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GLOSSARY OF TERMS

Property "Q": A sampling plan has property "Q" ;f, and only if,
there is no pair of sample configurations such that the first sample
leads to rejection and the second to acceptance of a batch, but the
first sample is préferred to the second. One sample is preferred
to another of the same sample size, n, if the units can be arranged
into n pairs, one from each sample, so that in every pair the unit

from the preferred sample is at least as good as the unit from the

other sample and is strictly better in at least one pair.

Lower Specification Limit, A: This is the value of the tested
characteristic such that an inspected item in a sample is classified

as defective if its characteristic has a value less than A.

Upper Classification Limit, B: This is the value of the ﬁested
characteristic such that an inspected item from a batch is classified
as marginal if its characteristic has a value between A and B,

and an item is classified as effective if its characteristic has a

value greater than B.

Attribute Sampling Schemes and Sampling By-Variables Schemes: In the
decision making process the observation or the unit in the sample

can either be on a gquantitative basis or a qualitative basis, e.g.
defective, effective and marginal. An acceptance sampling sqgalne
which uses the qualitative characteristic is called an attribute
sampling scheme. An acceptance sampling scheme which bases the

decision on the values taken by a quantitative characteristic is

called a by-variables sampling scheme. Typically the attribute
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sampling schemes will require larger sample sizes than by-variables

schemes which have broadly similar power.

BS6001 and BS6002: These are the British Standards relating to
acceptance sampling procedures for by-attributes and by-variables
schemes respectively. They comprise parameters, decision rules and
algorithms with examples of applications of the schemes and tables

and operating characteristics curves.

MIL-STD-105D: This is the American Military Standard for acceptance

sampling by-attribute. It is broadly equivalent toc BS6001.

MIL-STD~414: is the by-variables counterpért and is broadly equivalent

to BS6002.

DEF-131: The British Ministry of Defence Standard for acceptance

sampling schemes replaced by BS6001.

Acceptable Quality Level (AQL): The proportion of defective items

"in a batch which is regarded as acceptable by the consumer of the

batch. A batch with quality at AQL has a high probability of
acceptance. The exact probability depends on the sampling plan used,
but for sampling schemes such as BS6001 and BS6002 the wvalues of

AQL are used to index the plans within the scheme so that the

probability of acceptance is greater than 0.88.

QualityAScoring Functions, Q(x): These are functions for scoring
the quality of an item in a batch depending on the value of the

characteristic X. Denoted by Q(x) these quality functions are




simple monotonic functions non-decreasing with X.

Robustness: Many test procedures involving probability levels

depend for their correctness on assumptions concerning the data
generating mechanism (e.g. that the parent distribution of the sample
is Normal). If the inferences are but little affected by departures
from those assumptions, e.g. if the significance points of a test
vary little if the population departs quite substantially from the
normality the test is said to be robust. W©Distinction has been made
between criterion robustness which refers to the probability distribution
of the various decisions being little affected by the assumption

and inferential ;obustness which refers to the inference on a
particular occasion depending little on the assumed form of the

distribution. The thesis is concerned with criterion robustness.

Robustness Measure: Robustness is the degree of insensitivity of a
procedure to changes in the assumption not under test with the
condition that the procedure is powerful for the parameters under
test. It relates to the changes in power of the procedure when the
assumptions on which it is theoretically based are violated. One
measure of this robustness is given by the size of the deviation of
the operating characteristic curve under specific background
assumptions different from those assumed when deriving the test.
The deviations are standardised to measure the bias in terms of the
standard error of the single test decision which sets a random
variable D to 0 or 1 as follows:

accept = 1, reject = 0.




10.

vi

Splines: Splines are piece-wise polynomials to fit a continuous
function to a set of grid-points representing a functional relation
f(x). They are used for interpolation purposes. To interpolate

function values f£(x) at the points x = tl' t e tm a spline

2'

S(x) of order n with prescribed interior knots (or nodes)

Xy Xyr eens xN_1>could be found, such that it satisfies the

condition that

S(Xj) = f(xj), i=1, 2, ..., N~-1

and certain smoothness constraints on the derivatives of S(xX) are
also satisfied. As, e.g., in cubic splines this may be

that the first derivative of S exists.
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ABSTRACT

Existing acceptancé sampling schemes have diverse advantages and
disadvantages with the two main considerations of eéonomy by sample
savings and robustness to prior assumptions, conflicting. The thesis
provides for a new class of schemes which preserves most of the advantages

of the current schemes and sheds some of the disadvantages.

The thesis sets out the properties to be maintained in the proposed
new schemes, in the order of priority: robustness, sample savings,
Property "Q" and ease of practice and application. The research deals
extensively with robustness and sample savings of the existing "orthodox"
schemes from simple two-class attributes schemes (which are "ideally"
robust but with large sample sizes) to sampling-by-variables schemes
{which are not robust but do save on sample sizes). The designs are
formulated with Property "Q" as well as these two properties in mind.
This shaped the use of scoring functions such as the Ramp, Logistic and 7
Cumulative Normal quality scoring functions where we define the notion
of "quality function" (denoted by Q(X)) as a monotonic function of the

process quality r.v., X.

One characteristic of the two-class attribute plans is the leap EPS

from defective to effective quality. The "by-variables" schemes, on
the other hand, have a gradually changing "score" with the measured
variable. This makes the by-attribute plans susceptible to sometimes
costly errors as a consequence of misclassifications based on sharp

division into "O"'s and "1"'s. This disadvantage does not arise in the

by-variables schemes. The use of quality functions, Q(Xi), provides
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the sampling plans with the Property "Q" if monotonicity in Xi is maintained

as is the case in our "new" schemes.

The new schemes in this thesis set out to fulfil the following

criteria:

(1) Fill in the gap between the two existing extreme schemes by
enumerating alternatives, and hence satisfy the demands of industry

which is currently stranded on the two extremes.

(2) Incorporate revised forms of the orthodox schemes in the new design
hence preserving almost all of the properties and levels of

discrimination of quality that are already experienced in the practice.

(3) Allow more flexibility and versatility by giving some wide choice
of trade-offs between robustness and sample savings. This was achieved
by using a design parameter B with which one can change from a

"by-variables" to a "by-attributes" or vice versa.

(4) Theoretically, give an assessment of the robustness and equivalence

properties of the old schemes compared with the new ones.

.+ For the new designs computational procedures are deviéed to derive
the distributions of the test statistic (average Q(X)). Equivalences

are then established between the "new" and "orthodox" schemes in terms

of 0.C. curves for some typical plans. Sample sizes were compared for :ﬁ
possible savings. ;f

On the basis of these equivalences, tests for robustness are made




using a representative range of non-normal assumptions. Conclusions
about the performance of different, equivalent, schemes are linked with

the sample savings results.

Robustness studies are made using analytical procedures, whenever
possible, otherwise simulation is adopted. Thus, analytical methods are

used in the two cases of non-normal process model of the uniform

distribution, and the two-point distribution. Simulation is used for

the Contaminated Normal and the Lognormal process models.

Some developments and extensions of the "new" schemes into double
sampling are considered and compared with attri-var plans by simulation

of an example.

Some concluding remarks are made with recommendations which are

highlighted in terms of B (to reflect on robustness) and of n (to reflect

on sample saving).

Volume II of this thesis is an extension of the appendices. Some
technical articles and notes which have some bearing on the aspects of
the thesis are put there. Also, in Volume II are the important computer
programs and subroutines with detailed comments, especially in the

simulation computer programs and as much as possible of the main tables

and figures.
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CHAPTER 1

INTRODUCTION

1.1 The General Background

Acceptance sampling schemes deal with assessing the quality of
batches or lots of products by inspection of a sample of the items of these
batches or lots as they are supplied in the market. Normally the outcome
of the assessment is acceptance or rejection of the batch. Sometimes the
fate of the batch is negotiated between the producer and consumer as far
as their interests (or risks) can ﬁolerate, or alternatively the batch

can possibly undergo a remedial process.

The science of statistics constantly provides refined techniques of
acceptance sampling schemes that would better protect the consumer from

accepting "rejectable" (or "bad") products and the producer from offering

(*)

them . These two view-points are translated in the statistical concepts

of producer's and consumer's risks. Simply, these are the minimum degree
of protection against rejection cof given good quality that is tolerated
by the producer and against acceptance of given bad quality tolerated by

the consumer.

(*) It is worth mentioning here that, sometimes, the distinction between
acceptance sampling and quality control is not properly made. The quality
control is an internal "industrial" or production concern which is to do
with the technical aspect of the production process of the item while
acceptance sampling has a wider scope to be an "external" concern to do
with the marketability (or utility) of te overall batch of items (which
may originate from same or different processes). Deming (1982) and
Shewhart (1931) and others would like more emphasis on control and support
the idea that the goal is to "make the product right in the first place”
and that without any exception the rule holds: "It is never cost-effective
to inspect quality into a product"!




Under these basic concepts many sampling schemes were set up and
used extensively. In fact most of today's users of such schemes give
almost all of their attention to these degrees of protection. We claim
that, although important, this is not enough to obtain effective results
in statistical acceptance schemes that penetrate to the core of the
problem. Other aspects and properties may be and indeed are as important
as the degree of protection and may even determine it. The appeal of this
point of view will become evident as we discuss the new properties which
are endorsed in this research, especially robustness ) and "Property Q"
(Farlie 1981}). /The basic idea of Property "Q" is that it reguires that
the decision on batch quality should mirror the decision on sample quality.
One of our main intentions in this work is to try to weed out any chances
of deéision—making in acceptance sampling that are made under the illusions
of false assumptions. The assumptions are usually (if not always) about
the background distributional forms that model the process or batch
configuration.

With existing acceptance schemes each possessing diverse advantages
and disadvantages, and with the two main attractive properties of sample
savings and robustness - unfortunately pulling in opposite directions -
our work set out in the quest for a new design of schemes that could
preserve most of the advantages of current schemes with few (if not none)
of the disadvantages. This is the objective we aspired to achieve with

the very satisfying and still promising results to be detailed later.

(*) A provisonal definition of robustness, in this context, could be:
"the degree of insensitivity of the decision rules to the ‘'assumed'
background form of distribution of the process under inspection”. A more
rigorous definition of this essential concept is given in Chapter 5 with
some details and discussions.

—




1.1.1 Some General Important Properties of Schemes

We set the favourable properties in any acceptance sampling schemes,
beside efficiency of maintaining the assumed degree of protection, to be:

a. Robustness.

b. Sample savings.

c. Property "Q".

d. Ease of operation and application.

in the natural order of priority and importance.

