthodox schemes ranging from the simple two-class attribute plans which

enjoy insensitivity to the exact distributional forms of the sampled

process, to the "by-variables" plans that are heavily dependent on the

distributional form (and more specially the "known a" variables plans

whence exact knowledge of a is crucial). Coupled with this polarisation

in the robustness area we find that the sample sizes are very different

varying between the low levels of the "by-variables" and the high levels

of their equivalent "by attributes" schemes.

/ We have a limited scope for manoeuvre in setting up any new cJ ■

alternatives in acceptance sampling: the need for such new alternative

schemes is argued further on. We cannot have a scheme more robust than

an attributes scheme, and if "cr" is known and the distributional form is

normal the minimum possible sample size will be those of the "known (7"

by-variables equivalent scheme.

The thesis suggests various alternative schemes and assesses the

performance of the existing (orthodox) as well as the new ones in terms

of the four properties ((a) , (b), (c) and (d), listed above). The

schemes are formulated with these four properties in mind but particularly 

on the basis of "Property Q" and the ease of operation.

One characteristic feature noticed about the existing acceptance 

schemes is that there is a "leap" from "defective" to "effective" quality

of an item in the case of "two-class" attributes schemes. On the other

hand there is a gradual change in score of quality along the quality scale
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in the "by-variables" schemes. This is a favourable characteristic of

the variables plans which we sought to reproduce in our designs and which

we were able to maintain. This characteristic is never maintained in

the attributes plans and makes them susceptible to sometimes costly errors

as a consequence of misclassifying defectives as effectives or vice versa.

"Marginal" cases are sharply classified as effectives or defectives.

This point attracted some workers in acceptance sampling to suggest ways

of dealing with marginal cases in their suggested designs though for very

different reasons and aims from ours. For example, Bray, Lyon and Burr

(1973) in their "three-class attribute" scheme were motivated by the

need for the recognition of "marginal" items. Another attempt though not

using the same words was made by what is known in the literature as the

"mixed or attri-var dependent plans" (Schilling and Dodge (1969)). They

were implicitly talking about marginal batches awaiting more information

before sentence, this information is obtained both by effectively

increasing the data and the robustness, in other words by taking more items

but reducing the assumptions.

We felt correctly that this graduation effect would reduce some of

the costs of wrong decisions possible under the strict classification of

"0" and "1". On the other hand we saw, and will discuss below, how the

graduation effect is responsible for the "paradox" (discussed by Farlie

(1981)) which led to the advocation of "Property Q" . This immediately 

suggested a mix of the two systems, the gradual variable middle (or

marginal) zone and the "0" and "1". Thus, censoring the values below

the lower classification limit and above the upper classification limit,

(where classification limit here can be either a specification limit or 

a conventional limit to mark the bounds of marginal item quality). As 

will be discussed in the next paragraph, this has the advantage of bringing



our schemes in line with "Property Q". The point made in the work of

Farlie (1981) is that "Property Q" failed in some of the orthodox schemes

(namely, the "unknown a" variables scheme and all the "attri-var" schemes

that use them). The others fared well.

1,2.1 What this Thesis is Offering

- 6 -

The dilemma, faced by the users of acceptance sampling, namely the

"robustness versus minimum sampling" puts users in the awkward position

of choosing to foresake one or the other of these two desirable properties,

in addition they may have to forego "Property Q". In this context our

schemes set out to satisfy the following:

(i) Fill in the gap between the two extreme schemes by a flexible series

of schemes. This flexibility of choice is enhanced by the ease of

use of the new schemes.

(ii) Incorporate revised forms of orthodox schemes into the new system,

so preserving almost all of the properties and levels of

discrimination between qualities that are already experienced in

the practice. This is done by varying the design parameter B

(defined in section (2.2.3.1)) as shown later.

(iii) Give more flexibility and versatility by allowing a wider choice 

of trade-offs between robustness and sample savings; for this 

purpose the "equivalence" notion allows us to match our new plans

to existing ones in such a way that the approximate overall O.C.

behaviour is maintained.
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(iv) Give, in the theory of acceptance sampling, a rigorous assessment

of the robustness performance of the old schemes beside the new

ones. Practically, this will give a fair assessment of the

confidence to be attached to the existing schemes.

1.3 The Concept of "Scoring Functions"

>/ We present a very useful concept called scoring functions which are 

meant to translate the quality of the inspected item'Tla scale ranging

from 0 to 1. Denoted by Q(X) they are simple monotonic functions non

decreasing with the item quality , x. Defined as such they help in

M unifying all the schemes at least in the notation. In the next few

sections we will discuss some basic aspects of the new as well as the

orthodox procedures and relate them to this concept of scoring functions.

1.3.1.

Generally, the existing designs of inspection schemes are predominantly

polarised into by-variables or by-attributes. /The research will be dealing

with the by-variables though we will consider the by-attributes and the

mixed attri-var plans for comparative purposes and in helping to show

how our new designs would be a suitable alternative tp each of these.

The powers and properties of our schemes will be revealed by comparison

with orthodox schemes. >The existing procedures for inspection of quality

have their properties tested against several characteristics. These are 

the powers of discrimination, the sample size, property "Q", and the

indifference of the test rules to the distribution form and other

important assumptions.
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1.3.2 Description of the Scoring Functions

There are seven single schemes that could be considered, namely the

by varj ahi as with its two subdivisions into known and unknown-c? schemes,

the two-class attribute schemes, the three-class attribute schemes, the

"Ramp", the "Logistic" and the "Normal Cumulative" schemes.

For this description and thereafter (except of course when we come

to the robustness studies) we will assume that the quality of the process 

under inspection is given by the random variables X^(i = l,,..,n) which 

are identically and independently distributed. For the sake of explaining

the scoring schemes and their performance we use the convention that this 

random variable, X^, is normally distributed with mean n and standard ■ p

deviation parameter <2. We assume quality is an increasing function of 

X^ and without any loss of generality for variables having a normal

distribution the Lower Specification Limit, A, can be set to be 0. This

convention is adopted for most of the following discussion. A new

parameter B defined as an "Upper Limit'.1. of marginal quality is used but

some further connotations will be attached to it and discussed later. With

these considerations the scoring functions for each of these schemes are

shown below:

(i) The Simple By-Variables Scheme:

Q(x) = c.x + d, for all x

Notice that this does not restrict Q(X) to the interval (0,1) ,

however a suitable truncation of the Normal distribution with a

practically trivial degree of departure from the normality does
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enable the variables plan to be added to the list as an extreme

case of the Ramp scheme (see below).

(ii) The Two-Class Attribute Scheme:

Q(x) = 0 , x A

= 1 , otherwise.

(iii) The Three-Class Attribute:

2(x) = 0

= w

= 1

x  £ A

A < x < B

elsewhere

where w is a constant lying in (0,1) .

(iv) The Ramp Scheme:

Q(x) = 0 , x < A

= (x-A)/ (B-A) , A < x < B

= 1 , x >, B.

(v) The Normality Curve:

Q(x) = $(z) , for all x . S'

where m = (B+A)/2, z = 6.18 (x-m) / (B-A) and $ is

normal distribution function. This will set

Q(x) $ 0.001 a t x  i A

the cumulative

and Q(x) >. 0.999 at x >, B.
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(vi) The Logistic:

Q(x) = exp(r.Z)/(l+exp(r.Z))

where r is a suitable scaling factor such as to let Q(x) approach

0 as x A, and approach 1 as x ■* B, and Z is as in (v) .

1.3.2.1. Note that there are some basic similarities in the general

tendency of the graphs of these schemes. Practical considerations have

enforced a redefinition of (v) and (vi) as hinted above (see the numerical

computations chapter and the Figure (2.2) in Chapter 2) . The graphs of

(v) and (vi) have similar behavioural patterns and consequently led to the

preference of one over the other on the basis of convenience.

1.3.3 The- Implications on and Descriptions of the Decision Rules

Based on these scoring functions we have some decision rules

guaranteed to satisfy Property "Q". We have looked at the average score

as the most suitable and handy statistic for indicating level of quality

/As the purpose is to establish robustness we build all the schemes on

the basis of a unifying background distribution of X^(the assumed normal

distribution), and we note the random sample by: X , X , X , where1 2  n
the required sample size n assumes different values across the schemes.

The decision rules for the various schemes are as follows:

1.3.3.1. For scheme (i) :

Accept if X - A K.s n
Reject otherwise.
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where Xn is the mean of the n randomly sampled items.

A is the user's defined Single Lower Specification Limit 

below which the quality of a single item is deemed 

defective. (For many purposes we_will choose the origin

to be at A so that A becomes effectively zero)

s is g if the variance of the process is known, and in the

case of the unknown variance it is the sample standard

deviation. "(In the building process of the design and

without any loss of generality the known-c variance is

set to equal 1).

< -i'K' as the criterion test constant^is the percentage point 

corresponding to a given probability a of rejecting the 

quality p^ derived from a process mean g. It is the 

solution of the following system if a is known (and an

analogous one in terms of the Non-central t-distribution

and the sample variance if c is unknown):

pQ = «(A-1U) 
i

cc = $ ((K-u±) ?n) ,

where i = 1 (2) indicates producer (consumer) risk

point

The dependence of these plans on the normality assumption and the

correct knowledge of the variance of the process (in case of known-a plan)

is vital to the efficient performance of the procedure for discrimination

of the quality of. the batches and, consequently, the fate of the batches.
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The significant shift of the Operating Characteristic curves on the O.C.
(*)surface due to the change in the variance indicates how non-robust

the a-known plans are to Variance-effect. Results of these are shown in 

Appendix (D.2.) for some representative code letters.

The producer could suffer from poor quality of production if the

process is not as assumed. Reasons could come from one of two sources:

I. The true distributional model is skewed and/or more or less heavy

tailed than his assumed model or historical evidence would

indicate. Technical failures or inefficiencies are some of

the causes, for example a production line of properly controlled

machines contaminated by one or more "out-of-control" machines

could give rise to a skewed distribution.

II. The variance of the process has changed (as is normal in any

process e.g. because of deterioration in the manufacturing

equipment) but the time of a drastic critical change passed

unnoticed and the variance assumption is no longer realistic.

Here, too, the example given above could apply if the "out-of-

control" machines were displaced in both directions from the

correct setting.

(*) The O.C. surface could be looked on from one of two perspectives, 
either as :

(i) Paip^p^) i.e. as a function of the proportions marginal and 
effective,

or (ii) Pa(|J.,O) i.e. a function of the mean and variance of the 
background (Normal) process.
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These two sources relate to the measures of central tendency and

spread, these are what a-plans (and to a lesser degree the s-plans)

significantly relate to, even though the assumption of normality allows

this relation to extend to proportions outside limits.

The decision rules for the s-plans and a-plans are alike for the

most part but with some differences, the most obvious one being that a

is replaced by , the sample standard deviation (with the advantages of

adjusting for the realised variability instantaneously which translates

itself into more robustness in the variance-effect but with the inevitable

disadvantage of increasing the sample size). ’Another difference of a

theoretical nature is the shift from the standard normal to the derived

Non-central t distribution which leads to the decision rules for s-plans to

be:

Accept if X K . S + An s n
Reject otherwise

where n = n^ is the plan sample size for the "unknown-a" by-variables,

and X and S are the sample mean and the unbiased samole standard n n
deviation

(S = /( [ Z (x. - X )2)/(n - 1)) .n i n

And the value of Ks is provided as the relevant theoretical percentage 

point of the Non-central t distribution with (n-1) degrees of freedom.
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1.3.3.2. For scheme (ii) :

The decision rules (under the assumption of a fixed n and independent 

r.v. X j  relate to the Binomial distribution with parameters (n,pQ) as

follows:

Accept if r^ $ c 

Reject otherwise

where

rg is the sample number of defectives.

c is the maximum allowable number of defectives (determined by

the producer's and consumer's points on the O.C.

There is much to be said about the good and bad properties of this

scheme. ’We have its 'perfect' robustness, it is not influenced by the 

distributional form. However, it has an unavoidably large size of

sample. This must count as a major disadvantage, it can be very expensive

or sometimes impractical to use, e.g., in destructive tests required by

acceptance sampling.

1.3.3.3. For scheme (iii):

This scheme is not greatly used yet. The evaluation of power for

its decision rules depends on the Trinomial distribution. The main work

in this area is due to Bray, Lyon and Burr (1973) , who dealt with setting

up the three-class scheme and showed some of its properties most extensively

in the limited cases of accept 0 defectives, with the consequence that,

for our purposes, their results are not satisfactory. However, in

accordance'with our convention of using the scoring functions, Q(X), for

all schemes, the Three-class scoring scheme defined above depends on the
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"marginal” weighting parameter w, (0 < w < 1). Due to the difficulty 

of applying the Three-class plans and their insignificance in current

practice we will not concern ourselves with them to any great extent.

[[Some research has been done with an interesting result about the

behaviour of w. As m (the maximum allowable number of marginals) increases

then under the assumption of no defectives allowed, both bounds of the

interval containing w will increase but get closer to each other. In

compact form w lies in the interval:

(a(m-l)/m, a.m/(m+l))

where the fraction a is determined by the choice of n and m.]]

1.3.3.4. For schemes (iv) , (v) and (vi):

, ■  The decision rules for these three schemes are virtually the same

in form:

\ ' Z

Accept if Z Q(x)/n:> t(B,AQL,n)

Reject otherwise.

As will be seen later B could act as a "robustness-versus-sample-

saving" adjustment or parameter./The schemes (iv) , (v) and (vi) are a 

>k,Z., modified .form of "by-variables" and we need to have the distributions •

of the mean Q ( x ) ..to determine the values of t(B,AQL,n), the relevant

percentage point in the convolution distribution of the sum of the n 

random variables Q(xp. , Q(X^) , ..., Q(Xn ) • ^hese percentage points 

together with their corresponding n and AQL's will form the basis for
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the above decision rules as will be shown later on •¿/n our research these

t values are defined bythe-95%. and 50% points on toe rel§5^LQ>C~xiirve.

More details on the derivation processes and the determination of

the parameters of the decision rules are discussed in the next two

chapters.

1.4 Property "Q" in the Schemes under Study

The idea of property "Q" originated in the work of Farlie (1981) .

Its basis lies in the paradoxical preference shown by certain decision

rules for inferior samples rather than for better ones. The following two

definitions make the concept clearer and more precise:

Definition (1): For the same sample size, n, a sample "X" is preferred

to another sample "Y" if and only if, x ^  Y(i) ' ^or = -̂'2,...

and x,., > y... for some i, where {x.}, {y.} are the respective (l) 2 (i) i i
samples and x ^  / ^(i) are t îe or^e:E* statistics of these samples 

respectively.

,n

Definition (2): Property "Q":

Farlie (1981) defined this notion as: "A sampling plan has Property

"Q" if, and only if, there is no sample configuration leading to the

rejection of the batch which is preferred to one or more of the sampl

configurations leading to the acceptance of the batch".

In other words some plans may enter into a paradoxical situation

whereby in two samples the better quality sample leads to rejection

of the batch and the poorer sample leads to its acceptance. An
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-•example of such a plan is the"unknown-0" by-variables plan. Suppose

we have two samples each of size 3: Sample (I) is (0.2, 1.0, 1.8]

and Sample (II) is [0.2, 1.0, 2.8]. For "unknown-O" plans of

sample size n=3 the test procedure is to accept only if the mean,

m > 1.12 S , where S is the sample standard deviation, here A = 0.n n

Sample (I) has m=1.0 and Sn=0.8 [hence accept since

m=1.0 >1.12 S =0.896].n

Sample (II) has m=1.33 and Sn=1.78 [hence reject since

m=1.33 < 1.12 S =1.9936] n

Sample (II) which is better leads to rejection while its inferior,

Sample (I), leads to acceptance. This illustration reveals how

important it is that we concern ourselves with such a crucial

property. It is believed that Property "Q" could have a significant

role in shaping the "new" scoring functions by trying to use the

results of the research done on property "Q". '' Actually z these new

schemes,.ware chosen with specific reference to censorship and 

monotonocity as a way of getting away from the paradox. In the 

work on property "Q" it has been shown that the orthodox plans which

have property "Q" include the "O-known" variables plan and the two- 

class attributes plan. The above example gives direct evidence that

the s-plans lack this important property. The striking feature about

"•'the configuration in the example above is the effect of extreme 

values on the variance, /in our new designs of the scoring schemesi -- - 5
A we have suppressed lower extreme values of quality to "0" quality,

A \ and the upper ones to the quality value "1". This stems from the 

^censoring and monotonocity principles advocated by the work of

Farlie (1981). In his work Farlie dealt with quality in terms of

< XX. but could be extended to our O(X.) very easily. Then X... < X,.. ,i i 1 (r) (j)
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implies Q(X (jj) if Q is monotonic.

The design of the new scoring functions so as to have a censoring 

effect on both tails of the sample together with the monotonicity of Q(X) 

builds strong foundations for the Property "Q" in our new systems. This 

is practically important where the "outlying" tendency of the observations 

can never be statistically recognized as such especially for small sample 

sizes (e.g. n=3, above). Incidently, the variables plans are mostly 

desired when minimum sample sizes are sought as first priority.

To show an example of the impact of using the schemes, suppose in

the data of the example we chose a value B=1.8, say, (which is in line

with our recommendations for plans that mimic variables plans), then the

value of 2.8 in Sample (II) will be treated no differently from its

counterpart 1.8 (in Sample (I)), and consequently the two samples decisions

will not be paradoxical. It is needless to emphasise the dramatic consequences

upon all the arguments made above if the sample size n is equal to the

batch size N.

1.5 Comments and Criticisms of Existing "Orthodox" Schemes and their

Rationale

1.5.1 In the beginning acceptance sampling was influenced by the simple 

use of go/no-go gauges. These resulted in "attribute" data which led 

naturally to a predominance of by-attributes plans as a basis for all the

major developments in the subsequent statistical literature in the field.

One benefit of this "0 and 1" classification of quality has been that the

assumption of the distribution of the actual product quality is not required.
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On the other side of the ledger, a heavy price has been imposed by the

fact that attributes destroy the information in the sample that is

utilised under a by-variables scheme. ‘̂ Another costly consequence is

that the percent defective is impossible to control at very low levels of

AQL of, e.g., 0.001 unless the attribute sample size is increased as a

way of reducing the discontinuities resulting from discreteness of the

numbers n and c (the sample size and the acceptance number). That leads

to increased costs in sampling. This last point is not merely artificially

imposed, since in today's market such AQL's are being considered for many

production processes. Marquardt (1984) argued for the need to move to

by-variables schemes by remarking:

"My experience is primarily in process industry products where it

is not routinely practical to work with attributes data. Today,

■ however, even i n  mechanical industries, automated meterology

systems make possible the more desirable variables data. To meet

this challenge of the more stringent market requirements, I believe

that much greater emphasis must be given 'to developing automated

measurement procedures capable of measuring variables so that

processes can be controlled on the by-variables basis. Statisticians

should take the lead in showing the economic incentive for this new

direction ."

We believe that the by-variables scheme could be newly treated and presented

away from its disabilities of non-robustness and as close to its glamours

of sample saving and informativeness as possible. Variables plans have

been available since at least 1955 but missed their rightful popularity.

Owen (1969) supposed the lack of enthusiasm for such variables plans to

be due to the difficulties in application by users especially in translating

standardised deviates into proportions defective, beside the uncertainty
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of the normality assumption. He also raised questions about the appropri

ateness of by-variables plans and suggested ways of meeting the requirements

of their assumptions. The revival of by-variables plans was one of the

motives for Owen's work when he gave some suggestions (which we will take

in the robustness section later) . He also reviewed the past developments

in connection with showing the great academic interest in by-variables.

For its conciseness and relevence we quote his review:

"Kao (1966) considers mixed attributes variables sampling plans

as have Gregory and Resnikov (1955) . Continuous sampling plans

are prepared by White (1966) and Hillier (1964) . Dodge and

Stephens (1965) study chain sampling inspection. Hald (1968)

designs attribute sampling plans for continuous prior distributions.

Zeigler and Tietjen (1968) examine double sampling plans based on

the variance. Stange (1960) and (1966), Freeman and Weiss (1964),

Flehinger and Miller (1964) , Campling (1968) and Lieberman (1965)

consider other aspects of acceptance sampling inspection.

Folks, Pierce and Stewart (1965) , among other things, give an

estimator of the proportion, p......... Wheeler (1968) shows that

this estimator is equivalent to the one given by Bowker and Goode

(1952) and by Lieberman and Resnikoff (1955), and gives an additional

form of the estimator and discusses its variance. Ellison (1964)

gives another derivation of Bowker and Goode (1952) estimator.

Theodorescu and Vaduva (1967) give a procedure for the control of 

several variables simultaneously based on the generalized range.

iZX' In summary, there is activity on theoretical problems of acceptance 

sampling, but it is not as great as one might expect when one
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considers the potential usefulness of the techniques which can be

developed."

We strongly feel that the interests of theoreticians may repay

well if more of it is addressed to resolving the problems that dissuade

the practitioners from using the by-variables more extensively.

1.5.2. In looking at the variables schemes as e.g. in BS6002 and working

tables our work had arrived at the same conclusive evidence as the results

postulated by Bravo and Wetherill (1980), They were surprised to find

that matching (as is recognised in many published tables of the current

orthodox variables schemes) is certainly very poor. Comparing our results

in this respect with the published equivalences we feel that the present

published tables are theoretically unfounded or too approximate to rely

on in establishing the equivalences needed for the comparative study

and the performances of the schemes in terms of the properties under

study (mentioned before) .

1.5.3. In the "by-variables" plans sampled items are presented in batches

for inspection and on the basis of the sample evidence they must be

sentenced as "accept" or "reject". The convention is that the variable 

measurement of an item, x^ may be distributed normally with expectation p. 

and variance a2. Of course, one of the limitations of "known-cr by-variables" 

schemes as proposed, e.g., in the BS6002 lies more especially with small

samples. ' Wetherill and Kollerstrom (1979) mentioned that the estimation 

of P q , the proportion defective, in the batch assuming o known, is non- 

robust and unreliable unless double checked as they put it. And if n is

small this is impossible.
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1.5.4. A good survey of the different schemes and their rationale is

given by Hill (1962). The monograph by Wetherill (1969) provides a

valuable sketch of mathematical and practical bases of acceptance sampling.

1.5.5. In sampling "by attributes" the sample size, n, and the maximum

permissible number of defective items, c, are determined on statistical

grounds by considering how the probability distribution of the number of

defectives, d, in the sample of n varies with the true proportion

defective, TT, in the batch of N items (usually, N >> n) . In by-variables

a similar technique is used but rather than the random variable being

the number of defectives the mean value of the n random variables is used

as a criterion.

Early methods specified two points on the O.C. curve so that the
'‘•i im

probabilities of offering a batch of a specific poor quality of TT̂  or of 

rejecting a batch of a better quality TT (less then TT ) will be kept at

levels - that could be tolerated by both supplier and customer.

In the past one would not speak of optimum tt̂  , tt and their corresponding 

risk levels, instead these were subjectively formulated. They are still

so chosen because so much changing human behaviour influences their

setting. / Although tradition has it that arbitrarily chosen values could 

be used for the levels of AQL (Acceptable Quality Level) the recent

conventions in the literature and to an extent the practice have considered

the rationalised series [0.001, 0.0015, 0.0025, 0.004, 0.005, 0.0065,

0.010, 0.015, 0.025, 0.04, 0.05, 0.065, 0.1] which provides sufficient 

variety for practical purposes. The values of tt̂  and TT̂  were meant to 

accommodate two different considerations: the cost implications of not

offering "reasonable quality" batches or of offering substandard batches,
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and the prevailing distribution of the batches being produced.

Theoretically, this second consideration refers to the so-called "process

curve". The concept of AQL was advocated in an attempt to accommodate

these two factors mentioned. The AQL characterised the design and

application of, different acceptance sampling schemes such as the ASF and

SRG tables of plans or the military standards MIL-STD-105 and DEF-131, ...

etc. The point of importance in the construction of these is that they

all agree to fixing and referring to one single point on the O.C. curve

namely the AQL. The sample size is related to the batch size in a

specified (if somewhat) arbitrary manner. The historical record of the

batch-to-batch quality variation (theoretically reflected by the process

curve though not necessarily applied there) is expected to dictate

whether to operate "tightened” inspection (if quality drops), "reduced"

inspection (if acceptance persists) or "normal" (otherwise). Barnett (1974)

criticised the 'traditional methods'. He among other things was referring

to the single point on the O.C. curve which is implicitly acknowledged

in the idea developed by Bravo and Wetherill (1980) who agreed with the

principle of matching at two points due to Hamaker and Von Strik (1955) .

The difference between Hamaker and Bravo and Wetherill is that Hamaker

is looking at the mechanics of the O.C. curve at the two points while

the latter just fixed these two points. To us there is no basic difference

because of the nature and predictable behaviour of the O.C. curve in

general. We picked the Bravo and Wetherill idea because it is more

convenient and a short cut over Hamaker's which is more useful when the

m a th e m a tic a l  form  o f  th e  O .C . i s  r e a d i l y  a v a i l a b l e ,  w hich i s  n o t  o u r  c a s e .

1 .5 .6 .  We s t i l l  b e l i e v e  t h a t  t h e  p r o d u c e r 's  i n t e r e s t s  and  th e  AQL a s  th e

m echanism  f o r  p r o t e c t i o n  a c t i n g  a s  summary o f  them  c o u ld  r e s o lv e  th e

p ro b le m s o f  i n c o r p o r a t in g  th e  c o s t  o f  s u p p ly in g  (w ith o ld in g )  p o o r (good)
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batches. This is under the assumption that the motive of the producer is

profit maximisation via greater economic efficiency. As for the costs 

of operating the inspection system, since different circumstances of 

inspection apply, we feel that this could be indirectly incorporated in the 

schemes by the reduction of the sample size, n. In our new schemes in 

theory we can on the one hand reduce n for a given discrimination efficiency

as much as we are willing to forfeit robustness on the other hand. Our

plans have generally reduced the sample size substantially from the by

attribute peaks without sacrificing too much robustness. As for the

variation found from batch-to-batch we feel that the tradition of the

process curve is worth preserving but any technique of incorporating the

detection of the variation in the day to day operation of the systems of

inspection will jeopardise the much sought after simplicity of operation.
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CHAPTER 2

IMPLICATIONS OF THE SCORING SYSTEMS

2.1 General

v/ In all the discussions of the "new" single scoring functions we had 

emphasised the monotonic property of Q(x). This had the favourable effect

of guaranteeing the "new" schemes, using these Q(x), would possess

property "Q". An earlier discussion of this point was done in Chapter 1.

It is worth mentioning that Huber (1964) has advocated robust estimates

which have similar properties to those of our Q(x) functions in the precise

sense of effectively excluding the extreme values of the sample from

influencing the estimates. The other characteristic of these new schemes

is that they are more adaptable and flexible and so can encompass all

the existing orthodox schemes and permit more scheme options.

/ There is no practical difference between the Logistic and the

Cumulative Normal scoring system as could be anticipated and consequently 

the one with the greater difficulty in application can be dropped. In 

practice the Logistic is easier for users to evaluate. ̂ The Cumulative 

Normal system showed some irregularities in the convolution process when 

deriving the distributional form while the Ramp case was well-behaved 

which gave another of its credits, i.e. ease and manageability.

, The idea of scoring quality against a price scale would give the 

acceptance sampling a new dimension in the re-evaluation of inspected

products or commodities.
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2.2 Rationale of These Implications

The point related to property "Q" is dealt with in Chapter 1. As 

for the adaptability and flexibility characteristic we will deal with

in a later separate section.

2.2.1. The graphs of the new scoring schemes are given in one typical 

case (as in the inset of Figure 2.2 below).

No basic difference is noticed between the average Logistic and the 

Cumulative Normal curves. '-'One feature of either of these two systems is 

that their single scoring functions tend to stay close to the tails 

(i.e. 0 and 1) for a longer time and then rapidly rise in the neighbourhood 

of their points of inflexion. ^This feature has an unfavourable

implication on the behaviour of the derived distributions: they meander 

and become curly (as shown by the typical graphs in Figure 2.3), and

this behaviour is of course compounded by the other jumps discussed in 

Chapter 3 which are due to the convolution of the discrete probabilities 

initiated by the spike probabilities p„ and p ( t h e  proportions defective

and effective in the batch) of the single scores at 0 and 1 respectively.

In the diagram the distribution of the Cumulative Normal scoring function

(and that of the Logistic too) show curls which are not shown in the

Ramp case. This is even more obvious when we come to the process of

removing the discreteness later on. [More details on this are given in

the numerical computations section of Chapter 3 together with the technical

aspects of the derivations of the distributions].

The c u r l s  (and  in d e e d  th e  d i s c r e t e  jum ps to o )  g iv e  th e  added

c o m p le x ity  o f  m aking th e  d e te r m in a t io n  o f  th e  d i s t r i b u t i o n  p e rc e n ta g e
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Figure (2.2) : olf of Q for B = 0.50, p = 2.1, n = 8 for the average 

quality of NORMAL, LOGISTIC and RAMP (inset: single

Q(x) functions for B = 1.0).
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n = S , 8= • 50 , |1 = 0- 4-

Average Q Average Q

Figure (2.3) : The continuous part of distribution function of average

Q(x) (i.e. jumps removed) , revealing the "curls" in

(NORMAL) plan.
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points (as needed in the establishing and determination of the plans

parameters) a numerically ill-conditioned problem and hence a computationally

demanding one.

The Ramp case has the discrete jumps but not the curls, so it is

relatively well behaved in this respect. This coupled with the other

favourable qualities (like ease of handling in practice and the fact that

itsjr=c.onvolution distribution acts as a good approximant of the Normal

Cumulative we have every good reason to put emphasis on theRamp system

as our favoured one. -̂ Rather than dealing in depth, we will bring to

light a very interesting implication of the new scoring systems that

could widen and enrich the uses of the acceptance sampling. -"This relates

to the graduating nature of the new scoring systems and how they could

be used to re-evaluate the market value of the products or commodities

after the inspection, _iJnder such basis an acceptance scheme will not

only answer the question of 'Accepted or rejected'?, but also new

questions such as 'What is the market value of the batch'?. This takes

advantage of the presence of the dealers in the transactions when the

inspection takes place and/or when the decision is made.

2.2.2. The new quality functions being essentially by-variables help to

evaluate the quality of the item (and hence the whole batch) in "real"

money terms. The need here is to find a workable real price scale that 

is related to the quality level of each unit, /in fact the characteristic 

measured in the process could be the market-worth of the item and one

method to standardise this to the "0"-and-"l" scale could possibly be by

assuming a minimum and maximum price quality by using ratios or by dividing

by the range , .... etc.



2.2.3 Flexibility and Adaptability of the New Schemes

2.2.3.1. ̂ The^ parameter B, .in terms .of which all the scoring functions 

are defined, is the key behind the power, flexibility and adaptability

of the new schemes. It plays two major roles:

(a) The parameter B could be scaled using the variance a2 of the 

process or batch into a new variable

Ba = B.a

which could act as a scale equivalent form of B, whenever we need to 

accommodatg„any_shangesi in, the_ variance a 2 . This relates tp the study 

of robustness against the variance-effectwhich will be dealt with in

the robustness -section (Chapter 4) , and where this role will be seen in

operation and allowed a longer argument for its appreciation.

Moreover, if, as we did, we let B^ = B for 0=1 then B^/a is the B 

for 0 not equal to the assumed value of 1. That is to say, an undetected

change in a corresponds to an offsetting change in B when using our

tabulated results. It also relates to the process curve as this deals

with the variability between batches. This role can be better appreciated 

if we consider the following:

If and B^ are the lower and upper (though not in the conventional 

"upper" specification sense) limits, then
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where p is the parental Normal distribution mean (of the process by 
-1 -1assumption) and KQ and K 1 are $ (pQ) and $ (l-p2) respectively. (Here,

$ is the conventional standard Normal distribution function). The

displacement of A from B is: B - A„ = B since A„ is chosen to be zero, a a a a a a
= (Kx - k q ).a

which is non-standardised. The standardised B-value is, then,

S (b) B would also work as a standard "selector" (or "adaptor") of plans 

and schemes so that if reasonably inflated, we can approach the "by

variables" plans; and when compressed towards "0" we will effectively

have the "by-attributes" plans. Moreover, between these two extremes a 

wide range of plans are available using the trade-off technique described

below.

These two roles of B are basic to the rest of the thesis. We leave

the implications of role (a).,_i_e~~the SGale^variant, to the robustness

chapter and give in next section some rigorous discussion to role (b) 

but leave until Chapter 6 concerning the extensions of our schemes to

reveal the attraction of that role of B as a "selector" of schemes

particularly in our new "attri-var" dependent mixed plans. We are content,

at this stage to close this chapter with the following section balancing 

robustness demands against sample savings leaving the discussion of further

points on the implications of the scoring functions until they arise

naturally in the remainder of the chapters.
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2.2.3.2. The Trade-offs Between Robustness and Sample Savings

With the already established fact that sample size savings and

robustness are conflicting requirements, it would suggest a decision

path of possible trade-offs between robustness and sample savings. That 

is, for a given situation in terms of the preferred property of these

two (or a proportionate combination of them) we could present a clearly

established plan where these requirements are met by choosing B, as

postulated above. With prior knowledge of the premium which we are 

willing to pay for foresaking a degree of robustness for sample savings '

or vice versa we can immediately fix a plan to match any desired

protection levels (or O.C. curve).

For the major properties in this thesis (taken to be the robustness

and the reduction in sample size), the available decision levels to give

alternative plans for these two properties could be made distinctly clear

by the following diagram, where:

d^ : decision to maximally save in sampling at the 

expense of robustness,

d^ : decision to guarantee maximum robustness for 

whatever level of sample size (a large n) .

Actually, the decisions available will range from d^ to d^. From 

one angle the level of decision is a function of n, the sample size;

from the other angle it is a function of the degree of robustness. The

parameter B could be thought of as a device controlled by these two

properties and is responsible for determining the "best" decision level.

To put it differently; for each given n there is a B implying a certain



risk of non-robustness while n and B together correspond to a given

protection level via the "equivalence" process defined later.

The diagram is helpful in summarising these trends in the above

discussion and revealing its own potentialities. In the diagram it is

important to note that the two curves shown refer to different vertical

domains, with different measures (and possibly different scale). But

the two curves agree in their horizontal, B-axis.