It was felt that the properties (c) and (d) could be acquired partly J

€ e }

by design as in the "new" schemes proposed below. A comment on how the
orthodox schemes fare in these two cases (of (c) and (d)) will be given
later.
X
As there was little work (Anscombe (1960)) in assessing {(a) and (b)

jointly, we need to study them rather rigorously, their paramount importance

in the field of acceptance sampling made it necessary to give them a lot

of emphasis and research. Anscombe (1960) argued that robust methods

could be treated as paying a premium for protection. Essentially this
argument was a perturbation type of argument for small departures from
assumptions. Some work has been done ineach of these two areas separately.

Pearson et al (1977) and Owen (1964, 1969) worked on non-normality alone.

We are not aware of any serious efforts directed mainly at sample savings
per se except perhaps in the general context that relies on the inherent

savings of the by-variables scheme. g




1.2 Specification of the Problem and the Contribution of this Thesis

/" The researxrch basically deals with the robustness of the existing
orthodox schemes ranging from the simple two-class attribute plans which
enjoy insensitivity to the exact distributional forms of the sampled
process, to the "by-variables" plans that are heavily dependent on the
distributional form (and more specially the "known 0" variables plans
whence exact knowledge of ¢ is crucial). Coupled with this polarisation
in the robustness area we find that the sample sizes are very different
varying between the low levels of the "by-variables" and the high levels

of their equivalent "by attributes" schemes.

- We have a limited scope for manoeuvre in setting up any new o
alternatives in acceptance sampling: the need for such new alternative
schemes is argued further on. We cannot have a scheme more robust than
an attributes scheme, and if "¢g" is known and the distributional form is
normal the minimum possible sample size will be those of the "known 0"

by-variables equivalent scheme.

The thesis suggests various alternative schemes and assesses the
performance of the existing (orthodox) as well as the new ones in terms
of the four properties ((a), (b), (c) and (d), listed above). The
schemes are formulated with these four properties in mind but particularly

on the basis of "Property Q" and the ease of operation.

One characteristic feature noticed about the existing acceptance
schemes is that there is a "leap" from "defective" to "effective" quality

of an item in the case of "two-class" attributes schemes. On the other

hand there is a gradual change in score of quality along the quality scale




in the "by-variables" schemes. This is a favourable characteristic of

the variables plans which we sought to reproduce in our designs and which
we were able to maintain. This characteristic is never maintained in

the attributes plans and makes them susceptible to sometimes costly errors
as a consequence of misclassifying defectives as effectives or vice versa.
"Marginal" cases are sharply classified as effectives or defectives.

This point attracted some workers in acceptance sampling to suggest’ways
of dealing with marginal cases in their suggested designs though for very
different reasons and aims from ours. For example, Bray, Lyon and Burr
(1973) in their "three-class attribute" scheme were motivated by £he

need for the recognition of "marginal® items. Another attempt though not
using the same words was made by what is known in the literature as the
"mixed or attri-var dependent plans" (Schilling and Dodge (1969)). They
were implicitly talking about marginal batches awaiting more information
before sentence, this information is obtained both by effectively
increasing the data and the robustness, in other words by taking more items

but reducing the assumptions.

J We felt correctly that this graduation effect would reduce some of
the costs of wrong decisions possible under the strict classification of
"0" and "1". On the other hand we saw, and will discuss below, how the
graduation effect is responsible for the "paradox" (discussed by Farlie
(1981)) which led to the advocation of "Property Q". This immediately
suggested a mix of the two systems, the gradual variable middle (or
marginal) zone and the "0" and "1". Thus, censoring the values below
the lower classification limit and above the upper classification limit,
(where classification limit here can be either a specification limit or
a conventional limit to mark the bounds of marginal item quality). As

will be discussed in the next paragraph, this has the advantage of bringing




our schemes in line with "Property Q". The point made in the work of
Farlie (1981) is that "Property Q" failed in some of the orthodox schemes
(namely, the "unknown ¢" variables scheme and all the "attri-var" schemes

that use them). The others fared well.

1.2.1 what this Thesis is Offering

The di%gmma, faced by the users of acceptance sampling, namely the

"robustness versus minimum sampling" puts users in the awkward position
of choosing to foresake one or the other of these two desirable properties,
in addition they may have to forego "Property Q". In this context our

schemes set out to satisfy the following:

(i} Fill in the gap between the two extreme schemes by a flexible series e
of schemes. This flexibility of choice is enhanced by the ease of

use of the new schemes.

(ii) Incorporate revised forms of orthodox schemes into the new system, i”
so preserving almost all of the properties and levels of

discrimination between qualities that are already experienced in

the practice. This is done by varying the design parameter B

|
(defined in section (2.2.3.1)) as shown later. I

(1ii) Give more flexibility and versatility by allowing a wider choice
of trade-offs between robustness and sample savings; for this
purpose the "equivalence" notion allows us to match our new plans i
to existing ones in such a way that the approximate overall 0.C.

behaviour is maintained. !
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(iv) Give, in the theory of acceptance sampling, a rigorous assessment
of the robustness performance of the old schemes beside the new
ones. Practically, this will give a fair assessment of the

confidence to be attached to the existing schemes.

1.3 The Concept of "Scoring Functions”

v We present a very useful concept called scoring functions which are
meant to translate the quality of the inspected item%% scale ranging
from O to 1. Denocted by Q(X) they are simple monotonic functions non-
decreasing with the item quality , x. Defined as such they help in

.\ qpifying all the schemes at least in the notation. In the next few

sections we will discuss some basic aspects of the new as well as the

orthodox procedures and relate them to this concept of scoring functions.

1.3.1.

Generally, the existing designs of inspection schemes are predominantlyji
polarised into by-variables or by-attributes. ., The research will be dealing;w
with the by-variables though we will consider the by-attributes and the
mixed attri-var plans for coﬁparative purposes and in helping to show
how our new designs would be a suitable alternative tp each of these.

_ The powers and properties of our schemes will be revealed by comparison
with orthodox schemes. /The existing procedures for inspection of quality
have their properties tested against several characteristics. These are
the powers of discrimination, the sample size, property "Q", and the

indifference. of the test rules to the distribution form and other

important assumptions.




1.3.2 Description of the Scoring Functions

There are seven single schemes that could be considered, namely the
el
by variables with its two subdivisions into known and unknown-g schemes,
the two-class attribute schemes, the three-class attribute schemes, the

"Ramp", the "Logistic" and the "Normal Cumulative" schemes.

For this description and thereafter (except of course when we come
to the robustness studies) we will assume that the guality of the process
under inspection is given by the random variables Xi(i =1,,..,n) which
are identically and independently distributed. For the sake of explaining

the scoring schemes and their performance we use the convention that this

random variable, Xi' is normally distributed with mean u and standard
deviation parameter 0. We assume quality is an increasing function of
Xi and without any loss of generality for variables having a normal
distribution the Lower Specification Limit, A, can be set to be 0. This
convention is adopted for most of the following discussion. 2 new
parameter B defined as an "qug£eg;g;§L&gﬁwmg;g;g§;3g5§513¥ is used but
some further connotations will be attaéhed to it and discussed later. With

these considerations the scoring functions for each of these schemes are

g

shown below:
(i} The Simple By-Variables Scheme:
Qx) = c.x + 4, for all x
Notiqe that this does not restrict Q(X) to the interval (0,1},

however a suitable truncation of the Normal distribution with a

practically trivial degree of departure from the normality does



enable the variables plan to be added to the

case of the Ramp scheme (see below).

(ii}) The Two-Class Attribute Scheme:

Q(x)

1t
o

= 1 R
(iii) The Three-Class Attribute:

Q(x)

1l
o
~

X £ A

otherwise.

X & A

A <x <B

elsewhere

where W is a constant lying in (0,1);

(iv) The Ramp Scheme:

Q(x) = 0C ;, X A
= (x-A)/(B-A) , A <x <B
=1 7 X 2 B
(v) The Normality Curve:
¢

Qx) = d(z)

for all x :

list as an extreme

where m = (B+A)/2, z = 6.18(x~m)/(B-A) and ¢ is the cumulative

normalrdistribution function. This will set

Q(x) € 0.001 at x € A

and O(x) > 0.999 at x > B.




vt

(vi) The Logistic:

Q(x) = exp(r.2)/(l+exp(r.2))

where r is a suitable scaling factor such as to let Q(x) approach
0 as x > A, and approach ! as X * B, and Z is as in (v).
1.3.2.1. Note that there are some basic similarities in the general

tendency of the graphs of these schemes. Practical considerations have

enforced a redefinition of (v) and (vi) as hinted above (see the numerical

computations chapter and the Figure (2.2) in Chapter 2). The graphs of
(v) and (vi) have similar behavioural patterns and consequently led to the

preference of one over the other on the basis of convenience.

1.3.3 The Implications on and Descriptions of the Decision Rules

Based on these scoring functions we have some decision rules
guaranteed to satisfy Property "Q". We have locked at the average score
as the most suitable and handy statistic for indicating level of quality.

~'As the purpose is to establish robustness we build all the schemes on
the bésis of a unifying background distribution of Xi(the assumed normal
distribution), and we note the random sample by: Xl' X2, e ey Xn’ where

the required sample size n assumes different values across the schemes.

The decision rules for the various schemes are as follows:

1.3.3.1. For scheme (i):

Bccept if in - A > K.s

Reject otherwise.
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where in is the mean of the n randomly sampled items.

A is the user's defined Single Lower Specification Limit
below which the guality of a single item is deemed

defective. (For many purposes we will choose the origin

to be at A so that A becomes effectively zero)

s is o if the variance of the process is known, and in the
case of the unknown variance it is the sample standard
deviation. “(In the building process of the design and
without any loss of generality the known-o¢ variance is

set to equal 1).

(K/ és the criterion test constant,is the percentage point
corresponding to a given probability o of rejecting the
quélity P, derived from a process mean M. It is the
solution of the following system if ¢ is known (and an
analogous one in terms of the Non-central t-distribution

and the sample variance if ¢ is unknown):

)
o
|

= Q(A—ui)

Q
L}

@((K-ui)/ﬁ).

where i = 1 (2) indicates producer (consumer) risk

point

The dependence of these plans on the normality assumption and the
correct knowledge of the variance of the process (in case of known-o plan)
is vital to the efficient performance of the procedure for discrimination

of the quality of the batches and, consequehtly, the fate of the batches.




v The significant shift of the Operating Characteristic curves on the O.C.
. .

surface ( due to the change in the variance indicates how non-robust

the O-known plans are to Variance-effect. Results of these are shown in

Appendix (D.2.) for some representative code letters.

The producer could suffer from poor quality of production if the

process 1s not as assumed. Reasons could come from one of two sources:

I. The true distributional model is skewed and/or more or less heavy-
tailed than his assumed model or historical evidence would
indicate. Technical failures or inefficiencies are some of é
the causes, for example a production line of properly controlled i
machines contaminated by one or more "out-of-control" machines

could give rise to a skewed distribution.

II. The variance of the process has changed (as is normal in any
process e.g. because of deterioration in the manufacturing
equipment) but the time of a drastic critical change passed
unnoticed and the variance assumption is no longer realistic; i

Here, too, the example given above could apply if the "out-of-

control" machines were displaced in both directions from the

correct setting.

(*) The 0.C. surface could be loocked on from one of two perspectives,
either as:
(1) Pa(pl,p2) i.e. as a function of the proportions marginal and
. effective,
or (ii1) Pa(u,0) i.e. a function of the mean and variance of the
background (Normal) process.




These two sources relate to the measures of central tendency: and
spread, these are what o-plans (and to a lesser degree the s-plans)
significantly relate to, even though the assumption of normality allows

this relation to extend to proportions outside limits.

The decision rules for the s-plans and O-plans are alike for the
most part but with some'differences the most obvious one being that ¢
is replaced by Sn' the sample standard deviation (with the advantages of
adjusting for the realised variability instantaneously which translates
itself into more robustness in the variance-effect but with the inevitable
disadvantage of increasing the sample size) . " Another difference of a
theoretical nature is the shift from the standarq normal to the derived
Non-central t distribution which leads to the decision rules for s-plans to

be:

Accept if X_ > K . S_ +A
n s n

Reject otherwise
where n = ns is the plan sample size for the "unknown-g" by-variables,
and in and Sn are the sample mean and the unbiased sample standard
deviation

= - % y2 -
(Sn = J( [ L (xi Xn) Y/ (n - 1)) .

And the value of KS is provided as the relevant theoretical percentage

point of the Non-central t distribution with (n-1) degrees of freedom.
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1.3.3.2. For scheme (ii):

The decision rules (under the assumption of a fixed n and independent

r.v. Xi) relate to the Binomial distribution with parameters (nhpo) as

follows:
Acceét if ro £ ¢
Reject otherwise
where |
g is the sample number of defectives.
c is the maximum allowable number of defectives (determined by

the producer's and consumer's points on the 0.C.

There is much to be said about the good and bad properties of this
scheme. JWthaygwits ‘perfect' robustness, it is not influenced by the
distributional form. However, it has an unavoidably large size of |
sample. This must count as a major disadvantage, it can be very expénsive
or sometimes impractical to use, e.g., in destructive tests required by

acceptance sampling.

1.3.3.3. For scheme (iii):

This scheme is not greatly used yet. The evaluation of power for
its decision rules dependsbon the Tréﬂ??ial distribution. The main work
in this area is due to Bray, Lycn and Burr (1973), who dealt with setting
up the three-class scheme and showed some of its properties most extensively
in the limited cases of accept 0 defectives, with the conséquence that,
for our purposes, their results are not satisfactory; However, in

accordance with our convention of using the scoring functions, Q(X), for

all schemes, the Three-class scoring scheme defined above depends on the




- 15 =~

A

4

"marginal" weighting parameter w, (0 < w < 1). Due to the difficulty
-of applying the Three-class plans and their insignificance in current

practice we will not concern ourselves with them to any great extent.

; [[Some research has been done with an interesting result about the

; behaviour of w. As m (the maximum allowable number of marginals) increases
then under the assumption of no defectives allowed, both bounds of the
interval containing w will increase but get closer to each other. 1In

compact form w lies in the interwal:
(a(m-1)/m, a.m/(m+1))
where the fraction a is determined by the choice of n and m.]]

1.3.3.4. For schemes (iv), (v) and (vi):

.. The decision rules for these three schemes are virtually the same

o

in form:

Accept ifsz Q(x)/n?> t(B,AQL ,n)

Reject otherwise.

N
. [74
L ;\ /5\ /P/
Gy 27

€%, As will be seen later B could act as a "robustness-versus-sample-

saving”" adjustment or parameter.V%fneMgchgmesM(ivl, (v) and (vi) are a

e uM;J‘ 3 {' *

", modified form of "by-variables" and we need to have the distributions .

of the mean Q(x)  to determine the values of t(B,AQL,n), the relevant

percentage point in the convolution distribution of the sum of the n

random variables Q(Xl), Q(XZ)’ ey Q(xn). sfhese percentage points

together with their corresponding n and AQL's will form the basis for
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the above decision rules as will be shown later on.b/{n our research these

73

t values are defined by.the 95% and 50% points on ;hgmggggzggtwgécﬁmcurve,?\

More details on the derivation processes and the determination of
the parameters of the decision rules are discussed in the next two

chapters.

1.4 Property "Q" in the Schemes under Study

The idea of property "Q" originated in therwork of Farlie (1981).

ot
\3 Its basis lies in the paradoxical preference shown by certain decision

rules for inferior samples rather than for better ones. The following two

definitions make the concept clearer and more precise:

Definition (1): For the same sample size, n, a sample "X" is preferred
to another sample "Y" if and only if, x(i) > Y(i)' for 1 =1,2,...,n
and x(i) > y(i) for some i, where {xi}, {yi} are the ;espective
samples and x(i), y(i) are the order statistics of these samples

respectively.

Definition (2): Property "Q":
| Farlie (1981) defined this notion as: "A sampling plan has Property
"Q" if, and only if, there ié no sample configuration leading to the
rejection of the batch which is preferred to one or more of the sample

configurations leading to the acceptance of the batch".

In other words some plans may enter into a paradoxical situation
whereby in two samples the better quality sample leads to rejection

of the batch and the poorer sample leads to its acceptance. An



- 17 -

~-example of such a plan is the"unknown-g" by-variables plan. Suppose
we have two samples each of size 3: Sample (I) is (0.2, 1.0, 1.8]
and Sample (II) is [0.2, 1.0, 2.8]. For "unknown-C" plans of
sample size n=3 the test procedure is to accept only if the mean,

m> 1.12 S, where S, is the sample standard deviation, here a = 0.

Sample (I) has m=1.0 and Sn=0.8 [hence accept since

m=1.0 > 1.12 S _=0.896].

Sample (II) has m=1.33 and Sn=1.78 [hence reject since

m=1.33 < 1.12 Sn=1.9936]

Sample (II) which is better leads to rejection while its inferior,
Sample (I), leads to acceptance. This illustration reveals how
important it is that we concern ourselves with such a crucial
property. It is believed that Property "Q" could have a significant
role in shaping the "new" scoring functions by trying to use the
results of the research done on property "Q". /ASEE§££XLMEEQ§QWQ§W
schemes were chosep,witqu§p§¢;£igmrgferenqg:tQ censcorship and
monotonocity as a way of getting away from the paradox. In the
work on property "Q" it has been shown that the orthodox plans which
have property "Q" include the "O-known" variables plan and the two-
class attributes plan. The above example gives direct evidence that
the s-plans lack this important property. The striking feature about
‘the configuration in the example above is ﬁhe effect of extreme
values on the variance. /In_our new designs of the scoring schemes
”iiE.aX?_._:égPéE essed lower extreme values of quality to "0" quality,
andvthe>upper ones to the quality value."1"., This stems from the
censoring and monotonocity principles advocated by the work of
Farlie (1981). 1In his work Farlie dealt with quality in terms of

Xi but could be extended to our Q(Xi) very easily, Then X(i) < X(j)'

N
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implies Q(X ) € QX .)) if Q@ is monotonic.

(1) (j

The design of the new scoring functions so as to have a censoring
effect on both tails of the sample together with the monotonicity of Q(X)
builds strong foundations for the Property "Q" in our new systems. This
is practically important where the "outlying" tendency of the observations
can never be statistically recognized as such especially for small sample
sizes (e.g. n=3, above). Incidently, the variables plans are mostly

desired when minimum sample sizes are sought as first priority.

To show an example of the impact of using the schemes, suppose in
the data of the example we chose a value B=1.8, say, (which is in line
with our recommendations for plans that mimic variables plans), then the
value.of 2.8 in Sample (II) will be treated no differently fr@m its
counterpart 1.8 (in Sample (I)), and consequently the two samples decisions
will not be paradoxical. It is needless to emphasise the dramatic consequences
upon all the arguments made above if the sample size n is equal to the

batch size N.

1.5 Comments and Criticisms of Existing "Orthodox" Schemes and their

Rationale

1.5.1 1In the beginning acceptance sampling was influenced by the simple
use of go/no-go gauges. These resulted in "attribute" data which led
naturally to a predominance of by-attributes plans as a basis for all the
major developments in the subsequent statistical literature in the field.
One benefit of this "0 and 1" classification of quality has been that the

assumption of the distribution of the actual product quality is not required.




On the other side of the 1edgér, a heavy price has been imposed by the

fact that attributes destroy the information in the sampié that is

utilised under a by-variables scheme.'?gnother costly consequence is

that the percent defective is impossible to control at very low levels of
AQL of, e.g., 0.001 unless the attribute sample size is increased as a

way of reducing the discontinuities resulting from discreteness of the
numbers n and ¢ (the sample size and the acceptance number). - That leads

to in&reased costs in sampling. This last point is not merely artificially
imposed, since in today's market such AQL's are being considered for many
production processes. Marquardt (1984) argued for the need to move to

by-variables schemes by remarking:

"My experience is primarily in process industry products whe;e it

is not routinely practical to work with attributes dataf Today,
- however, even in mechanical industries, automated meteroclogy

systems make possible the more desirable variables data. To meet
this challenge of the more stringent market requirements, I believe
that much greater emphasis must be given to developing automated
measurement procedures capable of measﬁring variables so that
processes can be controlled on the by-variables basis. Statisticians
should take the lead in showing the economic incentive for this new

direction ."

We believe that the by-variables scheme could be newly treated and presented
j away from its disabilities of non-robustness and as close to its glamours

of sample saving and inforﬁativeness as possible; Variables plans have
been available since at least 1955 but missed their rightful popularity.