Robustness
measure

R

Figure 2.4: Decision Levels and Trade-Offs between Robustness and

Sample Size Savings.
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The diagram ties in neatly with the decision-making and also with 

Development III of our schemes (see Chapter 6 on Extensions and Developments)

The diagram could be looked on as (and in fact is) a nomogram; 

and consequently no one should be confused by the intersection point of 

the two curves, it is not significant and does not have any practical 

implications. , The point of intersection can be arbitrarily altered by 

merely rescaling either the sample size or robustness scales.

2.3 The "Marginality" Concepts and the Scoring Systems

A subsidiary role of B, which acts as its original definition, is

'that it is the demarcation point between the "marginal" and the "effective"

quality in the single scores. Any single item quality between A and B

(the classification limits) is labelled "marginal". By this single score

/concept of marginality our schemes reproduce the three-classes suggested

by Bray, Lyonn and Burr (1973).

In another context marginality has a somewhat different sense as

suggested (though not quite explicitly stated) by the work of "attri-var"

(or "mixed") plans whereby a whole batch rather than a single item is

classified as marginal in the sense of awaiting a more thorough inspection

(i.e. double-sampled). No confusion should arise between the two senses

of this concept since use of either sense in this thesis will be clear

in context. The two notions have been used intensively in the next

chapters especially Chapter 5 and have been used in different distinct

contexts. The first sense is directly responsible for the graduation of

the quality functions and the powerfulness of B as a selector of schemes.
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The second sense gives more rigorous mathematical content to replace the

vague and subjectively defined notion of the "not-very-clear case"

quality cited in the work of Schilling and Dodge (1969) . The marginality

of batches under inspection would be predetermined by the choice of B

specified prior to the inspection.
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CHAPTER 3

DERIVATIONS OF THE SAMPLING DISTRIBUTIONS

3.1 Introductory Note

/  We use the search procedure of first trying to explore solutions 

to the problem of derivation of the distributions (and indeed any other

problem) by analytical methods if possible and next numerical methods

are explored. If both of these ventures fail then simulation is the

last resort due to its expensiveness. In this respect we could say in

summary that:

(i) Analytical, • methods in the derivation of the distribution worked

for the simple by-variables, the two-class and the three-class

attribute schemes, but for the other iTnew")' schemes analytical

handling was not amenable and so we resorted to:

(ii) Numerical methods: In this category we have tried forming the

distributions of the Ramp, Normal Cumulative and the Logistic

systems using:

(a) Johnson Systems for approximating the distributions, which makes

use of the fact that unimodal distributions could havetheir

shapes determined by using their first four moments (if available

The required distributions could be approximated by equivalent

standard (Johnson) systems with the same first four moments.

These Systems have four parameters such that their standard

random variables are transformable into (standard) normal
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variables. The four moments are used to solve.for these 

transformation parameters, i/ihe idea is to use the first 

two moments (the mean and variance) to indicate location and

scale and leave the major role of dictating the general shape 

to the standard third and fourth moments (7̂  ̂and .

Our feeling is that it could represent the general tendency of

the shape of the distribution but with the inevitable loss of

the details. And as will be clear, the details (i.e. the

discontinuities) are very essential to our distributions. Hence

the Johnson systems w^jjeU^px^e^not. veiy useful in. fitting

our distributions. A more elaborate note on these discontinuities

and irregular features is given in section 2.2.1. of the

previous chapter.

(b) Special Numerical convolution, was the most suitable method 

for generating the derived distributions in the cases of the 

Ramp, Normal Cumulative and Logistic scoring systems. It is an

exact deterministic method with the usual but controlled

numerical errors arising from;

- accuracy considerations

- tolerable truncation of very small probabilities which

are collapsed to facilitate the convolution process,

(discussed later and implemented in the Computer Fortran

Program CONVOL listed in the Appendix (B.l.)).

The superiority of the Numerical Convolution method over the

Johnson approximating system (when they both work) is the 

preservation of the details,-and the build-up of the mixed convolution 

The jumps due to the discrete contribution in the convolution are

not tractable and traceable in the Johnson system but are in the

numerical method.
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(iii) Simulation had not been used in any of the derivations of the

distributions of the basic scoring functions since the methods

of (i) and (ii) above have solved the problem of derivations. 

j  It was only used in the robustness studies where we needed to 

treat each and every scoring system with a background process

(or batch) of a non-normal distribution, (see robustness studies

of Chapter 5).

3.1.1 Derivations of the "New" Distributions by Numerical Convolution

\
, The derived distribution of the random variable statistic 6 (x) is
J ......... ....' .........'.. ’ - .. ... n ,

a convolution of n copies of Q(x) derived from the basic distribution of '
_ - ip

this single random variable. „/Generally, the single r.v. Q(x) (other

than in the orthodox "pure" uncontaminated cases) have a discrete part

at the ends together with a continuous part at the middle "marginal" zone 

[see the discription of these random variables in section (1.3.2) above].

Our choice of the Logistic or the Cumulative Normal as score functions
t  Us r , ^ ,j>

was meant for the preservation of continuity of the random variable Q(x) . u ~- P

Yet not only did these two functions have the discontinuity (due to

truncation) but also they gave rise to another problem. That was the

curls.and meanders (as discussed earlier in section (2.2.1)) on top of

the usual problem of the jumps. ''So, besides the relative ease of calculating 

Q(x) , we benefit by adopting the Ramp case by the removal of the irregular

form of the cumulative distribution function.

The special implications of this discrete-continuous mixing on the

derived distributions (read convolutions) of the "new" scoring functions 

are discussed for each separate case. /These "new" distributions have 

been derived using a specially designed algorithm, called CONVOL, and
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is described later on and listed in Appendix (B.l.).

The distributions of these "new" schemes had to be derived numerically

rather than analytically (which would have been best) mainly because of

the nature of the mixture (being a contamination of a continuous random

variable by a discrete contribution). yThe discrete probabilities in

the single random variable are p^ and p^ (the proportions of defective and

effective quality respectively). These show graphically as spikes at

Q(x) equal to 0 and 1 (in that order) when n=l and they are directly

responsible for the jumps in the distribution function for n > 1, (see

pictures of graphs, for example in Figure 2.2, and for more examples

see Appendix (D. 1.)) .

The convolution runs for those values of n as in the terms of the 
geometric progression { 2^ : k e ®f}. The factor 2, here, is due to the 

convolution being of the r.v. on itself (i.e. the sum of two i.i.d.--random 

variables) at each k-th convolution. /Tn other words, we have basically 

a r.v. X which is normally distributed and since this r.v. X is linearly

transformed (by the relevant scoring function) into a random variable

Q(x) , we take the sum of copies of the previous sum each time for (k—1)

times. If we denote the j-th sum by then we have the following

system:

S0 - Q(\>

(*> Sj(Xl.... Xm’ " Sj-1 <X 1.... W  + V l ' V w ......Xm> fot ”’2'

In other words for sample size n we have n=m.
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(*)
n

sQ(X i) , n=l,2,4,8,...

/  The distribution of this is the derived distribution using the

numerical convolution details of which are cited in algorithm CONVOL

(appended) . Here we will give the theoretical framework behind the 
„kalgorithm. For each k (k e n ) we have n = 2 and an n-fold recursive

convolution of a probability distribution G with itself, where G in the

initial stage is the "single score" probability distribution. This

convolution is defined as:

G(t,k) = G(t) k = 0

t
= g(t-v,k-l) dG(v,k-l) k > 0

«
0

Though this is the rigorous mathematical background there were some

numerical considerations. Firstly, a change from the strictly continuous

concept of the integration sign to a summation sign because of the 

implications of the continuous-discrete mixture of the r.v. Q(x).«/"The 

concept of the histogram was borrowed as a representation of G in terms

of many small cells, yfiere we are assuming that the continuous portion

of probability per cell is uniformly distributed within each cell, 

this the whole range of Q(x) has been split into M+2 cells. The discrete 

part is split into its natural components P q and p£ with their contents 

put in the first cell and the last cell, respectively. '•■•The rest of the

initial distribution (i.e. the continuous part) was subdivided in the 

obvioua-manner whereby each cell (i.e. sub-interval) of. the_remaining 

equally spaced M cells of Q(x) contains its corresponding probability.
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We can get more insight into this sub-division process pictorialy in 

Figure 3.1.1 at the end of this section. (In the program M - 100-cells) .

Asjnentioned. above we di vide the probability distribution of the 

average of the n Q (X) 's into a large _ number of separate cells. Let

p(i,n) represent the probability contents of the ith cell (i.e. of 

Q(X) = i/M), for sample size n. Initially, at n=l, we have the basic

probability of the single score Q(X) sub-divided in M+2 cells as mentioned.

/This p(i,l) is the first unit for building the convolution which is

evaluated recursively as follows:

d(s,2) = E {c^,(n) . p(i,l) . p(j,l)} 
i+j =s

where C. . (n) is the combinatorial number of occurrences as in the usual ■ 13
Binomial coefficient.

S  This gives a distribution for double the range of Q(X) . ‘"'The next 

stage is to shift from^the^sum of Q(X) 's to the .average, then the

resulting shrinking in the scale implies amalgamating the probabilities

of groups of 2 neighbouring cells in one. This is done by the following

simple operation:

p(i,2) = d(2i-l,2) + d(2i,2) for i=l,2,...,M

which is then used in the next stage as in:

d(s,4) = E {c (n) . p(i,2) . p(j,2)}
i+j=s J
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Again and in a similar manner, we have to shrink this doubled range

by considering:

p(i,4) = d(2i-l,4) + d(2i,4)

and so on.

By this method the range doubles each time and so the distribution

would have to be collapsed each time to represent the distribution of

the average. Each convolution would require (M+2)2 additions and 

multiplications where M+2 is the number of partitioned cells. Mihe Central 

Limit Theorem would also reduce the effective range of the average Q(X)

and hence the simple compression back to M+2 cells will not be needed

all the time. .This necessitated a careful programming in keeping track
■X--of the shrinkage in the probability distribution. iXfhe cells number 0 and

M+2 contain the spike probabilities p^ and p£, respectively, and of 

course these two end cells contain purely discrete probabilities. In

the convolution these are responsible for the discrete-contamination

of the whole distribution. When the range doubles we know that the

compression may necessitate averaging two neighbouring cells. This 

| averaging of the cells leads the discrete contamination to affect more 

j cells than is intuitively expected. Consequently some care is required

in the tracking of these contaminations as this is necessary for their

subsequent removal to give a smooth and pure representation of the

continuous part. (As is clear in the comments and details of the Fortran

routine CONVOL this process of tracking is accomplished by physically

separable arrays used to store the contaminant (discrete) and the

continuous parts).
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To complete the presentation of the convolution process there are

few additional points to raise:

(i) The truncation (or folding) of the "negligible" probability

contents at the tails is done within tolerable limits. Whenever more

than M/2 cells at the tails contain a sum of probability less than £

(a carefully determined level of tolerable probability error), each of

the relevant Q-cells are collapsed (truncated) and the corresponding

part of the sum is added to the next end cells, as appropriate and relevant.

/(ii) The value of u, of the normal distribution of the process X.f 

is directly related to p^, the proportion defective. .The value of A 

determines value of Pg in relation to the normal distribution function.
5---- -- -  /~ -fSo as to hold the general conventions of values of¡AQL (or Pg) , we

found that the equi-spaced values of p with intervals of 0.1 would
S '

represent such convention very well indeed. i/The range of p used is

(0.4 to 3.4) since they cover the range of values of Pg that are of interest

in the theory^ and application in acceptance sampling.

We have_taken the.c a s e  of the Ramp as the representative case.of our

"new" schemes. y^he Ramp as far as the distributional computations has 

the same typical numerical features as the "Logistic" and the "Normality

Cumulative" schemes. It will therefore suffice to only consider the

Ramp case in this work.

For the Ramp Q(xp , with values in [0,1] , is a piece-wise linear 

transformation,(i.e. composed of a constant, a linear trend and a constant 

of X , the normally distributed process with mean p and standard deviation

1. But in the open interval (0,1), Q(X) is a linear transformation of
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, and so the probability contents of the ith cell - [i.e. p(i,l) of 

the initial distribution of the single Q(X^)] - are relatively easy 

to deduce by using the fact that X is the inverse function of Q(X). To

calculate p(i,l), the probability content of the cell demarked from below 

and above by q^ = i/M and q^ = (i+l)/M respectively we used the linear 

relation of Q and X. By inverting Q(X) this p(i,l) corresponds to the

probability defined as:

y
p(i,l) = $(A-n) U  - for Q(XX) = 0

n

= 1 - $(B-U) ' ' ' for Q(xp = 1

\\ = Pr{Q 1 (qp < X < Q \q^) } elsewhere

where the two bounds of X (within the curled brackets above) are simply

the inverses of the quality function Q(X) . And since our X is normally

distributed with mean p. and standard deviation 1, this probability is

known and is given by the standard normal theory. The following figure

puts the above argument diagrammatically, and shows clearly how i-th cell

is assigned its probability content p(i,l) before the convolution is

operated, as in Figure (3.1.1.) below.

¿x As is obvious (earlier in (*)),the values of the sample size, n,

visited by the numerical convolution in CONVOL have increasingly yawning

gaps for larger values of n. This is no major problem since:

- we could interpolate successfully for lower values of n, since

the spacing between the values of n is small then.

- For larger values of n we resort to the Central Limit Theorem

and the normal approximation to take over early enough.
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Figure (3.1.1): The relation of X to the partitioned Q-cells used in

evaluating p(i,l) (the Probability Content of the i-th

cell), and how the cumulative probability for Ramp

Q(X) is formed.
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Asymptotically the discontinuities will tend to be smaller and

vanish.

We are not interested in a comprehensive tabulation of the "new"

schemes, we only want to.emphasise their potentialities and

explore them as alternatives, so a selective representation of

such schemes would serve our objectives.

Existing schemes have the ratio of successive sample size of 1.6:1,

hence widening gaps are already a common place in the literature.

3.1.2 The Tables of the Numerical Distribution

/ S o ,  as a result of the numerical derivations and its procedures 

advocated as above we have the tabulations of .the distribution for equi-

spaced average Q(X) for each of the n values that lie within the path of

the specific convolution process defined above. The tables are voluminous

and are stored in the computer disc storage, but some representative

tabular forms are displayed in the Appendix (C.l.). An example of the

tabular distribution is given by table (3.1.2(a)) below. /Pox completeness

some percentiles„for each case were contained in the tables (see

Appendix (C.2.). A display of some of their contents is given in table

(3.1.2(b)) below.

Though the main distribution tables could be seen as self-explanatory

a description of their presented form may be helpful in revealing their 
contents. Olfor a given..sample size n we have a table for e a c h  of the 

values of p. This table has serially numbered rows representing probability 

distribution for equi-spaced Q-values, and has columns standing for



Table (3.1.2.(a)): One example of the tabular distribution for the Ramp average Q(x).
Sam p le s i z e  -  Cg/1 
P1 0 .1 151  0 :1775 0 .2 4 7 8  0

i l l i i i l iH * * * )» * * * * * * * * * * * * -* *
100 QMIN 0 .0 0  0 .0 0 0  0 .0 0 0

B = 0 .51
.3239  0 .4032  0 .4 8 2 5  0 .5 5 8 6  0 .6 2 8 9

100 SCAL 1 .0 0  
QMAX 1 .00

1 .000 
1 .000

1 .000
1 .000

= * * (  0 .5 ) , * *  (O .7 )**( 'O 7 9 '» **  
C 03 0 .0 0 0 0  0 .0000' 0 .0 000  0 
[  10 0 .0 0 0 0  0 .0000  0 .0 000  .0 
C 23 0 .0 0 0 0  0 .0000  0 .0 000  0 
C 33 0 .0 0 0 0  0 .0000  0 .0 000  0 
[  43 0 .0 0 0 0  0 .0000  0 .0 000  0
C 53 0 .0 0 0 0  0 .0000  0 .0 0 0 0  0 
[  63 0 .0 0 0 0  0 .0000  0 .0 0 0 0  0
C 73 0 .0 0 0 0  0 .0000  0 .0 000  0 
[  83 0 .0 0 0 0  0 .0 000  0 .0 0 0 0  0 
C 93 0 .0 0 0 0  0 .0000  0 .0 0 0 0  0 
Ci 103 0 .0 0 0 0  0 .0000 0 .0 0 0 0  0 
C 113 0 .0 0 0 0  0 .0 000  0 .0 000  0 
C 123 0 .0 0 0 0  0 .0 000  O.OOOD 0 
C 133 0 .0 0 0 0  0 .0 000  0 .0 0 0 0  0 
C 143 0 .0 0 0 0  0 .0 000  0 .0 0 0 0  0 
C 153 0 .0 0 0 0  0 .0000  0 .0 000  0 
C 163 0 .0 0 0 0  0 .0 000  0 .0 000
L I r u .u u u u  u .uuuu u .u uuu  
[  183 0 .0 0 0 0  0 .0 000  0 .0 000  
C 193 0 .0 0 0 0  0 .0000 0 .0 000  
[  203 0 .0 0 0 0  0 .0 000  0 .0 000  
C 213 0 .0 0 0 0  0 .0 000  0 .0 000  
C 223 0 .0 0 0 0  0 .0000  0 .0 003  
C 233 0 .0 0 0 0  0 .0 000  0 .0001  
C 243 0 .0 0 0 0  0 .0 000  0.0001 
C 253 0 .0 0 0 0  0 .0000  0 .0001  
C 263 0 .0 0 0 0  0.0001 0 .0001 
C 273 0 .0 0 0 0  0.0001 0 .0001  
C 283 0 .0 001  0 .0001 0 .0 002  
C 293 0 .0 001  0.0001 0 .0 003  
C 303 0 .0001  0 .0002 0 .0 003  
C 313 0 .0 0 0 1  0 .0002  0 .0 004  
C 323 0 .0 0 0 1  0 .0003  0 .0005  
C 333 0 .0 0 0 2  0 .0003  0 .0 006  
C 343 0 .0 0 0 2  0 .0004 0 .0008  
C 353 0 .0 0 0 2  0 .0005  0 .0 010  
C 363 0 .0 0 0 3  0 .0 006  0 .0012  
[  373 0 .0 0 0 3  0 .0 007  0 .0014

383 0 .0 0 0 4  0 .0 0 0 9  0 .0 018  
C 393 0 .0 0 0 6  0.0011 0 .0022
C 403 0 .0 0 0 7  0 .0 014  0.0D27
C 41 3 0 . 0009 0 .0018  0 .0033  
[  423 0 .0 0 1 2  0 .0022  0 .0 040
C 433 0 .0 0 1 4  0 .0 027  0 .0 0 4 9  0
C 443 0 .0 0 1 7  0 .0032 0 .0 0 5 9  0
C 453 0 .0 0 2 0  0 .0039  0 .0 070  0 
C 463 0 .0 0 2 4  0 .0 046  0 .0 083  0 
C 473 0 .0 0 2 8  0 .0054  0 .p 098  0

0 .0 00  
1 .0 00  
1 .000  

( 1 . 1 ) * *  
.0000 0 
.0000  0 
.0000  0 
.00 00  0 
.0000  0 
.0000  0 
.00 00  0 
.00 00  0 
.0000  0 
.0000  0 
.0000  0 
.0000  0 
.00 00  0 
.0000  0 
.0000  0 
.00 00  0 
.0000  0 
.00 00  0 
.0000  0 
.o o o o ro  
.0000' 0 
.0001 0 
.0001 0 
.0001 0 
.0001 0 
.00 02  0 
.0002  0 
.0003  
.0004 
.0005 
.0006  
.0008  
.00 10  
.0012 
.0015 0 
.0 0 1 8  0 
.0022  0 
.0027  0 
.0033 0 
.0041 0 
.00 50  0 
.00 60  0 
.0073  0 
.0087  0 
.0104  0 
.0124  0 
.01 46  0 
.01 72  0

0 .0 0 0  
1 .000  
1 .000  

( 1 . 3 ) * *  
.0003  0 

0000 0 
.00 00  0 
.0 0 0 0  0 
.00 00  0 
.00 00  0 

0000 
.0000  
.0000  
. 0000 
.00 00  
.0000 
.0000  0 
.0 0 0 0  0 
.0000  

0000 
.0000  
.0 0 0 0  
.0000  
.0001 
.0001 
.0001 
.00 02  0 
.00 02  0 
.0003  0 
.00 03  0 
.0 0 0 4  0 
.0 0 0 6  0 
.0 0 0 7  0 

0009 0 
0011 0 
0014 0 

.0 0 1 8  0 

.0022  0 

.0028  0 

.00 34  0 

.00 42  0 

.0051 0 

.0061 0 

.0074 0 

.00 90  0 

.0 1 0 8  0 

.01 29  0 

.01 53  0 

.0182  0 

.0214  0 

.0251 0 

.02 94  0

0 .0 0 0  
1 .000 
1 .000 

(1 . 5 ) * *  
.0000  0 
.0030 
.0030 
.0030  
.0030  
.0030 
.0030  
.0030  
.00 30  0 
.0030  0 
.0030  0 
.0030 0 
.0030  0 
.0030  0 
.0000  0 
.0 0 3 0 0  
.0030  0 
.0031 
.0031 0 
.0001 0 
.0002  0 
.0032  
.0033  
.0034  
.0005 
.0036 
.0038  
.0010  0 
.0013  0 
.0017 
.0021 
.0027  
.0033  
.0041 
.0050  
.0062 
.0075  
.0091 0 
.0110  0 
.0132 0 
.0158  0 
.0188  0 
.0223  0 
.0263  0 
.0309  0 
.0361 0 
.042 1 0 
.0488  0

0 .0 0 0  
1 .000  
1 .000  

( 1 . 7 ) * *  
.0000  0 
.0000  
.0000  
.0000 
.0000 
.0000 
.0000  0 
.0000  0 
.0000 
.0000 
.0000  
.0000 
.0000 
.0000 
.OOOOf 0 
.0001 0 
.0001 0 
.0001 0 
.0002 0 
.0002 0 
.0003  
.0004 
.0005 
.0007  
.0009  
.0012 
.0015  
.0019  
.0024  0 
.0031 0 
.0038 
.00 48  
.00 59  
.0073 
.0 0  90 
.0109
.0132 0
.0159 0 
.0191 0 
.0228 0 
.0270 0 
.0319 
.0375 
.0439 
.0511 
.0592 
.0683 0 
.0784 0

0 .0 0 0  * 
1 .000 *  
1 .000 *

( 1 . 9 ) * * *  
.0000  
.0000 
.0000  
.0000  
.0000  
.0000 
.0000  
.0000 
.0000 
.0000 
.0000  
.0000 
.0000 
.0000 
.0001 
.0001 
.0001 
.0002  
.0003  
.0004  
.0005  
.0007  
.00 09  
.0012  
.0016  
.0021 
.0027 
.0034  
.0043  
.0054  
.0068  
.0084  
.0104  
.0127  
.0155  
.0187  
.0 2 2 6  
.0270  
.0321 
.0380 
.0447  
.0524  
.0610  
.0707 
.0815 
.0935 
.1068  
.1214

AMU = 1 .3 ( P0 = 0 .0 9 6 8 )

A B = * *  ( 0 . 5 ) * *  ( 0 . 7 ) * * ( 0 . 9 )  * *  H  . 1 ) * *  ( 1 .3 )  * *  (1 .5 ) * * ( 1 . 7 )  * *  (1 .9 )  *
c 483 0 .0 0 3 2  0 .0 0 6 3  0 .0 115  0 .0 2 0 2  0 .0 3 4 2  0 .0 5 6 3  0 .0 8 9 6  0 .1 3 7 3
c 493 0 .0 0 3 7  0 .0 0 7 4  0 .0 135  0 .0 2 3 5  0 .0 3 9 6  0 .0 6 4 7  0 .1 0 2 0  0 .1 5 4 6
c 513 0 0055 0 .0 1 0 5  0 .0 187  0 .0 3 1 9  0 .0 5 2 8  0 .0 8 4 5  0 .1 3 0 4  0 .1 9 3 4
c 523 0 0068 0 .0 1 2 6  0 .0 2 2 0  0 .0 371  0 .0 6 0 6  0 .0 9 6 0  0 .1 4 6 6  0 .2 1 4 9
c 533 0 0083 0 .0 1 5 0  0 .0 2 5 8  0 .0 4 2 9  0 .0 6 9 4  0 .1 0 8 7  0 .1 641  0 .2 377
c 543 0 0099 0 .0 1 7 7  0 .0301  0 .0 4 9 5  0 .0 791  0 .1 2 2 5  0 .1 8 2 9  0 .2 6 1 9
c 553 0 0117 0 .0 2 0 7  0 .0 349  0 .0 5 6 8  0 .0 8 9 8  0 .1 375  0 .2 0 3 0  0 .2 8 7 3
[ 563 0 0136 0 .0 241  0 .0 402  0 .0 6 4 9  0 .1 0 1 5  0 .1 5 3 9  0 .2245  0 .3 1 3 9
c 573 0 0158 0 .0 2 7 9  0 .0 4 6 2  0 .0 7 3 8  0 .1 1 4 4  0 .1 7 1 4  0 .2 473  0 .3 4 1 5
c 583 0 .0 181  0 .0 3 2 0  0 .0 5 2 8  0 .0 8 3 7  0 .1 2 8 4  0 .1 9 0 3  0 .2 713  0 .3 701
c 593 0 .0 2 0 7  0 .0 3 6 6  0 .0 601  0 .0 9 4 5  0 .1 4 3 6  0 .2 1 0 5  0 .2 965  0 .3 9 9 5
c 603 0 .0 2 3 5  0 .0 416  0 .0 681  0 .1 0 6 3  0 .1 6 0 0  0 .2 3 1 9  0 .3 227  0 .4 2 9 6
c 613 0 .0 266  0 .0 471  0 .0 7 6 9  0 .1 1 9 2  0 .1 7 7 6  0 .2 5 4 6  0 .3501  0 .4 6 0 2
c 623 0 .0 2 9 9  0 .0 5 3 2  0 .0 8 6 5  0 .1 331  0 .1 9 6 4  0 .2 7 8 4  0 .3 7 8 3  0 .4 911
c 633 0 .0 3 4 5  0 .0 6 0 6  0 .0 975  0 .1 4 8 5  0 .2 1 6 6  0 .3 0 3 5  0 .4 073  0 .5 222
c 643 0 .0 4 0 7  0 .0 6 9 6  0 .1 101  0 .1 6 5 3  0 .2 3 8 2  0 .3 2 9 6  0 .4 3 6 9  0 .5 534
c 653 0 .0 4 7 3  0 .0 7 9 4  0 .1 237  0 .1 8 3 3  0 .2 6 1 0  0 .3 5 6 7  0 .4671  0 .5 8 4 3
c 663 0 .0 5 4 4  0 .0 9 0 0  0 .1 3 8 3  0 .2 0 2 6  0 .2 8 4 9  0 .3 8 4 7  0 .4 9 7 6  0 .6 1 4 9
c 673 0 .0 6 2 0  0 .1 0 1 4  0 .1541  0 .2 2 3 0  0 .3 1 0 0  0 .4 1 3 5  0 .5 283  0 .6 4 4 9
c 683 0 .0 7 0 2  0 .1 1 3 7  0 .1 7 0 9  0 .2 4 4 7  0 .3361  0 .4 4 3 0  0 .5 5 9 0  0 .6 742
[ 693 0 .0 7 8 8  0 .1 2 6 9  0 .1 8 8 9  0 .2 6 7 5  0 .3 6 3 2  0 .4 7 2 9  0 .5 8 9 5  0 .7 0 2 7
c 703 0 .0 8 8 1  0 .1 4 0 9  0 .2 0 8 0  0 .2 9 1 5  0 .3 9 1 2  0 .5 0 3 2  0 .6 1 9 7  0 .7301
c 713 0 .0 9 7 9  0 .1 5 5 9  0 .2 282  0 .3 1 6 6  0 .4 2 0 0  0 .5 3 3 7  0 .6 494  0 .7 5 6 4
c 723 0 .1 0 8 3  0 .1 7 1 8  0 .2 4 9 6  0 .3 4 2 7  0 .4 4 9 4  0 .5 6 4 3  0 .6 7 8 4  0 .7 8 1 4
c 733 0 .1 1 9 2  0 .1 8 8 6  0 .2 7 2 0  0 .3 6 9 7  0 .4 7 9 3  0 .5 9 4 6  0 .7 0 6 6  0 .8051
c 743 0 .1 3 0 9  0 .2 0 6 4  0 .2 955  0 .3 9 7 6  0 .5 0 9 6  0 .6 2 4 7  0 .7 338  0 .8 272
c 753 0 .1 4 3 2  0 .2 2 5 0  0 .3 199  0 .4 2 6 2  0 .5 3 9 9  0 .5 5 4 2  0 .7 5 9 8  0 .8 4 7 9
c 763 0 .1 5 9 3  0 .2 4 6 4  0 .3 4 5 8  0 .4 5 5 2  0 .5 7 0 0  0 .6 8 2 9  0 .7 8 4 5  0 .8 6 7 0
c 773 0 .1 7 6 2  0 .2 6 8 7  0 .3 723  0 .4 8 4 5  0 .5 9 9 9  0 .7 1 0 7  0 .8 0 7 9  0 .8 845
c 783 0 .1 9 3 8  0 .2 9 1 7  0 .3 996  0 .5 1 4 2  0 .6 2 9 6  0 .7 3 7 6  0 .8 2 9 9  0 .9 005
c 793 0 .2 1 2 0  0 .3 1 5 6  0 .4 276  0 .5 441  0 .6 5 8 8  0 .7 6 3 5  0 .8 5 0 5  0 .9 1 5 0
c 803 0 .2 3 0 9  0 .3 4 0 2  0 .4561  0 .5 741  0 .6 8 7 4  0 .7 8 8 2  0 .8 6 9 5  0 .9 2 8 0
c 813 0 .2 5 0 4  0 .3 6 5 5  0 .4851  0 .6 0 4 0  0 .7 1 5 3  0 .8 1 1 6  0 .8 8 7 0  0 .9 3 9 5
c 823 0 .2 7 0 5  0 .3 9 1 5  0 .5 145  0 .6 3 3 7  0 .7 4 2 4  0 .8 3 3 6  0 .9 0 3 0  0 .9 4 9 7
c 833 0 .2 9 1 2  0 .4 1 8 2  0 .5441  0 .6 6 3 0  0 .7 683  0 .3 5 4 2  0 .9 1 7 4  0 .9 5 8 5
c 843 0 .3 125  0 .4 4 5 3  0 .5 738  0 .6 9 1 8  0 .7 931  0 .3 7 3 3  0 .9 3 0 3  0 .9 662
c 853 0 .3 3 4 4  0 .4 7 3 0  0 .6 035  0 .7 1 9 8  0 .8 1 6 7  0 .89D 8 0 .9 4 1 8  0 .9 7 2 8
c 863 0 .3 5 6 8  0 .5 0 1 0  0 .6 3 3 0  0 .7 4 7 0  0 .8 3 8 8  0 .9 0 6 7  0 .9 5 1 9  0 .9 7 8 3
c 873 0 .3 7 9 7  0 .5 2 9 3  0 .6 623  0 .7 7 3 2  0 .8 5 9 4  0 .9 211  0 .9 607  0 .9 8 2 9
c 883 0 .4 007  0 .5 5 4 5  0 .6 880  0 .7 961  0 .8 7 7 4  0 .9 3 3 5  0 .9681 0 .9867
c 893 0 .4 1 9 6  0 .5 7 6 3  0 .7 1 0 0  0 .8 1 5 8  0 .8 9 2 9  0 .9 441  0 .9 7 4 3  0 .9 8 9 8
c 903 0 .4 3 8 5  0 .5 9 7 9  0 .7 315  0 .8 345  0 .9 072  0 .9 5 3 5  0 .9 7 9 5  0 .9 9 2 3
c 913 0 .4 5 7 4  0 .6 1 9 4  0 .7 523  0 .8 5 2 2  0 .9 2 0 2  0 .9 6 1 7  0 .9 8 3 9  0 .9 942
c 923 0 .4 7 6 4  0 .6 4 0 5  0 .7 7 2 4  0 .8 6 8 7  0 .9 3 1 9  0 .9 6 8 8  0 .9 8 7 6  0 .9 9 5 8
c 933 0 .4 953  0 .6 6 1 2  0 .7 917  0 .8 8 4 0  0 .9 4 2 4  0 .9 7 4 8  0 .9 905  0 .9 9 7 0
c 943 0 .5 142  0 .6 8 1 6  0 .8 1 0 0  0 .8 981  0 .9 5 1 6 "0 .9 7 9 9  0 .9 9 2 8  0 .9 978
c 953 0 .5 3 2 9  0 .7 0 1 4  0 .8 274  0 .9 1 1 0  0 .9 5 9 6  0 .9 841  0 .9 9 4 7  0 .9 9 8 5
c 963 0 .5 5 1 5  0 .7 2 0 6  0 .8 437  0 .9 2 2 6  0 .9 6 6 5  0 .9 8 7 5  0 .9 9 6 0  0 .9 9 8 9
c 973 0 .5 7 0 0  0 .7 3 9 2  0 .8 589  0 .9 329  0 .9 7 2 3  0 .9 9 0 2  0 .9971  0 .9 9 9 2
c 983 0 .5 8 8 2  0 .7 571  0 .8 7 3 0  0 .9 4 1 9  0 .9 771  0 .9 9 2 3  0 .9 9 7 8  0 .9 9 9 5
[ 993 0 .6 0 6 2  0 .7 7 4 2  0 .8 8 5 8  0 .9 4 9 8  0 .9 8 0 9  0 .9 9 3 8  0 .9 983  0 .9 9 9 6
C1003 0 .6 2 3 9  0 .7 9 0 5  0 .8 975  0 .9 5 6 4  0 .9 8 3 9  0 .9 9 4 9  0 .9 9 8 6  0 .9 9 9 6
n o n  n_A ?59 0 .7 9 0 5  0 .8 975  0 .9 5 6 4  0 .9 8 3 9  0 .9 9 4 9  0 .9 9 8 6  0 .9 9 9 6

I

I



Table (3.1.2. (b)) : An example of someÇpercentage points pf the distribution

of average Q(x). (These relate directly to table (a) 

above) .