Owen (1969) supposed the lack of enthusiasm for such variables plaps to

standardised deviates into proportions defective, beside the uncertainty




of the normality assumption. He also raised questions about the appropri-

ateness of by-variables plans and suggested ways of meeting the requirements
of their assumptions. The revival of by-variables plans was one of the
motives for Owen's work when he gave some suggestions (which we will take

in the robustness section later). He also reviewed the past developments

in connection with showing the great academic interest in by-variables.

For its conciseness and relevence we quote his review:

"Kao (1966) considers mixed attributes variables sampling plans

as have Gregory and Resnikov (1955). Continuous sampling plans

i are prepared by White (1966) and Hillier (1964). Dodge and

‘ Stephens (1965) study chain sampling inspection. Hald (1968)
designs attribute sampling plans for continuous prior distributions.
Zeigler and Tietjen (1968) examine double sampling plans based on
the variance. Stange (1960) and (1966), Freeman and Weiss (1964),
Flehinger and Miller (1964), Campling (1968) and Lieberman (1965)

consider other aspects of acceptance sampling inspection.

Folks, Pierce and Stewart (1965), among other things, give an
estimator of the proportion, p....ce..-. Wheeler (1968) shows that
this estimator is equivalent to the one given by Bowker and Goode

(1952) and by Lieberman and Resnikoff (1955), and gives an additional

form of the estimator and discusses its variance. Ellison (1964)

gives another derivation of Bowker and Goode (1952) estimator.

Theodorescu and Vaduva (1967) give a procedure for the control of

several variables simultanecusly based on the generalized range.

~ In summary, there is activity on theoretical problems of acceptance

sampling, but it is not as great as one might expect when one
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considers the potential usefulness of the techniques which can be

developed."

We strongly feel that the interests of theoreticians may repay
well if more of it is addressed to resolving the problems that dissuade

the practitioners from using the by-variables more extensively.

1.5.2. 1In looking at the variables schemes as e.g. in BS6002 and working
tables our work had arrived at the same conclusive evidence as the results
postulated by Bravo and Wetherill (1980), They were surprised to find
that matching (as is recognised in many published tables of the current
orthodox wvariables schemes) is certainly very poor. Comparing our results
in this respect with the published equivalences we feel that the present
Vpublished tables are theoretically unfounded or too approximate to rely

on in establishing the equivalences needed for the comparative study

and the performances of the schemes in terms of the properties under

study (mentioned before).

1.5.3. In the "by-variables" plans sampled items are presented in batches

for inspection and on the basis of the sample evidence they must be

sentenced as "accept" or "reject". The convention is that the variable
measurement of an item, xi may be distributed normally with expectation U
and variance o>. Of course, one of the limitations of "known-g by-variables™"
schemes as proposed, e.g., in the BS6002 lies more especially with small
samples. ~ Wetherill énd Kollggéffggm?i979) mentioned that the estimation

?f po, the proportion defectivg, in the batch assuming 0 known, is non-

robust and unreliable unless double checked as they put it. And if n is

small this is impossible.
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1.5.4. A good survey of the different schemes and their rationale is
given by Hill (1962). The monograph by Wetherill (1969) provides a

valuable sketch of mathematical and practical bases of acceptance sampling.

1.5.5. In sampling "by attributes" the sample size, n, and the maximum
permissible number of defective items, ¢, are determined on statistical
grounds by considering how the probability distribution of the number of
defectiveé, d, in the sample of n varies with the true proportion
defective, T, in the batch of N items (usually, N >> n). In by-variables
a similar technique is used but rather than the random variable being

the number of defectives the mean value of the n random variables is used

as a criterion.

Early methods specified two points on the O.C. curve so that the
o

Oior of

rejecting a batch of a better quality ﬂl {(less then ﬂo) will be kept at

levels . that could betclerated by both supplier and customer.

probabilitieé of offering a batch of a specific poor quality of ﬁ

S D
e B

In the past one would not speak of optimum ﬁo, Wi and their corressponding
risk levels, instead these were subjectively formulated. They are still
.so chosen because so much changing human behaviocur influences their
setting. ,Although tradition has it that arbitrarily chosen values could
be used for the levels of AQL (Acceptable Quality Level) the recent
conventions in the literature and to an extent the practice have considered
the ratiocnalised series [0.001, 0.0015, 0.0025, 0.004, 0.005, 0.0065,
0.010, 0.015, 0.025, 0.04, 0.05, 0.065, 0.1] which provides sufficient
variety for practical purposes. The values of WO and ﬂl were meant to

accommodate two different considerations: the cost implications of not

offering "reasonable quality" batches or of offering substandard batches,
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and the prevailing distribution of the batches being produced.

Theoretically, this second consideration refers to the so-called "process

curve". The concept of AQL was advocated in an attempt to accommcdate

these two factors mentioned. The AQL characterised the design and

application of, different acceptance sampling schemes such as the ASF and
SRG tables of plans or the military standards MIL~STD-105 and DEF-131, ...
efc. «The point of importance in the construction of these is that they
all agree to fixing and referring to one §}ngle point on the 0.C. curve
namely the AQL. The sample size is related to the batch size in a

specified (if somewhat) arbitrary manner. The historical record of the

batch-to-batch quality variation (theoretically reflected by the process
curve though not necessarily applied there) is expected to dictate
whether to operate "tightened” inspection (if quality drops), "reduced"
inspection (if acceptance persists) or "normal" (otherwise). Barnett (1974)

criticised the 'traditional methods'. He among other things was referring

to the single point on the 0.C. curve which is implicitly acknowledged
in the idea developed by Bravo and Wetherill (1980) who agreed with the
principle of matching at two points due to Hamaker and Von Strik (1955).
The difference between Hamaker and Bravo and Wetherill is that Hamaker
is looking at the mechanics of the 0.C. curve at the two points while
the latter just fixed these two points. To us there is no basic difference
because of the nature and predictable behaviour of the 0.C. curve in
general. We picked the Bravo and Wetherill idea because it is more
convenient and a short cut over Hamaker's which is more useful when the
mathematical form of the O0.C. is readily available, which is not our case.
1.5.6. We still believe that the producer's interests and the AQL as the

mechanism for protection acting as summary of them could resolve the

problems of incorporating the cost of supplying (witholding) poor (good)

N |
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batches. This is under the assumption that the motive of the producer is

§ profit maximisation via greater economic efficiency. As for the costs

' of operating the inspection system, since different circumstances of

inspection apply, we feel that this could be indirectly incorporated in the

schemes by the reduction of the sample size, n. In our new schemes in

theory we can on the one hand reduce n for a given discrimination efficiency

as much as we are willing to forfeit robustness on the other hand. Our

plans have generally reduced the sample size substantially from the by-

§l attribute peaks without sacrificing too much robustness. As for the
g

|

variation found from batch-to-batch we feel that the tradition of the
process curve is worth preserving but any technique of incorporating the

detection of the variation in the day to day operation of the systems of

inspection will jeopardise the much sought after simplicity of operation.




CHAPTER 2

IMPLICATIONS OF THE SCORING SYSTEMS

2.1 General

¥ In all the discussions of the "new" single scoring functions we had
emphasised thé monotonic property of Q(x). This had the favourable effect
of guaranteeing the "new" schemes, using these Q(x), would possess
property "Q". An earlier discussion of this point was done in Chapter 1.
It is worth mentioning that Huber (1964) has advogated robust estimates
which have similar properties to those of our Q{(x) functions in the precise
sense of effectively excluding the extreme values of the sample from
influencing the estimates. The other characteristic of these new échemes
is that they are more adaptable and flexible and so can encompass all

the existing orthodox schemes and permit more scheme options.

/" There is no practical difference between the Logistic and the
Cumulative Normal scoring system as could be anticipated and consequently
the one with the greater difficulty in application can be dropped. 1In
practice the Logistic is easier for users to evaluate. ~The Cumulative
Normal system showed scome }{regularities in the convolution process when
deriving the distributional form while the Ramp case was well-behaved

which gave another of its credits, i.e. ease and manageability.

., The idea of scoring quality against a price scale would give the
acceptance sampling a new dimension in the re-evaluation of inspected

products or commodities.




2.2 Rationale of These Implications

The point related to property "Q" is dealt with in Chapter 1. As
for the adaptability and flexibility characteristic we will deal with

in a later separate section.

2.2.1. The graphs of the new scoring schemes are given in one typical

case (as in the inset of Figure 2.2 below).

No basic difference is noticed between the average Logistic and the

Cumulative Normal curves. “One feature of either of these two systems is

that their single scoring functions tend to stay close to the tails

(i.e. 0 and 1) for a longer time and then rapidly rise in the ﬁeighbourhood
of their points of inflexion. /Th;§ﬁfeature has an unfavourable
implication on the behaviour of the derived distributions: they meander
and become curly (as shown by the typical graphs in Figure 2.3), and

this behaviour is of course compounded by the other jumps discussed in
Chapter 3 which are due to the convolution of the discrete probabilities
initiated by the spike probabilities Py and 2, (the proportions defective
and effective in the batch) of the single scores at 0 and 1 respectivgly.
In the diagram the distribution of the Cumulative Normal scoring function
(and that of the Logistic too) show curls which are not shown in the
Ramp case. This is even more obvious when we come to the process of
removing the discreteness later on. ([More details on this are.given in

the numerical computations section of Chapter 3 together with the technical

aspects of the derivations of the distributions].

The curls (and indeed the discrete jumps too) give the added

complexity of making the determination of the distribution percentage
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n= 8 ,B= .50 , B=0.4

1,000
'

EN ¢ NORMAL) " .
2 RAMP
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Figure (2.3): The continuous part of distributicn function of average

Q(x) (i.e. jumps removed), revealing the "curls" in

(NORMAL) plan.




- demanding one.

;relatively well behaved in this respect.
~ favourable qualities (like ease of handling in practice and the fact that

- its n-convolution distribution acts as a good approximant of the Normal

as our favoured one. ~vRather than dealing in depth, we will bring to

! light a very interesting implication of the new scoring systems that

. could widen and enrich the uses of the acceptance sampling. ~This relates

be used to re-evaluate the market value of the products or commodities

. after the inspection. _Wnder such basis an acceptance scheme will not
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points (as needed in the establishing and determination of the plans

parameters) a numerically ill-conditioned problem and hence a computationally

The Ramp case has the discrete jumps but not the curls, so it is

This coupled with the other

Cumulative we have every good reason to put emphasis on the Ramp system

to the graduating nature of the new scoring systems and how they could

only answer the question of 'Accepted or rejected'?, but also new

questions such as 'What is the market value of the batch'?.

This takes
advantage of the presence of the dealers in the transactions when the

inspection takes place and/or when the decision is made.