*  S .S IZ E =  S "  Ramp c a s e ” AMU = 1 = 3 0< i . e .  PQ = 0 .0 9 6 8 0 1  *

*  QHIN x 100 : 0 .0000
* SCAL Ex 1 GO: 1 .0000
* P1 x 1 0 0 : 11 .51

0 .0 0 0 0  
1 .0 00 0

1 7 .7 5

0 .0 0 0 0  
1 .0 0 0 0

24 .78

0 .0 0 0 0
1 .0 0 0 0

3 2 .3 9

0 .0000  
1 .0000

4 0 .3 2

0 =QOOC 
1 .0 00 0

4 8 .2 5

0 =0000 
1 .oaoG  

5 5 .3 6

0..0G00 * 
1 .0000  *

6 2 .3 9  *

PC9 < T l .TE S T  C R IT E R IO N  Z T

0 .01 0 .5 2 4 1 -0 .1 0 0 0 0 .4 7 0 2 0 .4 3 7 1 0 .4055 0 .4 00 0 0 .3 4 5 6 0 .3133
0 .02 0 .5769 0 ,5 4 1 3 0 =5101 0=4791 0..44 56 0 =4135 0 =3326 0 .3535
0 .0 3 0 .6 1 2 6 0 .5 7 0 6 0 .5 3 6 9 0 .5 0 4 2 0 .4 7  12 0 .4331 0 .4 0 6 2 0 .3761
0 .0 4 -0 .1 0 0 0 0 .5 9 3 1 0 .5 5 7 3 0 .5 2 3 7 0 .4905 0 .4566 0 .4 2 4 0 0 .3931
0 .0 5 0 .7 5 0 0 0 .6 1 1 7 0 .5 7 4 0 0 .5 3 9 6 0 .5055 0 .4717 0 .4 3 8 6 0 .4070
0 .0 6 0 .6 4 1 9 '-0  =1000 0 .5 83 2 0 =5531 0 .5187 0 ,4345 0 .4 5 0 9 0 .4139
0 .4 9 - 0  .1 00 0 0 .8 3 7 9 0 .8 0 2 0 0 .7 6 7 1 0 .7329 0 .6953 0 .6 5 7 4 0 .6196
0 .5 0 - 0 .1 0 0 0 0 .3 4 1 5 0 .3 0 5 4 0 .7 7 0 5 0 .7362 0 .6936 0 .6 6 0 7 0 .6228
0 .5 1 -0 .1 0 0 0 0 .8 4 5 1 0 .8 0 8 3 0 .7 7 3 9 0 .7395 0 .7019 0 .6 6 3 9 0 .6260
0 .8 9 -0 .1 0 0 0 0 .9302 0 =9 46 5 0 .9 1 4 1 0..8802 0 =8 431 0 =8113 0 .7731
0 .9C - 0 .1 0 0 0 0 .9 3 6 0 0 .9 5 2 5 0 .9 2 0 2 0 .88 66 0 .8542 0 .3 1 7 5 0 .7795
0 .9 1 -0 .1 0 0 0 0..9919 0 .9  586 0 .9 2 6 6 0 .8933 0 .3606 0 .8242 G .7362
0 .9 4 -0 .1 0 0 0 -0 .1 0 0 0 0 .9 7 3 9 0 .9 4 8 4 0 .9164 0 .3820 0 .8 47 6 0 .3102
0 .9 5 -0 .1 0 0 0 -0 .1 0 0 0 0 .9 3 6 5 0 =956 8 0 .9255 0 =3917 0 =8571 0 .8201
0 .9 6 -0 .1 0 0 0 -0 .1 0 0 0 0 .9 9 4 7 0 .9 6 6 1 0 .9357 0 .9027 0 .3681 0 .8315

N.B.
Each of the negative entries is a convenient way of indicating 

that a percentage point is "non-existent>" .
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different levels of B (B ranges in steps of 0.2 from 0.5 to 1.9 across

the table). At the head of these tables are four rows labelled QMIN,

SCALE, QMAX and . Respectively, these stand for the minimum value

of the convoluted (and hence, possibly, compressed) Q-value, the scale

which changes due to shrinkage compression process, the maximum value 

of the convoluted average Q and the proportion marginal determined by

the value of B.

In these tables the average Q values are indicated by the serial

numbers (in the square brackets). The addition of the product of these

serial numbers and the scale to the minimum Q, QMIN, gives the Q values

That is to say:

Q± = QMIN + i . SCALE

To relate this to the previous section the probability content

corresponding to Q is p(i,n) as defined above.

3.1.3. Graphical representations of the distributions are given in the

Appendix (D.I.). Here below, is one distribution graph to give a

typical pictorial representation of the tabulated distributions. As an

example here and for explanatory purposes in this chapter we took the

sample size n=8, B=0.9 and |i=1.3 (i.e. part of the same example used in 

tables (3.1.2) above). Figure (3.1.3(c)) below gives the final shape 

of the distribution of the case of n=1.3 for B=0.9 (which refers to the

third column of each of the tables above) . This case when considered

from the initial single Q(X) until the convolved final form is enough 

to reflect on how the convolution evolves in a manner typical of all 

other cases. Of course, different values of p^ are determined amongst
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Figure (3.1.3) : Some illustrative graphical forms of the distributions
(a typical example Ramp case of n = 8, p. = 1.3, B = 0.9).

^. = 1 ,3 -  s=0-g
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other factors by the value of B such that if other things remain the

same a low B value dictates a high , and vice versa. This does change

the graphs as is clear on the appended diagrams, a higher B value permits

more continuity than a lower one.

The initial single r.v. Q(X) from which the graph for n=l.3 emerged

as a convolution is given in Figure (3.1.3(a)) so as to give an

idea of the transition from the initial to the final convolved form

shown in Figure (c) . These two figures can be used to illustrate

the formation of the jumps in the final form (as in (c)) from the two

spike probabilities of the initial single stage (as is seen at the tails

in Figure (a)).

Figure (3.1.3(b)) shows the splitting of the tabulated distributions

into the continuous and discrete part. This is needed ( especially in

section (3.3) below) so as to smoothly connect the grid points of the

purely continuous part separately by the cubic-spline representation.

Once this spline representation is made and stored the purely discrete

part could always be precisely brought in.

3.2 A Note on our Experience with Johnson Distribution-Fitting Systems

And on the Work on Convolutions

1 1It is note-worthy that the area of deriving such distributions

(with a discrete-continuous mixture) did not receive much (if any)

attention in the literature. Consequently, and to our belief, it is

still fertile for different new techniques and methods. In the rest of

this section we give as a basis for future developments in this area a

note of our results when attempting different methods before our numerical
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convolution. Besides we cite some of the relevant work in the area of

convolutions which were only in the context of a purely continuous or

purely discrete nature but no mixtures.

3.2.1. As mentioned earlier we have attempted analytical handling in

deriving the "new" distributions but it was not possible to arrive at 

a compact form for these distributions. / The only_analytically viable tool

was the derivation of the moment generating function. The moments have

always been a focus of attention in the early Pearsonian Distribution

Systems (see Pearson (1963)), and in their counterparts in what is known

as the Johnson Systems (Johnson (1949)). These lean, in essence, on the

fact that any two unimodal distributions with the same first four moments

have the same general shape and behaviour. And out of the Johnson analysis

came the recent enhancement by Hill et al (1976) to put these findings of

the Johnson Systems into algorithmic forms.

Though in principle we could evaluate the moment generating function,

and hence the first four moments, the Johnson Systems (and by analogy

the Pearsonian ones) would not reproduce the "new" distributions. The

reasons are four-fold:

(a) The most specific reason is that our "new" distributions are

characterised by the discontinuities (or jumps) which are

most significant for the smaller n values.

(b) Our moments lie close to, but not on, the boundaries of the

different systems and according to Hill et al (1976) such cases

are not easy to deal with; such cases were excluded by them

from their algorithm.



(c) The empirical fact that the fourth moment is numerically

unstable.

(d) "Moments fits" are known (Pearson (1963)) to fail at the

steep tail (see also Pearson and Stephens (1962)). According

to Pearson long tailed distributions stand a better chance

in moment-fits than short tailed ones.

In Appendix (E.l.) we have the graph for the ( ~P-'-ane (th®

basic tool of the Johnson (and Pearsonian) Systems. Shown, also there, are

some points of our distributions on that plane. Some remarks on these

points are also included there followed by the derivation of the moment

generating function.

The theory of the Johnson Systems as cited by Johnson (1949) tells

us that even at their best the moments are expected only to provide

approximations to our distributions at the general trend level. That

is to say, the jumps (discontinuities) resulting from contribution to

the convolution by the discrete random variable and originating from 

the initial spike probabilities p^ and p^ are ignored. Of course, these 

details of the jumps are essential, especially when we deal with deciding

on the percentage points for the purposes of formulating the decision

rules of the "new" schemes. A look at the graph of the numerically

convolved distributions (shown in the representative example above) may

clarify this point more. We should not expect the Johnson System to

reveal these discontinuities. Its only effectiveness goes as far as

matching the four moments and so may be suitable for mimicking our 

distributions for large values of n (i.e. large enough for the discontinuities 

to vanish or become "tolerably" negligible) .
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3.2.2. The work done in the development of techniques to evaluate

distributions that arise in a convolution context include Baxter (1981) ,

Cleroux and McConalogue (1976) , McConalogue (1978 and 1981) . Though

their ideas apply effectively to purely continuous distributions or purely

discrete ones we still feel that the n-fold convolutions of mixtures of

discrete-continuous random variables did not receive a direct attention.

The reason for lack of developments in the area of mixtures may possibly 

be that there are few problems in applied statistics which give rise to

such "mixed" models.

3.3 Evaluation of the (Percentage P o i n t f r o m  the Tabulated Convolutions

As developed earlier we have a certain grid of the distribution of eX-»

the statistic parameter mean Q in a tabular form. Generally, and for

our work, we would like to be able to find the values of this statistic

corresponding to any set of prespecified values of probability. We are

interested in determining the percentage point, say t, such that:

Pr{Q i t }  = a . ,

where a is given.

3.3.1. The major difficulty is that due to the distribution being a 

mixture of convoluted discrete and continuous probabilities there arises

certain jumps in the distribution function at the specific points where

t = r/n, for r=0,l,...,n (where n is the sample size). This difficulty

becomes more serious if we know that these jumps may or may not be

precisely reflected by the tabulations and we need to locate them beside

measuring them. This could only be done by:
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(i) splitting the distribution into its continuous part and discrete

one,

(ii) removing the contamination from all the grid points, and

(iii) specially treating the points of the continuous part with a

cubic spline representation to link the otherwise tabular

points of the distribution (for which we used the FORTRAN

library NAG routines : EOlBAF and E02BBF of spline fitting).

In other words, the discontinuities at t = r/n, for r=O,l,...,n,

may coincide with the required probabilities. If the required probability

lies at the top or the bottom of the jump no new problem arises. However,

if it lies within the jump the required probability is not directly

accessible except by the device of an additional random experiment to

smooth all the discontinuities. We do not believe this to be good

sampling practice and we restrict the cases to those in which the

required p is directly accessible. The spline will provide us with a 

'continuous1 continuous part of the distribution, and since we know the 

precise position and size of the jumps these could be added to the cubic 

spline representation to form the whole of the distribution with the 

position and the extent of the discontinuities precisely known.

The size of the jumps is given by the distribution of the discrete 

probability originating from the spikes p^ and p? at the ends of the range 

of the mean of Q (X)'s and will show as a trinomial distribution in the 

n-fold convolution. Formally, we have this discrete distribution as

follows:
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Pr{i effectives , 0 marginals, (n-i) defectives: given n}

= C(n,O,i) pi P° Pq11 for i=0,1,2 ,. .. ,n

= (PQ + P 2)n [C(n,0,i) . (P2/(PO+P2))! . (PQ/(PO+P2)) (n_l)]

where,

C(n,0,i) = n! / (i! 0! (n-i) !) ,

pQ = $ (A-JJ.),

p2 = 1 - $(B-H),

P0 + P 1 + P2 =

and A, B are the specifications limits as before.

The rectangular brackets contain the usual term of standard (or

proper) Binomial distribution model. The distribution jump represented

by this trinomial form would be called the Trinomial jump at the ith

position. It can be added at the ith position to its continuous

counterpart produced by the cubic spline. These specific positions may 

need to be interpolated and that is where the spline-fit has its vital

role.

3.3.2 Problem of "Non-Existence"

All the above made it generally possible to find the percentage points 

as given in the tables (showing some of the important percentage points

in the Appendix (C.2.) ) with one major exception. This is the non-
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existenceofpercentage points for certain points of the distribution 

(in the tables in the Appendix these show, for convenience, as negative

values). This apparent side issue, gave rise to some complications of

non-existence of some schemes. The feature is likened to the problem

of percentage points in the discrete random variables such as in the

Binomial model. In fact the same basis for the argument of non-existence

holds in our case giving rise to non-existent inverses of our composite

probability function. This problem will reappear in the context of

establishing the parameters of our new schemes as will be discussed in

Chapter 4.

3.3.3 Mathematical Vision of the "New" Distributions as Related to

Trinomial Jumps

As another way of perceiving the above discussion, and though the

distribution produced by removing the contaminating discrete part is 

stored in a tabular grid of M+2 points, it can be theoretically conceived

of as a function F(y: n,A,B) defined as:

F (y) = lim {F(y-d) + F(y+d)}/2 
d->0

/  The form of the distribution is useful in finding the probability for 

any cut-off percentage point of the mean quality for given sample size, 

n <3- {2^ : k=O,l ,2,3,...}, of X^ (distributed as N(|i,l), and given

the specification limit A=0 and a level of B. Thus:

Pr [Q < t given n, A, B] n

j (t)
: n, A, B) + £ H(i : n, A, B)

i=0
= F(t
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where;

j(t) = integral part of (n.t)

and H(r : n,A,B) is a Trinomial probability term of 0 marginals,

r (total number of defectives plus effectives), with our usual parameters

n ' P0' Pl' P 2 ’

What we have done is to replace the "continuous" part (given by the

grid points) by a smoothly connected spline representation so as to enable

interpolation. Then the Trinomial jumps are allocated precisely and

integrated within this new representation.



58

CHAPTER 4

ON THE DETERMINATION OF TEST CRITERIA

FOR NEW SCHEMES AND EQUIVALENCE

4.1 General

In the previous Chapter 3, the percentage points for the selected 

percentages of the cumulative probability of the "new" average quality 

statistic, Qn (X), were evaluated using the continuous spline-fit and 

the discrete Trinomial jumps.These results were used here below to set

up and establish the decision rules for our "new" schemes. Once these

were determined the "equivalences" (or matchings).with the orthodox
schemes were established next.^ In all these matchings interpolation 

was used extensively. The problem [discussed^earlier in section 3.3.2]

of "non-existence" of the percentage points for some probabilities of 

the statistic Q^iX) arises more significantly for lower n values and 

tends to diminish as n gets larger.

\A * The determination of the decision rules and their parameters are

based on the idea of the O.C. curve. Two points on the O.C. curve are felt 

to be_enough for fixing the plan parameters.y If one or both of these 

two O.C. points correspond to percentage points that are "non-existent"

then a plan with such O.C. specifications will not be available.

t w o points on the O.C. curve are also used in the matching (or

equivalence) procedure of our schemes with other schemes. In the next

sections we give a review of the matching procedures in the literature 

together with our chosen method. The sections following it (sections
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(4.5.1 - 4.5.4)) will consider the equivalence (or matching) of our

schemes with the orthodox ones, and the techniques used in making them.

These are followed by sections with notes and comments on equivalences

and the performance of sample savings of our "new" schemes in relation

to the orthodox ones.

4.2 Equivalence and Matching Procedures

4.2.1. The concept of "equivalence" in the literature: In theory, two

plans with different parameters and decision procedures are said to be-•- ■
"equivalent" if their O.C. curves coincide. In practice this is not

needed exactly as it is a stringent requirement to meet. All the work

done in this respect is based on the fact that near the top (or bottom)

of the O.C. curves the would-be-equivalent curves should be very close

and so close elsewhere that the protection levels are practically

coincident.

In the literature, there are basically two definitions to this

effect; one is attributable to Hamaker and Van Strik (1955) , and the

other is due to Bravo and Wetherill (1980) . Hamaker and Van Strik (1955)

defined p.C..- -CU-rves to be "equivalent" when they share the point of

control p50 (i.e. fix the indifference point of 50% acceptance) and have

the same relative slope h at that point of p50; where

h = - (d £n Pa/d £n p)/p5Q = - 2(p.d Pa/dp)/p5Q.

Bravo and Wetherill (1980) suggested matching at the two points 

corresponding to the AQL and the point of indifference quality stipulated 

to be where the probability of acceptance is P = 50%. (There is a
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variant of this that uses 10% rather than the 50% but we have numerical

i evidence that this would not matter in principle).

• 4.2.2. We find that the one point control on the O.C. curve as in the

Hamaker and Van Strik methods with its mathematical elegance necessarily

brings about unnecessary complications in our case especially when we 

know that our probability distribution of the test statistic Qn (X) is 

a numerical tabulation rather than a compact closed form. Moreover,

; as can be seen, either definition reveals the same basic concept and that

-J the procedure due to Bravo and Wetherill (1980) is more appealing and1 1
j easier to implement especially for our tabulated distributions, and hence

J ]

• it is adopted in furthering this research.
■; ¡3

/  In line with this discussion our parameterisation and determination 

of the decision criteria would be made on the same basis, i.e. by solving

for two points of probability of acceptance as in the following section

(section (4.3)), and then uses these two points to find "equivalents".

,Once "equivalences" are established tests on the properties under study

((as cited in section (1.1.1) of Chapter 1)) will be viable and possible

to carry out.

4.3. Determination of Decision Parameters and Criteria for the "New" Schemes

y As mentioned earlier the determination of the decision rules for a 

plan in our "new" schemes and its parameters will be based on the idea 

of the O.C. curve. Two points on the O.C. curve fix the plan as follows:

f lc "1(a) Given n (to be chosen from the set of {2 , for k = 1,2,...},
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and an AQL (appropriately chosen from the p^ values in the

tables), then for a fixed value of B we have a unique percentage

point, t, that gives a cumulative probability level a

(corresponding to an acceptance probability of P = 1—et) . IV A.........  - ...... .... “ ™ -  -  -  — - ... -  a      V
V

(b) Having determined the t value and the a-risk point on the O.C. 

curve, we then search for the value of Pg that corresponds to 

the acceptance level of 0 with the same percentage point t.

In other words the cut-off point, t, of the distribution of the 

average quality is determined such that a batchwith Pg(l) proportion

defective [read AQL] will have-a. probability,of acceptance P = i-a*• --  * ’ -------....
(for prespecified a) while a batch with P q (2) defective proportion,

(p (1) < p (2)) is accepted with probability P = 0 (0 < 1-a). «-"The O.C. (J u a
curve will then pass through the points (AQL,l-a) and (Pg(2), 0) which, 

as mentioned before will act as a frame of reference for finding

equivalents later on and it is the base of that "equivalence".--

The result of this process of determining these two points arrives 

at a unique point of (n, AQL, P q (2), t) on the parametric space of our 

scheme, and hence determine the plan with the same protection levels as

the O.C. curve passing through the above-mentioned two O.C. points. -"This

set of parameters could also be translated into (n, u(l-a) , p.(0) , B) or

other obvious forms depending on the circumstances and convenience.

There are two problems facing the evaluation process of these two

points on the O.C. curve. The first is that interpolation in the tables 

is needed to find the Pg(2) (or alternatively its corresponding |u(0) for
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fixing the second O.C. point. The other problem is that of "non-existence"

of the particular percentage point in the distribution representation.

Interpolation: We need to interpolate for the Pq (2) corresponding 

to our t value because the distribution percentage points are,

again, on a grid of equi-spaced p's. This equi-spacing was

originally intended to facilitate interpolation. Linear inter

polation between the p's is made possible and reliable by the

smallness of the spacing between the p's. The only complication

for interpolation procedure is the possible occurrence of the

problem of "non-existence" of one or both of the bounding t-values

needed as interpolation parameters. There is a solution to Such

a problem as is explained in details in the next procedure

section (section (4.3.1)).

"Non-existence": Non-existence in this context could only

prevail as a hindrance to the interpolation process above. The 

problem that the interpolated value of P q (2) corresponds to a 

non-existent t-value does not arise at all, obviously.

4.3.1 Procedure for Determining the Decision Parameters (given n,B,a and 3)

In our work we chose a = 0.05 and 6 = 0.50 (i.e. a 95% producer's

risk and 50% consumer's risk (or indifference point) ) . We have a

prespecified set of AQL's for 95% level (namely, the set of p^ values of 

{0.0107, 0.0139, 0.0179, 0.0228, 0.0287, 0.0359, 0.0446, 0.0548, 0.0668, 

0.0808, 0.0968} corresponding to p values of {2.3 (-0.1) 1.3 } , respectively.
( A ft) A. \ 1

\ J.... ■■■ / /
The procedure for determining the decision parameters is as in the
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following major steps:

(i) Choose a specific AQL (for 95% level) and so determine a

value for t, the test parameter for the test statistic.

(ii) Interpolate for the p^ (or p) value in the percentage point 

table at the 50% level such that its percentage point is

equal to t.

ix If no problem of "non-existence" appears this procedure will 

determine Pg(2) the proportion defective for the other O.C. point, hence 

a plan is determined.

The interpolation procedure changes its grounds from being in terms 

of the Pq values to be in terms of their corresponding p values because 

these are equally spaced in the tables. In between two successive p

values the interpolation used is linear since the interval spacing (of

0.1) of the p values of the percentage points is well behaved except,

of course, in cases next to the jumps. This is when we encounter a

problem of non-existence of a percentage point. In other words if no 

discontinuity is caused by the value i/n for t then linear interpolation 

should suffice; most of the cases are solved by this simple interpolation.

(Note here i = 0,1,2,...,n designates the points of discontinuities).

If there is a discontinuity problem then we need either to extrapolate 

from above or below depending on the location of the discontinuity. All

the above search procedure is best summarised in the following steps, 

which apply to the tables of the percentage points shown in Appendix (C.2).
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Firstly, let p.+ denote the smallest p. for which the tabulated 
percentage point, T, is such that T > t Z(/4here t is the test criterion 

determined by fixing the first O.C. point of (AQL, 1-a). Similarly, 

let p._ be the largest p for which T < t. In both cases ignore those 

p's for which T is negative. (Remember that in the tables of percentage 

points a negative T value is a convenient way of denoting a "non-existence"

of a percentage point for the specific given level of probability).

If p+ and p are spaced 0.1 apart, and the interval (T(p+) , T(p_)) 

does not include a critical jump value then the mentioned interval is a

normal interval and linear interpolation in p's is carried out.

If not this case we then consider two situations:

(1) For t less than the critical position of i/n we extrapolate

from p upwards.

(2) For t > i/n we extrapolate from p+ downwards.

And since under such circumstances we cannot interpolate between 

p+ and p_ we will need four p's to be able to fix our extrapolated p 

then four values will be returned from these steps to be used in the 

extrapolation. These four values are T(p+), T((p+) + 0.1), T(p_) and 

T((p ) - 0.1) . The steps of all this exercise are included in the computer

program EQUIV.FOR in Appendix (B.4.).

4.4 The Basic Ramp Decision Criteria: As a result of all the above 

discussion we can get a Pg(2) for the 100 6% (second) point on the

O.C. curve. The protection level by this O.C. curve which passes through
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(AQL, 1-a) and (pQ (2), 6) is determined by the solution values of n, AQL, 

t and B fixed in the above sections.

These decision parameters are used as in the following typical and

basic decision rules:

* Decide the values of n, B.

* Determine t value by choice of protection level.

* Take a sample of n r.v.'s x^, x^, . .., xn drawn independently 

from a batch, believed to be normally distributed,evaluate Q(xJ

for each and every x .

* Evaluate the average of these Q(xJ's, denote it by Qn (x) -

* If Q (x) > t accept, otherwise reject the batch from which the
n

sample was drawn.

*4.5 Determination of the Orthodox "Equivalents" of our Plans

For the established plans of the "new" schemes as given by the O.C.

curve fixed by the two points as shown above we can use such points in

moving the information to determine the "equivalents" to each and every

"new" plan in the orthodox field of schemes. The basis for this

equivalence is the same O.C. curve on which the "new" plan was determined.

In the following sections we will discuss methods of finding the

'"equivalents" to our determined plans in the cases of two-class attributes

and a-known and unknown variables plans. In each case we pick the 

resultant O.C. points of (AQL, 95%) and (Pq (2), 50%) which were arrived
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at from establishing the "new" plans above, and use them to find a

"matching" (or "eqivalent") plan of the well established orthodox schemes.

Results for all the matchings made are cited in the tables in Appendix

(C.3.) .

4.5.1 The Two-Class Attribute "Equivalence"

The parameters of importance in the two-class attribute schemes

are n, the attribute sample size, and c, the acceptance number of

defectives. In the equivalence process in principle the two given

probability of acceptance points of (AQL, (1-a)) and (Pq (2), 8) could 

be s o l v e d f o r n a n d  c to determine the attribute plan which is equivalent

to the given "Ramp" plan.

X  Because the Binomial model (behind the acceptance probability of 

the attribute case) is discrete it may not be a convenient method since

it will be difficult and sometimes impossible to satisfy the two O.C.

points exactly. Suggested legitimate flexibilities in the way of

approaching the problem are introduced as follows.

Let P (p) denote acceptance probability for p proportion defective- ci
then a way of finding a convenient form to work is to use the approximating

system of the following inequalities:

P (AQL) 3s 1-a a
P (p (2)) < 8 a o

where,
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c /n \P (P) = Z p'-d-p)11 1
a i=0 \i/

Also, we make use of the fact that

B(c; n, p) *  P(c, np) lp(2np, 2(c+l))

where,

B(c;n,p) is the cumulative Binomial up to c (with parameters n and p ) ,

P(c, np) is the corresponding cumulative Poisson with mean np,

and ip(2np, 2(c+l)) is the /^distribution with "(c+1) d.f. and a level 

corresponding to a percentage point / 2 > 2np".

These are well accepted approximations of one another (see Hald (1977)

and Wetherill (1969)) . These would lead us to an easier system to solve
2,in terms of the /-distribution rather than the more complicated Binomial

system of inequalities. So we have:

Pr{ x2 > 2np : given 2(c+l) d.f.} 1-a (5.1)

Pr{ X2 > 2np : given 2(c+l) d.f.} < 6 (5.2)

These inequalities should be constrained such as to provide a little

tolerance and no major discrepancies. They should be as close as

possible to the values on the right-hand-side of the inequalities. A

simple method of minimising c will have such an effect and is described

below.
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/ A method due to Hald (1976-77) proved to be invaluable in solving

for n and c, was also used in Bravo and Wetherill (1980), and is followed

in the solution of (5.1) and (5.2) simultaneously, next.

■/ Given AQL and p^(2) corresponding to a = 0.05 and 3 = 0.50 respectively, 

then we require a solution for (n, c) such that

P (AQL) 1-aa.

Pa (p0 (2)) c 6

and c is as small as possible, where AQL, p^(2) , a and 3 are given

values such that:

0 < AQL < P q (2) < 1

and 0 <  3 < 1-a <1.

The tools for the solution are:

(1) The auxiliary function (c) which is the solution of

P(c, np) = P for 0 < P C 1

where P(c, np) is the usual Poisson distribution and can be

approximated by its above-mentioned approximation.

(2) The decreasing function of c defined as:

R(c, a, 3) = {m^ (c){/{m^-aic)}
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which could be expressed as R(c) since a and S are given in

this context.

(3) (a) For integral value of c we considered solving the above-

mentioned inequalities rather than the equalities. These

will imply that the smallest c is uniquely determined by

R(c-l) > {p0 (2)/AQL} > R(c) (I)

(b) Later on, the corresponding n satisfies the constraint

that it should lie within the interval:

({mg (c )/p q (2) (c)/AQL}) (II)

The importance of this method lies in the fact that the function

R(c) is not a function of n. By guess work and some small amount of

trial and error we could locate the smallest c value. This c is then

substituted in equation (II) above to find n [or probably an interval of

nl .

Note that if the interval does not include an integral value of n

then increase c and go through the process from (3)(b) all over again.

Also note that:

B(c; n, p) P(c, np) (1/c!) tC e t dt

np

where the last term is the \ -probability:

Pr{\2 > 2np : given 2(c+l) d.f.}
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y  This methodology of solving for n and c has been incorporated in 

the Fortran Routine called MATCH contained in the computer program called 

EQU1V which is responsible for the matching of the two-class attributes

(as well as the other orthodox) plans to our "Ramp" plans. (These

programs are listed in Appendix (B.4.)) . An illustrative part of the

results are shown in the tables in Appendix (C.3.) together with results

for the "equivalent" variables cases (whose decision parameters were

determined as discussed in the next two sections).

4.5.2 g-known Variables Plans "Equivalence"

To match the g-known variables plans to our "new" plans we would 

utilise the following standard univariate normal theory and its analytical 

relations corresponding to the (1-a) 100% and (3) 100% levels, that is:

and

{k (l-a)

= g . $_1(3)

where k and n are the usual parameters of the decision rules of the g- g cr
known variables plans.

These equations solve for k^ and n^, thus if Ct - 0.05 and 3 - 0.50:

and 2

It should be noted that in practice this sample size has to be
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integral-valued (and usually small) , so that an exact integral value 

does not necessarily follow from these theoretical results but the size 

of such a problem of non—exactness gets smaller for larger sample sizes. 

Results for the matching of d-known plans are shown also in the same

tables of Appendix (C.3.).

4.5.3 "Equivalence" for Unknown-d Variables Plans

For matching these S-plans to our new schemes given the two points

of the O.C. curve we use the iterative approximating procedure for

finding the parameters of the Non-Central t-distribution suggested by

Hamaker (1976) and advocated by Wetherill and Kollerstrom (1979) and

Bravo and Wetherill (1980) who all checked it as adequate. Our results

using the same method compare very well with the Bravo and Wetherill (1980)

published results. The method uses the d-known results and is as

summarised in the following argument:

In the d-known plan based on m (sample size) and k (test constant)

we accept if the sample mean X^ A — k d . And if d is unknown then

we will have the same O.C. curve if n (the S-plan sample size) and h

(its test constant) are adjusted such that the random variables

[X + h . Si and [X + k . d] are matched so as to have the same mean n m
and same variance, where S is the usual unbiased sample standard deviation, 

As a result of eqnat*~ing mean and variance we get the following approximate

solutions:

k = h . (4n - 5)/(4n - 4)

m = n / (1 + h 2/2)

(1)

(2)
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A numerical solution could be sought iteratively noting that n has 

to be greater than m with an incremental factor of 1 + h2/2. An initial 

value for h is h=k since the factor (4n — 5)/(4n — 4) could be approximated, 

first time, by 1. From the second equation, (2) above, we evaluate an 

approximation for n by substituting for h=k. This value of n is then 

used in (1) to give a better h value. A final approximation of n is 

computed using (2) .

We have found that this iterative process converges quickly to values 

/ of k and n and a solution existed for all cases. The method was used in

the Fortran program, EQUIV, which gave the results partly displayed in

Appendix (C.3.) for cases of S-plan "equivalents" together with the other

cases.

y  4.5.4. All the equivalences and their procedures are incorporated in the 

FORTRAN program EQUIV mentioned above which is listed in the Appendix (B.4.)

Our work has arrived at the conclusion that matching (as is recognised in 

many of the publications of the existing orthodox schemes, e.g. BS6002, 

MIL-STD-414 ..., etc) is in some cases very poor indeed. For further 

evidence in this respect we refer to Bravo and Wetherill (1980) .

The results of our matchings as discussed above are meant to serve

three purposes:

(a) Give illustrations of the "equivalents" for their own sake and 

show procedures for movinq from a scheme to another through 

"equivalence".

(b) Show the performance of the sample size savings in the comparative
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sense with and in relation to the two extremes (i.e. the 0-known 

variables and the two—class attribute schemes). A detailed 

study of this phenomenon is given in section (4.5.5) below, 

but some definite savings were made by our "new" schemes over 

the attributes case and competitively with the v a r - i  a h i  ps 

(unknown-CT) schemes.

(c) Make a basis for the analysis of the robustness property since 

under equivalence (matching) all schemes will have the same

O.C. performance for the similar background assumption of a

Normal distribution model of the process. This point is used

in the robustness studies which are dealt with in Chapter 5.

4.5.5 Performance of the Sample Sizes under Equivalence of Different

Schemes.

The results in the tables in Appendix(C.4.) about the behaviour of 

sample size show the sample sizes for the different schemes under equivalence. 

These results are reflected graphically in figure (4.5.5) below so as to 

give a more illuminating insight of the behaviour of each scheme in so 

far as sample size is concerned. The graphs show each plans performance 

by plotting the ratio of their sample sizes to their "equivalent" Ramp sample 

size against AQL's. The horizontal broken-line indicate such a curve for 

the case of the Ramp itself. The bottom curves are the cases of the

orthodox by-variables plans, the lowest one refers to the cr-plan. For 

each B value there is a separate figure for different (Ramp) sample sizes.

As a function of AQL each figure shows quite clearly that the lower the 

AQL the higher the gap between the Attribute curve and any other alternative 

case. It is beyond doubt that there is a large amount of savings in the
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Ramp over the Attribute case. All the diagrams indicate how the Ramp 

could act as a transition between the attribute and the by-variables 

schemes. Moreover, and interestingly enough, there is evidence of sub 

stantial savings of the Ramp over the S-plan.
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Figure (4.5.5) : Sample size ratio n./n as a function of AQL (where n is 
3

the Ramp sample size and n^ is the alternative-plan 

sample size).

Note: The highest curve in each diagram is that of the attribute scheme, 
the second is for the S-plan and the bottom is for the a-plan. The 
broken line is for the Ramp case.

n = 8
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n = 16

n = 32

L i
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n = 64

n = 128

B = 0 .7  B = 1 .1  B = 1 .5  B = 1 .9
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CHAPTER 5

ROBUSTNESS STUDIES

(Analytical and Simulated)

5.1 Definition of Robustness Concept and Work in the Area

5.1.1 General Note and Definition Problems

From the beginning "robustness" has been, and still is, a rather

vague idea. Box and Anderson (1955) introduced "robustness" in the

following context. 'Procedures are required which are "robust" (insensitive

to changes in extraneous factors not under test) as well as powerful

(sensitive to specific factors under test)'.

Box and Tiao (1964-b) and later Barnard (1974-a) put forward the

case for the distinction between "criterion robustness" and "inference 

robustness". They see "criterion robustness" as concerned with the effects 

of departures from the assumptions on the null distribution when the test 

criterion under investigation is taken as given; with "inference

robustness" consideration is also given to questioning the appropriateness 

of the test criterion on a sample to sample basis. Our analysis of the 

problem takes the line of "criterion robustness" for two reasons. Firstly, 

we are studying test criteria which are given in the sense that their 

schemes have existed for a long time and are well established so that it 

is only practical to look at their limitations and warn against them in 

the short run while in the long run consideration of new , better and 

appealingly simple, alternatives could be sought. Secondly, the approach
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by directly comparing methods forces us to take the test criterion as 

given especially since these have some optimal properties when assumptions 

are correct, which renders a study in terms of "inference robustness", 

that might entail a change in the criterion, not recommendable.

At a different level, the literature has got two streams of thought, 

one deals with large sample sizes and asymptotic studies while the other 

looks at small sample sizes. In his paper Huber (1972) gave a review of

recent theoretical works on robustness and their different schools of

thought, citing many references in the area. In the paper there is a

discussion of the notions of robustness through asymptotic studies.

Huber seems to encourage problem-oriented or local goals since he

argues that:

(a) a  small asymptotic variance over some neighbourhood of one 

shape, in particular the normal one (Huber (1964)), and;

(b) the distribution of the estimate should change little under 

arbitrary small variations of the underlying distribution and 

uniformly with n;

are the important criteria. Like Anscombe (1960) he advocates the view

point that robustness is a kind of insurance problem whereby one is 

willing to lose the premium (here, loss of efficiency of, say, 5% to 10%) 

to guarantee and safeguard against ill effects caused by small deviations 

from the ideal model.

For finite small sampling robustness Huber (1972) admits that the
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appropriate robustness criteria are much more difficult to lay down. This 

and other factors make our robustness studies difficult and the theoretical 

literature in the area is not very helpful although directive. In the 

next section we have a review of some of the work on robustness of 

relevance to our problem to act as a broad guide and a base from which 

to build.

The discussion, especially on the theoretical ideas on robustness 

criteria shows that there are differences in emphasis but still quite an 

agreement on the notion created by Box and Anderson (1955) mentioned above.

All the complex robustness requirements reviewed by Huber (1972)

are not easy to maintain. This is especially true if we are to handle

cases of robustness of estimators not only of locations or dispersion

but effectively of the whole distribution. This is because we need to 

estimate the quality in terms of the proportions in the tails as in our 

case of the triplets (pQ , p.^, p2) • Under the circumstances we chose to 

start thinking in terms of the Box and Anderson general notion and relate 

to Huber's ideas ((a) and (b) , above) with special reference to (b) .

j Our strategy will have the following features. When studying the 

impact of the (non-normal) distributional changes we will vary the 

distribution form to encompass reasonable changes in the process while 

controlling and fixing the variance. As mentioned earlier one standard 

measure of quality in acceptance sampling and which is common between all 

distributions is the triplet (pQ , P x , P 2> • Varying the variance alone 

(under Normality) , when studying variance effects, will have the effect of 

changing these three components for a given mean or any other central 

value. The changes in the distribution form serves two purposes:
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(1) Indicate which departures from normality are most crucial 

for each sampling scheme.

(2) Check which of the plans under study here can restrict the 

range of variation of P^ over a reasonable range of non-normal 

distributions. [This could be facilitated by a standardised 

measure of robustness to define such a range (see section 

(5.2.1)) below].

5.1.2 Some Review of Work Related to the Problem

Past work relevant to our robustness studies was done by Wald and

Wolfowitz (1946), Rao, Subrahamaniam and Owen (1972) [who investigated

Owen's work (1964)], and Pearson, D'Agostino and Bowman (1977).

The work of Wald and Wolfowitz (1946) tried to control the overall

combined proportion in the tails but did not go beyond that to try to 

control the level in each tail. To only guarantee that with probability 

P the event that the proportion between (X - k^s) and (X + k2>s) is at 

least (1-p) would not necessarily guarantee that each of the tails carries 

the right amount of the proportion defective p, say p/2 .

This last point constituted a motivation for the work of Owen (1964) 

who developed certain methods to tie up the constants of the by-variables 

sampling plans (with given limits of specifications) such that each tail 

has p/2 proportion. In turn Owen's work was investigated in a robustness 

sense by Rao, Subrahamaniam and Owen (1972) . They looked into the effect 

of non-normality on Owen's techniques and controlling the proportions of 

P/2 in each tail. Their conclusion is that Owen's limits when subjected
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to "very moderately Non-Normal " distributions, showed that non-normality 

effects are:

- more pronounced as n increases,

- increasingly felt as p decreases and

- are dependent on relative magnitude and sign of the standardised 

cumulants and (B2 - 3) .

Pearson et al (1977) showed that the error rates of the t-test were

approximately linear in and $ . This point together with the latest

point (above) showed the significance of the factors of skewness and

peakedness in investigating any non-normality or indeed any robustness

studies. Partly for this reason we chose the specific alternative

distributional models (discussed in the next sections) to model the non

normality of our production process. We also add the consideration of 

variance changes from assumed values within normality and make studies on

such effects within non-normal distributions. The models show varying 

degrees of peakedness and assymmetry together with other real considerations 

of a process like variance changes. We note in passing that our results 

agreed with Owen's results, especially for the first two points mentioned 

above. In common with the work of Pearson, D'Agnostino and Bowman (1977) 

our choice of the distributional models was primarily made so that we 

could study the performance of our plans under non—normal models with 

prior knowledge of the direction of non-normality in terms of the degrees 

of symmetry and/or kurtosis. In their work they suggested specific regions 

of non-normality related directly to the Normality point (0,3) in the general 

sub-classification of the (Bp  P^ne. These regions were (7^=0, B2 > 3)

(/Bt=0, B2 < 3) , /Bx < 0 and /Bx > 0.
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Relating our work to all the above-mentioned works, Owen's invest

igation is very relevant. Yet, it is limited in comparison with our 

requirements in the following two senses:

(i) It considers a specific case in which p, the proportion

defective is equally balanced in the two tails while our study 

is interested in one-sided defective control. Moreover, they 

limit non-normality to the close neighbourhood of normality.

(ii) It was shown that for low values of p the effect of non-normality 

is increasingly noticeable. Though this does not tell us

specificallly about cases of smaller proportions in the lower

tails there is evidence (Pearson et al (1964)) that two-sided

control is more stable than one-sided control, and so we do not 

seem likely to have satisfactory results if we judge by Owen's

results.

With reference to the investigation of Owen's methods for robustness 

made by Rao et al (1972) , who used Gayen' s (1949) approach which is 

highly tied to /£ and (B„ - 3) as parameters of departure from normality, 

we would highlight as significant their conclusions that the variation 

in (ft - 3) is compensated for by the effect of • Also the 

correction afforded by (&2 ~ tends to increase P (the statistical 

confidence that no more than p^ , say, is below (x - k^.s) and no more than 

P2, say, is above (x + k^s)). Moreover, they remarked that for large p 

values (< 0.5) the values of P are most robust to departures from normality. 

We took non-normal cases as below in such a way as to reflect skewness in 

a separate model from that reflecting kurtosis.
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5.2 Forms of Distribution Models used for Robustness

In accord with the previous discussion, (and also for other motivating 

factors which will be mentioned in the following sections) , we decided to 

consider testing our plans with each of the following d i gj~.ri bnt~.i nng as 

alternative, non -normal, process models:

(1) Contaminated Normal Distribution (defined as a mixture of two 

normals) : this deals with real effects that could possibly be 

experienced quite often, e.g., in a product of a six-headed 

production unit or when a batch contains an output which is

supposed to come from a homogeneous grade but came from two

(or more) processes with heterogeneous grades of products.

(2) Lognormal Distribution: this reflects a skewness of the process. 

Though it is skewed to the right one can imagine the impact

of the left-hand skewness.

(3) Two-point Distribution: this is expected to show the effects 

of extremely polarised 2-class processes. It may not be a 

realistic case to consider from a process point of view but it 

is a simple extreme case of a mixture of distributions.

(4) Uniform Distribution: as a heavy-tailed distribution model it

i’Gflect the kurtosis requirements of a testing non—normal 

process. It can arise as a reasonable approximation to the 

product from a batch which is selected before delivery.

The distributions (1) and (2) were dealt with by simulation while
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(3) and (4) were amenable to analytical handling as is shown below in 

the section relevant to each of these distribution models. The following 

sections of detailed study of the performance of our plans' rrpdibi 1 -i-by 

give clues about the effects of the distinctions between these four models 

and the normal one. Z Two major features of these which are already 

highlighted are skewness and kurtosis.

One other feature is the contamination of the distribution of the

process which besides reflecting changes in skewness and kurtosis give 

more reality to mimicking the batches behaviour. Batches experience

mixed distributions when their contained items come from different lines

of production or even the same line but under different exogenous factors.

5.2.1 A Device for Measuring O.C. Sensitivity to Assumptions

■s' The distributional changes will reflect themselves on the resultant

O.C. curves. And we would like to be able to see the direction and

magnitude of the changes of the O.C. resulting from these violations of

the dist-r-jhut-jnnal assumptions. This will give an idea about how robust

are the plans and a definitive measure is needed. The standardised

measure ROB below would show direction and magnitude of the resultant 
ij

changes on O.C. performance:

“ Pa . (P0}
ROB..(p_) = 1 - .■

1:1 0 /p* (p _).{i-p * (pn B / n
a . u a . vj

where P* (.) is the accept probability under the assumed type i distribution
a ,1

P (.) is accept probability when distribution type i is violated 
a .
3

by type j .
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pQ i s  t h e  p r o p o r t i o n  d e f e c t i v e  a t  w h ic h  t h e  d i s c r e p a n c y  i s  m easu red

n i s  t h e  s a m p le  s i z e  f o r  t h e  " e q u i v a l e n t "  a t t r i b u t e  p l a n .

H ere, / n  i s  m e a n t t o  c r u d e l y  a d j u s t  f o r  t h e  s t e e p n e s s  o f  th e  O .C .

curve such t h a t  a  c o m p r e s s e d  O .C . ( a s  w hen n , t h e  e q u iv a l e n c e  2—c l a s s

sample s i z e ,  i s  h ig h )  i s  c o m p a re d  o n  t h e  sam e b a s i s  w i th  a  f l a t t e r  O .C.

(as when t h a t  n i s  low ) . T h i s  i s  t o  f a c i l i t a t e  t h e  c o m p a r is o n  o f  l a r g e -

sam ple-size e q u i v a l e n t s  w i t h  s m a l l - s a m p l e —s i z e  o n e s  i r r e s p e c t i v e  of th e

biasedness due t o  n . We s h o u ld  m e n t io n  t h a t  t h e  / ( P  ( 1-P  ) ) f a c t o r  in  
a  a

the m easure r e l a t e s  s y s t e m a t i c  d i f f e r e n c e s  t o  t h e  s t a n d a r d  e r r o r  f o r  a 

single B e r n o u l l i  t r i a l .  W ith  t h i s  t h e  a b s o l u t e  d i f f e r e n c e s  in  P^ a r e  

turned in to  s t a n d a r d i s e d  a n d ,  t h e r e f o r e ,  c o m p a ra b le  o n e s .

z D i s t r i b u t i o n  ty p e  i  i s  t h e  N (iJ.pl) . D i s t r i b u t i o n  j  i s  any  o f  th e  

a l te r n a t iv e  m o d e ls  w i th  t h e  sam e p r o p o r t i o n  d e f e c t i v e  p ^  b u t  some sh ap e  

other th an  t h a t  o f  t h e  n o r m a l .  I n  a n o t h e r  c o n t e x t ,  n am ely  th e  s tu d y  o f  

the v a r i a n c e - e f f e c t  r o b u s t n e s s  , t y p e  j  c o u ld  b e  N (p .,o  ) w here  th e  

variance  a 2 i s  n o t  e q u a l  t o  1 .

ROB c o u l d , f o r  e x a m p le , b e  e v a l u a t e d  a t  a  p a r t i c u l a r  v a lu e  o f  p^ 

above th e  i n d i f f e r e n c e  p o i n t  o r  a l t e r n a t i v e l y , f o r  a  p r e - d e te r m in e d  s e t  

of PQ's  in  w h ich  c a s e  a  m o d i f i c a t i o n  i s  n e e d e d ,  e . g .  t a k i n g  th e  a v e ra g e .  

However, o n e  p Q- v a l u e  o f  p a r t i c u l a r  i n t e r e s t  i n  A c c e p ta n c e  S am p lin g  i s  

the AQL, w h ich  w i l l  r e c e i v e  t h e  s p e c i a l  c o n s i d e r a t i o n  m  t h i s  r e s e a r c h .

Note t h a t  ab o v e  t h e  i n d i f f e r e n c e  p o i n t  ( a s  c o m p ared  w ith  b e lo w  i t )  th e  

sign ( r e a d ,  d i r e c t i o n )  c h a n g e s .

when t h e  p l a n s  u n d e r  s tu d y  a r e  The m e a su re  ROB i s  i r r e l e v a n t  wtien c u e  p
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"equivalent" s in c e  e q u i v a l e n c e  b y  d e f i n i t i o n  i m p l i e s  a  g iv e n  o .c . p e rfo rm a n c e  

for a l l  th e  c o n c e r n e d  p l a n s .

Pa i s  c h o se n  t o  b e  95% t h r o u g h o u t  t h e  r e s t  o f  t h i s  w o rk . T h is  c h o ic e  

is made f o r  t h e  f o l l o w i n g  r e a s o n .  S a m p lin g  sc h em e s  s h o u ld  e n c o u ra g e  

submission o f  good  q u a l i t y  m a t e r i a l ,  h e n c e  t h e  t o p - e n d  o f  t h e  c u rv e  i s  

most l ik e ly  t o  b e  u s e d .

5.2.2 M atch ing  t h e  D i s t r i b u t i o n  M o d e ls

B efo re  a s s e s s i n g  t h e  r o b u s t n e s s  we s h o u ld  a g r e e  on  a  f ra m e  o r  b a s i s  

for m atching  a l l  o f  t h e  d i s t r i b u t i o n a l  m o d e ls  so  a s  t o  make them  c o m p a ra b le .

The most s e n s i b l e  b a s i s  f o r  t h i s  i s  m a tc h in g  t h e  t h r e e  p r o p o r t i o n s  o f  

q u a lity  (pQ, p  , p ^ ) b u t  u n f o r t u n a t e l y  i t  i s  n o t  s t r i c t l y  a p p l i c a b l e .

For th e  d i s c r e t e  d i s t r i b u t i o n s  e s p e c i a l l y  t h e  o n e s  w i th  r e l a t i v e l y  few  

values t h i s  b a s i s  i s  p a r t i c u l a r l y  u n r e a s o n a b l e .  An exam ple  h e r e  i s  th e  

case o f  th e  t w o - p o in t  d i s t r i b u t i o n  ( c o n s i d e r e d  i n  s e c t i o n  ( 5 .2 .2 .3 )  b e lo w . 

Under such  c i r c u m s t a n c e s  we s h i f t  t h e  b a s i s  t o  m a tc h in g  th e  mean and  

variance  b u t  u n d e r  a l l  c i r c u m s t a n c e s  f i x  p ^ .

S in c e  t h e  mean a n d  v a r i a n c e  a r e  v e r y  e f f e c t i v e  in  m a tc h in g  th e  

d is c r e te  d i s t r i b u t i o n s  we w i l l  l e t  t h e  b a s i s  o f  c o m p a r is o n  b e  t h e  mean 

and v a r ia n c e  su c h  t h a t  t h e  p r o p o r t i o n  d e f e c t i v e  m a tc h e s  . The n e c e s s a r y  

p ro ced u res  f o r  t h i s  a r e  show n b e lo w . T he m a tc h in g s  a r e  done  f o r  e ach  o f  

the d i s t r i b u t i o n a l  m o d e ls  a s  i n  t h e  n e x t  s e c t i o n s .

5 -2 .2 .1 .  N orm al m o d e l:  H e r e ,  f o r  g iv e n  p Q a n d  P x (h en c e  p 2 ) we hav e
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Aa  -  U = a  . k 0

B -  IJ. = a  . k .
a  l

(1)

(2)

where $ (kQ) = p Q a n d  « H k p  = p Q + p .

S o lv in g  (1) a n d  (2) we g e t  t h e  m ean , | i ,  a n d  s t a n d a r d  d e v i a t i o n ,  a ,  a s :

U

and

a  =
k i “ ko

T h ese  mean a n d  s t a n d a r d  d e v i a t i o n  c o u ld  a c t  a s  t h e  m a tc h in g  p o i n t s  

fo r  p u rp o s e s  o f  c o m p a r in g  t h e  p e r f o r m a n c e s  o f  t h e  p l a n s .  T h is  d e v ic e  o f  

t r a n s l a t i n g  t h e  (p Q, p  , P 2 ) i n t o  a  m e a n - a n d - v a r ia n c e  c o p e s  s p e n d id ly  w ith  

the  t r a n s i t i o n  f ro m  t h e  c o n t i n u o u s  t o  t h e  d i s c r e t e  d i s t r i b u t i o n  m o d e ls .

The e v a l u a t i o n  o f  P ( t h e  a c c e p t a n c e  p r o b a b i l i t y )  f o r  t h e  n o rm al 
cl

model h a s  a l r e a d y  b e e n  h a n d le d  a n d  i t s  r e s u l t s  w ere  g iv e n  by C h a p te r  4 w hich 

m atches t h e  O .C . c u r v e s  u n d e r  t h e  a s s u m p t io n  o f  n o r m a l i t y .  What th e  r e s t  

of t h i s  c h a p te r  p o s e s  t o  a c c o m p l i s h  i s  t o  u s e  t h e  t e s t  c r i t e r i a  and  

p a ra m e te rs  o f  C h a p te r  4 (u n d e r  e q u iv a l e n c e )  a n d  s u b j e c t  them  t o  th e  f o l lo w in g  

n o n -no rm al m o d e ls . A n o t e  o f  how e a c h  o f  t h e  schem es u n d e r  s tu d y  p e rfo rm e d  

i s  made t h e r e w i t h .

5 .2 .2 .2 .  U n ifo rm  m o d e l:  f o r  a  s p e c i f i c  (PQ. P x - P 2> P o i n t  o u r  u n ifo rm  

d i s t r i b u t i o n  t h e o r y  t e l l s  u s  t h a t ;



where [C ^  C2 ] i s  t h e  d o m a in  o f  d e f i n i t i o n  o f  t h e  u n i fo r m  d i s t r i b u t i o n .

If we d e f in e  G.. = P j / P 1 f o r  j  = 0 , 2 ;  t h e n  f ro m  ( I )  a b o v e  we g e t ;

C 1 = “ Gg • B + (Gq + 1) . a  

and C2 = (G2 + 1) . B -  G2 . A

Änd know ledge o f  t h e  m ean a n d  v a r i a n c e  o f  t h e  u n i fo r m  in  (Cj , C2 ) g iv e s  u s :

Mean = <B . (1 + G2 -  GQ) + A . ( 1  -  G2 + G ) } /2

V ariance = {(B  -  A) (1 + G2 + GQ) } 2/ 1 2 .

T h is  mean a n d  v a r i a n c e  o f  t h e  u n i f o r m  may n o t  b e  n e e d e d  i f  th e

m atching w i th  t h e  d i s c r e t e  d i s t r i b u t i o n s  i s  made v i a  t h e  n o rm a l m odel

o n ly . i f  we f e e l  t h a t  we n e e d  t o  m a tc h  t h e  tw o d i s t r i b u t i o n s  on th e

(pQ/ P p  P 2 ) b a s i s  we h a v e  t o  l e t  t h e  v a r i a n c e  l o o s e  a n d  u n r e s t r i c t e d .  .

5 .2 .2 .2 .1  The P f o r  t h e  Ramp p l a n  u n d e r  t h e  u n ifo rm  d i s t r i b u t i o n ,  g iv e n  
a

the  t e s t  c r i t e r i a  T , c o u ld  b e  e v a l u a t e d  a s  f o l l o w s .

n
P = P r{  £ O (x  ) n .T  : g iv e n  n} (*)
a i=l

C o n s id e r  t h e  n ran d o m  v a r i a t e s  Q(X^) , i  = l , 2 , . . . , n .  The c o n v o lu t io n  

of t h e s e  r . v . ' s  w i l l  b e  co m p o sed  o f  t h r e e  v a r i a b l e s  r ^ , r ^  an d  r 2 ( c o r r e s 

pond ing  to  th e  n u m b ers  o f  d e f e c t i v e s ,  m a r g in a l s  a n d  e f f e c t i v e s ,  r e s p e c t i v e l y )
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r0 r2 haVS spike Probabilities p Q and p 2 respectively, while each of the 

rl marginals have a continuous uniform in (0,1). Denoting the convolution 

of these r.v.'s by S(r^) then

r i
Sir.) = Z Q(x.) , for 0 < x. < 1 

j = l 3

= 0 elsewhere.

Considering the fact that all the rQ defectives score a sum of 0, and 

that all the r^ in the sample score a sum of r2 , then the acceptance 

condition as in the argument in (*) above will give:

S(r ) 3s n.T - r2 (**)

For the given n and T we have S(rp representing a sum of r uniforms 

in (0,1) and the right-hand-side of (**) , above, is a constant for a

given combination of r,, r. in n. In other words, in evaluating P for a

given combination of r^, r2 in n we are dealing with a cumulative

distribution of a sum of r^ uniforms being greater than (n.T - r2) . If

we define F(t) as the distribution function for the mean of r uniforms

then the probability of the event (**) above is available by substituting 

the pivotal quantity (n.T - r2)/r^ ^or • Anĉ  as clear rg > r|

and r2 are random variables and their distribution depends on the triplet 

(pQ, P xz P 2) [a trinomial r.v.]. Consequently, we find that (*) developes 

into the following composite form:

n-r0 n
Z P r { s ( r p / r 1 1 g iv e n  r ^ r ^P = Z

r r °  r 0 =0

r o r i
x P0 p2 n!/(r0!r1ir2!)
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(1) In case of r^-0 , i.e. no marginals, thi 

conditional Binomial exactly as :

1 - , U..C. u i d iy i i i d i s ,  m i s  P t u r n s  o u t  t o  be  th e  A a

n n - r .
n  !(P 0 + P 2 )

r 2 = [nT ] r 2 ! ( n ~r 2 ) ! t P n + P :t Pn + P0 2 J

(put in  t h i s  way f o r  c o m p u t a t i o n a l  p u r p o s e s )  .

(2) In  c a s e  o f  0 < r ^  £ 1 0 , we c a l c u l a t e d  t h e  e x a c t  p^ r e p l a c i n g  th e  

f a c t o r  P r { s ( r p / r ^  ( n T - r ^ J / r ^  : r  , r  } by  th e  com plem ent o f  th e  

c u m u la tiv e  u n i f o r m  d i s t r i b u t i o n ,  F ( . ) ,  t h a t  i s :

P r { s ( r 1 ) / r  t :  r  , r ^  = 1 -  F ( t )

According to Kendall and Stuart (1963) :

F(t) = ( r ,  -  1) Z ( -1 )  
i= 0

r i !
i !  ( r^  -  i )  !

( t  -  i / r p
t < * ± i  

r l r l

and k = 0 , l . . . . , r  - 1 .  A s u i t a b l e  FORTRAN r o u t i n e  was d e v e lo p e d  to  

e v a lu a te  t h i s  F f u n c t i o n  ( l i s t e d  a s  UNFRMF i n  t h e  A ppendix  (B .5 .)  w i th in

th e  p ro g ra m  UNIFRM.FOR).

(3) C a se s  o f  r  > 10 w e re  c o m p u ted  v i a  th e  Norm al A p p ro x im a tio n  t o  th e

U niform  F u s in g  t h e  r e l a t i o n

, , t  -  0 .5  . 
F ( t )  = $ ( ------ ------- )

w here s = l / / ( 1 2 . r p .

(Some work on t h i s  N orm al A p p ro x im a tio n  w ith  some o th e r  more p r e c i s e  

v e r s io n s  o f  i t  i s  r e p o r t e d  in  A ppend ix  ( A . l . ) ) .
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5 .2 .2 .2 .2  R e s u l t s  o f  R o b u s tn e s s  u n d e r  U n ifo rm  M odel

The f o l l o w i n g  com m ents d e s c r i b e  t h e  r e s u l t s  o f  U n ifo rm  r o b u s tn e s s  

as shown in  t h e  t a b l e s  i n  A p p e n d ix  (c.3 .) (on th e  r i g h t  s i d e  o f  t h e  t a b l e s  

in  a colum n u n d e r  t h e  h e a d in g  o f  " U n ifo rm  R o b u s tn e s s " )  .

F o r  any  B v a lu e  a n d  g iv e n  AQL th e n  a s  Ramp n i n c r e a s e s  r o b u s tn e s s  

Pa ^ e c r e a s e s - T h is  i s  m ore s o  f o r  s m a l l  AQL' s  th a n  f o r  l a r g e  o n e s .  In  

te rm s o f  n t h e  r o b u s t n e s s  P o f  t h e  Ramp schem e, g iv e n  AQL, d e c r e a s e s  a s  

B i n c r e a s e s  f o r  s m a l l  AQL. F o r  m edium  AQL i t  d e c r e a s e s ,  f l a t t e n s  an d  th e n

i n c r e a s e s .  F o r  l a r g e  AQL t h i s  i n c r e a s e s .  A l l  t h i s  i s  a  r e f l e c t i o n  o f  th e

l e v e l  o f  c o n t r i b u t i o n  f ro m  t h e  c o n t in u o u s  ( v a r i a b l e )  p a r t  o f  t h e  r . v . ,  .

Q(X) . The m ore t h e  c o n t i n u o u s  p a r t  ( i . e .  t h e  l a r g e r  p  ) th e  l e s s  a r e  th e

c h a n ce s  f o r  a c c e p ta n c e  (a n d  s o ,  lo w  r o b u s t n e s s  l e v e l ) .

I n  c o m p a r a t iv e  t e r m s  t h e  Ramp c o m p e te s  w i th  t h e  S - p la n  from  e a r l i e r

AQL’s  th a n  w i th  t h e  U -p la n  ( i f  a t  a l l ) .  The U -p la n  i s  more e n d u r in g  th a n

th e  S - p la n  u n d e r  u n i f o r m i t y .  C o u p le d  w ith  t h e  P r o p e r ty  "Q" t h i s  makes 

th e  U -p la n  m ore rec o m m e n d a b le  t h a n  t h e  S - p l a n ,  w h ich  o n ly  r i v a l s  th e  Cf-plan

on th e  v a r i a n c e - e f f e c t  r o b u s t n e s s .

M ost i n t e r e s t i n g  i s  t h e  r e s u l t  t h a t  t h e  Ramp p l a n s  a r e  more r o b u s t  

th a n  any  o t h e r  b y - v a r i a b l e s  p l a n  f o r  an y  AQL is 0 .0 4 4 5  f o r  a s  s m a ll  a  Ramp n 

a s  4 . M o re o v e r , h e r e ,  t h e  Ramp i s  b e t t e r  th a n  th e  S - p la n  f o r  e a r l i e r  AQL,

AQL .0 2 8 7 5 . I t  s h o u ld  b e  a d d e d  t h a t  i f  a  f a i r  am ount o f  f l e x i b i l i t y  

i s  a l lo w e d  th e n  in  c a s e s  o f  AQL < 0 .0 4 4 5  we c a n  sa y  t h a t  w ith  r e s p e c t  o f  

r o b u s tn e s s  (u n d e r  U n if o rm ity )  t h e  Ramp i s  n o t  so  m ark e d ly  w orse  th a n  th e  

o th e r  b y —v a r i a b l e s  p l a n s ,  a n d  i s  d e f i n i t e l y  b e t t e r  th a n  them  f o r  AQL 0 .0 4 4 5

a s  m e n tio n e d .
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F or n 8 a  d i f f e r e n t  p i c t u r e  a p p e a r s .  The Ramp U n ifo rm -ro b u s tn e s s  

ge ts  w orse c o m p a red  w i t h  o t h e r  sc h em e s  a s  n  i n c r e a s e s .  T h e re  a r e  some 

cases w here t h e y  a r e  c o m p a r a b le  b u t  t h e s e  c a s e s  a r e  t h e  e x c e p t io n  r a t h e r  

than th e  r u l e .  H ow ever t h e  d i s c r e p a n c i e s  b e tw e e n  t h e  Ramp an d  b y - v a r i a b l e s  

(which a r e  a lw a y s  i n  f a v o u r  o f  t h e  0— p l a n )  c o u ld  be  th o u g h t  o f  a s  n o t  

m arkedly l a r g e  f o r  n  a s  s m a l l  a s  8 . F o r  v a lu e s  o f  n  g r e a t e r  th a n  8 i t  i s  

q u i te  n o t i c e a b l e  t h a t  t h e  S - p l a n  i s  m a r g i n a l l y  b e t t e r  th a n  th e  Ramp, and  

as Ramp n g e t s  l a r g e r  a n d  l a r g e r  t h e  Ramp f a l l s  f a r  b e h in d  th e  r e s t  b u t  

then  a l l  p l a n s  becom e v e r y  p o o r  in d e e d  a n d  p r o v e  n o t  t o  be  a l l  t h a t  u s e f u l

ex cep t f o r  t h e  2 - c l a s s  a t t r i b u t e  sc h em es o f  c o u r s e .

F o r  h ig h  Ramp n v a l u e s , low  AQL' s  a r e  m a rk e d ly  in  f a v o u r  o f  th e

o rth o d o x  b y - v a r i a b l e s  when c o m p a re d  w i th  Ramp f o r  B v a lu e s  g r e a t e r  th a n

B = 0 .5 .  The r o b u s t n e s s  l e v e l s  i n  t h i s  c o n t e x t  a r e  low  anyway e s p e c i a l l y

fo r  s m a ll  AQL.

As c o u ld  b e  s e e n  t h e  c a s e s  w h ere  t h e  Ramp p la n  c o m p e tes  w ith  th e  

G -p lan  (u n d e r  U n i f o rm ity )  a r e  l e s s  th a n  w ith  t h e  S - p la n  and  a r e  n e g l i g i b l e .  

We can  g e n e r a l i s e  t h a t  u n d e r  U n i f o r m i ty  t h e  b y - v a r i a b l e s  p l a n s  f o r  n > 8 

a re  b e t t e r  th a n  t h e  Ramp; a n d  t h a t  f o r  h ig h  n t h e  o n ly  w in n e r  i s  th e  Ramp 

w ith  s m a l l  B ( c l o s e  t o  0) s i n c e  t h e  h ig h  B v a lu e s  and  t h e  o th e r  b y 

v a r i a b l e s  seem  t o  f a i l  t o  g i v e  a n y  r e a s o n b ly  a c c e p ta b l e  l e v e l  o f  p r o t e c t i o n

and a r e  p r o v in g  t o  b e  u s e l e s s .

I f  a  maximum d i f f e r e n c e  o f  0 .3  b e tw e e n  v a lu e s  o f  P& u n d e r  u n i f o r m i ty  

i s  a c c e p t a b l e  a s  r e a s o n a b le  th e n  we c a n  s t r o n g l y  recommend r e p l a c i n g  th e  

2 - c l a s s  a t t r i b u t e  by  t h e i r  e q u i v a l e n t  Ramp p l a n s  i f  B < 0 .5  in  th e

fo l lo w in g  c a s e s :
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AQL 0.01785 for Ramp n = 16

AQL 0.0287 for Ramp n = 32

AQL 0.0445 for Ramp n = 64

This is because of the savings in sample size, as the discussion on sample 

savings of section (4.5.5) of Chapter 4 shows. A general conclusion in 

the light of the analytical results of the FORTRAN program UNIFRM.FOR - 

(listed in Appendix (B.5.) , and which studies the robustness of the schemes 

under the Uniform distribution model) - is that the Ramp plans are only 

robust enough when used for fat-tailed symmetrical distributions when B

is small. Also significant is the point that the by-variables plans are

infelxible to overcome their weak robustness as far as heavy-tailed distri

butions are concerned.

5.2.2.3 The Two-Point Model

As mentioned earlier the matching of this discrete distribution

could not be done directly in terms of the (Pg, P^z Pg) basis. It could

be handled through the mean and variance basis such that the proportion

defective is fixed as Pg • Depending on the position of the mean (or in

fact X2Z the second point of the distribution) the proportion (1-Pg) is

either p or p_. It is p. if B is less then X„, otherwise it is p_.1 2  1 z

The m ean, M, an d  v a r i a n c e  , V, a r e

M = d - P g ) . X 2 + P g .Xl

V = (1 -P g ) • (X2-M )3 + P g . iX ^ M ) 2

We have fixed X at 0, and with the variance made equal to 1 we have
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M = ( 1 -P q ) . X2

and  X2 = ----------------- —
^ (P q (1 —p Q)

5 .2 .2 .3 .1 .  P r o b a b i l i t y  o f  A c c e p ta n c e  in  T w o -P o in t w i th  V a r ia n c e  = 1 and  

g iven  p Q:

S uppose  in  a  s a m p le  o f  n 

r^  d e f e c t i v e s ,  t h e n  we g e t  t h e

r . v . ' s  f ro m  a  T w o -p o in t  d i s t r i b u t i o n  we h av e

f o l l o w i n g  b in o m ia l  d e n s i t y :

P r o b a b i l i t y  p ^  

N o. o f  r . v . ' s  r ^  

V a lu e  o f  Q (x) X^

w here  a s  b e f o r e  X. = 0  a n d  X„ 1 2

n - r .

1

And s o ,

n - r .
. X Xn ’/ i? o (1 - £,o )

The P f o r  e a c h  o f  t h e  schem es u n d e r  s tu d y  a r e  shown b e lo w : 
a

(a) U nder 2 - c l a s s  A t t r i b u t e  t h e r e  i s  no d i f f e r e n c e  from  t h a t  u n d e r

n o r m a l i ty  (and  in d e e d  an y  o t h e r  m odel) . S o , t h e  P^ i s  th e  same a s  in  

e a c h  o f  t h e  p l a n s  in  t h i s  c a t e g o r y .