2.2.2. The quwggq;;gyvfunctignsmbeingwstgggiélly_byfvariables help to
evaluate the quality of the item (and hence the whole batch) in "real"

money terms. The need here is to find a workable real price scale that

is related to the quality level of each unit. /In fact the characteristic

measured in the process could be the market-worth of the item and one 'ﬁ

method to standardise this to the "0O"-and-"1" scale could possibly be by k
assuming a minimum and maximum price quality by using ratios or by dividing

by the range, .... etc.
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2.2.3 Flexibility and Adaptability of the New Schemes

l 2.2.3.1. Y The parameter .B,.in terms of which all the scoring functions
are defined, is the key behind the power, flexibility and adaptability

xof the new schemes. It plays two major roles:

(a) The parameter B could be scaled using the variance 02 of the

! process or batch into a new variable

{ accommodate any changes in the vari
, 10 nges -2

i ot robustness against the variance-effect which will be dealt with in

| the robustness-sé&ction (Chapter 4), and where this role will be seen in
—=

) operation and allowed a longer argument for its appreciation.

Moreover, if, as we did, we let Bd = B for 0=1 then BO/O is the B

for 0 not equal to the assumed value of 1. That is to say, an undetected
| change in 0 corresponds to an offsetting change in B when using our
tabulated results. .It also relates to the process curve as this deals
with the variability between batches. This role can be better appreciated

if we consider the following:

If AO and BO are the lower and upper (though not in the conventional
il "upper" specification sense) limits, then.

u o+ KO.O

+ .
u ch




where u is the parental Normal distribution mean (of the process by

assumption) and KO and K1 are Q_l(po) and ®—1(1-p2) respectively. (Here,

§ & is the conventional standard Normal distribution function). The

. of r is: _ . .
‘dlsplacement AU from BO is BO A0 BO since A0 is chosen to be zero,

(Kl - KO) .0 i

i

which is non-standardised. The standardised B-value is, then,

B =B_/0.
s

/‘(b) B would also work as a standard "selector" (or "adaptor") of plans

O

';gnd schemes so that if reasonably inflated, we can approach the "by-

variables" plans; and when compressed towards "O" we will effectively
have the "by-attributes" plans. Moreover, between these two extremes a

wide range of plans are available using the trade-off technique described

below.

These two roles of B are basic to the rest of the thesis. We leave

the implications of role (a),.i.e..the.scale-variant, to the robustness

; qhéngannd give in next section some rigorous discussion to role (b)
but lea&e until Chapter 6 concerning the extensions of our schemes to
reveal the attraction of that role of B as a "selector" of schemes
particularly in our new "attri-var" dependent mixed plans. We are content,
at this stage to close this chapter with the following section balancing
" robustness demands against sample savings leaving the discussion of further

points on the implications of the scoring functions until they arise if

naturally in the remainder of the chapters.
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.2.2.3.2. The Trade-offs Between Robustness and Sample Savings

With the already established fact that sample size savings and
robustness are conflicting requirements, it would suggest a decision

path of possible trade-offs between robustness and sample savings. That

is, for a given situation in.terms of the preferred property of these
two (or a proportionate combination of them) we could present a clearly
established plan where these requirements are met by choosing B, as
postulated above. With prior knowledge of the premium which we are
willing to pay for foresaking a degree of robustness for sample savings {
or vice versa we can immediately fix a plan to match any desired

protection levels (or 0.C. curve).

For the major properties in this thesis (taken to be the robustness
and the reduction in sample size), the available decision levels to give
alternative plans for these two properties could be made distinctly clear

by the following diagram, where:

d, : decision to maximally save in sampling at the

expense of robustness,

~d, : decision to guarantee maximum

whatever level of sample size

Actually, the decisions available will range from

one angle the level of decision is a function of n, the

robustness for

(a large n).

d1 to d2. From

sample size;

from the other angle it is a function of the degree of robustness. The

parameter B could be thought of as a device controlled by these two
properties and is responsible for determining the "best" decision level. i

To put it differently; for each given n there is a B implying a certain ;{




risk of non-robustness while n and B together correspond to a given

¥ protection level via the "equivalence" process defined later.

The diagram is helpful in summarising these trends in the above

?discussion and revealing its own potentialities. In the diagram it is
| important to note that the two curves shown refer to different vertical
j .

" domains, with different measures (and possibly different scale). But

i the two curves agree in their horizontal, B-axis.

Attribute Variables
plans plans
size size

nz Ti
cdz2 Decisians « di

} |

€ Pt B ST R U BE U E R L UES S L L AT I LE TS EETELEETINTY R

sample Robustness
size measure
n R

Parameter B —_—

tgFigure 2.4: Decision Levels and Trade-Offs between Robustness and

Sample Size Savings.
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The diagram ties in neatly with the decision-making and also with

Development III of our schemes (see Chapter g on Extensions and Developments)

The diagram could be looked on as (and in fact is) a nomogram;
and consequently no one should be confused by the intersection point of
the two curves, it is not significant and does not have any practical
implications. The point of intersection can be arbitrarily altered by

merely rescaling either the sample size or robustness scales.

2.3 The "Marginality" Concepts and the Scoring Systems

A subsidiary role of B, which acts as its original definition, is
‘/fthat it is the demarcation point between the "marginal" and the "effective™
quality in the single scores. Any single item quality between A and B

(the classification limits) is labelled "marginal”. Byﬂphis single score

iéconcept Qf marginality our schemes reproduce the three-classes suggested

by Bray, Lyonn and Burr (1973).

In another context marginality has a somewhat different sense as
suggested (though not quite explicitly stated) by the work of "attri-var"

(or "mixed") plans whereby a whole batch rather than a single item is

classified as marginal in the sense cof awaiting a more thorough inspection
(i.e. double-sampled). No confusion should arise between the two senses
of this concept since use of eithei sense in this thesis will be clear

in context. The two notions have been used intensively in the next
chapters especially Chapter 5 and have been used in different distinct
contexts. The first sense is directly responsible for the'graduétion of

the quality functions and the powerfulness of B as a selector of schemes.

-



'The second sense gives more rigorous mathematical content_to'replace the
vague and subjectively defined notion of the "not-very-clear case"
bquality cited in the work of Schilling and Dodge (1969). The marginality
2 of batches under inspection wguld be predetermined by the choice of B

specified prior to the inspection.
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CHAPTER 3

DERIVATIONS OF -THE SAMPLING DISTRIBUTIONS

3.1 Introductory Note

, We use the search procedure of first trying to explore solutions
to the problem of derivation of the distributions (and indeed any other
problem) by analytical methods if possible and next numerical methods

are explored. If both of these ventures fail then simulation is the

last resort due to its expensiveness. In this respect we could say in

summary that:

(i) Analytical methods in the derivation of the distribution worked

for the simple by-variables, the two-class and the three-class

I
attribute schemes, but for the other Gféji:fﬁschemes analytical
A

-

handling was not amenable and so we resorted to:

(ii) Numerical methods: In this category we have tried forming the

distributions of the Ramp, Normal Cumulative and the Logistic

~

systems using:

(a) Johnson Systems for approximating the distributions, which makes

use of the fact that unimodal distributions could have their

T

shapes determined by using their first four moments (if available) .

R

The required distributions could be approximated by equivalent né

standard (Johnson) systems with the same first four moments.

These Systems have four parameters such that their standard

random variables are transformable into (standard) normal




(b)
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variables. The four moments are used to solve.for these
transformation parameters. fhe idea is to use the first

two moments (the mean and variance) to indicate location and
scale and leave the major role of dictating the general shape

to the standard third and fourth moments (ng and 82).

Our feeling is that it could represént the ggneral tendency of
the shape of the distribution but with the inevitable loss of
the details. And as will be clear, the details (i.e. the
discontinuities) are very essential to our distributions. Hence
the Johnson systems were.ro.prove not very useful in fitting
ou;ﬂﬁ§st§;butions. A more elaborate note on these discontinuities
and irreqular features is given in section 2.2.1. of the

previous chapter.

Special Numerical convolution, was the most suitable method

for generating the derived distributions in the cases of the

Ramp, Normal Cumulative and Logistic scoring systems. It is an
exact deterministic method with the usual but controlled
numerical errors arising from;
- accuracy considerations
- tolerable truncation of very small probabilities which
are collapsed to facilitate the convolution process,
{discussed later and implemented in the Computer Fortran

Program CONVOL listed in the Appendix (B.l.)).

The superiority of the Numerical Convolution method over the
Johnson approximating system (when they both work) is the

preservation of the details;and the build-up of the mixed(:onvolution.‘ﬂ
The jumps due to the discrete contribution in the convolution are fE
not tractable and traceable in the Johnson system but are in the

numerical method.

L
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(iii) Simulation had not been used in any of the derivations of the
distributions of the basic scoring functions since the methods

of (i) and (ii) above have solved the problem of derivations.

/ Igﬁygswonly,used in the ;obustness studies where we needed to
treat each and every scoring system with a background process
(oxr batch) of a non-normal distribution, (see robustness studies

of Chapter 5).

3.1.1 Derivations of the "New" Distributions by Numerical Convolution

N

\\

;s The derived distribution of the random variable statistic §n<x) is 7

3

a convolution of n copies of Q(x) derived from the basic distribution of ';;’

this single random variable. ,Generally, the single r.v. Q(x) (other

than in the orthodox "pure" uncontaminated cases) have a discrete part

at thg ends together with a continuous part at the middle "marginal" zone
[see the discription of these random variables in section (1.3.2) abovel.
Our choice of the Logistic or the Cumulative Normal as score functions . _

{,v’\&j"\qp,)
was meant for the preservation of continuity of the random variable Q(x). " {

Ll
Yet not only did these tﬁo functions have the discontinuity (due. to

truncation) but also they gave rise to another problem. That was the

curls. and meanders (as discussed earlier in section (2.2.1)) on top of

. the usual problem of the jumps. “So, besides the relative ease of calculating

Q(x), we benefit by adopting the Ramp case by the removal of the irregular

form of the cumulative distribution function.

The special implications of this discrete-continuous mixing on the

derived distributions (read convolutions) of the "new" scoring functions

been derived using a specially designed algorithm, called CONVOL, and
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is described later on and listed in Appendix (B.1.). -

. The distributions of these "new" schemes had to be derived numerically
rather than analytically (which would have been best) mainly because of
the nature of the mixture (being a contamination of a continuous random
variable by a discrete contribution). /The discrete probabilities in
the single random variable are po and p2 (the proportions of defective and
effective quality respectively). These show graphically as spikes at
Q(x) equal to 0 and 1 (in that order) when n=1 and they are directly
responsible for the jumps in the distribution function for n > 1, (see
pictures of graphs, for example in Figure 2.2, and for more examples

see Appendix (D.1.)).

The convblution runs for those values of n as in the terms of the
geometric.progression { 2k : k € N}. The factor 2, here, is due to the
convolution being of the r.v. on itself (i.e. the sum of two i.i.d.-random
variables) at each k-th convolution. y/In other words, we have basically
a r.v. X which is normally distributed and since this r.v. X is linearly
transformed (by the relevant scoring function) into a random variable
Q(x), we take the sum of copies of the previous sum each time for {(k-1)

times. If we dencte the j-th sum by Sj then we have the'following

system:
So = QX

_ ]
* . e X = - s » . a e » =
(*) Sj(xl, X ) sj_l(xl, Kosg) * 53-1(Xm/2+1' ;X ) for m=2

In other words for sample size n we have n=m.
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n
(*) Sn =% SO(Xi)’ n=1,2,4,8,...
i=1

V/The distribution of this is the derived distribution using the
numerical convolution . details of which are cited in algorithm CONVOL
(appended) . Here we will give the theore%ical framework behind the
algorithm. For each k (k € N) we have n = 2k and an n-fold recursive
convolution of a probability distribution G with itself, where G in the
initial stage is the "single score" probability distribution. This

convolution is defined as:

G(t,k) = G(t) k=0
t
= J g({t-v,k-1) dG(v,k-1) k>0
0

Though this is the rigorous mathematical background there were some
numerical considerations. Firstly, a change from the strictly continuous
concept of tﬁe integration sign té a summation sign because of the
implications of the continuousfdiscrete mixture of the r.v. Q(x).+ The
concept of the histogram was borrowed as a representation of G in term§
of many small cells. /nge’we are assuming that the continuous portion
of probability per cell is uniformly distributed within each cell.afﬁég
this the whole range of Q(x) has been split into M+2 cells. The discrete
part is split into its natural components Py and P, with their contents
put in the first cell and the last cell, respectively. «The rest of the
J.nltlaldlstrlbutlon(le the continuous part) was subdivided in the
obvious manner whereby each cell (i.e. sub-interval) of the remaining

equa}}gmﬁgggggwywcells of Q(x) contains its corresponding probability.
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We can get more insight into this sub-division process pictorialy in
Figure 3.1.1 at the end of this section. (In the program M = iOQ}cells).

ST

average 9?_thgﬁﬂfoXl(s”}ntoAaﬂla;ge»number of separate cells. Let
p(i,n) represent the probability contents of the ith cell (i.e. of
Q(X) = i/M), for sample size n. Initially, at n=1, we have the basic

probability of the single score Q(X) sub-divided in M+2 cells as mentioned.

~This p(i,1) is the first unit for building the convolution which is

evaluated recursively as follows:

d(s,2) = I {ci.(m . p(i,1) . p(j, 11}
i+j=s J

where Cij(n) is the combinatorial number of occurrences as in the usual

Binomial coefficient.

" This gives a distribution for double the range of Q(X). Vﬁiﬁiiffig

stage is to shift from the sum of Q(X)'s to the average, then the

resulting shrinking in the scale implies amalgamating the probabilities
of groups of 2 neighbouring cells in one. This is done by the following
simple operation:

p(i,2) =d(2i-1,2) + d&(2i,2)  for i=1,2,...,M"

which is then used in the next stage as in:

d(s,4) = I {Ci.(n) . p(i,2) . p(3.2}
. i+j=s J . )
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Again and in a similar manner, we have to shrink this doubled range

by considering:

p(i,4) = d(2i-1,4) + d(2i,4)

and so on.
AN
e
By Vthistg;bod_the rangekdoubles each time and so the distribution

would have to be collapsed each time to represent the distribution of

Fggwiyerage. Each convolution would require (M+2)? additions and
miltiplications where M+2 is the number of partitioned cells. “fhe Central
Limit Theorem would also reduce the effective range of the average Q(X)
~and hence the simple compression back to M+2 cells will not be needed

all the time. .This necessitated a careful programming in keeping track
of the shrinkage in the probability distribution.\/fge cells number 0 and
ﬂf?ﬂcontain the spike probabilities Py and Py respectively, and of
course these two end cells contain purely discrete probabilities. 1In

the convolution these are responsible for the discrete-contamination

of the whole distribution. When the range doubles we know that the
compression may necessitate averaging two neighbouring cells. This
averaging of the cells leads the discrete contamination to affect more
cells than is intuitively expected. Consequently some care is required
in the tracking of these contaminations as this is necessary for their
subsequent removal to give a smooth and pure representation of the
continuous part. (As is clear in the comments and details of the Fortran
routine CONVOL this process of tracking is accomplished by physically
separable arrays used to store the contaminant (discrete) and the

continuous parts).
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To complete the presentation of the convolution process there are

few additional points to raise:

(i) The truncation (or folding) of the "negligible" probakility
contents at the tails is done within toierable limits. Whenever more
than M/2 cells at the tails contain a sum of probability less than €
(a carefully determined level of tolerable probability error), each of
the relevant Q-cells are collapsed (truncated) and the corresponding

part of the sum is added to the next end cells, as appropriate and relevant.

/(ii) The value of p, of the normal distribution of the process Xi'
is directly related to Pg the proportion defective. .The value of A

determines value of po in relation to the normal distribution function.

: : e
So_as to hold the general conventions of values of [AQL (or p(), we

| found that the equi-spaced values of p with intervals of 0.1 would

rd
represent such convention very well indeed.. The range of U used is

(0.4 to 3.4) since they cover the range of values of Py that are of interest

———

in the theory and application in acceptance sampling.

e We have taken the case of the Ramp.as the representative case of our
"pew" thﬁges.‘/éggwg§ggwgg/ﬁq;_asy;h§,distributional computations has
tfiwﬁgggmyyg§g§;Vngmeriqg;hﬁeatures as the "Logistic" and the "Normality
Cumulative” schemes. B:ﬁyﬂj,;,”_]’_f_ﬁphﬂe}'e_fore suffice to only consider the

Ramp case in this work.

For the Ramp Q(Xl)' with values in (0,1}, is a piece-wise linear
transformation,(i.e. composed of a constant, a linear trend and a constant;)
of Xl, the normally distributed process with mean W and standard deviation -

1. But in the open interval (0,1), Q(X) is a linear transformation of
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xl’ and so the probability contents of the ith cell - [i;e. p(i,1) of

the initial distribution of the single Q(Xl)] - are relatively easy

to deduce by using the fact that X is the inverse function‘of Q(X). To
calculate p(i,1l), the probaﬁility content of the cell demarked from below
and above by q1 = i/M and q2 = (i+1)/M respectively we uéed the linear
relation of Q and X. By inverting Q(X) this p(i,l) corresponds to the

probability defined as:

%

il
o

P(i,1) = 6(A~w) - (- for Q(X,)

I
-

1 - d(B-p) =¥ - for Q(Xl)

. Pr{Q_l(ql) <X < Q-l(q2)} elsewhere .

where the two bounds of X (within the curled brackets above) are simply
the inverses of the quality function Q(X). And since our X is normally
distributed with mean W and standard deviation 1, tQ}gﬂprqbgbégityw;s
puts the above argument diagrammatically, and shows clearly how i-th cell
is assigned its probability content p(i,l1) before the convolution is

operated, as in Figure (3.1.1.) below.

- As is obvious (earlier in (*)), the values of the sample size, n,
visited by the numerical convolution in CONVOL have increasingly yawning

gaps for larger values of n. This is no major problem since:

- we could interpolate successfully for lower values of n, since

the spacing between the values of n is small then.

- For larger values of n we resort to the Central Limit Theorem

and the normal approximation to take over early enough.
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Asymptotically the discontinuities will tend to be smaller and

vanish.

/- We are not interested in a comprehensive tabulation of the "new"

schemes, we only want to emphasise their potentialities and
explore them as alternatives, so a selective representation of

such schemes would serve our objectives.

Existing schemes have the ratio of successive sample size of 1.6:1,

hence widening gaps are already a common place in the literature.

{ 3.1.2 The Tables of the Numerical Distribution.

/ S0, as a result of the numerical derivations and its procedures

| advocated as above we have the tabulations of the distribution for equi-

spaced average Q(X) for each of the n values that lie within the path of

the specific convolution process defined above. The tables are voluminous

and are stored in the computer disc storage, but some representative
tabular forms are displayed in the Appendix (C.1.). An example of the
tabular distribution is given by table (3.1.2(a)) below. For completeness

tiles;for each case were contained in the tables (see

some percen

1 Appendix (C.2.). A display of some of their contents is given in table

(3.1.2(b)) below.

Though the main distribution tables could be seen as self-explanatory
a descriptibn of their presented form may be helpful in revealing their
contents. @Epr a given.sample size n _we have a table for each of the
V§E9§§ of . This table has serially numbered rows representing probability

distribution for equi-spaced Q-values, and has columns standing for




Table (3.1.2.(a)): One example of the tabular distribution for the Ramp average Q(x).

sample size = @’ ) B = 0.5( 0.2)1.9 AMU = 1.3 € PO = 0.0968)
- 0.4032 D.4825 0.5586 0.6289
iilt**g;1121*9*13:2*2;E:Z§*g;iizzit*i**t**i***i**i*******i*if*** * 3_=*ﬁ(0.5)**(0.7)**(0,9)ﬁk(1.1)**(1.3)#*(1.5)**(1.7)**(1.9)*