(b) U nder t h e  Ramp: t h e  r . v .  s t a t i s t i c  i s
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Q(x) =
n - r.

if x 2 S B (1)

n - r.
if X2 < B (2)

n

We spot that is the r.v. and in order to satisfy the acceptance 

criterion (i.e. Q(X) T) we have to have:

r  < n ( l  -  T) for case (1)

and r^ < nil - T B /p^(1-p^) } for case (2)

(c) Under S-plan: if n and K are the sample and the test criterion in

the S-plan respectively, and the mean and variance are

n -  r .
X =

n/(pQ ( 1 - P q ) )

S2 =
r o(n-ro)

po(1_po) * n(n_1)
r e s p e c t i v e l y ,

Then the acceptance condition (namely that —  > K) , will imply that

n  -  r . P q ( I - P q ) . n ( n - l )

n/(po (l-pQ)) r o n r o
> K

This gives the condition as:

n ( n - l ) _______
r 0 < in (K 2 + 1 )  -  l )

[And b e c a u s e  o f  t h e  i n t e g r a l  r e q u i r e m e n ts  on r we may have an erratic

P for small n] a
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«J) Under the a-plnn with test parameters „ and k the mean is as in (c)

above. Änd as the variance is 1, the acceptance rule of X > k implies

n - ro
}---  ---  > kn/(po (l-po) )

Therefore,

ro < - k?(pQ (l-po)) }

[This could only make sense if k2 < --- -----  ]
P0 (1-p0)

5.2.2.3.2. Results of- Robustness under the Two-Point Model

The results revealed that except for low AQL's with small Ramp n 

cxz values the by-variables plans (Ramp included) tend to have an acceptance

probability greater than the target 95% (ranging from 99% to 100%) .

However, the Ramp is closer to the target than other plans. The cases 

where P^'s are reasonably close to 0.95 indicate that the Ramp is the best 

in the sense of being closest to the target more especially for small n.

Given both AQL and Ramp n, small B values in Ramp tend to give a

P closer to the target than the high B-values do. As n gets larger P 3. a
for all by-variables tend to 1.

5.2.2.4 The Lognormal and the Contaminated Normal

The d i s c u s s i o n  o f  m a tc h in g  t h e s e  two d i s t r i b u t i o n s  so  a s  t o  h av e  

a u n i t  v a r i a n c e  an d  p Q p r o p o r t i o n  d e f e c t i v e  i s  l e f t  f o r  l a t e r .  They a r e  

t r e a t e d  by  s i m u l a t i o n ,  an d  t h e i r  m a tc h in g  i s  d e s c r ib e d  in  s e c t i o n s  ( 5 .3 .5 .1 )
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and (5.3.5.2) . In the next few sections we will set the general guide 

lines of the simulation exercise and a broad layout of its planning.

5.3 Simulation for Robustness Study of Lognormal and Contaminated Normal

5.3.1. Aims of the Simulation, Design of the Generators and Preparations

As mentioned in Chapter 2, the distribution of the mean quality

function for the Ramp (and indeed also the Cumulative Normal and the

Cumulative Logistic) plan was not derivable analytically. Now, not only

do we have this complexity but, moreover, we have more intractable

alternative background distributions than the Normal one used then. Here,

we are referring to the Lognormal and the Contaminated Normal models as

non-normal alternatives.

We would like to compare the sensitivity of the different schemes

to the changes in the background assumptions from Normality to a

Contaminated Normal or a Lognormal, both of which come from the Normal 

model whose pseudo-random variables generator is described and justified

as in the next paragraph.

Some planning and timings of the generation of the normal r.v.'s 

needed for generation of the Lognormal and the Contaminated Normal processes 

was carried out. In this respect the work reported by Atkinson and Pearce 

(1976) and their review comments were found invaluable. They studied the 

performances of different methods of generation of the random normals 

together with their properties. In the light of their comments we used 

Brent's Algorithm (1974) as recommended by them because we were trying to
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insure against a slow generation of random numbers on the Computer of the 

University of Essex (a DEC-System 10) . Brent's algorithm reduces the number 

of calls to the random number generator using 1.37 random numbers on average 

per one normal. In doing so it takes advantage of the theoretical results 

that if a uniform C Ur then (Ur - U ^ p / d  - u ^ )  is also uniform in (0,1)

Moreover, Brent s Method is basically a Forsythe method but an improve

ment over it and Forsythe's method is amongst the best according to 

Atkinson and Pearce.

We used Brent's Grand algorithm together with our local random number 

generator (RAN(O)) to create a supply of normal pseudo r.v.'s. A block of 

a 1000 r.v.'s is generated at a time, shuffled and then stored on disc ready

for use in the simulations. Generation of such a block costs 60 milliseconds

and so it was found that this strategy of blocks of 1000 is cheaper especially

that writing and reading from disc costs virtually nothing. The justification

of all this and others is given by the following disucssion describing some

preliminary experiments on which outcome we based our simulations plans.

We have carried out some necessary experiments on costs using a

s to r e d  b lo c k  o f  a  1000 p s e u d o —ran d o m  n o rm a l v a r i a t e s  a t  a  t im e .  We 

s e le c te d  random  s a m p le s  o f  som e ( a r b i t r a r y )  s i z e s  o f  3 0 , 40 an d  50 from  

th i s  a r r a y  o f  a  1000 v a r i a t e s  a n d  t im e d  th e  s e l e c t i o n  p r o c e s s  in  m i l l i s e c o n d s .  

The s e l e c t i o n  i s  made by  tw o m e th o d s  w h ich  w ere  com pared  f o r  t im e : a 

"c ru d e"  s e l e c t i o n  (w h e re b y  a n y  o f  t h e  c h o s e n  random  n o rm a l v a r i a t e s  c o u ld  

p o s s ib ly  b e  r e —s e l e c t e d  i n  t h e  sa m p le )  a n d  a  " r e f i n e d  s e l e c t i o n  ( in  w hich  

no r e - s e l e c t i o n  o f  a n y  ran d o m  v a r i a t e  i s  p e r m i t t e d )  . The e x p e r im e n t  i s  

to  g iv e  u s  an  id e a  on t h e  c o s t s  o f  t h e  o p e r a t i o n s  o f  t h e  d e s i r a b l e  r e f i n e d  

s e l e c t i o n  a n d  t o  i n d i c a t e  how t h e  o v e r a l l  p l a n  o f  th e  s im u la t io n  e x e r c i s e  

would be  a f f e c t e d  by t h e s e  c o s t s .  F o r  th e  sam p le  s i z e s  abo v e  we fo u n d  

th a t  f o r  c ru d e  s e l e c t i o n ,  on th e  a v e r a g e ,  t h e  a b s o lu t e  t im e s  ta k e n  w ere
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(56, 69 , 101) i n  m i l l i s e c o n d s  r e s p e c t i v e l y .  F o r  r e f i n e d  s e l e c t i o n  th e  

r e s p e c t iv e  s c o r e s  w e re  ( 9 6 ,  1 2 9 , 1 8 7 ) .  m  r e l a t i v e  te rm s  we h a v e  ( 1 .9 ,

1 .8 , 2 .0 ) f o r  c r u d e  a n d  ( 3 . 2 ,  3 . 2 ,  3 .7 )  f o r  r e f i n e d  s e l e c t i o n .  Though a s  

is  o b v io u s  fro m  t h e s e  r e s u l t s  r e f i n e d  s e l e c t i o n  i s  l e s s  e x p e n s iv e  t h e  l a r g e r  

n i s ,  b u t  g e n e r a l l y  i t  i s  e x p e n s i v e .  S t i l l ,  i t  i s  v e ry  im p o r ta n t  t o  h av e  

r e f in e d  s e l e c t i o n  f o r  t h e  r e a l  r e p r e s e n t a t i o n  o f  t h e  p r o c e s s  u n d e r  s tu d y  

and f o r  t h e  g e n u in e  s t a n d a r d  s t a t i s t i c a l  c o n s i d e r a t i o n s .  One i n d i r e c t  

way o f  a c h ie v in g  a  r e f i n e d  s e l e c t i o n  i s  t o  s e q u e n t i a l l y  u s e  an  a l r e a d y  

s h u f f le d  a n d  s t o r e d  s u p p ly  o f  ran d o m  v a r i a t e s ,  s i n c e  s h u f f l i n g  w i l l  e n s u re  

ra n d o m is a t io n  a n d  t h e  s e q u e n t i a l  u s e  o f  t h e  r . v . ' s  i s  a  n e a t  way o f  e n s u r in g  

no r e - s e l e c t i o n .  So we d e c id e d  t o  a d o p t  t h e  s t r a t e g y  o f  s e p a r a t i n g  th e  

g e n e ra t io n  a n d  s h u f f l i n g  p r o c e s s e s  f ro m  t h e  s im u l a t io n  m ain c o m p u ta tio n s  

in  such  a  s t y l e  t h a t  t h e  f o r m e r  i s  d o n e  o n c e  an d  f o r  a l l .  H av ing  fo u n d  

t h a t  w r i t i n g  on a n d  r e a d i n g  f ro m  a  d i s k  i s  v e ry  c h e a p  in d e e d  th e n  a c c o r d in g

to  t h i s  s t r a t e g y  a l l  o u r  n e e d s  o f  t h e  n o rm a l v a r i a t e s  w ere g e n e r a te d  and

s h u f f l e d  o n ce  a n d  f o r  a l l .  And a s  we n e e d  th em  a n d  th ro u g h  no c o s t l y

o p e r a t io n s  we c a n  r e a d  th e m  s e q u e n t i a l l y  s in c e  th e y  w ere  w e l l  s h u f f l e d

a l r e a d y .  A d v a n ta g e s  o f  t h i s  s t r a t e g y  a r e  e n o rm o u s . To name some we h av e  

th e  same l a r g e  s e t  o f  n o r m a ls  t h a t  c a n  b e  u s e d  f o r  N o rm al, C o n ta m in a te d  

N orm als an d  L o g n o rm a l p r o c e s s e s  a n d  t h e r e f o r e  r o u t i n e  c o r r e l a t i o n  b e tw een  

th e s e  p r o c e s s e s -  a r i s e ,  h e n c e  f a c i l i t a t i n g  c o m p a r is o n s  by p ro d u c in g  

d i f f e r e n c e s  b e tw e e n  m e th o d s  w i th  s m a l l e r  v a r i a n c e  th a n  in  c a s e  o f

u n c o r r e l a t e d  s t r e a m s .  D e t a i l s  o f  t h e  s h u f f l i n g  p r o c e d u r e s  a r e  g iv e n  in  th e  

Com puter p ro g ra m  CONTAM ( l i s t e d  in  A p p e n d ix  ( B . 6 . ) ) . A n o th e r  a d v a n ta g e  

i s  t h a t  t h i s  h e l p s  t o  s p e e d - u p  t h e  s i m u l a t i o n  o p e r a t i o n s  a s  w e ll  a s  im prove 

i t s  e f f i c i e n c y .  In  l i n e  w i th  t h e  recom m ended s im u la t io n  p r a c t i c e s  t h e s e  

o p e r a t io n s  a r e  d e s c r i b e d  t o g e t h e r  w i th  t h e  r e c o r d in g  t e c h n iq u e s  o f  

a c c e p ta n c e  p r o b a b i l i t y  an d  t h e  p r e c i s i o n  l e v e l s  in  th e  n e x t  few  s e c t i o n s .  

A lso m e n tio n e d  t h e r e  i s  t h e  u s e  o f  t h e  te c h n iq u e  o f  th e  M onte C a r lo  c o n t r o l -  

v a r i a t e  f o r  r e d u c t i o n  o f  t h e  v a r i a t i o n  o f  t h e  e s t i m a t i o n s .
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•V'VZ'
The simulation (exnerimpntsi ,,;n<e x p e r i m e n t s )  w i l l  g i v e  a  P u n d e r  n o n - n o r m a l i ty

cl J'
(of Lognormal a n d  C o n ta m in a te d - N o r m a l)  f o r  g iv e n  p r o p o r t i o n  p Q o f

d e fe c tiv e , f o r  p r e d e t e r m i n e d  A a n d  B a n d  t h e  g iv e n  p l a n s  p a r a m e te r s  an d

decision r u l e s .  T h e r e  w i l l  b e  N ' s i m u l a t i o n  s a m p l in g s  t h e  a g g r e g a te

e ffe c t o f w h ich  i s  t o  g i v e  a  p o i n t  (p P ) On th e  O .C . c u rv e  w here P 
u a  a

is e s tim a te d  b y :

zx N '
P = E u . / N ' 

a  i = l  1

and where u in  i t s  s i m p l e s t  fo rm  ( t h a t  o f  t h e  a t t r i b u t e  p la n )  i s  1 o r  0 

in d ic a tin g  an  a c c e p t a n c e  o r  a  r e j e c t i o n  o f  t h e  i —t h  sam p le  s im u la te d .  

[For o th e r  fo rm s  o f  u  s e e  b e lo w ]  .

5 .3 .2 . V a r ia n c e - R e d u c t io n  M onte  C a r lo  M eth o d s ( C o n t r o l - V a r i a t e )

Monte C a r lo  t e c h n i q u e s  s u g g e s t  i n  c o m p a r is o n  w i th  C rude s im u la t io n

of a c e r t a i n  s a m p lin g  v a r i a n c e  ( o f  e . g .  t h e  u s u a l  PQ /N , in  o u r  c a se )  some

more s o p h i s t i c a t e d  t e c h n i q u e s  t h a t  c a n  f a v o u r a b ly  r e d u c e  t h e  sa m p lin g

e rro r  o f  e s t i m a t i o n  (H am m ers ley  a n d  H andscom b (1 9 6 4 ))  . One s u i t a b l e

techn ique  o f  t h o s e  i s  w h a t  i s  know n a s  t h e  c o n t r o l - v a r i a t e  m e th o d . The 

basic  id e a  o f  t h i s  m e th o d  i s  t h a t  i n s t e a d  o f  d i r e c t l y  e s t i m a t in g  a  p a r a m e te r ,  

T, by an e s t i m a t o r  t ^  (by  t h e  c r u d e  s i m u l a t i o n )  a  new " s t r o n g l y  p o s i t i v e l y  

c o r r e la te d "  e s t i m a t o r  t ^  (w h ich  c a n  m im ic  t ^  an d  a b s o rb  m o st o f  i t s

v a r ia t io n )  an d  w hose  s t a t i s t i c a l  e x p e c t a t i o n  i s  n u m e r i c a l ly  (o r  t h e o r e t i c a l l y )  

known, T2 s a y ,  c o u ld  b e  u s e d  i n  t h e  e s t i m a t i o n  p r o c e s s .  The id e a  o f  

th is  m ethod i s  t h e  im p ro v e m e n t i n  e f f i c i e n c y  ( l e s s  l a b o u r  and  more p r e c i s io n )  . 

The p ro c e d u re  i s  t o  s a m p le  t ^  amd t £  s i m u l t a n e o u s l y  (by u s in g  th e  same 

random num bers) a n d  t h e n  u s e  t h e  e s t i m a t o r  [ ( t ^ - t ^ )  + ^2^ ^ ° r  

T. The r e d u c t io n  in  v a r i a t i o n  com es f ro m  t h e  f a c t  t h a t :
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which is smaller than V a r ^ )  (the variance of crude estimation) if 

2 Cov(t ,t2) > Var (t2) .

In our case we let T be P T a .
sampled difference between P and P 

a i

? be P and (t - t ) be the 1 z
; and the whole argument applies.

In this way we can take advantage of the Monte Carlo control-variate

since we can estimate the difference between P and the alternative 
a i

scheme and the true value for P (the attribute case) is known. 
a i

As will be shown in the details of the plan we will economise by 

re-using the same random numbers whenever possible, and the advantages of

t h a t  a r e :

(1) It ensures positive correlation between the estimates of the P&

for all the "equivalent" plans. This means that the difference

in P ' s is almost completely caused by the effect of the cl
distribution change only [as is generally recommended in the 

literature, e.g., see Hammersley and Handscomb (1964)].

(2) Where applicable it ensures more precision. When a larger sample 

fattrihuts) can be proportioned into at least two smaller sample 

sizes of any other equivalent plan, then this plan will be 

simulated at least as twice to the original attribute one.

And with more samplings smaller sample plans will as a by 

product of such a strategy experience more precise estimation.



5.3.3 The Basic Simulation. Operation.s

If for simplicity we use the subscript j to refer to the j-th scheme

(let j=l refer to the attribute plan) then at the i-th simulation sampling

we select a sample [of pseudo—random Lognormal or Contaminated—normal

variates] of the attribute plan. Then using the Attribute test parameters

and decision rules we record =1 or 0 depending on whether the sample

is accepted or rejected, respectively. For the attribute case the true

P could be assessed analytically via the binomial model but the simulation a
result checks the simulation performance. Similarly let u . stand for 

the same idea as u ^  with the only difference that it now records the 

overall average performance of as many sub-samples as are allowed within

the attribute i-th sample. This is crucial to the idea of positive

correlation needed in the simulation using a control variate. It relates

directly to the idea of re-using the same sample discussed above (in

section 5.3.3) .

Noting that generally n^ n_. for all j , then for j > 1 define
. . s-1 1 nd = u - u . where u . . assumes the value 1, — -—  , • - - , or uij 13 xl 13 n s s

where s = integral part of ( -- ) . Record is kept of d̂ _. and d̂ _. .
n j

Also recorded are the sums and sums of squares of d ^  and u ^  -

The estimate of P for the j-th plan is: cl

p = P + d . 
aj a l 3

where, P is the true attribute acceptance probability, 
a l

and d is the mean of d . . over i. 
j 13
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The variance of this estimate is given by:

Var(P )3. ,
:

V a r (d .) 
J

5 .3 .4 .  P r e c i s i o n

The num ber o f  s a m p l in g s  f o r  s i m u l a t i o n  p u r p o s e s  w ere  made to  b e  a 

s ta n d a rd  o f  2000 s a m p le s  f o r  t h e  l a r g e s t  sa m p le  s i z e  ( g e n e r a l l y  th e  

A t t r i b u t e  sam p le  s i z e )  . T h i s  l e a v e s  u s  w i th  a  s a m p lin g  e r r o r  o f  l e s s  

th an  o r  e q u a l  t o  0 .0 1 .  T h i s  i s  e v e n  im p ro v e d  upon by th e  f a c t  t h a t  any 

a t t r i b u t e  sa m p le  i s  s u b - d i v i d e d  i n t o  a s  many s m a l le r  s a m p le s  a s  i s  p o s s ib l e

by u s in g  t h e  f a c t  t h a t  p l a n s  h a v e  a n  n l e s s  th a n  in  th e  a t t r i b u t e  c a s e .

5 .3 .5 .  M a tc h in g  t h e  S im u la te d  P r o c e s s e s  an d  T ra n s fo rm in g  th e  r . v . ' s

To s t a r t  w i th  l e t  u s  u s e  some n o t a t i o n  f o r  t h e  f o l lo w in g  s e c t i o n s

in  o r d e r  t o  c l e a r l y  show  t h e  p r o c e d u r e s  o f  m a tc h in g  t h e  two s im u la te d

p r o c e s s e s  ( th e  L o g n o rm a l a n d  t h e  C o n ta m in a te d -N o rm a l)  . L e t ,

N (y ,C 2) b e  t h e  N orm al d i s t r i b u t i o n  f u n c t i o n  w ith  m ean, y ,

a n d  s t a n d a r d  d e v i a t i o n ,  O;

LN(M,V) b e  t h e  L o g n o rm al f u n c t i o n  w ith  mean M and v a r i a n c e  V

CN(M ,M ,G ,V  ,V ) b e  t h e  C o n ta m in a te d -N o rm a l w h ich  i s  a m ix tu re  o f  
c o c o

tw o n o r m a ls ;  an  " o r i g i n a l "  Norm al N(Mo ,Vq ) and

a  " c o n ta m in a n t"  N orm al N(M ,V ) , m ixed in  th e  c c

p r o p o r t i o n s  (1-G ) an d  G, r e s p e c t i v e l y ,  and  w here G 

(su c h  t h a t  0 < G << 1) i s  th e  c o n ta m in a t io n - f r a c t i o n

$ (2 )  d e n o te s  t h e  s t a n d a r d  C u m u la tiv e  Norm al p r o b a b i l i t y

a t  Z.
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5.3.5.1 The Contaminated Normal Process

If in terms of the above notation we let the two components of

the mixed contaminated Normals be N(MQ ,d2) as the original Normal and 
N<Mc'%} aS contam^ t i n g  Normal. Let G be the contamination fraction 

then, the Contaminated process is defined by the following distribution

CN(M ,M ,d ,0 ) = (1-G). N(M ,d2) + G. N (M ,d2)
C D Q - . O  O O  q ' c

And if we assume d = d = d then this distribution will have a c o
mean of {(1-G).M + G.M } and a variance of o c

(l-G).(d2 + M2 ) + G.(d2 + M2) - {(l-G).M + G.M }2
o c o c

Implementing the constraint that the overall variance should be equal to

1 defines a relation between M , M and d. However, if we then set M =0 o c c
we will be able to determine Mq and d from the following constraint when 

the value of the AQL is given:

AQL = (1-G).$(-M /d) + G.$(-M /d) o c

V This will determine the distribution of the contaminated process. A 

simulation of such a process is derivable from the basic Normal r.v.'s 

generated in the manner described before. Such a simulation has been 

incorporated in the Fortran program CONTAM listed with full details and 

comments in Appendix (B.6.) .

If we are considering variance-hererogeneity in the two Normals 

then the algebra is similar to the above except that d^ - D. d& will be
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another relation to add to the above system and solve simultaneously.

Here D is a heterogeneity" constant to inflate the variance of the 

contaminant Normal.

We select a Normal deviate in the manner discussed earlier and then 

a new and independent uniform deviate is generated. If this new uniform 

deviate is less than G (the contamination fraction) the selected Normal 

deviate is then transformed into a contaminant Normal (by rescaling for 

variance and adding mean M ) and similarly for an original variate which

occurs when that uniform is greater than or equal to G.

\
'Of course, it is sensible and realistic to make G << 0.5.

5.3.5.2 The Lognormal Process

The Lognormal distribution is only defined in the domain of (0,°°) . 

The parameters linking the background Normal and the mean and variance 

of the Lognormal appear only in exponential type functions and require 

numerical methods for the determination of the appropriate values of the 

specification limit and mean, for the parameters especially the variance 

are inflexibly exponential.

We would exploit the fact that 

W = exp(Y) is distributed as LN(M,V)

i f  Y i s  d i s t r i b u t e d  a s  N (u ,E 2 ) th e n

w h ere  t h e  L ognorm al mean i s

M = e x p (u  + E2/2 )

and the variance is

V = e x p (2 u ) . { e x p (2E2 ) -  e x p (E 2) } .
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We know that the Normal theory of N(u,E2) 

specification limit A as
gives us the lower

A = u + K.E

to ensure a proportion defective (left tail) of pQ ; but such A as set 

to be 0 is not convenient for the Lognormal distribution because of the 

domain of definition. We re—defined the lower cut-off point, since the 

conventional setting at zero is no longer convenient, at C where

£n C = uQ + K.E (1)

where C is a constant (> 0) such that if Y is N(Uq + £n C, E2)

then W = exp(Y) is LN(M,V) such that

M = exp (Uq + 5,n C + E 2/2) (2)

and

V = exp(2(uQ + £n C).{exp(2E2) - exp(E2)} (3)

and

K = (pQ) (4)

If we fix E and uQ by solving for them using (1) , (3) and (4)

simultaneously such that V = 1 in (3) , then we will have defined a 

Lognormal distribution such that we have:

(i) same proportion of p^ below C

(ii) a unit variance, V = 1

as would be needed for the matching.
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U n f o r tu n a te ly ,  we w o u ld  n o t  h a v e  t h e  ?1  t o  m a tc h . T h is  i s  a 

c h a ra c te r is in g  f e a t u r e  o f  a l l  o u r  a l t e r n a t i v e  d i s t r i b u t i o n  fo rm s , in  a l l  

of these  one c a n  n o t  f i x  t h e  v a r i a n c e  a n d  p Q a n d  th e n  b e  in  a p o s i t i o n  to  

fix (and c o n s e q u e n t ly  p  ) a s  w e l l .

For s o lv in g  f o r  E , m e n t io n e d  a b o v e ,  we h a v e  an  e x p o n e n t i a l  f u n c t i o n  

to so lve f o r  w h ic h  N e w to n -R a p h s o n  i t e r a t i v e  t e c h n i q u e  i s  u s e d .

These r e s u l t s  a r e  u s e d  t o  c r e a t e  t h e  L o g n o rm a l p r o c e s s  u s in g  X, th e  

normal r . v .  ({w h ere  X i s  d i s t r i b u t e d  a s  N ( 0 , l } )  by  t h e  f o l lo w in g  s im p le  

a lgo rithm :

1. Y 1 = X . E + u Q + £n C

2. Y = exp  (Y ' )

T h is  Y i s  a  L o g n o rm a l v a r i a t e  w i th  mean M a n d  v a r i a n c e  V = 1 an d  a

p ro p o r t io n , p  , b e lo w  C (w h ic h  i s  + v e , a n d  i s  d e te r m in e d  above) . F o r

th is  Y to  r e p r e s e n t  a n d  m im ic  t h e  a c t u a l  p r o c e s s  we r e q u i r e  t h e  d i s p la c e m e n t :

3 . W = Y -  C

T hus, W i s  r e a d y  a s  a  L o g n o rm a l ly  d i s t r i b u t e d  p r o c e s s  f o r  s tu d y in g  

the r o b u s tn e s s  p e r f o r m a n c e  o f  t h e  d i f f e r e n t  p l a n s  u n d e r  t e s t .

5 .3 .6  S im u la t io n  R e s u l t s  o f  C o n ta m in a te d -N o rm a l  a n d  t h e  Lognormal Distribution

E f f e c t

5 .3 .6 .1  C o n ta m in a t io n  R o b u s tn e s s

o f  C o n ta m in a t io n  p r o c e s s e s ;  one i s  whenWe d e a l t  w i th  tw o  c a s e s
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«c .  Oo l i . e .  t h e  v a r i a n c e s  i n  t h e  C o n ta m in a n t  a n d  th e  O r i g i n a l  p r o c e s s e s  

(toth  N orm ally d i s t r i b u t e d )  a r e  e q u a l )  . g h e  s e c o n d  c a s e  i s  when

% ’ % '

(Results

Case (i)

a r e  d i s p l a y e d  in  t h e  t a b l e s  o f  A p p e n d ix  ( F . l  

: a  = a

I t  w ould b e  c l e a r l y  s e e n  i n  t h e  t a b l e s  t h a t  f o r  t h e  tw o m ixed  n o rm a ls  

(agreeing in  v a r i a n c e s  b u t  w i t h  d i f f e r e n t  c e n t r a l  t e n d e n c ie s )  t h e  Ramp 

plans a re  f r e q u e n t l y  m a r g i n a l l y  b e t t e r  ( i n  r o b u s t n e s s )  th a n  t h e i r  e q u iv a l e n t  

orthodox b y - v a r i a b l e s  p l a n s .  B u t f o r  a l l  p r a c t i c a l  r e a s o n s  t h e  d i s c r e p a n c y  

is im m ate ria l w h ic n  w i l l  c o n s e q u e n t l y  l e a d  t o  t h e s e  p l a n s  b e in g  c o m p a ra b le ..

We b e lie v e  t h a t  t h e  r e a l  r e a s o n  b e h i n d  t h i s  i s  t h e  e s t a b l i s h e d  b e l i e f  t h a t

the m ix tu re  o f  tw o n o r m a l s  i s  n o t  m a r k e d ly  d i f f e r e n t  fro m  N o rm al,

e s p e c ia lly  f o r  a s  a  s m a l l  y  ( t h e  c o n t a m i n a t i o n  f r a c t i o n )  a s  10% (Tukey

(in O lkin  e t  a l  [E ds] ( I 9 6 0 ) )  . The n o t i c e a b l e  f a c t  i s  t h a t  r e g a r d l e s s  o f

n, B and AQL o u r  P r e s u l t s  a r e  i n d i s t i n g u i s h a b l e  fro m  th o s e  u n d e r  n o r m a l i ty  
cl

Case ( i i )  : CT > O c o

The t a b l e s  i n  A p p e n d ix  ( F . l . )  , show  t h e  p e r f o r m a n c e  u n d e r  a p r o c e s s  

which i s  a m ix tu r e  o f  tw o  n o r m a ls  w i t h  t h e  c o n ta m in a n t  n o rm a l o f  n o t  o n ly  

an i n f e r i o r  mean b u t  o f  an  " o u t - o f - c o n t r o l "  v a r i a n c e .  The v a r i a n c e  o f  

the c o n ta m in a n t d i s t r i b u t i o n  i s  i n f l a t e d  by  a  r e a s o n a b le  c o n s t a n t .  I f  Oq 

o f  t h e  o r i g i n a l  an d  th e  c o n ta m in a n t

h a v e  :

and a a r e  t h e  s t a n d a r d  d e v i a t i o n s  c

p rocesses  r e s p e c t i v e l y  t h e n  we c a n

a  = d .  a  <- o
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where d i s  an  a r b i t r a r y  c o n s t a n t  s u c h  t h a t  d  > 1 . (N o te  t h a t  d = l i s  in  

f a c t  c a se  ( i )  d i s c u s s e d  a b o v e )  .

We o n ly  lo o k e d  a t  tw o  c a s e s  o f  d ;  a  c a s e  o f  d  = 1 .2  w h ich  i s  a 

re a so n a b le  c h o ic e  a n d  a  c a s e  o f  d  = 2 w h ic h  i s  a  b i t  w i ld  a n d  j u s t  enough 

to  e s t a b l i s h  o u r  c a s e .  The r e s u l t s  o f  r o b u s t n e s s  f o r  d  = 1 .2  d id  n o t  

give any b a s i c a l l y  d i f f e r e n t  r e s u l t s  f ro m  t h o s e  o f  d  = 1 .

H ow ever, i n  t h e  c a s e  o f  d  = 2 (a n d  w h e re  c o m p u ta t io n s  a r e  m a th e m a t ic a l ly  

f e a s i b le )  t h e r e  i s  some e v id e n c e  o f  some i n s t a n c e s  o f  s m a l l  l o s s e s  o f  

ro b u s tn e s s  by a l l  t h e  v a r i a b l e s  p l a n s  ( i n c l u d i n g  Ramp) . B u t more im p o r ta n t  

i s  t h a t  t h e  Ramp i s  s l i g h t l y  m ore  d i s c r i m i n a t o r y  a n d  m ore r o b u s t  th a n  th e

o rth o d o x  v a r i a b l e s  p l a n s .

5 .3 .6 .2  The L o g n o rm a l R o b u s tn e s s

S im i la r  t o  p r e v i o u s  d i s t r i b u t i o n s  we im p o se  th e  c o n s t r a i n t  t h a t

th e  o v e r a l l  v a r i a n c e  i s  c o n s t r a i n e d  t o  b e  1 , a n d  th e  p r o p o r t i o n  d e f e c t i v e

m atched a s  p Q. The r e s u l t s  o f  t h e  L o g n o rm a l r o b u s t n e s s  a p p e a r  in

A ppendix ( F . l . )  in  t h e  f  i r s t  co lum n  o f  t h e  t a b l e s  in  t h e  a p p e n d ix .  D is c u s s io n s

of th e  t r e n d s  o f  t h e s e  r e s u l t s  f o l l o w  h e r e  b e lo w .

The Ramp b e h a v io u r  u n d e r  t h e  L o g n o rm al p r o c e s s  v a r i e s  w i ld ly  w ith  

B. R i g h t f u l l y  t h i s  i s  n o t  s t r i c t l y  t r u e  f o r  th e  o r th o d o x  sch em e s . As B 

in c r e a s e s  t h e  Ramp P r o b u s t n e s s  d e c r e a s e s .  T h is  i s  e x p e c te d  o f  th e  

Ramp b e c a u s e  o f  t h e  e a r l i e r  a rg u m e n t t h a t  a s  B ->• 0 th e  Ramp te n d s  t o  th e  

2 - c l a s s  a t t r i b u t e  schem e w h e re b y  " p e r f e c t "  r o b u s t n e s s  i s  m a in ta in e d .  N ote 

t h a t  i r r e s p e c t i v e  o f  a n y t h i n g ,  t h e  L o g n o r m a l i ty  r e s u l t s  in  th e  o r th o d o x  

schem es show how c o m p a ra b le  ( th o u g h  so m e tim e s  a p p e a r in g  v e ry  p o o r)  a r e  th e
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S -p lan  a n d  a - p l a n  sc h e m e s  u n d e r  t h i s  d i s t r i b u t i o n - e f f e c t .

C om paring  t h e  Ramp w i t h  t h e  o r th o d o x  b y - v a r i a b l e s  schem es u n d e r  

L o g n o rm a lity , t h e  Ramp g i v e s  b e t t e r  p e r f o r m a n c e  f o r  s m a l l  B a n d  AQL b u t  

g iv e s  way t o  th e m  f o r  l a r g e  AQL1s . T h i s  i s  g e n e r a l l y  so  f o r  any  n  (w ith  

a d i f f e r e n c e  o f  i n t e n s i t y  o r  d e g r e e  a s  w o u ld  b e  r e v e a l e d  i n  t h e  n e x t  

p a ra g ra p h s )  .

For S m a ll AQL

I f  we c o n s i d e r  s m a l l  v a l u e s  o f  B t h e n  l a r g e  Ramp n v a lu e s  a p p e a r  

to  be  m ore i n d i c a t i v e  o f  a  b e t t e r  p e r f o r m a n c e  o f  t h e  Ramp schem e th a n  

th e  o r th o d o x  v a r i a b l e s  s c h e m e s . T hough  f o r  s m a l l  Ramp n t h i s  i s  s t i l l

t r u e  y e t  i t  i s  n o t  a s  s i g n i f i c a n t  a n d  a c u t e  a s  f o r  l a r g e  Ramp n .  T h is  i s

a s  f a r  a s  c o m p a r is o n  b e tw e e n  t h e  sc h em e s  i s  c o n c e r n e d .  In  a n o th e r  w id e r

c o n te x t  th a n  t h i s  c o m p a r is o n  we f i n d  t h a t :  f o r  l a r g e  n v a lu e s  u n d e r

L ognorm al i t y  a l l  t h e  v a r i a b l e s  sc h em e s  (Ramp o f  B >> 0 in c lu d e d )  seem  t o  

g iv e  way a s  u n r e l i a b l y  w eak sc h e m e s  ( i n  t h e  L o g n o rm al r o b u s t n e s s )  . (N ote 

t h a t  t h e  Ramp w i th  B c l o s e  t o  0 c o u ld  th e n  b e  o f  p o s s i b l e  c o m p a r a b i l i t y  

a s  o p p o se d  t o  t h e  " i d e a l - r o b u s t "  ( i . e .  t h e  2 - c l a s s  a t t r i b u t e  s c h e m e s ) , 

s i n c e  t h e  l a t t e r  i s  t h e  l i m i t i n g  c a s e  o f  t h e  Ramp a s  B 0 .