%871 0.0032 0.0063 0.0115 0.0202 0.0342 0.0553 0.0896 0.1373
491 0.0037 0.0074 0.0135 0.0235 0.0396 0.0647 0.1020 0.1546
517 0.0055 0.0105 0.0187 0.0319 D.0528 0.0845 0.1304 0.1934
521 0.0068 0.0126 0.0220 0.0371 0.0606 0.0960 0.1466 0.2149
531 0.0083 0.0150 0.0258 0.0429 0.0894 0.1087 0.1641 0.2377
543 0.0099 0.0177 0.0301 0.0495 0.0791 0.1225 0.1829 0.2619
553 0.0117 0.0207 0.0349 0.0568 0.0898 0.1375 0.2030 0.2873
561.0.0136 0.0241 0.0402 0.0649 0.1015 0.1539 0.2245 0.3139
571 0.0158 0.0279 0.0462 0.0738 0.1144 D.1714 0.2473 0.3415
581 0.0161 0.0320 0.0528 0.0837 0.1284 0.1903 0.2713 0.3701
591 0.0207 0.0366 0.0601 0.0945 0.1636 D.2105 0.2965 0.3995
607 0.0235 0.0416 0.0681 0.1063 0.1600 0.2319 0.3227 0.4256
611 0.0266 0.0471 0.0769 0.1192 0.1776 0.2546 0.3501 0.4602
621 0.0299 0.0532 0.0865 0.1331 0.1964 0.2784 0.3783 0.4911
631 0.0345 0.0606 0.0975 0.1485 0.2166 0.3035 0.4073 0.5222
641 0.0407 0.0696 0.1101 0.1653 0.2382 0.3296 0.4369 0.5534
651 0.0473 0.0794 0.1237 0.1833 0.2610 0.3567 0.4671 0.5843
661 0.0544 0.0900 0.1383 D.2026 D.2849 0.3847 0.4976 0.6149
671 0.0620 0.1014 0.1541 0.2230 0.3100 0.4135 0.5283 0.6449
683 0.0702 0.1137 0.1709 0.2447 0.3361 0.4430 0.5590 0.6742
697 0.0788 0.1269 0.1889 0.2675 0.3632 0.4729 0.5895 0.7027
707 0.0881 0.1409 0.2080 0.2915 0.3912 0.5032 0.6197 0.7301
713 0.0979 0.1559 0.2282 0.3166 0.4200 0.5337 0.6494 0.7564
727 0.1083 0.1718 0.2496 0.3427 0.4494 0.5643 0.6784 0.7814
733 0.1192 0.1886 0.2720 0.3697 0.4793 0.5946 0.7066 0.8051
767 0.1309 0.2064 0.2955 0.3976 0.5096 0.6247 0.7338 0.8272
753 0.1432 0.2250 0.3199 0.4262 0.5399 0 .5542 0.7598 0.8479
761 0.1593 0.2464 0.3458 0.4552 0.5700 0.6829 0.7845 0.8670
771 0.1762 0.2687 0.3723 0.4845 0.5999 0.7107 0.8079 0.8845
781 6.1938 0.2917 0.3996 0.5142 0.6296 0.7376 0.8299 0.9005
797 0.2120 0.3156 0.4276 0.5441 0.6588 0.7635 0.8505 0.9150
801 0.2309 0.3402 0.4561 0.5741 0.6874 0.7882 0.8695 0.9280
811 0.2504 0.3655 0.4851 0.6040 0.7153 0.8116 0.8870 0.9395
821 0.2705 0.3915 0.5145 0.6337 0.7424 0.8336 0.9030 0.9497
831 0.2912 0.4182 0.5441 0.6630 0.7683 0.8542 0.9174 0.9585
843 0.3125 0.4453 0.5738 0.6918 0.7931 0.8733 0.9303 0.9662
851 0.3344 0.4730 0.6035 0.7198 D.8167 D.8908 0.9418 0.9728
861 0.3568 0.5010 0.6330 0.7470 0.8388 0.9067 0.9519 0.9783
871 0.3797 0.5293 0.6623 0.7732 0.8594 0.9211 0.9607 0.9829
883 0.4007 0.5545 0.6880 0.7961 0.8774 0.9335 0.9681 0.9867
891 0.4196 0.5763 0.7100 0.8158 0.8929 0.9441 0.9743 0.9898
901 0.4385 0.5979 0.7315 0.8345 0.9072 0.9535 0.9795 0.9923
911 0.4574 0.6194 0.7523 0.8522 0.9202 0.9617 0.9839 0.9942
921 0.4766 0.6405 0.7724 0.8687 0.9319 0.9688 0.9876 0.9958
933 0.4953 0.6612 0.7917 0.8840 0.9424 0.?748 0.9905 0.9970
941 0.5142 0.6816 0.8100 0.8981 0.9516-0.7799 0.9928 0.9978
951 0.5329 0.7014 0.8274 0.9110 0.9596 0.9841 0.9947 0.9985
961 0.5515 0.7206 0.8437 0.9226 0.9665 0.9875 0.9960 0.9989
971 0.5700 0.7392 0.8589 0.9329 0.9723 0.9902 0.9971 0.9992
981 0.5882 0.7571 0.8730 0.9419 0.9771 0.9923 0.9978 0.9995
991 0.6062 0.7742 0.8858 0.9498 0.9809 0.9938 0.9983 0.9996
[1001 0.6239 0.7905 0.8975 0.9564 0.9839 0.9949 0.9986 0.9996
Fi011 0_4239 0.7905 0.8975 0.9564 0.9839 0.9949 0.9986 0.9996

100 GMIN 0.00 0.000 ©0.000 0.000 0.000 0.000 0.000 0.000 »
100 SCAL 1.00- 1.000 1.070 1.000 1.000 1.000 1.000 1.000 *
amax 1700 1.000 1.000 1.000 1.000 1.000 1.000 1.000 *
* B =a*((\,5)*t(0_7)**(/0':'9))**(1,1)**(1.})**(1.5)**(1.7)**(1.9)***
03 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 =
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000 «
%3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000 «
51 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000
&1 00000 0.0000 0.0000 0.0000 0.0000 0.00J0 0.0000 0.0000 =+
73 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 =
%1 0.0000 G.0000 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000
93 0.0000 0.0000 0.0000 0.0000 0.000) 0.0030 0.0000 0.0000 =
107 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 =+
1131 0.0000 0.0000 0.0000 0.0000 0.0000 0.00J0 0.0000 0.0000
1237 0.0000 0.0000 0.0000 0.0000 0.000) 0.00J0 0.0000 0.0000 +
137 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 +
143 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000f 00081 =*
153 0.0000 0.0000 0.0000 0.0000 0.0000 9.002070.000% 0.0001 +
161 0.0000 0.0000 0.0000 0.0000 0.0000 0.0039 0.0001 0.0001
173, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0031 0.0001 0.0002 +
187 0.0000 0.0000 0.0000 ©0.0000 0.0000 0.8091 0.0002 0.0003 *
193 0.0000 0.0000 0.0000 0.000076+000% 9.0001 0.0002 0.0004 +#
201 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005 =
217 0.0000 0.0000 0.0000 0:0001 0.0001 0.00J2 0.0004 0.0007 =
223 0.0000 0.0000 0.000) 0.0001 0.0002 0.0023 0.0005 0.0009 *
233 0.0000 0.0000 0.00071 0.0001 0.0002 D.00)4 0.0007 0.0012 =
243 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0009 0.0016 *
*

*

*

*

*

*

*

*

*

*

*

x

&

*

*

*

*

*

*

*

*

*

*

2531 0.0000 0.0000 0.0007 0.0002 D.0003 D.00J6 0.0012 0.0021
263 0.0000 0.000% 0.0001 0.0002 0.0004 0.0038 0.0015 0.0027
277 0.0000 0.0001 0.0001 0.0003 0.0006 0.0010 0.0019 0.0034
283 0.0001 0.0001 0.0002 0.0004 0.0007 D0.0013 0.0024 0.0043
2931 0.0001 0.0001 0.0003 0.0005 0.0009 0.0017 0.0031 0.0054
301 0.0001 0.0002 0.0003 0.0006 0.0011 D.0021 0.0038 0.0068
313 0.0001 0.0002 0.0004 0.0008 0.0014 0.0027 0.0048 0.0084
323 06.0001 0.0003 0.0005 0.0010 0.0018 0.0033 0.005% 0.0104
3331 0,0002 0.0003 0.0006 0.0012 0.0022 0.0041 0.0073 0.0127
343 G.0002 0.0004 0.0008 0.0015 0.0028 0.0050 0.0090 0.0155
353 0.0002 0.0005 0.0010 0.0018 0.0034 0.0062 0.0109 0.0187
363 0.0003 0.0006 0.0012 0.0022 0.0042 0.0075 D.0132 D.0226
373 0.0003 0.0007 0.0014 0.0027 0.0051 0.0091 0.015%9 0.0270
381 0.0004 0.0009 0.0018 0.0033 D.006% 0.0110 0.0191 0.0321
393 0.0006 0.00%1 0.0022 0.0041 0.0074 0.0132 0.0228 0.0380
401 0.0007 0.0014 0.0D27 0.0050 0.0090 0.0158 0.0270 0.0447
413 0.0009 0.0018 0.0033 0.0060 0.0108 D.0188 0.0319 0.0524
421 0.0012 0.0022 0.0040 0.0073 0.0129 0.0223 0.0375 0.0610
433 0.0014 0.0027 0.004% 0.0087 0.0153 0.0263 0.0439 0.0707
44) 0.0017 0.0032 0.0059 0.0104 0.0182 0.0309 0.0511 0.0815
453 0.0020 0.0039 0.0070 0.0124 0.0214 D.0361 0.0592 0.0935
461 0.0024 0.0046 0.0083 0.0146 0.0251 0.0421 0.0683 0.1068
473 0.0028 0.0054 0.0098 0.0172 D.0294 0.0488 0.0786 0.1214

L T R Y
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P
Table (3.1.2.(b)): An example of somel percentage points Yof the distribution

of average Q(x). (These relate directly to table (a)

above) .

* §,51Ze= & ™ Ramp case” “AMU=1.3C6{i.2. PO= 0.0%63Cr =
xRk kTt rxhkrrhrrdrtrtrxr kb drdrxrthrrr xR EI R Y AR T
* QMIN x100: 0.CCOQ 0.0000 G.0CCO 0.00Q0 0.GOCGC 0. -.000C 0.,500C 0..0C50 =
* SCALEx1CGC: 1.2Q0C 1.C00Q0 1.00G0 1.000C 1.0000 1.00Q0Q 1.000C 1.29200 +
* P1 x 1CG0: 11,517 17.75 24.78 32.39 40.32 48.25 55.86 62.%9 =

******f**********************r*i*i********************i********r*****i

PR < T = ciceieeenn TEST CRITZRION ,7T cevacaws

0.01 0.5241-0.1000 0.64702 0.4371 0.4055 0.4000 C.3456 0.31233
Q.02 05769 Ga5413 0.5101 QL4791 04456 04135 0.3826 2.3335
0.03 0.£126 0.5706 0.5369 0.5042 0.4712 0.4331 0.6062 0.3761
0.04 -0.10C00 0.5931 0.5373 0.5237 Q.4505 0.4568 0.4240 0.3%31
0.05 0.7500 G.%117 0.5740 0.5396 0.5055 0.4717 0.4386 0.4070
0.05 0.6413-0,10C0 00,5882 0.5531 05187 Q..4845 0,4509 0.4189
G.49 -0.1000 00,8379 0.8C20 C0.7671 0.7329 0.6953 0.6574 2.6196
g.50 -0.1000 0.2615 0.3054 0.7705 0Q.736z 0.6936 0.56607 0.5228
g.51 -3.1000 0.8451 0.8038 0.7739 0.7395 0.7019 0.46639 0.6260Q0
0.29 -0.1GC0 00,5802 0.9465 0.9141 0.8802 0,.8431 0.8113 4.7731
g.9¢C -0.10CC 0.9360 0.9525. 0.9202 0.8866 0.85L2 0.8175 0.7793
0.91 -0.10CC 0.9919 0.9586 0.9266 0.8933 0.84606 0.8242 (G.7862
0.94 -5.1005-0.1000 0.9789 0.9484 0.9164 0.3820 0.8476 C.3102
0.95 -0.1000-0.1000 0.9865 Q0.9568 0,.9255 0 8917 G.8571 0.8201
g.9% -0.1060-G.10G0 0.9947 0.9661 0.9357 0.9027 0.8681 0.83175
N.B.