F o r  l a r g e  B v a l u e s  a n d  l a r g e  Ramp n v a lu e s  th o u g h  a s  m e n tio n e d  e a r l i e r  

th e  o r th o d o x  sc h em e s  a r e  b e t t e r  y e t  t h e  d i f f e r e n c e s  a r e  n o t  m a rk e d ly  

n o t i c e a b l e ;  a n d  f o r  w h a t m a t t e r s  a l l  a p p e a r  t o  b e  v e ry  p o o r  an d  b a d  f o r  

lo g n o r m a l i ty  d i s t r i b u t e d  p r o c e s s e s .  T h e r e f o r e ,  f o r  skew ed p r o c e s s e s  n e v e r  

mix h ig h  B v a l u e s  w i th  h ig h  n v a l u e s .

F o r  l a r g e  AQL a  s i m i l a r  a n a lo g y  r e v e a l s  t h a t  f o r  s m a l l  B v a lu e s  an d
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large Ramp n values the orthodox variables are markedly more robust than 

the Ramp, while if Ramp n is small this is still true but there is not 

much of a distinction as is the case for large Ramp n

(Note the persistent result that the S—plan and the o—plan are 

comparable (even when poor!) under the understanding that the process

variance is 1) .

The results show the clear pattern that for any Ramp scheme cases

of say, B <0 . 9  the performance of the Ramp is better than other variables

schemes (and than other Ramp with B values > 0.9) . This confirms our

intuition about the relation of the Ramp with the other variables plans.

The comparative pattern of the behaviour between the three variables

schemes is summarised by the following figure which shows that the rate

of decrease of p with respect to B is higher for the Ramp than for the cl
0-plan and S-plan, hence the conspicuous intersection on the diagram 

(Figure (5.3.1.)) :



F igure  ( 5 .3 .1 )  : The L o g n o rm a l R o b u s tn e s s  c o m p a r is o n  b e tw e e n  schem es f o r

g i v e n  AQL ( a s  a  f u n c t i o n  o f  B ) .



114

In the results as Ramp n increases the Ramp P -curve tends to 
a

dominate the a-plan and S-plan P ^urves (but as the discussion above 

revealed, all these 3 curves move towards the point of origin indicating 

a poor performance by all variables schemes as they move) .

The point of intersection when it occurs is of special significance 

in the comparative study of robustness. Note that for small AQL, e.g.

AQL = 0.0139, at n = 16 the intersection of Ramp with a-plan curve is

close to B = 1.3. Below this value of B the Ramp is dominant and above

it it is dominated by other by-variables schemes. As n increases this is

still true for small AQL but by then all the plans seem to perform poorly.

So for maintaining the same level of P the intersection point will have
c i

to move to the right if n is higher (i.e. a lower B value) .

This is also true for large AQL too with the exception that as n

increases there is a tendency for a shift of the intersection point to

move to the left.

Another pattern in the results is that for small B a given B and

AQL the P varies with n as in the following figure (Figure (5.3.2.)). 
a

The curves are dominated by the Ramp P -curve. This indicates the 3.
resilience of the Ramp plan under Lognormality. The orthodox by-variables 

tend to lose more on robustness for large Ramp n than does the Ramp.
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Figure (5 .3 .2 ) The p e rfo rm an ce  a g a in s t  n under th e  Lognormal Model

f o r  th e  t h r e e  b y - v a r ia b le s  schem es.
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5.4 The Variance-Effect Robustness

Here, we will only deal with the changes in the variance of the 

process but still under normality assumption.

5.4.1 Th.e__yg- ,̂_i.a n c e ~E f f e e t  f or Each of the Equivalent Schemes

-'-t is interesting to note that the change in variance in the Normal 

process will imply a change in the scale of the Ramp Quality function and 

by the same factor (as shown in section (2.2.3.1(a)) of Chapter 2) . Not only 

that but considering the shape of the quality function which is imune to 

scale effects at the two tails the changes in scale (if variance changes) 

would only be reflected on B. In this context, of variance robustness,

this point will be an advantageous basis in the evaluation of the

robustness P . Simply, a change of twice the variance will mean a change cl
in B to half B .

As for the Two-class Attribute scheme the variance changes are

absolutely immaterial. The S-plan is not affected directly by the value of 

a2, it evaluates a sample-counterpart S2 and, so, effectively has a built- 

in flexibility to accommodate such variance changes. It can be said that 

the S-plan is robust as far as the variance—effect is concerned.

The only other scheme that is very responsive to variance changes

is the O-plan since it assumes knowledge of (J. The evaluation of such

changes on the P are analytically manageable. Analogous to the Ramp 
cl

this scheme will experience the scaling effects on K of changing the 

variance, as on B. Intuitively, and because of the partial effect on 

the Ramp system (i.e. only on the marginal zone) as opposed to the total
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effect on the O-plan system we would j-k „
e O U ia e x p e c t  t h e  Ramp t o  do b e t t e r  th a n  th e

(j-plan when subjected to the same variance change.

5.4.2 The Strategy for the Study

I t  w ould  h a v e  b e e n  a  n a t u r a l  s t r a t e g y  t o  a s k  t h e  d i r e c t  q u e s t i o n  

"what i s  t h e  e f f e c t  on  Pa  o f  c h a n g in g  a  f ro m  t h e  s t a n d a r d  1 t o  a p r e 

de te rm in ed  s e t  o f  0 v a l u e s ? "  B u t  s i n c e  we a l r e a d y  know t h a t  a  ch an g e  

in a i s  a  r e s c a l i n g  o f  B i n  t h e  Ramp p l a n  (an d  o f  Kq in  t h e  CF-plan) and  

a l s o ,  s in c e  we a r e  c o n s t r a i n e d  by  a  t a b u l a r  g r i d  d i s t r i b u t i o n  o f  th e

Ramp s t a t i s t i c  we h a v e  c h a n g e d  t h e  s t r a t e g y .  We w o u ld  r a t h e r  b e  i n v e s t i g a t i n g

the  e f f e c t s  on when t h e  p l a n n e d  Ramp B v a l u e ,  sa y  B * , i s  r e s c a l e d  by

0 such t h a t  we move t o  a  new  " T ru e "  B v a l u e ,  s a y  BT w i th in  th e  g iv e n  g r i d

p o in ts  o f  B. The q u e s t i o n  a s k e d  b e c o m e s : "w h a t a r e  t h e  e f f e c t s  on Pa
T Ti f  a  c h a n g e s  t o  t h e  " T ru e "  a ,  s a y  a = B*/B  ?" T h is  s t r a t e g y  s i m p l i f i e s  t h e

c o m p u ta tio n s  a n d  a v o id s  u n n e c e s s a r y  i n t e r p o l a t i o n  b e tw e en  th e  B v a lu e s  

when e v a lu a t i n g  P^ s i n c e  i t  u s e s  t h e  t a b u l a t e d  B g r i d .  The r e s u l t s  shown 

on t a b l e  ( 5 .4 .3 )  i n  A p p e n d ix  ( F . 2 . )  a n sw e r  su c h  a  q u e s t i o n .

5 .4 .3  R e s u l t s  o f  V a r ia n c e  R o b u s tn e s s

The t a b l e  ( 5 .4 .3 )  show s t h e  v a r i a n c e - e f f e c t  r o b u s t n e s s  f o r  Ramp 

and a - p l a n .  F o r  a  g iv e n  Ramp n a n d  a  p r o p o r t i o n  d e f e c t i v e  AQL t h e r e  i s  

a s u b - t a b l e .  B* v a l u e s  a p p e a r  on  t h e  l e f t  o f  e v e ry  s u b - t a b l e  in  b r a c k e t s ;  

w h ile  t h e  t r u e  B v a l u e s  a r e  shown a t  t h e  h e a d s  o f  t h e  c o lu m n s . F o r each  

B t h e r e  a r e  tw o r o w s . The f i r s t  row  i s  f o r  t h e  Ramp p la n  w ith  t h e  f i r s t  

e n tr y  r e p r e s e n t i n g  t h e  Ramp t e s t  c r i t e r i o n  t .  ( I f  t  i s  n e g a t iv e  i t  means 

t h a t  t h e r e  i s  a  p r o b le m  o f  " n o n - E x i s te n c e "  an d  h e n c e  th e  e n t r i e s  NE 

i n d ic a t e  su c h  a  p ro b le m )  . The s e c o n d  row  f o r  e a c h  B i s  f o r  th e  ( e q u iv a le n t )
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O-plan, and s i m i l a r l y  t h i s  ro w  i s  p r e f i x e d  b y  v a lu e  o f  k  , t h e  t e s t  

c r i te r io n  f o r  t h e  O - p l a n .  T h i s  g i v e s  u s  a  d o u b le  e n t r y  f o r  e a c h  (B*, bT )

c e ll ;  th e  to p  ? a  i s  t h e  Ramp p e r f o r m a n c e  a n d  t h e  b o t to m  i s  t h a t  f o r  th e  

(eq u iv a le n t)  a - p l a n .

To conserve space the true value of rr i o ■ ___ uj- v a x u e  o r  o ,  i . e .  a  , i s  n o t  shown on

the t a b le  s in c e  i t  i s  e a s y  t o  e v a l u a t e  a s  shown a b o v e .  = B*/B^

which in  t h e  s u b - t a b l e  b e lo w  c o r r e s p o n d  t o  d i v i d i n g  t h e  row  B v a lu e  (shown 

in b r a c k e ts )  by  t h e  c o lu m n  B v a lu e )  . I n  f a c t  t h e  t a b l e s  b e lo w  do n o t  

need any d i s p l a y  o f  t h e  (5 v a l u e s , a n d  a r e  e a s y  t o  f o l l o w  a s  t h e  f o l lo w in g  

summary a n d  c o n c l u s i o n s  o f  t h e s e  s u b - t a b l e s  show .

In  t h e s e  t a b l e s  i t  i s  c l e a r  t h a t  t h e  Ramp show s re m a rk a b le

r e s i l i e n c e  t o  c h a n g e s  i n  v a r i a n c e ,  w h i l e  t h e  a - p l a n  t h e  u n f a v o u r a b le

dependency on t h e  "know n" v a l u e  a . T h i s  show s in  t h e  t a b l e s  s im p ly  by

the f a c t  t h a t  a lm o s t  e v e r y  d o u b le  e n t r y  t h e  Ramp P i s  c l o s e r  t o  th e  g o a l  a

P (o f 0 .9 5 )  in  t h e s e  s u b - t a b l e s  t h a n  i t s  a - p l a n  c o u n t e r p a r t .  The few  a

e n t r i e s  w here  t h i s  i s  n o t  s t r i c t l y  t r u e  show a  t i e  b e tw e e n  Ramp an d  

0 -p la n . So we s h o u ld  e m p h a s i s e  t h a t  no  a - p l a n  b e h a v e s  b e t t e r  th a n  th e  

Ramp p la n  in  t h e  V a r i a n c e - e f f e c t  r o b u s t n e s s .

The c o n c lu s iv e  e v id e n c e  i n  t h e s e  s u b —t a b l e s  i n d i c a t e s  one c l e a r  

r e s u l t  t h a t  u n d e r  V a r i a n c e - e f f e c t  t h e  Ramp i s  m ore r o b u s t  th a n  th e  a - p l a n .  

A b l u r r e d  b u t  s t i l l  n o t i c e a b l e  r e s u l t  in  t e r m s  o f  n i s  t h a t  a s  n i n c r e a s e s  

th e  s t a b i l i t y  o f  t h e  Ramp b e c o m e s  m ore p ro n o u n c e d :  t h e  a - p l a n s  s t a r t  t o  

c o l la p s e  m ore q u i c k l y  f o r  t h e s e  l a r g e  v a l u e s  o f  n th a n  f o r  s m a l le r  n

v a lu es .
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N.B.

The f o l lo w in g  t a b l e  i s  u s e f u l  i n
«jnanges in  a  f<

B,e ta b le s  o f  t h e  V a r i a n c e - e f f e c t  r o b u s t n e s s  r e s u l t  '
r e s u l t  g iv e n  in  A ppend ix

(F.2.) :

V a lu e o f  T ru e a  = b * /B
ÎB* : i s  th e ! p l a n n e d  v a l u e ,  a n d B i s  t h e  T ru e v a lu e )

B : 0 .5 0 .7 0 .9 1 .1 1 .3 1 .5 1 .7 1 .9
B*

0.5 : 1 0 .7 1 4 0 .5 5 6 0 .4 5 5 0 .3 8 5 0 .3 3 3 0 .2 9 4 0 .2 6 3
0.7 : 1 .400 1 0 .7 7 8 0 .6 3 6 0 .5 3 8 0 .4 6 7 0 .4 1 2 0 .3 6 8

0.9 : 1 .800 1 .2 8 6 1 0 .8 1 8 0 .6 9 2 0 .6 0 0 0 .5 2 9 0 .474

1.1 : 2 .2 0 0 1 .5 7 1 1 .2 2 2 1 0 .8 4 6 0 .7 3 3 0 .6 4 7 0 .5 7 9

1.3 : 2 .6 0 0 1 .8 5 7 1 .4 4 4 1 .1 8 2 1 0 .8 6 7 0 .7 6 5 0 .6 8 4

1.5 : 3 .0 0 0 2 .1 4 3 1 .6 6 7 1 .3 6 4 1 .1 5 4 1 0 .8 8 2 0 .7 8 9

1.7 : 3 .4 0 0 2 .4 2 9 1 .8 8 9 1 .5 4 5 1 .3 0 8 1 .1 3 3 1 0 .8 9 5

1.9 : 3 .8 0 0 2 .7 1 4 2 .1 1 1 1 .7 2 7 1 .4 6 2 1 .2 6 7 1 .1 1 8 1
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CHAPTER 6

EXTENSIONS AND DEVELOPMENTS

6.1 Extensions and Developments of the New Schemes

With the level of robustness decided upon in Chapter 5 we make use 

of our new schemes to exploit their potentialities. Their basic concepts 

are extended to mixed (or "attri—var") dependent plans. We will show 

how we would use the whole of the new variables Ramp schemes to fit the 

system of mixed dependent plans maintaining their best properties and 

acquiring new ones as well. We are not to broaden the scope of this 

chapter and will confine it to the extent of substantiating our claims

about the potentials and adaptability of our "new" schemes. Besides, we

will give the theoretical results and framework of the operating

characteristics of the developments suggested in this chapter, together

with an example to show our attri-var procedures in relation to an

example of the Schilling and Dodge plans. Some simulation of these two

plans has been made for comparison.

The motivating factor here is that the Schilling and Dodge (1969) 

formulation of the mixed dependent plans has a number of favourable 

properties, so we can build on their results. On the other hand one 

certain important weakness of their procedure is that it is not safe

guarded against non-normality effects when accepting, first-time, the 

batch in the by-variables-sample stage. One argues that rejection occurs 

only after re—sampling i.e. on the attributes basis according to the set,—up 

of their plans. Acceptance, according to their scheme can possibly occur
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on the variables first sample. And as a consequence of the reliance of 

the variables plan (especially the cr-plans) on normality assumption, and 

how non-robust they are, the acceptance decision may not be very solidly 

based.

They rightfully detected this fault and suggested as a remedy that 

one should accept (on first sample i.e. variables basis) only the "very 

clear cases" . One thinks that this could imply an increase in the ASN 

(average sample number) by a factor equal to the proportion of the 

occurrence of the "not very clear cases" times the attribute sample size.

After all it is the minimisation of the ASN which motivated the attri-var

schemes. With the call for easy-to-operate schemes in acceptance sampling 

such statements like the "not very clear cases" are a complication.

With the established favourable property of robustness of our Ramp

schemes we can trade-off more robustness for more (or conceivably no)

premium at all. With this discussion in the background we could propose

three developments in the attri-var area. In the order below, each

development is an evolutionary progress from its predecessor. This

culminates in a "new" "attri-var" scheme based on the single Ramp scheme

advocated in the previous chapters.'

6.1.1 Development I

The m ix ed  d e p e n d e n t  p l a n s  a s  d i s c u s s e d  by  S c h i l l i n g  a n d  Dodge (1969)

h av e  t h e  f o l l o w in g  p r o c e d u r e .  F o r  g iv e n  p a r a m e te r s  n , n  ( f i r s t  and

se co n d  sam p le  s i z e s ) , c , c ( a t t r i b u t e  a c c e p ta n c e  num bers on f i r s t  and 

com bined  n^+ n^ s a m p le , r e s p e c t i v e l y )  and  A ( th e  a c c e p ta n c e  s p e c i f i c a t i o n  

l i m i t ) ;  t a k e  a  f i r s t  s a m p le , n . I f  on th e  b a s i s  o f  th e  b y - v a r i a b l e s  p la n  o f  n^
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and test constant k, one had the sample mean, x, such that X > A + k

then one accepts the batch, otherwise test the sample on by-attribute

basis accepting if the number of defectives (i.e. item below specification

A) is $ cx ; and if not accepted then resample a further n2» (Note

one is never rejecting on the basis of n ) . Now, if re-samoling takes

place a dichotomous decision is made on the basis of the combined

(n̂  + n^) sample as follows: accept if number of effectives i n^ + n2 - ^^2'

but reject otherwise.

Now, our development I has two versions, (la) and (lb) , both of

which use our idea of marginal quality (between the limits A and B) and

the idea that the decision to resample is done on the variables-basis 

(viz; when the batch quality is marginal) rather than on the attribute (n)7c ) 

basis used by Schilling and Dodge. But version (la) has more ASN than 

(lb) due to its allowing more chance of resampling than (lb) .

6.1.1.1. Version (la): This allows rejection and acceptance on the first 

sample but only in a precisely defined "very clear cases", otherwise 

resample. Its procedures are:

Take a sample n^

Accept if X > A +

Reject if X < A + Kq

Resample otherwise.



in th e  C om bined + n 2 S a m p le

Accept when t h e  n u m b e r  o f  c o m b in e d  e f f e c t i v e s  > n + n _ r-
" 1 2 C1 2 ‘

R e jec t o t h e r w i s e .

Where th e  t e s t  c o n s t a n t s  K. a n d  K a r e  s u c h  t h a t  A + K = b'” '5' (p ) 
u ,u  1 ,0  0 ,0  ’

_ , - l  ,
and. A + (p ^  + p ^ )  a n d  i s  t h e  maximum o f  p e r m i s s i b l e

number o f d e f e c t i v e s  i n  t h e  u s u a l  b y —a t t r i b u t e s  p l a n  o f  sa m p le  s i z e  e q u a l  

to + n 2" $ ( •) i s  t h e  s t a n d a r d  N o rm al D i s t r i b u t i o n  F u n c t io n ]  .

This d e v e lo p m e n t i s  v e r y  u s e f u l  a n d  re c o m m e n d a b le  b e c a u s e  i t  g iv e s

a second c h a n ce  o n ly  f o r  t h e  m a r g i n a l  c a s e s  t o  be re-examined under more

inform ation. S o , i t  i s  n o t  o n l y  a  p r o d u c e r - o r i e n t e d  p l a n  (a s  i s  t h e  c a s e

of S c h i l l in g  a n d  D o d g e 's  sc h em e ) b u t  c o n s i d e r s  p r o d u c e r  an d  c o n su m er

in te re s ts  s im u l t a n e o u s l y  a n d  i m p a r t i a l l y .

The m e n tio n e d  d e v e lo p m e n t  n e c e s s i t a t e s  d i f f e r e n t  c o m p u ta t io n s  b u t  we 

can use S c h i l l i n g  a n d  D o d g e 's  c o n d i t i o n a l  r e s u l t s  a n d  t h e  a p p ro x im a te s  

given by E ld e r  a n d  M use (1 9 8 2 ) a s  w e l l  a s  t h e  i d e n t i t y :

P (r  d e f e c t i v e s :  1 ,0 )  = P n n
( r  I "V I"  , n , o ) . p r ( " V I " I h ,d )

+ P ( r "V3" , u,cr) . p r  ("V 3" 1 d ,0 )
n

+ P ( r | "V 2 " , g ,O ) .P r (" V 2 "  1 h ,0 )
n

where,

VI" i s th e e v e n t o f X < A + Ko,o

'V2" i s th e e v e n t o f A + Kn £ Xo ,o

’V3" i s th e e v e n t o f X > A + K1<0



1 Z 4

The left hand side is computable through the binomial distribution 

with parameters n and p Q = $ (A + KQ . On the right-hand-side the 

first and the second terms could be evaluated using Schilling and Dodge 

(1969) conditional probabilities [or the approximation of Elder and Muse 

(1982)] with the necessary adjustments. The third term is deduced as a 

solution of this whole eguation. This third term is of direct interest 

to us. It is the probability of re-sampling (in version (la)) on which 

the contribution to the probability of acceptance from the attribute

combined basis is conditional.

P , the acceptance probability, under this scheme is a

C 12
P(accept: p.,0) = P ("V3" | p.,0) + Z P (r,"V2"l p.,0) 

n l I r=0 M I

where M = n + n^,

and "VI", "V2", "V3" are as above.

6.1.1.2. Version (lb) : It is the same as version (la) except that there

is a chance of assessing the first n^ sample on its attribute characteristics

whenever A + K_ £ X £ A + K< „ before resampling. Here, if d (the 
0,0 1,0 1

number of defectives in the n^ sample) is less than c^ we accept the lot, 

otherwise resample and carry on as in version (la) above.

If, for convenience, we developed the following notation:

p (e ) is the probability that event E occurs in a sample of n,

P (El,E2) joint probability of events El and E2 in sample of n,

B (j ;n) p r o b a b i l i t y  o f  j  d e f e c t i v e s  in  a  sam p le  o f  n ;



125

then the acceptance probability is;

c2-r
P =- P  ("V3") + Z S P (r,"V2").B(j ;n ) 

1 r=0 j=0 l 2

NOTE: The modification in version (lb) on (la) is a technical device 

meant to reduce the average sample number (ASN).

6.1.2 Development II

This uses our previous results of single sample quality functions of 

the new designs. Here, for the variables part of mixed plans we suggest 

using our "equivalent" variables schemes; thus:

- Take a first n, sample X, , X„ , . .., X1 1 2  n ,1

- Evaluate the quality functions for each X , and find Q(x) , the sample

quality mean.

- For the relevent test criterion, t, and parameters of our plan:

Accept if Q(x) > t, otherwise use "attribute" test whereby if d ,

the first sample number of defectives, is such that d c reject

and if d < c. resample a second n . On resampling, if the 1 1
combined total defectives (d^ + d^) < accePt, and otherwise

reject, where d2 is the sample number of defectives in the second 

sample.

The acceptance probability here is:
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C2-1
Pa ' * t(X,n )} + E E P U,Q(x ,n) < t (X. ,n ) } ,B (j ;n )

1 1=0 j=0 1 1 1  1 1  2

where (in addition to the notation defined abovet we have:

X i' Xi are the observation and population r.v. of the process 

respectively. i

Q is the sample mean of the observed quality functions.

6.1.3 Development III

The basic idea in this development is that we will be using our B- 

values (used in our basic single sampling plans) to cater for both the

by-variables and the by-attribute counterparts of the mixed plans.

Then, we will not be talking about the plans as "mixed" in the sense

that we are mixing attributes with by-variables schemes but that we are

just mixing different B and n values within the context of the "new"

by-variables scheme.

The algorithmic procedures of this plan are as follows:

(i) Stretch B towards the extreme (i.e. approach the variables schemes),

call this B. .1

(ii) Use a sample size n with the test criterion t1. Denote the drawn 

sample by (x^, x2 , ..., xn )

(iii) Evaluate the quality functions for each x, and find Q i ^ n ^ B  ).

(iv) compare:
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If Q (x, n^, B^) tpx_, n^, B p  then, accept, otherwise resample 

a further n items.

[NOTE: no rejection is allowable yet].

(v) If not accepted in (iv) , then collapse B^ to a smaller value,

say B^ (i.e. approach the attribute scheme within the variables 

one) . And using the combined sample of m=n^ + n^ evaluate the 

statistic Q (x^, m, B p  and compare:

if Q (x^, m ' B 2̂  (X , m, B p  accept,and reject otherwise.

The probability of acceptance in this case is:

Pa = Pn {2 (*'n i' V  * n i'

+ P {Q(x , m, B ) 10 (X(m) , m, B )}
m —c 2 2 —  2

(n)
* P {Q(x, n , B ) < t. (X , n , B )} n^ —  1 1  1 —  1 1

Here, B^ and B^ are pre-determined values that depend on our 

certainty of the knowledge of the model of the background distribution

or the variance. Large values of imply that we are reasonably certain of

the model. This relates and ties in well with the discussion in

section (2.2.3.2) about the decision levels and risks of non-robustness.

It is implied in this approach that B would be greater than B2 .

6 . 1 . 4 .  An E xam ple

In  t h i s  s e c t i o n  we c i t e  an  exam ple  to  show how o u r  a t t r i - v a r  p l a n s



128

could represent those of Schilling and Dodge and to reflect the operating 

procedures of both schemes.

To select an attri-var plan from our scheme we need the AQL and 

the producer s and consumer's risks. There is an arbitrary element in 

the choice of the first and second sample sizes and also in the test 

criteria used to decide when to re—test. In our case we set B^ = 1 .9 to 

produce a sensitivity close to that of the by-variables plans, and 

choose n^ and T^ to give a rough equivalence with the first stage acceptance 

by the Dodge and Schilling procedure.

A second test value T'̂  is used to give an approximate equivalence

with the rejection stage using the first sample only in Dodge and Schilling.

The decision to re-test uses the two criteria T.' and TV. The choice 1 1
of second sample size is set at n„ = 3n„ so that n. + n„ = 4n. , and in 2 1 1 2  1
the case of the Dodge and Schilling plans the second sample is set equal

to the difference between their first sample size and the attribute 

(second) sample size equivalent to 4n^, using = 0.5 and the corresponding 

T? for the AQL. A literal reproduction of the Dodge and Schilling scheme 

would require B^ — 0 but this is an extreme case and we have seen that 

B? = 0.5 gives many of the advantages of attribute plans but with a

smaller sample size.

The c h o ic e  o f  T^ a n d  T'  ̂ i s  made a s  i f  t h e  a c c e p ta n c e  and  r e j e c t i o n  

a t  th e  f i r s t  s t a g e  was made w i th  sa m p le  s i z e  r i p  B^ = 1 .9 ,  and  th e  AQL s 

e q u a l  t o  0 .7 7  a n d  1 .6 4  t im e s  t h e  d e s i r e d  AQL. T2 i s  ch o sen  t o  c o rr e s p o n d  

w ith  th e  t r u e  AQL a n d  sam p le  s i z e  n^ + n 2 an d  B^ = 0 .5 .

To i l l u s t r a t e  t h e  t e c h n i q u e s  c o n s id e r  th e  f o l lo w in g  e x a m p le .
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Example

Suppose we have the following pool of randomly selected data 

measuring the yield point for certain steel castings (in 1000's) drawn

from the same batch which is to be inspected for acceptance.

50.8 50.5 49.9 50.0 50.0 49.7 50.6 48.6 49 .9 51.2

52.5 51.4 50.9 50.7 50.1 49.4 50.1 51.7 53.0 49 .9

52.9 51.2 49.3 51.9 52.1 51 .4 50.7 50.2 50.1 49 .8

53.2 49.3 51.3 49.7 51.1 51 .0 49 .9 47.9 51 .0 50.2

51.0 51.3 50.7 51.1 49.7 50.3 50.3 50.7 51 .0 51.2

50.6 50.2 50.1 49.2 49.5 50.0

Suppose that their order of appearance is immaterial, and for

convenience we will pick the first samples from the first sequence of

measurements and the second sample from what is left.

Let the specified minimum yield point for these castings (shown in 

units of 1000's), be L = 48.7psi. The batch submitted for inspection is

believed to have a "known" standard deviation of C = l.Opsi. Suppose

the specified Schilling and Dodge attri-var plan to be used here had 

AQL = 1.39%, a first sample size m = 6, a first acceptance number = 1 

and an acceptability (by-variables) constant k = 1.5537; while for the 

second sample m? = 50 and = 2.

Then for Schilling and Dodge we have the following table of decision 

rules and results, where w = L + ko = 48.7 + 1.5537 (1.0) = 50.25:
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Decision Steps Results
i

1. Determine the parameters. i
i For variables stage: m^=6,w=50.25
{ For transitional stage: Cj=l
! For final combined stage: ^^=2

mi+m2=6 + 50=56.

2. First sample m^ specimens from x = 50.233.

the batch. Compute x .

3. Accept and terminate if x > w x is not > w, so next stage.

otherwise continue.

4. if x 4 w test the m specimens d T = 0.

(by-attributes) enumerating the

number of defectives, d^ in m ^ .

5. If x w and d > c reject and Since d^ is not > c^, go to

terminate, otherwise continue to next stage.

next stage.

6. Second sample of m2=50 is drawn and d^ = 1 (since one defective

number of defectives, d^ , in m^ is item of 47.9 is noted) in m^,

observed. (If d^+d^ < c^ accept, implying d^+d2=0+l=l as the

otherwise reject). overall combined number of

defectives in m^+m^. Hence

d^+d^ is not > C2(=2), and

the batch is accepted.
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Our plan to correspond to this one will be based on rough 

equivalence as stated above. The equivalence tables give us the 

following parameters. For first stage : n 1 = 8, B = 1.9, AQL' = 1.39 ( .77)

= 1.07% giving T^ = 0.7330 while AQL" = 1.39 (1.64) = 2.275% 

giving T'̂  = 0.6463. For second sampling n2 = 3 (8) = 24 (so that

ni + n2 = 32) ' With B 2 = 0-5 and T 2 = °-9264- (Note that 0.77 and 1.64 

are arbitrary constants to deflate and inflate AQL respectively.)

The values of X (i.e. the

X “
by the transformation Z. . = -----1 lx C

by the Ramp score function:

first sample values are standardised 
L X - 48.7
—  = --- -— -----  before being evaluated

Z li/BlV 2 !? = 
1

if Z4. < 0  lx
if 0 < Z,. < B„lx 1 
elsewhere,

and similarly for B2 and X ^  (the second sample values) .

On the following table we have the decision rules and the results 

for the Ramp attri-var version. The middle column of the tables shows 

how the calculations were made especially for the scores.



Decision Steps Necessary Computation Results

1. P a ra m e te r s F i r s t  an d  t r a n s i t i o n a l  s t a g e :  
n  = 8 , B =1.9  = 0 .7 3 3 0 ,T 'i=O .6463

F i n a l  com b ined  s t a g e :  n ^+ n 2=32 
B2= 0 . 5 ,T 2= 0 .9264

2 . F i r s t  n sam ple  an d  t h e i r
Q (Z ) s c o r in g  f u n c t i o n s  

B . I l1

Compute Q .
B1

z i r 2 .1  1 .8  1 .8  1 .2  :1 .3  1 .0 1 .9  - 0 .1

%  : 1 .0  . 95 .95  .63 .68 .53 1 .0  0 .0
i

n ,1
Z 2<Zl i )

i= l 5 .7 4  0 .7 1 7 5% n . 8
i 1

Q = 0 .7 1 7 5

3 . I f  Q > T! a c c e p t  and
B1 1

t e r m i n a t e , o th e r w is e  c o n t in u e

4 . I f  Q t  T ' th e n  com pare w ith
B1 1mil

1 '

5 . I f  T" < Q < T.' th e n  seco n d1 *B 1

s a m p lin g , w h ile  i f  Q„ T"
B1 1

r e j e c t  and  t e r m in a te .

Q i s  n o t  > T = 0 .7 3 3 0  
B, 11

So no a c c e p ta n c e  y e t ,  so  com pare
w ith  T " .1

Q =7175 i s  n o t  > T!= .7330  and  
Bi 1

i s  n o t  t  T "= .6463  (fe . T" < £ T!1 1 1

h e n c e  se co n d  s a m p le ) .

6 . Second sam ple  o f  n 2 i s _ t a k e n ,  
s c o r in g  f u n c t io n s  and  Q

B2
e v a lu a te d  and on th e  b a s i s  o f  
(n^+n2 ) ,B 2 and T2 , com pare:

i f  Q > T a c c e p t  and  o t h e r -  
B2 2

w ise  r e j e c t .

Some v o lu m in o u s  n e c e s s a r y  c o m p u ta tio n s  
w ere made s i m i l a r  t o  a b o v e , and  whose 
summary i s  g iv e n  a s :

Q = .9688  i s  > T = 0 .9264  h e n ce  
B2 2

a c c e p ta n c e  o f  th e  b a t c h .

(Z 2 i

Z
i  = l

%
2

+ n 2
3 1 .0

32 0 .9 6 8 8
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Simulation of the Example

This same example was run under a variety of simulated processes 

each for 1000 simulation runs. The simulated processes were the normal, 

uniform and lognormal (all having a unit variance) . For each case two 

processes with relatively good and poor quality respectively were 

studied. The performances of the above plan of Schilling and Dodge 

and our plan are recorded and reported below for :

(i) The average sample number, ASN.

(ii) The probabilities of acceptance, P , and of rejection, a
p .r

Note that in the following tables the "relatively good quality"

and the "relatively bad quality" refer to the proportions defective 

pQ = 0.0139 and pQ = 0.1601 respectively.

We used the abbreviation "Ramp" to stand for our attri-var,

and "S & D" for Schilling and Dodge attri-var plan.
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N o rm a l M odel U n ifo rm  M odel L ogno rm al M odel !
i

S & D Ramp S St D Ramo S & D Ramp

R e la t iv e ly ASN 6 9 6 , 15 6 15

good p a 0 .9 3 9 0 .9 7 8 0 .6 2 0 0 .5 7 0 0 .4 0 8 0 .5 1 1

q u a l i ty
(p=.O139)

Pr 0 .0  61 0 .0 2 2 0 .3 8 0 0 .4 3 0 0 .5 9 2 0 .4 8 9

R e la t iv e ly ASN 20 11 6 12 6 9

bad Pa 0 .0 7 5 0 .0 3 9 0 .1 8 2 0 .1 0 7 0 .0 5 4 0 .0 0 6

q u a l i ty  
(p=. 1601)

p r 0 .9 2 5 0 .9 6 1 0 .8 1 8 0 .8 9 3 0 .9 4 6 0 .9 9 4

I n  t h i s  e x a m p le  i t  i s  c l e a r  t h a t  t h e  p r o b a b i l i t y  o f  s e c o n d  sa m p lin g

i s  g r e a t e r  f o r  t h e  Ramp p l a n  t h a n  f o r  t h a t  o f  "S & D" . The c o n d i t i o n s

fo r  a  d e c i s i o n  on  t h e  f i r s t  s a m p le  a r e  m ore s t r i n g e n t  in  t h e  fo rm e r  th a n

th e  l a t t e r .  We c o u ld  n o t  e x a c t l y  m a tc h  t h e  c o n d i t i o n  f o r  r e - t e s t i n g  in

S & D, a n d  t h e  o v e r a l l  m a tc h in g  o f  t h e  tw o a t t r i - v a r  p l a n s  i s  t h e r e f o r e

a p p ro x im a te . T h is  p a r t l y  e x p l a i n s  why t h e  v a lu e  o f  ASN i s  th e  v a lu e  o f  

; th e  p l a n  h a s  m ore c o n t r i b u t i o n  f ro m  t h e  s e c o n d  sa m p lin g  tn a n  in  t h e

c a se  o f  S & D . S e c o n d  s a m p l in g  i s  n o t  t a k i n g  p l a c e  f o r  S & D in  th e  

c a s e s  c i t e d  in  t h e  t a b l e  a b o v e  e x c e p t  f o r  r e l a t i v e l y  b a d  q u a l i t y  u n d e r  

Normal M odel w h e re  ASN f o r  S & D i s  20 an d  i s  h i g h e r  th a n  t h a t  o f  th e

Ramp.

The Ramp h a s  a b e t t e r  d i s c r i m i n a t i o n  th a n  S & D p la n  f o r  b o th  good 

and b a d  q u a l i t y  u n d e r  b o th  N o r m a l i ty  a n d  L o g n o r m a l i t y . I t  i s  a l s o  b e t t e r  

u n d e r t h e  U n ifo rm  m o d el f o r  b a d  q u a l i t y  b a t c h e s .  The word b e t t e r  h e r e  

r e f e r s  t o  t h e  p r o b a b i l i t y  o f  h a v in g  g r e a t e r  a c c e p ta n c e  o f  good q u a l i t y  and 

g r e a t e r  r e j e c t i o n  o f  b a d  q u a l i t y .
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6.2 Property "Q" in the Attri-var Schemes

If a final decision on the batch is reached on the basis of the 

first (i.e. variables) sample of the attri-var plan then the plan definitely 

has property Q only if the d-known normality assumption holds. This is 

because here we will effectively be dealing with a variables scheme

under known d and normality assumption. The proof of Property "Q" holding 

in this case is dealt with by Farlie (1981) . (Verification of Property "Q" 

is given in Appendix (A. 2.)) .

By the definition of Property "Q" a plan is questioned in its

acceptance stage. So no matter how an attri-var scheme of known-d schemes

is designed then for the purposes of Property "Q" we would generally

postulate that the attri-var has Property "Q" if-and-only-if all its 

acceptance phases have Property "Q". So, as a consequence of this, the 

attri-var plan will have Property "Q" if the decision of accepting the

batch is reached on the basis of the attribute quality.

The advantage of our developments II and III is that the acceptance 

is made on the basis of the average quality Q(x) which is monotonic, 

and bounded by 0 and 1; and no matter how extreme are the values of X± 

the quality function records them as 0's or l's, depending on whether 

the values are at the low or high extreme.
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CHAPTER 7

CONCLUSIONS ( WITH RECOMMENDATIONS)

All the variables plans have a more robust performance for small n 

than for large n. Large n performances only show some degree of 

robustness for high AQL's.This is a general phenomenon that is true 

irrespective of the alternative (non-normal) distribution. The exception 

implied above (i.e. cases of large n for small AQL) is due to the failure 

of the by—variables schemes to perform well under the heavy-tailed model 

represented by the Uniform Distribution. So the recommendations for

heavy-tailed processes can be as in the next two paragraphs.

For large n values all by-variables schemes (including the Ramp)

are not robust for detecting small AQL's, and so one of the following

strategies can be taken:

(a) use a smaller n with any of the orthodox by-variables scheme,

(b) use Ramp with the (same) large n choosing a value of B that 

is reasonably close to 0. The argument on "reasonableness" 

could be shifted to Property "Q" , or any other relevant property,

or (c) use attribute scheme (probably for a higher n) which amounts 

to using a Ramp with B = 0.

For small n values all the by-variables are reasonably robust. So, 

choose any of them (Ramp included) according to the different other 

properties (e.g. Property "Q", ease of operation and/or variance 

importance as relevent).
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With the finding that the Ramp is reasonably competitive to the 

g-plan. in the properties of sample saving and robustness coupled with 

the improvement of the Ramp over the S-plan in the Property "Q" we 

feel that the conclusion that the Ramp could replace the S-plan is a 

quite credible one. We are aware of the favourable quality of the 

S-plan that it is immune to bad variance changes effects, but so relatively 

is the Ramp in this respect as long as we assume these variance changes 

(when they occur) are not very high. Such an assumption would be 

realistic because most (and probably all) processes under inspection 

are controlled in variance so reasonably that the variance changes are 

constrained at low levels. The value of variance though very crucial 

to the credibility of the O-plan is very much less so for Ramp. The 

efficiency of the by-attribute and the S-plan schemes is not affected

in this respect.

Property "Q" favours the by-attributes schemes, G-plan and the Ramp 

in that order. The S-plan shows its weakness in this respect (Farlie

(1981)) .

The ease with which the Ramp could be operated stems from the fact 

that the variance exact computations are cumbersome for floor operators. 

They are crucial to the orthodox by—variables plans but not to the Ramp.

Of course, the attributes scheme is again the best in this respect. In 

fact the only objection to the attribute schemes is the sample size needed

The flexibility of B to enable acceptance sampling to encompass 

the by-attribute qualities as well as the by-variables ones in one system 

gives more reason for it replacing that of the awkward dichotomous system
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of inspection sampling. We are
a t  a  l o t  o f  m ore w ork h a s  t o  be

made to  e x p l o i t  t h i s  f l e x i b i l i t y  q u a l i t v  ■* q u a l i t y .  I t  l s  o u t s i d e  t h e  o b j e c t i v e s

of this research to do so since we are onlv .
y  i n t e r e s t e d  in  g i v i n g  e v id e n c e

and p e r s u a s io n  to w a r d s  i t s  c r e d i b i l i t v  enHi t y  a n d  f e a s i b i l i t y .  We b e l i e v e  we

have done s o .

The fu n d a m e n ta l  com m ent a n d  re c o m m e n d a tio n  t h a t  c a n  sum up a l l  th e  

find ings o f  t h i s  r e s e a r c h  a r e  g i v e n  i n  t h e  f o l l o w i n g  p o i n t s .  The 

a t t r ib u te s  schem e i s  t h e  b e s t  i n  a l l  f a c e t s  o t h e r  th a n  sam p le  s i z e s .

All o th e r  f a c e t s  i n c l u d i n g  s a m p le  s a v i n g s  i n d i c a t e  t h a t  w i th  a  s m a l l  B 

value i t  i s  a lw a y s  s a f e  f o r  t h e  Ramp t o  a c t  a s  o n e  o f  t h e  a l t e r n a t i v e s  

to b y - v a r i a b l e s  s c h e m e s ,  a n d  i n d e e d  t o  t h e  b y - a t t r i b u t e s .

The Ramp i s  g e n e r a l l y  v e r y  r e l i a b l e  f o r  d e s t r u c t i v e  s a m p lin g  (o r

any o th e r  s m a l l  s a m p le  r e q u i r e m e n t s  s a m p lin g )  f o r  t h e  f o l lo w in g  r e a s o n in g :

1. F o r  s m a l l  s a m p le  s i z e  o f ,  e . g .  4 ( a s  co m p ared  t o  2 ,3 ,4  o r  5 in  

o t h e r  v a r i a b l e s  p l a n s )  we h a v e  a  r e a s o n b l y  c o m p a ra b le  u n d e r  

h e a v y - t a i l e d  ( e . g .  U n ifo rm )  d i s t r i b u t i o n  m o d e l.

2 . F o r  a n y  s a m p le  s i z e  t h e  Ramp i s  a f f e c t e d  v e ry  l e s s  d r a m a t i c a l l y  

th a n  s m a l l —s a m p le  O—know n b y  v a r i a n c e  c h a n g e s .

3 . In  L o g n o rm a l r o b u s t n e s s  t h e  Ramp i n  " s m a l l  sa m p le"  a r e a  i s  b e t t e r  

t h a n  e i t h e r  o f  t h e  S - p l a n  a n d  t h e  o - p l a n  schem es e x c e p t  f o r  v e ry  

h ig h  B - v a l u e s .

4 . The k n o w le d g e  o f  O i s ,  u s u a l l y ,  n o t  r e l i a b l y  good f o r  s m a ll

sa m p le s . T h i s  l i m i t s  t h e  p o w er o f  th e  O -plan and we have seen
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how c o m p e t i t i v e  a r e  t h e  Ramp w i th  t h e  S - p la n s c h e m e s .

The f o l l o w i n g  t a b l e  c a n g i v e  c l u e s  t o  t h e  p e r fo rm a n c e  o f  t h e  d i f f e r e n t

schemes u n d e r  s tu d y  :

Ramp S - p la n b - p la n

Small
(Ramp)

n

R o b u s t  a n d  s o m e tim e s  
b e t t e r  t h a n  S - p l a n  
when c o m p a r in g  
sa m p le  s i z e s  t o o .

R o b u s t  a n d  c a n  g iv e  
way t o  Ramp a n d  
c e r t a i n l y  d o e s  t o  
D - p la n  i n  n  .( w o r s t  
P r o p e r t y  " Q " ) .

R o b u s t an d  r e l i a b l e ,  
b e s t  e x c e p t  f o r  
l i m i t a t i o n  o f  i t s  - 
v a r i a n c e  s e n s i t i v i t y .

Large
(Ramp)

n

m ore r o b u s t  o n ly  
f o r  s m a l l  B v a l u e s .

(P o o r  f o r  d e t e c t i n g s m a ll  AQL)

T able  6 . 1 : G e n e r a l  a n d  R o b u s tn e s s  t r e n d s  o f  p r e f e r a b i l i t y  among th e

B y - v a r i a b l e s  sc h e m e s  u n d e r  " E q u iv a le n c e " .

The i d e a s  o f  t h e  s c h e m e s  d e a l t  w i th  i n  t h e  s i n g l e  s a m p lin g  d i s c u s s io n s  

were u s e f u l l y  a n d  f o r c e f u l l y  e x te n d e d  t o  f i t  i n  w i th  th e  n a t u r a l  p r o c e s s  

o f p r o g r e s s  o f  a c c e p t a n c e  s a m p l in g  i n  t h e  d i r e c t i o n  o f  m u l t i p l e  s a m p lin g . 

Some s u g g e s t i o n s  o f  e x t e n s i o n s  a n d  d e v e lo p m e n ts  o f  t h e  new schem es 

( r e p r e s e n te d  by  t h e  Ramp) w e re  made a lo n g  t h e  l i n e s  o f  a rg u m e n t o f  th e  

p ro p o n e n ts  o f  " a t t r i - v a r "  (o r  "m ix e d " )  sch em es a s  in  th e  work o f ,  e . g . ,  

S c h i l l i n g  a n d  Dodge (1969) . The s u c c e s s f u l  a im  o f  e s t a b l i s h i n g  th e s e  

e x te n s io n s  a n d  d e v e lo p m e n ts  i s  t o  show t h e  p o t e n t i a l i t i e s  o f  th e  new 

sch em es, a n d  m ore s p e c i f i c a l l y  t o  g iv e  c o n c r e t e  e v id e n c e  t h a t  th e  new
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scheme c o u ld  b e  t h e  b a s i s  f o r  a l l  a c r p n t^ n n »
a c c e p t a n c e  s a m p lin g  in c lu d in g  d o u b le

(and hence  m u l t i p l e )  s a m p l in g .  T h i s  r a n
y i n i s  c a n  u n i f y  t h e  m e th o d o lo g ie s  o f

accep tance  s a m p l in g  on  t h e  sam e b a s i c  a ro u n d  ,
c g ro u n c t. The s u g g e s te d  e x te n s io n :

and d e v e lo p m e n ts  s a t i s f y  t h e  d u a l i t i e s  n f  * 4- ■ u •g. u i i c i e s  o t  t h e  e x i s t i n g  "m ixed" schem es

and even im p ro v e  on th e m . F o r  t h e  sam e r e a s o n s  a s  in  s i n g l e  s a m p lin g , 

they showed c o n s i s t e n c y  i n  b e i n g  p u r e l y  " b y - v a r i a b l e s " , a n d  s t i l l  one 

can a c h ie v e  w i th  th em  w h a te v e r  o n e  c o u ld  a c h ie v e  w i th  any  o t h e r  a t t r i -

var scheme.
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APPENDIX ( A . l . )

APPROXIMATING THE DISTRIBUTION OF THE MEAN OF n  UNIFORMS IN [0 ,1 ]  BY

the normal curve  and m ix t u r e  o f  normals

We fo u n d  t h a t  t h e  c o n v e n t io n  o f  a p p r o x im a t in g  t h e  n o rm a l by  a  sum 

of 12 u n i fo r m s  i s  a  r e a s o n a b l e  o n e  b u t  t h e  l e v e l  o f  a c c u r a c y  i s  

u n s a t i s f a c t o r y  i f  t h e  d e s i r e d  a b s o l u t e  e r r o r  i s  t o  b e  < 2 .4  x 10 ,

fo r  n = 12 . M o re o v e r , t h e  d i s t r i b u t i o n  o f  t h e  mean o f  n  u n ifo rm s  i s  

composed o f  n  p o ly n o m ia l s  o f  d e g r e e  (n —1) , a n d  a s  n  g e t s  l a r g e r  t h e i r  

c o m p u ta tio n s  g e t  m ore cum bersom e a n d  e x p e n s iv e  com pared  w ith  t h e  no rm al 

d i s t r i b u t i o n  w hose c o m p u ta t io n s  do n o t  n e c e s s a r i l y  i n c r e a s e  w i th  n .  In

our r e s e a r c h  we d e a l  w i th  l a r g e  v a l u e s  o f  n .  And f o r  a l l  t h e s e  r e a s o n s

we w ou ld  do b e t t e r  w i th  some n o rm a l a p p r o x im a t io n s  o f  su ch  u n ifo rm

d i s t r i b u t i o n s .  Some m e th o d s  a r e  s u g g e s t e d  b e lo w  a n d  a s s e s s e d .

(1) " S t r a ig h t f o r w a r d "  N o rm al A p p ro x im a tio n

T h is  s im p ly  m a tc h e s  t h e  m eans a n d  v a r i a n c e s  o f  t h e  tw o d i s t r i b u t i o n s .  

Though, g e n e r a l l y  s p e a k in g  t h i s  i s  n o t  a  b a d  a p p ro x im a to r  t o  t h e  d i s t r i b u t i o n  

o f  n u n i fo r m s  b u t  i t  t e n d s  t o  o v e r e s t i m a t e  i t  m o st o f  th e  tim e  to w a rd s  

th e  m id d le .  N u m e r ic a l  e v id e n c e  show ed an  a b s o l u t e  e r r o r  o f  < 5 .8  x 10 

f o r  n = 5 . F o r  o u r  p u r p o s e s  t h i s  i s  n o t  s a t i s f a c t o r y  an d  in d e e d  n o t  f o r

any s e r i o u s  p u r p o s e s .

(2) " A d ju s te d "  N orm al M ethod

The f a c t  t h a t  m e th o d  (1) l o c a t e d  th e  maximum a b s o lu t e  e r r o r  a t

co u ld  a d ju s t  th e  s tan d a rd  d e v ia tio nth e  f i r s t  q u a r t i l e  s u g g e s te d  t h a t  we
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/ l2 n

was

by f a c t o r  c d e f i n e d  b y  in a tc h in rr  4-u„ p-i*. *.Y m a tc n in g  t h e  f i r s t  q u a r t i l e s .  I n t e r p o l a t i o n  

u se d  t o  d e te r m in e  t h e  v a l u e  o f  c  a s  f o l l o w s .  I n s t e a d  o f

= °-5 + V u se d  a s  a t r a n s fo rm a tio n  o f th e  norm al, XN, in to  a

uniform  m ean , X , we u s e :

X'u = 0 .5  + X
/ Ï 2 nN

where t h e  f r a c t i o n  :

c = ( 0 .2 5  -  PU (P _ 1) ) / ( P U (Q1 ) -  PU (P _ 1))

and w here P _ 1 i n d i c a t e s  t h e  p e r c e n t i l e  im m e d ia te ly  b e f o r e  Q , th e  f i r s t  

q u a r t i l e ;  a n d  P ( • )  d e n o te s  t h e  c u m u la t iv e  d i s t r i b u t i o n  o f  t h e  mean o f

n u n ifo rm s  i n  [ 0 ,1 ]  u p  t o  t h e  g iv e n  c u t - o f f  p o i n t .

R e s u l t s  t a b u l a t e d  b e lo w  show ed  a  s i g n i f i c a n t  im provem en t in  g e n e r a l .

In more d e t a i l e d  a s s e s s m e n t  we fo u n d  t h a t  e x c e p t  f o r  r e g io n s  b e lo w  th e  
-3

f i r s t  a n d  a b o v e  t h e  l a s t  d e c i l e  t h e  e r r o r  i s  < 3 x 10 f o r  n= 5 . T h is

a ls o  i n d i c a t e s  t h a t  i n  t h e s e  r e g i o n s  t h e  " s t r a i g h t f o r w a r d "  m ethod i s  more 

e f f i c i e n t  th a n  t h i s  " a d j u s t e d "  m e th o d , w h i le  t h e  l a t t e r  s u p e r s e d e s  th e  

fo rm e r in  t h e  r e s t  o f  t h e  r e g i o n s ,  i . e . ,  i n  t h e  c e n t r a l  p a r t .  U n f o r tu n a t e ly ,  

we c o u ld  n o t  s w i tc h  fro m  t h e  " s t r a i g h t f o r w a r d "  n o rm a l a p p ro x im a tio n  to  th e  

o th e r  (o r  v i c e  v e r s a )  b e c a u s e  t h e  t r a n s i t i o n  w i l l  n o t  be sm o o th . M o reo v e r, 

th e  a p p ro x im a t io n  i n  t h e  t a i l s  by  t h e  tw o m eth o d s  i s  s t i l l  u n s a t i s f a c t o r y .

(3) M ix tu re  o f  " D e c i l e —A d ju s te d "  N o rm als

A r e l a t i v e l y  b e t t e r  a p p ro x im a to r would be a m ix tu re  of two a d ju s te d

norm als :
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p . $(XN .o  5 ( 1 - P ) ) + ( 1 - p )  . $ ( x N . a  + <5p)

where

°  ~ / l 2 n  (C iS  d e c i d e d  by  t h e  q u a n t i l e

and <5 = 0 .5  a .

This h a s  t h e  sam e c h a r a c t e r i s t i c s  o f  t h e  " a d j u s t e d "  n o r m a l ,  m ethod  

¡2) above, b u t  s i g n i f i c a n t l y  b e t t e r  e s p e c i a l l y  to w a r d s  t h e  m id d le .

In th e  e m p i r i c a l  r e s u l t s  g i v e n  on  t h e  t a b l e s  we c o u ld  b e  a  b i t

concerned a b o u t  t h e  f i t  i n  t h e  t a i l s .  I t  i s  a p p a r e n t  in  t h e  d a t a  b e lo w  

that th is  w e ig h t in g  f a c t o r  p w as u s e f u l  i n  b r i n g i n g  down t h e  i n f l a t e d

values around t h e  m id d le  o f  t h e  d i s t r i b u t i o n .  Y e t ,  i t  a d v e r s e l y  c l u s t e r e d

all the d i s c r e p a n c y  a lo n g  t h e  t a i l s  w h e re  maximum a b s o l u t e  e r r o r  i s  a b o u t

4.3 x 10~3 .

However, i f  t h e  a d j u s t m e n t  i s  d o n e  a r o u n d  t h e  f i r s t  d e c i l e  r a t h e r  

chan the q u a r t i l e  we w o u ld  s p r e a d  t h e  d i s c r e p a n c y  a lm o s t  e v e n ly  th r o u g h o u t  

the whole d i s t r i b u t i o n . T h i s  i s  why we recom m end t h e  m ix tu r e  o f  two 

"decile a d ju s t e d "  n o r m a ls  a s  a n  a p p r o x i m a t io n  o f  t h e  d i s t r i b u t i o n  o f

the mean o f  n u n i f o r m s .  As f o r  n  we c o u ld  b e  s a f e  w i th  n = 10 s in c e  th e
-3

maximum e r r o r  i s  n e a r l y  10 . F o r  n=8 i t  i s  j u s t  u n d e r  2 x 10



4

n 5 6 7 8 9 10

t a i l s c e n t r e t a i l s c e n t r e t a i l s c e n t r e t a i l s c e n t r e t a i l s c e n t r e t a i l s c e n t r e

M ethod (1) 2 .4 5 .8 2 .3 4 .8 2 .3 4 .1 2 .0 3 .6 1 .7 3 .2 1 .5 2 .9

M ethod (2) 4 .3 4 2 .8 3 .6 2 .5 3 .1 1 .9 2 .7 1 .7 2 .4 1 .5
2 .2  J

1 .4

q u a r t i l e 4 .3 3 2 .8 3 .6 2 .4 3 .1 1 .9 2 .7 1 .6 2 .4 1 .4 2 .1 1 .3
a d ju s t e d

M ethod (3) ,
(p= 0 .1 ) d e c i l e 2 .9 2 .4 2 .3 2 .1 2 .0 1 .8 1 .7 1 .6 1 .4 1 .4 1 .3 1 .3

a d ju s t e d 1 L
J

3
T a b le :  Maximum a b s o lu t e  e r r o r  (x 10 ) f o r  n = 5 ( l ) 1 0  in  th e  t a i l s  and  c e n t r e



D is trib u tio n  o f  n=5 u n ifo rm s  and i t s  ap p ro x im a tio n  by

A. " s t r a ig h t f o r w a r d "  norm al d i s t r i b u t i o n

B. "A d ju sted "  norm al d i s t r i b u t i o n .
P e r c e n t i l e s  3

XN X’u P 'u E r ro r Xu Pu E rro r

.0 1 0  - 2 . 3 2 7  i 0 .1  91 - 0 0 6 6 - .3 3 0 E -O 2 C .2 0  0 „0 0 3 2 - - 1 7  5 E -0 2

.0 2 0  - 2 . 0 5 4  i 0 .2 2 S » 0 1 5 9 - - 4 1 0 E - 0 2 ■ 0 .2 3  5 -0 1 S 5 - - 1 4 2 E - 0 2
.0 3 0  - 1 . 8 8 1  ? 0 .2 5 1 - 0 2 5 6 - o4 3 4 E -- '2 , 0 .2 5 7 .0 2 9 1 - . 3  05 E -6 3
„ 0 4 0 —1 .7 5 1  i 0 .2 6 3 .0 3 5 6 - - 4 3 2 2 - 0 2 : 0 .2 7 4 .0 3 9 5 - - 1 1 6 E - Ü 3
.0 5 0  - 1 . 6 4 5  i 0 . 2  82 .0 4 5 8 - .4 1 7 E -Û 2 ; 0 .2 8 8 -0 5 0 5 -57 2 E - ¡3. 0 6 0 - 1 . 5 5 5  I 0 . 2 9 4 .0 5 6 0 - .3 9 5  E -0 2 ’ 0 .2 9 9 .0 6 1 2 .1 2 3 E - 0 2
.0 7 0  - 1 - 4 7 6  { Q .3 0 4 '„06 63 - „ 3 7 0 E -0 2 i 0 .3 0 5 -0 7 1 S „1S 4E -V 2
.fcSO -1  .4 0 5  : 0 - 3 1 4 - 0 7 6 5 —.3  43 E -0  2 P . '31 9 -C 8 2 3 __r.240  E -0 2
.0 9 0  -1  .3 4 1  ! 0 .3 2 2 .0 8 6 8 —- 3 1 5 E -0 2 0 .3 2 7 .0 9 2 9 - 2 9 1 E -0 2

*.1 00 -1  .2  82 ' 0 „ 3 3 0 „09  71 —„ Z 3 7 E -P 2 0 .3 3  5 .1  933 .'33 7 E -0 2
-1  10 -1  .2 2 7 0 .3 3 7 .1 0 7 3 —.2 6 0 2 - 0 2 0 .3 4 2 -1 1 3 7 -3 7 8 E -Û 2
.1 2 0  - 1 . 1 7 5  : 0 . 3  44 .1 1 7 6 —.2  3 4 E - :.?2 0 „34 8 „1241 „41 4 E -0 2
-1 3 0  - 1 . 1 2 6  : 0 .3 5 1 .1  279 —- 2 1 0 E -0 2 0 .3 5 3 .1 3 4 4 -4 4 6  E-Q2
-1 4 0  - 1 . 0 S 0  i 0 . 3 5 7 „ 1 3 8 1 —„1 86 E -0 2 0 .3 6 1 .1 4 4 7 »47 4 E -0 2
-1  50 - 1 . 0 3 6  : 0 . 3 6 3 -1  4 S 3 —- 1 6 3 E - 0 2 0 .3 6 6 .1 5 4 9 - 4 9 8 E - 0 2
.  1 60 - 0 . 9 9 4  ! 0 . 3 6 8 - 1 5 3 5 —.1 4 2  E -0 2 0 .3 7 2 „1651 „51 9 E -0 2
-1 ÏQ  - 0 . 9 5 4  ‘ 0 . 3 7 3 . 1 6 8 7 —- 1 2 2 E - 0 2 0 .3 7 " 7 .1 7 5 3 •5 3 6 E -C 2
. 1 8 0 - 0 . 9 1 5  ; 0 . 3 7 9 „ 1 7 8 9 - „1 03 E -0 2 0 .3 8  2 .1  8 5 4 ’ .5 5  f 'E -0 2
-1 9 0  - 0 . 8 7 8  : 0 . 3 8 4 .1 8 9 1 - . 3 5 6 5 - 0 3 C .3 S ? .1 9 5 6 . 5 6 1 E -0 2
.2 0 0  - 0 . 8 4 1 0 . 3 8 3 .1 9 9 3 - „6 9 0E-C,5 0 .3 9 1 „2 05 6 „56 9 E -0 2
.2 1 0  - 0 . 8 0 6  : 0 . 3 9 3 .2 0 9 4 - - 5 3 6 E - 0 3 0 .3 9 6 .2 1 5 7 -5 7 5 E -Q 2
.2 2 0  - 0 . 7 7 2  ; 0 . 3 9 8 .2 1 9 6 - „39 2 E -0 3 0 .4 0 0 -2 2 5 7 -5 7  8 E - 02
- 2 3 0  - 0 . 7 3 9  : 0 . 4 0 2 . 2 2 9 7 —.2 5 9 9 - 0 3 0 - 4 0 5 „ 2 3 5 7 „ 5 7 8 E -0 2
-2 4 0  - 0 . 7 0 6  • 0 . 4  06 .2 3 9 8 - .1 37 E-Ô3 0 .4 0 9 „ 2 4 5 7 „57 7E-O 2
.2 5 0  - 0 . 6 7 4 0 .4 1 1 .2 4 9 9 —„2 42 E -0 4 0.-41 3 .2 5 5 7 : -5 7 3 E - 0 2
-2 6 0  - 0 . 6 4 3 0 . 4 1 5 „2 6 00 „781 E -0 4 0 .4 1  7 „2 6 56 -5 6  7 E - 02
- 2  70 - 0 . 6 1 2  ; 0 . 4 1 9 .2 7 0 1 _ l7 0 tE -0 3 0 .4 2 1 .2 7 5 5 - 5 5 9 E -0 2
.2 8 0  - 0 . 5 8 2  ■ 0 . 4  23 .2  8 02 „252 8 -9 3 0 .4 2  5 .2 5 5 4 - 5 5 0 E -0 2
- 2 9 0  - 0 . 5 5 3  : 0 . 4 2 7 .2 9  03 „ 3 2 5 E -0 3 «’„42 9 .¿ 9 5 3 -5 3 8  E -02
-30Q  - 0 . 5 2 4 0 -43.1 „ 3 0 0 3 „3 8 7 E -0 3 0 „43 2 .3 0 5 2 -5 2 5 E -0 2
-3 1 0  - 0 . 4 9 5 0 . 4 3 4 .3 1 0 4 . 4 4 1 E -0 3 0 „436 „3 150 „51 P E - 02
- 3  20 - 0 .- 4 6 7  ; 0 . 4 3 8 . 3 2 0 4 „484  E—93 0 .4 4 0 ' „ 3 2 4 9 „ 4 9 3 E -0 2
.3 3 0  - 0 . 4 3 9 0 . 4  4 2 .3 3 0 5 „ 5 1 9 E -0 3 0 .4 4 3 - 3 3 4 7 »475 E - 92
.3 4 0  - 0 . 4 1 2 0 . 4 4 5 „ 3 4 0 5 „ 5 4 5 E -0 3 0 .4 4 7 „ 3 4 4 5 .4 5 5 E - 0 2
- 3 5 0  - 0 . 3 S 5  : 0 . 4 4 9 .3 5  05 .5 6 2  E-Q3 0 .4 5 0 „3 5 4 3 .4 3  4 E - 02
.‘3 60 - 0 . 3 5  8 . 0 . 4 5 3 .3 6 0 5 . 5 7 1 E -0 3 0 .4 5 4 „3 6 4 1 -4 1 2 E -0 2
-3 7 0  - 0 . 3 3 1 0 . 4 5 6 .3 7 0 5 .5 7 2 E - 0 3 0 .4 5 7 „ 3 7 3 5 -3 5 5 E - 02
.3 8 0  - 0 . 3 0 5 0 . 4 6 0 „ 3 8 0 5 „5 6 5 E -0 3 0 .4 6  1 -3 3 3 6 .3 6 4 E - 0 2
- 3 9 0  - 0 . 2 7 9 0 . 4 6 3 .3 9 0 5 .5 5 O E -O 3 0 .4 6  L „3 9 3 3 „33 8E-O 2
- 4 0 0  - 0 . 2 5 3 0 .4 6 6 .4 0 0 5 .5  29 E-?J3 0 .4 6  7 .4 0 3 1 . 3 1 1 E -02
- 4 1 0  - 0 . 2 2 7 0 . 4 7 0 .4 1  05 „ 5 0 1 E -0 3 0 .4 7  1 .4 1 2 8 . 2 8 3 E -02
- 4 2 0  - 0 . 2 0 2 0 . 4 7 3 .4 2 0 4 „466 E -0 3 0 .4 7 4 „4 2 2 5 -2 5 4 E -O 2
- 4 5 0  - 0 . 1 7 6 0 - 4 7 7 .4 3 0 4 „ 4 2 5 E -0 3 0 .4 7 7 „4 3 2 2 „ 2 2 5 E -0 2
- 4 4 0  - 0 - 1 5 1  ! o . - . s o .4 4 0 3 „3 79 E -0 3 0 .4 8  1 .4 4 1 9 .1 9 5 E - 0 2
.4 5 0  - 0 . 1 2 5 0 - 4 8 3 .4 5 G 3 .3 2 7 E - 0 3 0 .4 8  4 .4 5 1 6 -1 6  3 E- ’2
.4 6 0  - 0 . 1 0 0 0 . 4 8 7 „ 4 6 0 2 „ 2 7 0 E -0 3 0 . 48 7 .4 6 1 3 -1 3 2 E -0 2
.4 7 0  - 0 . 0 7 5  : C - 4 9 0 .4 7 0 2 „209  E -0 5 0 .4 9 Û „4 7 0 9 „99 5 E -0 3
- 4 £0 - 0 . 0 5 0 0 . 4 9 3 .4 8 0 1 .1 43 E-O3 0-49< , .4 8  06 .6 6 8 E - 0 3
.4 9 0  - 0 . 0 2 5 0 . 4 9 7 „ 4 9 0 0 „ 7 3 4 E -0 4 0 .4 9 ? .4 9 0 3 .3 3  6 E —■. <3
-5  CO -O .O C O 0 .5 0 0 „500C - „1 1 2 E ---7 0 .5 0 0 . 5 0 0 0 - - 1 1 2 E -0 7



1
D is trib u tio n  o f  n=6 u n ifo rm s  and a p p ro x im a tio n s  by

A. " S tr a ig h tf o rw a r d "  norm al d i s t r i b u t i o n s
B. "A d ju sted "  norm al d i s t r i b u t i o n s .

P e rc e n t i le s  B
XN X1u P 1u

.0 1 0 ; - 2 .3 2 7 0 - 2 2 0 „ 0 0 7 2 5 1 2
,C!2Q;-2_Q54 0 . 2 5 2 „ 0 1 6 6 0 5 9
.0 3 0 - 1  - 8S1 0 - 2 7 3 „ 0 2 6 4 1 1 9
,0 4 0 .-1  .7 5 1 0 - 2 S 9 . 0 3 6 4 1 4 7
.0 5 0  -1  -6 4 5 0 . 3 0 2 - 0 4 6 5 1 9 3
,0 6 0  -1  .5 5 5 0 . 3 1 3 „0 5 6 6 8  07
.0 7 0  - 1 . 4 7 6 0 - 3 2 2 .0 6 6 8 7 4 4
.0 8 0  - 1 . 4 0 5 0 .3 3 1 . 0 7 7 0 8 6 0
.0 9 0  - 1 . 3 4 1 0 - 3 3 S - 0 5 7 3 0 6 7
.1 00 - 1 . 2 8 2 0 - 3 4 6 .0 9 7 5 3 0 3
.1 1 0  - 1 - 2 2 7 0 - 3 5 2 .1 0 7 7 5 2 7
. 1 2 0 - 1  .1 7 5 0^ .3 5 8 .1 1  7 9 7 1 0
.1 3 0  - 1 . 1 2 6 0 - 3 6 4 „1 2 S 1 8 3 1
.1 4 0  -1  .0 8 0 0 - 3 7 0 - 1 3 8 3 8 7 4
.1 5 0  -1  .0 3 6 0 . 3  75 .1 4 8 5 8 2 9
.1 6 0  - 0 . 9 9 4 0 -3 8 0 .1 5 8 7 6 8 8
. 1 7 0 - 0  „9 5 4 0 „385 „1 6 8 9 4 4 6
.1 8 0  - 0 - 9 1 5 0 - 3 9 0 .1 7 9 1 0 9 9
.1 90 - 0 . 8  78 0 . 3 9 4 .1 8 9 2 6 4 8
. 2 0 0 - 0 . 8 4 1 0 - 3 9 9 „ 1 9 9 4 0 8 9
.2 1 0  - 0 . 8 0 6 0 - 4 0 3 „2 0 9 54 26
.2 2 0  - 0 . 7 7 2 0 - 4 0 7 .2 1 9 6 6 5 5
.2 3 0  - 0 . 7 3 7 0 - 4 1 1 .2 2 9 7 7 8 8
.2 4 0  - 0 . 7 0 6 0 .4 1 5 . 2 3 9 3 8 1 8
.2 5 0  - 0 . 6 7 4 0 - 4 1 9 „ 2 4 9 9 7 5 0
-2 60 - 0 . 6 4 3 0 - 4 2 2 .2 6 0 0 5 8 7
.2 7 0  - 0 . 6 1 2 0 . 4  26 .2 7 0 1 3 3 3
. 2 8 0 - 0 . 5 8 2 0 . 4 3 0 „ ¿ 8 0 1 9 8 9
. 2 9 0 - 0 . 5 5 3 0 . 4 3 3 .2 9 0 2 5 6 1
.3 0 0  - 0 - 5 2 4 0 .4 3 7 . 3 0 0 3 0 5 0
.3 1 0  - 0 . 4 9 5 0 . 4 4 0 . 3 1 0 3 4 5 9
, 3 2 0 - 0 . 4 6 7 0 - 4 4 4 .3 2 0 3 7 9 3
.3 3 0  - 0 . 4 3 9 0 - 4 4 7 „ 3 3 0 4 0 5 4
. 3 4 0 - 0 . 4 1 2 0 - 4 5 0 .3 4 0 4 2 4 6
, 3 5 0 - 0 . 3 8 5 0 . 4 5 4 .3 5 0 4 3 7 1
.*3 60 -O '. 358 0 - 4  57 . 3 6 0 4 4 3 2
. 3 7 0 - 0 . 3 3 1 0 . 4 6 0 „ 3 7 0 4 4 3 3
. 3 8 0 - 0 . 3 0 5 0 - 4 6 3 .3 8 0 4 3 7 5
.3  90 - 0 . 2 7 9 0 . 4 6 6 .3 9 0 4 2 6 2
. 4 0 0 - 0 . 2 5 3 0 .4 7 0 .4 0 0 4 0 9 7
. 4 1 0 - 0 . 2 2 7 0 .4 7 3 „4 1 0 3 8 8 0
. 4 2 0 - 0 . 2 0 2 0 . 4 7 6 .4 2 0 3 6 1 6
. 4 3 0 - 0 . 1 7 6 0 . 4 7 9 .4 3 0 3 3 0 5
.4 4 0  - 0 .1 5 1 0 .4 8 2 „ 4 4 0 2 9 5 1
.4 5 0  - 0 . 1 2 5 0 - 4 8 5 „ 4 5 0 2 5 5 4
= 4 6 0 - 0 .1 0 0 0 - 4 8 3 .4 6 0 2 1  18
. 6 7 0 - 0 . 0 7 5 0 .4 9 1 .4 7 0 1 6 6 3
. 4 8 0 - 0 . 0 5 0 0 - 4 9 4 „48 0 1 1 3 0
. 4 9 0 - 0 . 0 2 5 0 - 4 9 7 „ 4 9 0 0 5 -8 3
.5  00 - 0 . 0 0 0 0 - 5 0 0 „ 5 0 0 0 0 0 0

E rro r
- - 2 7 5 E - O 2

A
Xu

0 .2 2  6
pu

.0 0 8 5 6
-  „339 E -0 2 0 .2 5  8 .0 1 2 8 4
- - 3 5 9 E - 0 2 0 - 2 7  8. „ 0 2 9 3 5
-  -3 59 e -0 2 0 .2 9  4 .0 3 5 9 0
-  - 3 4 8 E -0  2 0 - 3 0 6 .0 5 0 4 5
-  „ 3 3 2 E -O 2 0 -3 1  7 .0 6 0 9 8
- . 3 1 3 E -0 2 0 .3 2 6 „ 0 7 1 4 7
- . 2 9 1  E -0 2 0 - 3 3 4 .0 8 1 9 2
-  - 2 6 9 E - 0 2 0 .3 4 2 .0 9 2 3 4
-  „ 2 4 7 E -0 2 0 .3 4  9 -1 027  2
- - 2 2 5 E - D 2 0 - 3 5 5 „1 130 6
- - 2  0 3 E -U 2 0 - 3 6 2 .1  2 3 3 7
—- 1 8 2 E - 0 2 0 .3 6 7 -1 3 3 6 5
- - 1 6 1 E -0 2 0 - 3 7 3 - 1 4 3 3 ?
- - 1 4 2 E - 0 2 0 . 3 7  8 -1 5 4 1 0
-  -1 2 3 E - 0 2 0 .3 S 3 .1 6 4 2 8
- „ 1  06 E -0 2 0 -3 S 8 .1 7 4 4 4
- . 8 9 0 E -0 3 0 „39? „1 845 6
- - 7 3  5 E —03 0 - 3 9  7 .1 9 4 6 6
-  „5 91 E -0 3 0 .4 0 1 .2 0 4 7 4
-  „4 57 E -03! 0 .4 0  5 -2 1 4 7 9
- . 3 3 4  8 -0 3 ! 0 - 4 0 9 „ 2 2 4 8 2
— .2 2 1  E -> 3 ‘ 0 - 4 1 3 .2 3 4 8 3
- . 1  13 E -0 3 0 .4 1 7 .2 4 4 8 2
-  „25 0 E- 0 4 0 - 4 2 1 .2 5 4 7 9

„ 5 8 7 E -0 4 0 . 4 2 4 -2 6 4 7 4
„133  E -0 3 0 - 4 2  2 .2 7 4 6 7
„1 99 E -0 3 0 .4 3  1 .2 8 4 5 8
„ 2 5 6 E - 0 3 0 .4 3 5 - 2 9 4 4 ?
, 3 0 5 c - 0 3 0 .4 3  8 „ 3 0 4 3 7
„ 3 4 6 E - 0 3 0 - 4 4 2 .3 1 4 2 4
.3 7 9 E - 0 3 0 .4 4 5 .3 2 4 1 0
„4 05 E - 03 0 -4 4 .8 .3 3 3 9 5
„ 4 2 5 £ - 0 3 0 .4 5 1 „ 3 4 3 7 8
„ 4 3 7 E -0 3 0 .4 5 5 -3 5 3 6 0
.4 4 3 E - 0 3 0 .4 5 S .3 6 3 4 2
„ 4 4 3 E - 0 3 0 .4 6  1 .3 7 3 2 2
.4 3 8 E - 0 3 0 .4 6  4 „ 3 8 3 0 1
„426  E-Û 3 0 .4 6  7 .3 9 2 8 0
„ 4 1 0 E -C Î j . 47 0 -4 0 2 5 7
„ 3 S 8 E -0 3 0 .4 7  3 -4 1 2 3 4
.3 6 2  E -0 3 3 .4 7  6 „ 4 2 2 1 0
.3 3 1  E -0 3 3 .4 7 ° .4 3 1 8 6
„295 E -0 3 3 .4 8  2 .4 4 1 6 1
„2 5 5 E -0 3 0 .4 8  5 -4 5 1 3 5
.2  12 E -03 0 .4 8  8. .4 6 1 0 9
„1 6 4 E — 03 0 .4 9  1 .4 7 0 8 2
„ 1 1 3 E -0 3 0 .4 9  4 .4 8 0 5 5
„5 83E -< ;4 3 .4 9 7 .4 9 0 2 7

- . 2 6 1 E -07 0 .5 0  0 „ 5 0 0 0 0

E rro r
- - 1  4 3E -Q 2  
—-1 1 5  E -0 2  
- „ 6 4 8 E -Q 3  
“ - 9 4 2 E - 0 4

-4 5 5 E -Û 3
- 9 3 0 c —03
„ 1 4 7 E -0 2
„ .1 9 3 E -0 2
-2 3 4 E -Q 2
- 2 7 2 E - 0 2
.,3 0 7 E -0 2
-3 3 3 E -C 2
- 3 6 5 E - 0 2
-3 9 0 E -Q 2
- 4 1 1 E - 0 2
- 4 2 9 E - 0 2
.4 4 4 E - 0 2
„45 7E -Û 2
-4 6 7 E - 0 2
- 4 7 5 E - 0 2
.4 8 0 E -Û 2
-4 S 3 E -0 2
- 4 8 3 E - 02
-4 8 2 E -0 2
-4 7 9 E -0 2
.4 7 4 E - 0 2
-4 6 7 E - 0 2
.4 5 9  E -0 2
-4 4 9 E -0 2
-4 3 S E -0 2
- 4 2 5 E - 0 2
-4 1 1  E -0 2
- 3 9 5 E - 0 2
-3 7 9 E -0 2
. 3 6 1 E -0 2
-3 4 2 E -Q 2
-3 2 2 E -0 2
„3O 2E-Q 2
-2 S 0 E -0 2
.2 5 8 E - 0 2
- 2 3 5 E -0 2
.21  1 E -0 2
- 1 8 6 E - 0 2
-161  E -0 2
.1 3 5 6 - 0 2
„109 6 - 0 2
.8 2 5 E - 0 3
-5 5 4 E -0 3
-2 7 9 E -Q 3

-„2 6 1 6 - 0 7
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APPENDIX (A.2.)

VERIFICATION OF PROPERTY Q IN ATTRI-VAR PLANS UNDER KNOWN O NORMALITY

Let x ± and denote the first (variables) sample of size n^ 

and the second (attributes) sample of size n^ respectively. Define 

X (i) ' Z (i) aS their respective order statistics. Let y denote the 

amalgamated samples with size n. + n_ and likewise define v ,.,  •1 2  2 (i)

Under normality N(p.,U2) with known a, the decision rule "Accept 

if Q(x) > t^ where t is the given decision constant" has property "Q" 

since any increment in any x ^j (i.e. a better sample and consequently 

better scoring Q ( x ^ )  since the function Q(.) is an increasing function) 

will lead to acceptance if the lesser sample is accepted. This is

because Q will not decrease:

n
Q(x) = Z a ± . Q(x(±)) 

i=l

n-1
Z

i=l
= E . S(x(1)) + an . Q(x(n)

where a = —  > 0 and O(x) is a monotonic increasing function. Hence, i n
property Q holds.

On taking the amalgamated sample of {y.} then under the attribute

decision rule : "Accept if number of defectives < c" (i.e. "Accept if

number of effectives + n 2 “ c"} we have "property Q". This is

because any increase, say ct, in any of the overall order statistics

y would never decrease the actual number of effectices, thus 
(i)

guaranteeing an acceptance if acceptance was granted before the increment
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Number of effectives = £ H(v )i=l 1

where H(y) = 0 if y < specification limit, A

= 1  if y > A.

Here, also property Q holds since an increment in y can never

decrease the corresponding H.



APPENDIX (D.1.)

GRAPHS OF SOME REPRESENTATIVE CASES OF THE AVERAGE Q(X)

I

The f o l l o w i n g  g r a p h s  a r e  t o  r e p r e s e n t  t h e  c o n v o lu te d  d i s t r i b u t i o n s

for some c a s e s  o f  n  = 8 ,  1 6 , 32 a n d  64

B = 0 . 5  ( 0 .4 )  1 .3 .

On e a c h  s e p a r a t e  f i g u r e  we h a v e  32 d i s t r i b u t i o n  f u n c t i o n s .  From 

top to  b o t to m  t h e s e  r e p r e s e n t  t h e  c u m u la t iv e  d i s t r i b u t i o n  f o r  c a s e s  o f  

Pg c o r r e s p o n d in g  t o  t h e  f o l l o w i n g  p.—v a l u e s  :

p. = 0 .4  ( 0 .1 )  3 . 4 .
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APPENDIX (D . 2.)

GRAPHS TO REFLECT P-PLAN O.C. RESPONSE TO SOME CHANGES IN C

Some representative code letters (namely E, F, H and L from 

BS6002) are chosen each with one case of AQL as shown. In the diagrams 

the code letter E/0.65 means the code letter E for AQL = 0.65%.

The P changes are shown on each curve each passing through the

indifference point of 50% acceptance.

Below is a table of the test parameters of the plans for the four

code letters:

Code Letter E/0.65 F/l .0 H/l .5 L/2.5

(ka ,n) (1.69,3) (1.69,4) (1.68,8) (1.65,

w here k ,n  a r e  t h e  t e s t  c r i t e r i o n  a n d  sa m p le  s i z e  r e s p e c t i v e l y .
o'
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APPENDIX (E.l.)

THE JOHNSON SYSTEMS AND THE DISTRIBUTION OF THE RAMP Q(X)

1 • A N o te  on t h e  D i s t r i b u t i o n  F i t t i n g  S y s te m s

Some w ork h a s  b e e n  d o n e  on a p p ly i n g  some t r a n s f o r m a t i o n s  o f  sy s te m s  

o f n o n -n o rm a l u n i v a r i a t e  c u r v e s  t o  a p p r o x im a te  t h e  s a m p lin g  d i s t r ih u t i  n-n a 

o f random  v a r i a b l e s  w hose  m om ents a r e  known b u t  w hose e x a c t  d e n s i t y  

a n d /o r  d i s t r i b u t i o n  f u n c t i o n s  a r e  unknow n (o r  d i f f i c u l t  t o  f i n d ) .

P e a rs o n  (1963) h a s  fo u n d  t h a t  t h e r e  i s  o f t e n  r e m a rk a b le  s i m i l a r i t y  in

sh ap e  i f  t h e  f i r s t  f o u r  m om ents a r e  i d e n t i c a l .  F o r  many p r a c t i c a l  r e a s o n s

th e  e q u iv a le n c e  i s  a d e q u a te  th o u g h  i n  t h e  s t r i c t  m a th e m a t ic a l  s e n s e  th e y

may n o t  b e  e x a c t l y  e q u i v a l e n t .  Any s y s te m  o f  d i s t r i b u t i o n s  w h ich  can

be e a s i l y  t r a n s f o r m e d  i n t o  a  n o rm a l ( o r  a n y  o t h e r  w e l l  known and

m an ag eab le ) d i s t r i b u t i o n  h a s  c e r t a i n  o b v io u s  p r a c t i c a l  a d v a n ta g e s .

The l i t e r a t u r e  on  f i t t i n g  s y s te m s  i s  w id e  r a n g in g  an d  h a s  expanded  

r a p i d l y .  R e f e re n c e  w o rk s  o f  P a t i l  a n d  J o s h i  (1968) an d  Jo h n so n  and  K otz  

(1 9 6 9 , 1970) a r e  i n v a l u a b l e  t o  s t a t i s t i c i a n s  . A lso  u s e f u l  i s  th e  

m onograph by O rd (1972) w i th  am p le  u s e f u l  i n f o r m a t io n  on m ethods o f  

a n a l y s i s  an d  p ro b le m s  i n v o lv e d  in  s e l e c t i n g  an d  f i t t i n g  an  a p p r o p r i a t e

m o d e l.

^.z Jo h n so n  (1949) p r o p o s e d  new p o s i t i v e  s t e p s  t o  d e v e lo p  th e  b a s ic  

c la im  t h a t  t h e  f i r s t  f o u r  m om ents o f  a n y  d i s t r i b u t i o n  a r e  s u f f i c i e n t  

t o  d e te r m in e  i t s  s h a p e  a n d  d e f i n e  i t  r e a s o n a b ly  w e l l .  The a p p ro x im a t io n s  

o f  P e a rs o n  ty p e  o f  c u r v e s  t o  d e n s i t i e s  a n d  d i s t r i b u t i o n s  was d i s c u s s e d  

by Solom on an d  S te p h e n s  (1978) .



v Like Pearson, Johnson has mainly used and $2 (the standardized 

third and fourth moments to determine the general shape leaving the 

mean and variance (the standardising first and second moments) for the 

obvious secondary role of shifting and scaling the finTnA in . This is why 

a "6^, Is being used naturally as the main tool of analysis

in choosing the appropriate system from among the exhaustive set of 

systems of transformations (a typical set is discussed below). ^ihe

central idea is the transformation of the r.v. under consideration into

a Normal one. He established a set of standard systems that can

approximate almost any continuous univariate distribution. The system

proposed by Johnson (1949) consist of the following three basic families

of distributions, each with different form of transformation (which assume

Z is the standard Normal r.v. and X is the r.v. to be transformed):

(1) Bounded System (S ) : Z = y + ô . £n ( (X-Ç) / (Ç+À-X)) , Ç < X < B

(2) Lognormal System (S ) :Z - y + <5 . £n(X-Ç) , X > E,
£j

_ J.
(3) Unbounded System (S^) :Z = y + <5 . sinh ((X-Ç)/À)

Hill et al (1976) suggested, for the sake of completeness, the 

explicit inclusion of the following special cases.

(4) the Normal Curve itself (SN);

(5) A s p e c i a l  c a s e  [w h ich  h e  c a l l e d  ( S ? ) ] o f  SB on t h e  l i n e  S 2 -  + 1.

F o r  th e  f i r s t  f o u r  m om ents o f  X t o  m atch  th o s e  o f  an y  r e q u i r e d

d i s t r i b u t i o n  i t  i s  n e c e s s a r y  t o f i n d  o u t  w h ich  o f  t h e  ab o v e  t r a n s f o r m a t io n s



is needed, and thereafter evaluate the parameters y , 6, X and E,.

We should note that fitting by moments is not always desirable but 

in a number of situations it gives an adequate, though not necessarily 

the best , solution. A need to fit a distribution by moments could 

arise in a purely theoretical context or else in finding an empirical 

fit to some data obtained from a random sample. In the empirical or

sampling area we have the "generalised Lambda distribution" due to

Ramberg et al (1979) , the Pearson (3^, 32)-plane systems for which Johnson, 

Nixon and Amos (1963) provided tables, and we also have the Johnson

(1949) systems. These are all examples of empirically fitting distributions

to model some sampling data.

v The Johnson systems mentioned above relate uniquely to the (0 , 32) 

plane as the picture on (Fig (1)) shows. If we evaluate and plot the 

(3^ 82) point of each system the SN is the point (0,3) , the SL is a 

line from this point (0,3) - (emphasising that the Normal system is a 

special case of the Lognormal) — and separating the two other regions 

of the Bounded and the Unbounded systems. The SL as a major boundary is 

characterised by the locus of (3p  3-,) defined by the following parametric 

equations:

3 = (w-1)(w+2)2 , (/61 > 0)
1 1

w4 + 2W3 + 3w2 3

where w e x p (5 ) -

32
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The 3 v ß2 p la n e  showing th e  map o f system s o f Pearson  ty p es  and 
Johnson d i s t r i b u t i o n s .  (Showing a l s o ,  by , i s  an example o f Ramp

d is t r ib u t io n  p o i n t s ) .



Of these regions the Su lies below the Lognormal line while the 

Sg is above it. A region above the Bounded System is the impossible or 

inaccessible region. Johnson and Kotz (19 70) claimed that it can be 

proved analytically that for any (gp g^) point below or above the 

Lognormal line there is an appropriate Sg or Sq distribution respectively, 

and that the Sg, Sy and Sg cover the whole possible (g^ g ) plane 

uniquely. In other words there is just one appropriate distribution 

corresponding to each (g , g2) point.

The general procedure for the use of the Johnson System is summarised 

by the following steps (which assume the availability of the first four

moments) :

(i) evaluate the g and g2 which on the plane determines the exact 

system according to the above standard mapping procedure ;

(ii) transform into a normal r.v. (using the appropriate selected 

form as given by (i) above) via the appropriate estimation 

procedure of the parameters À, y and 5. This estimation 

procedure is probably the most difficult part of the whole 

operation and where most of the developments in this area are

taking place.

In the case of empirical moments:

The d e t a i l s  o f  ( i )  a r e  o b v io u s  th o u g h  c o m p u ta t io n a l  p ro b le m s  a r e  

p o s s i b l e .  As f o r  ( i i )  t h e r e  a r e  many d e t a i l e d  p r o c e d u r e s .  Jo h n so n  (1949) 

s u g g e s t s  m a tc h in g  t h e  p e r c e n t i l e s  f o r  Sg a n d  g a v e  u s e f u l  fo rm u la e  f o r  th e
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two cases of knowing only one or both end points.

two end points is given he advocated a solution of

of equations to solve. Aitchison and Brown (1957)

evaluating the parameters of the S .L

And if neither of the 

a non-linear system

gave procedures for

A two way look up table is Johnson1 s method for estimating the 

parameters of the from the sample estimates. Mage (1980) and Bukac 

(1972) gave procedures of (ii) for SB based on symmetrical points.

Ord (1972) discussed different methods for (ii) in the estimation of 

5, y, 5 andX. Slifker and Shapiro (1980) introduced a selection rule 

which depends on four percentiles for (i) and (ii) without the need of 

solving any simultaneous equations or looking-up special tables. According 

to slifker and Shapiro (1980) the major snags of almost all these procedures

a re :

- the high variability of the estimates of the higher moments,

- the estimates of these moments are highly biased for small

samples (see Johnson and Lowe (1979) ,

- the moment estimators are greatly affected by outliers.

In case of ftvai1 ah i1 i ty of the theoretical parametric moments:

Originally the Johnson System of curves was mainly used for fitting 

to empirical data, but use has been extended to theoretical distributions. 

Leslie (1959) claimed that the generating function for some distributions 

though explicitly derivable in an exact form but still not amenable to 

inversion integral. Again, as in this research, only the moment

generating function but not the compact form of the distribution
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obtainable, especially that the distribution is a mixture of discrete 

and continuous r.v.'s. When the first four moments are available 

parametrically the snag of sampling precision mentioned above are ruled 

out completely for the better. Necessarily, all the procedures meant 

to fit empirical sampling data are also applicable to parametric moments

and at an advantage.

Despite all these favourable circumstances the computations in 

the pstimation of the parameters y, 6, 5 and X are tedious and sometimes 

not very stable numerically. That explains why well written and 

validated computer routines are vital for enhancing these systems. Hill 

et al (1976) published a well-received FORTRAN Algorithm to select the 

appropriate system, estimate these parameters and fit the selected 

system to the Normal r.v. though not without inadequacies on the

boundaries.
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2- i-he John3°n Flt t h e  C a s e  ° f  t h e  D istribution of the R a w  ol!i,

(a) Some comments on our application:

When applying the Johnson fits to approximate our Ramp distributions 

we need the moment generating function (m.g.f.). This m.g.f. for the 

Ramp case has been derived as shown in sub-section (b) below.

The moments were evaluated by the lengthy and cumbersome computations 

entailed by this specific derived m.g.f.. Hill's Algorithm was then 

used to locate the (g , points corresponding to these moments 

wherever the algorithm is appropriate.

Some effort was made to isolate and then represent the continuous

part of the distribution only. In the figure (Fig (1)) we have shown

some example points of the distribution for the continuous part of the 

Ramp average Q (X) for one sample size. The different points of (g , g )̂ 

plotted and shown by a in the figure correspond to distributions

for different B-values. The values of n and p^ were 3 2 and 0.05 

respectively.

The arrow indicates the direction of the motion of the plotted 

(g g^) points in terms of an increasing B, (i.e. allowing more continuity 

and less discreteness). In other words as B increases the corresponding 

(g , g2) of the distribution approach (0,3) (the normality point on the 

plane) as would be expected especially for a large n such as n-32.

Though smaller n values have a similar pattern these tend to shift the 

(g^, $2^ P°^nts towards the boundaries between Sg and where Hill s 

algorithm is expected to show some instability. Since we are interes
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in small n values (as the maim attraction of by-variables sampling plans, 

the (6j, B2> pornts tend to be awkwardly placed for the Bill's algorithm 

*ich we were to use in fitting the Johnson systems to our distributions.

The c a s e  p l o t t e d  a b o v e  c a n  b e  h a n d le d  b y  H i l l ' s  a lg o r i t h m  f o r  th e  

two f o l lo w in g  r e a s o n s  w h ic h  h e l p  t o  e x p l a i n  t h e  d i f f i c u l t i e s  e n c o u n te re d  

fo r o t h e r  c a s e s :

1. The r e a s o n a b ly  l a r g e  v a lu e  f o r  n ,  n a m e ly  n = 3 2 .

2 . The r e a s o n a b ly  h i g h  B v a l u e s  ( h e r e ,  i n  t h e  a b o v e  c a s e  t h e  l e a s t  

v a lu e  o f  B i s  0 . 8 4 5 ) .

T h is  l a t t e r  r e a s o n  i s  c r i t i c a l  s i n c e  s m a l l  B v a l u e s  w o u ld  o n ly  a l lo w  low

l e v e l s  o f  c o n t r i b u t i o n  t o  t h e  d i s t r i b u t i o n  fro m  t h e  c o n t in u o u s

p a r t  t o  b e  a p p ro x im a te d  by  t h e  J o h n s o n  s y s te m . I n  f a c t  we n e e d  t o

c o n s id e r  s m a l l  B v a lu e s  i n  o u r  r e s e a r c h .

I t  s h o u ld  b e  m e n t io n e d  t h a t  e v e n  i f  we w ork o n ly  w i th  t h e  c o n t in u o u s  

p a r t  t h e n ,  f o r  an y  p a r a m e t e r s ,  i f  Pg a n d  p£  a b s o r b  m o s t o f  t h e  d i s t r i b u t i o n  

th e  r e s i d u a l  c o n t in u o u s  p a r t  w o u ld  b e  to o  s c a n ty  f o r  a p p ro x im a t io n  

p u r p o s e s .  T h a t i s  b e c a u s e ,  t h e n ,  we w i l l  b e  t r y i n g  t o  a p p ro x im a te  a 

d i s t r i b u t i o n  w h ich  i s  p r e d o m in a n t ly  a  d i s c r e t e  d i s t r i b u t i o n  w ith  e f f e c t i v e l y  

z e ro  p r o b a b i l i t y  d e n s i t y  b e tw e e n  t h e  d i s c r e t e  v a l u e s .  We w i l l  d e f i n i t e l y  

n eed  t o  work w i th  p ^  o f  a  s u b s t a n t i a l  s i z e  b e c a u s e  b a t c h e s ,  in  a c c e p ta n c e  

s a m p lin g , a r e  e x p e c te d  t o  b e  o f  a  r e a s o n a b l y  g o o d  q u a l i t y ,  t h a t  i s  a 

h ig h  p r o p o r t i o n  h a v e  q u a l i t y  c h a r a c t e r i s t i c s  e q u a l  t o  1 .
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ij) The Moment Generating Function of
n
2 Q(x ) for the Ramp 

i=l 1 case :

If i=l,2,...,n is a random sample from a N(u 1) distribution
n u

then the random variable E Q (X ) of the Ramp defined in Chapter 1, will 
i=l

have a derived moment generating function (m.g.f.) as obtained below.

According to the definition of Q (X ) for the Ramp case we would

be dealing with a continuous and a discrete part of the random variable 
n
E Q (X.) as defined by: 
i=l 1

n r
E Q(X ) = E y + s 
i=l i=l

(1)

where y i A < x. < B ix . /B i

= 0 elsewhere

and s, r are integers (assuming there are r marginal ("continuous")

items in the sample).

The first term in (1) is the continuous variable part, while s and

(n-r-s) constitute the discrete part.

Obviously, the continuous part has a double-truncated normal distrib 

ution and, hence, the m.g.f. for it is ip^(t) :

iPc ( t )  = e x p { u 0t / B + t 2 / ( 2 B 2 ) } .{ $ (B -H 0 - t / B )  -  $ ( -H o - t / B ) } / P l  (2)
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where P x = $(B-nQ) - $(-y.Q)

$(.) is the Cumulative Normal Distribution

and is the mean such that the proportion below A = 0 is equal

to P o ’

r
The m.g.f. for the r.v. E y + s (where r and s are given values) 

i=l
is

G (t) = eSt . (t) (3)

But since s varies together r (or n-r-s) according to their corresponding 

probability distributions the m.g.f. of the variable Ey^ + S (where S 

is a r.v.) would be looked upon as a probabilistic occurrence of G.

n
If we denote the overall m.g.f: by M( E Q(X.), t) and suppose 

i=l 1

r
E y, has a probability density function (p.d.f.) of f (.). Then 
i=l 1

n
E y. + s (where s is fixed) has a p.d.f. f(.), too. Hence, Ey^ + S 
i=l 1

with S a random variable has a p.d.f. composed of the terms of

E f  ( . )  P r { s = s } . 
s
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The overall m.g.f. is therefore:

M(ZQ,t) = gt(Zy+S) f(>). Pr{s=s} dt

= Z Pr{s=s, R=r} 
s,r

t (Zy+S)e y f(.) at

= Z Pr{s=s, R=r} . G(t) 
s,r

= Z Pr{s=s, R=r} _St r''' '' ' 'r
s,r

e [ipc (t) ] , using (3) above.

and since Pr{s=s, R=r} = n! ,n-r-s r sr!s! (n-r-s) ! (1 P 1 P 25 P 1 P 2

then

,,/V„ - v n! ,n-r-s r s st r , . rM(ZQ,t) = Z Z — (l-Pi-p2) p x p 2 e (t) ]
r s r Is! (n-r-s) I ^1 2

_ „ n! .n-r-s s st
£ Z r ! a !  ( n - r - s )  I p 2 e

r  ( t 2 /  (2 b 2 ) + ( i - t /b )  e 0 . {$(b-H0- |  ) - $(-H0-t/B)}r

S in c e  p  = $ ( b - p 0 ) -  $ ( - p.Q)

i f  we a e f i n e  ih* (t) = ip ( t )  .p .  th e n  c l



n-r n
M(EQ(X) ,t) n! s st (n-s)!

s=0 r=0
“ s!n-s! P2 e rl(n-r-s)! P0n-s-r

n-r n 
E E
s=0 r

>■ __zc_____ s (n-s) ! n-s-r „ , r=1 s!(n-s)! P 2 6 r!(n-s-r)! P0 (t)] +

s=0
n! s st n-s
(n-s) ! P 2 e p 0

= E E

n

n !

Hence:

M(EQ(X),t) = [p2 efc + pQ + ip*(t)]n

This includes the case of r=0 where spike probabilities rather than a

continuous curve are prevalent. To exclude this case we derive the

conditional m.g.f., M (t) excluding r=0 (i.e. zero marginals), c

Mc (t) =
r t . . . , , n - t , n[p2 e + p + lp*(t)] - [p2 e + pQ]

1 - (1-pp n

The moments :

nLetting a = 1 - (1-p ) then

OM/t) = [p2 eP + pQ + lp*(t)]n - [p2 e11 + pQ]n (I)

where

<P*(t)

,^0 t2
( b + 2b2 } t

e {$(b-HQ- ïï - *<-n0 - s )}

O p e r a t in g  on ( I )  by d i f f e r e n t i a t i n g  w . r . t . an d  s e t t i n g  t= 0  we g e t :
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Note t h a t

cttÇ(y = n { p 2 + ip*' (0) -  P 2 (PO + P 2 ) n ~ 1 }

OM" = n{ (p 2 + ip*" (0 ) )  -  P 2 (P0 + P 2 ) n ~ 1

+ (n -1 )  {(p2 + ip* '(0))2 -  P 2 (p 0 + p 2 ) n ~ 2 }}

« Ç ( t /  = n{ (p 2 + ip*'" (0 ) )  -  p 2 (p0 + P 2 ) n_1

+ (n -1 )  { 3 (p 2 + ip*’ (0) ) (p 2 + ip*" (0) ) -  3 p 2 (P Q + P 2 ) n ~2

+ (n -2 )  { (p2 + p * ' ( 0 ) ) 3 -  P 2 (Pg + P 2 ) n _ 3 } B  

a ^ V(ty =  n{ (p 2 + ip*l v (O)) -  p 2 (p 0 + P 2 ) n_1

+ (n -1 )  {4 (p 2 + ip*1 (0 ) )  (p 2 + ip*"’ (0 ) )  -  4 p | ( p 0 + P 2 ) n_2 + 3 (p 2 + ip*" (0) ) 2 

+ (n -2 ) {6 (p 2 + ip* 1 (0) ) 2 (p 2 + ip*" (0) ) -  6 p 2 (Pg + p 2 ) n 3 

+ (n -3 ) { (p2 + ip*’ (0) ) 4 -  p 2 (p 0 + p 2 ) n 4 }}}}

These r e s u l t s  a r e  u s e d  t o  e v a l u a t e  t h e  f o l l o w i n g  3 rd  a n d  4 th  m om ents :

3,
/ ß .  = [M"' (0) -  3M’ (0 ) .M " (0 )  + 2{M’ (0) }3 ] /  (M" (0) -  ( M '( 0 ) ) 2 ) 2

1 C C O  C C O

ß„ = [ M1V(0) -4  M' (0) . M"' (0 )+ 6  M" (0) .{  M' (0) }2 -3 {  M ' (0) } “ ] /  [M£ (0 ) -M^ (0) ]
2  c  C C c o  u

h t-2
( t  I “

s in c e  ip * (t)  = p 1 ip^t) = e b  2b (b -  UQ -  b ^



ip * '(0) = £  ÎU qP]. -  C4> ( b - u Q) -  (p (u Q) ] }

lp*"(0) = p { ( ^ 0  + 1) P 1 -  2u0 [cp ( b - u 0 ) -  (j>(Uo)]

-  [ (b-p.Q) <p(b-M.Q) + n Q 0 ( u Q) ] }

ip*1" (0) = p i ^ 0 + 3% )  P x -  ( 3 ^  + 3) [<t>(b-u0 ) -  <j)(i_L0 )]

-  3HO [ (b-H g) (j) (b -U 0 ) + u Q 4>(H0 ) ]

-  { [ (b-U Q) 2 -  1] (p (b -u 0 ) -  -  1] (¡>(Ho ) B

ip*1V(0) = p / h j  + <^o + 3) P 1

-  (4|J.q + 12h q ) [<p(b-|J.o ) -  4>(u0 ) l

-  (6n* + 6) [ (b -H 0 ) <j)(b-nQ) + HQ <f>(u0 ) ]

-  4 |i0 { [ ( b - u Q) 2 -  11 4>(b-n0 ) -  -  U <P(HO)}

-  U ( b - n 0 ) 3 -  3 ( b - | l 0 ) l  4>(b-H0 ) + [H30 -  3no l <P(HQ) B

w here <j> (. ) i s  t h e  s t a n d a r d  n o rm a l p . d . f .
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