Each of the negative entries is a convenient way of indicating

[

that a percentage point is "non-existent."”



- 49 -

different levels of B (B ranges in steps of 0.2 from 0.5 to 1.9 across
the table). At the head of these tables are four rows labelled QMIN,
SCALE, QMAX and Pl' Respectively, these stand for the minimum value
of the convoluted (and hencé, possibly, compressed) Q-value, the scale
which changes due to shrinkage compression process, the maximum value
of the convoluted average Q and théwgrgpo;téanmarginal determined by

the value Qf B.

V/&n these tables the average Q values are indicated by the serial
numbers (in the square brackets). The addition of the product of these
serial numbers and the scale to the minimum Q, QMIN, gives the Q values.

That is to say:
Qi = QMIN + i . SCALE

To relate this to the previous section the probability content

corresponding to Qi is p(i,n) as defined above.

3.1.3. Gfiggggglh;gpgesentations of the distributions are given in the
Appendix (D.1.). Here below, is one distribg?ion graph to give é
typical pictorial representation of the tabulated distributions. As an
example here and for explanatory vurposes in this chapter we took the
sample size n=8, B=O;9 and u=1.3 (i.e. part of the same example used in
tables (3.1.2) above). Figure (3.1.3(c)) below gives the final shape
of the distribution of the case of u=1.3 for B=0.9 (which refers to the
third column of each of the tables above). This case when considered
from the initial single Q(X) until the convolved final form is enough

to reflect on how the convolution evolves in a manner typical of all

other cases. Of course, different values of p2 are determined amongst
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‘Figure (3.1.3): Some illustrative graphical forms of the distributions

(a typical éxample Ramp case of n =8, u= 1.3, B = 0.9).
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other factors by the value of B such that if other things remain the
same a low B value dictates a high Py and vice versa. This does change
the graphs as is clear on the appended diagrams, a higher B value permits

more continuity than a lower one.

The initial single r.v. Q(X) from which the graph for pu=1.3 emerged
as a convolution is given in Figure (3.1.3(a)) so as to give an
idea of the transition from the initial to the final convolved form
shown in Figure (c) .. These two figures can be used to illustrate
the formation of the jumps in the final form (as in (c¢)) from the two
spike probabilities of the initial single stage (as is seen at the tails

in Figure (a)).

Figure (3.1.3(b)) shows the splitting of the tabulated distributions
into the continuous and discrete part. This is needed ( especially in
section (3.3) below) so as to smoothly connect the grid points of the
purely continuous part separately by the cubic-spline representation.
Once this spline representation is made and stored the purely discrete
part could always be precisely brought in.

e

3.2 A Note on our Experience with Johnson Distribution-Fitting Systems

F And on the Work on Convolutions
: - . . . (e
It is note-worthy that the area of deriving such distributions .
(with‘gﬂgisgretetgqgtiguous mixture) did not receive much (if. any) M

attention in the literature. Consequently, and to our belief, it is

still fertile for different new techniques and methods. 1In the rest of

pms

this section we give as a basis for future developments in this area a

note of our results\when attempting different methods before our numerical

st




convolution, Besides we cite some of the relevant work in the area of
convolutions which were only in the context of a purely continuous or

fﬂ purely discrete nature but no mixtures.

3.2.1. As mentioned earlier we have attempted analytical handling in
deriving the "new" distributions but it was not possible to arrive at

a compact form for these distributions. ,/The only analytlcally viable tool

was the derivation of the moment generating function. The moments have

N

=

e —

- always been a focus of attention lnﬂthe.earlyﬁPearségianJDlstrlbutlon

. Systems (see Pearson (1963)), and in their counterparts in what is kﬁown

as the Johnson Systems (Johnson (1949)). These lean, in essence, on the

- fact that any two unimodal distributions with the same first four moments
have the same general shape and behaviour. Aand out of the Johnson analysis
came the recent enhancement by Hill et al (1976) to put these findings of

the Johnson Systems into algorithmic forms.

Though in principle we could evaluate the moment generating function,
and hence the first four moments, the Johnson Systems (and by analogy
the Pearsonian ones) would not reproduce the "new" distributions. The

reasons are four-fold:

(a) The most specific reason is that our "new" distributions are

characterised by the discontinuities (or jumps) which are

most significant for the smaller n values.

(b) Our moments lie close to, but not on, the boundaries of the
different systems and according to Hill et al (1976) such cases i
~are not easy to deal with; such cases were excluded by them

from their algorithm.




(c) The empirical fact that the fourth moment is numerically

unstable.

(d) "Moments fits" are known (Pearson (1963)) to fail at the

steep tail (see also Pearson and Stephens (1962)). BAccording
to Pearson long tailed distributions stand a better chance

in moment~fits than short tailed ones.

In Appendix (E.l1.) we have the graph fqr the ( 81,82)-plane (the

: basic tool of the Johnson (and Pearsonian) Systems. Shown, also there, are
_?somegmintsvof our distributions on that plane. Some remarks on these

i points are also included there followed by the derivation of the moment

generating function.

The theory of the Johnson Systems as cited by Johnson (1949) tells

’; us that even at their best the moments are expected only to provide
approximations to our distributions at the general trend level. That

is to say, the jumps (discontinuities) resulting from contribution to

the coﬁvolution by the discrete random variable and originating from

the initial spike probabilities Py and P, are/ignored. of coursé, these

details of the jumps are essential, especialiy when we deal with deciding

on the percentage points for the purposes of formulating the decision

rules of the "new" schemes. A loock at the graph of the numerically

convolved distributions (shown in the representative example above) may
f"clarify this point more. We should not expect the Johnson System to

reveal these discontinuities. Its only effectiveness goes as far as

matching the four moments and so may be suitable for mimicking our
distributions for large values of n (i.e. large enough ﬁor the discontinuities

to vanish or become "tolerably" negligible).




3.2.2. The work done in the development of techniques to evaluate
distributions that arise in a convolution context include Baxter (1981),
| Cleroux and McConalogue (1976) , McConalogue (1978 and 1981). Though

their ideas apply effectively to purely continuous distributions or purely

discrete ones we still feel that the n-fold convolutions of mixtures of
discrete-continuous random variables did not receive a direct attention.
The reason for lack of developments in the area of mixtures may possibly
be that there are few problems in applied statistics which give rise to

© such "mixed" models.

-~

: e
; 3.3 Evaluation of the(@ercentage Pointg)from the Tabulated Convolutions

e

. I

As developed earlier we have a certain grid of the distribution of
i the statistic parameter mean Q in a tabular form. Generally, and for
; our work, we would like to be able to find the values of this statistic

: corresponding to any set of prespecified values of probability. @g~3re

.

interested in determining the percentage point, say t, such that:

Pr{é : t} = o,

'

where o is given.

3.3.1. The major difficulty is that due to the distribution being a
mixture of convoluted discrete and continuous probabilities there arises
certain jumps in ﬁhe distribution function at the specific points where
t = r/n, for r=0,1,...,n (where n is the sample size). This difficulty
becomes more serious if we know that these jumps may or may not be
precisely reflected by the tabulations and we need to locate them beside

measuring them. This could only be done by:

o
x?.‘\«.‘)s{ s
¢

o



- 54 -

(i) splitting the distribution into its continuous part and discrete

one,
(ii) removing the contamination from all the grid points, and

(iii) specially treating the points of the continuous part with a
cubic spline representation to link the otherwise tabular

points of the distribution (for which we used the FORTRAN

library NAG routines : EOIBAF and EO2BBF of spline fitting).

S

In other words, the discontinuities at t = r/n, for r=0,1,...,n,
may coincide with the required probabilities. If the required probability
lies at the top or the bottom of the jump no new problem arises. However,
if it lies within the jump the required probability is not directly
accessible except by the device of an additional random experiment to
smooth all the discontinuities. We do not believe this to be good
sampling practice and we restrict the cases to those in which the
required p is directly accessible. The spline will provide us with a
'continuous' continuous part of the distribution, and since we know the
precise position aﬂd size of the jumps these could bé added to the cubic
spline representation to form the whole of the distribution with the

position and the extent of the discontinuities precisely known.

The size of the jumps is given by the distribution of the discrete
probability originating from the spikes Pq and P, at the ends of the range
of the mean of Q(X)'s and wiil show as a trinomial distribution in the
n-fold convolution. Formally, we have this discrete distribution as

follows:
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pr{i effectives , 0 marginals, (n-i) defectives: given n}t

_ , i 0 (n-i) L

=C(n,0,1) p2 p1 po for i=0,1,2,...,n

_ n . i (n-i)
= (py + Py [Cn,0,1) '(Pz/(Po+Pz)) . (PO/(Po+p2)) ]

where,

1]

C(n,0,1)

)

1

Py

Pyt Py ¥ P, =

n!/(it 0! (n-i)!),

(D(A"U-) ’
1 - (I)(B_u) r
1,

and A, B are the

specifications limits as before.

e

The rectangular brackets contain the usual term of standard (or
proper) Binomial distribution model. The distribution jump represented
by this trinomial form would be called the Trinomial jump at the ith
position. It can be added at the ith position to its continuous
counterpart produced by the cubic spline. These specific positions may

need to be interpolated and that is where the spline-~fit has its vital

role.

3.3.2 Problem of "Non-Existence"

All the above made it generally possible to find the percentage points

as given in the tables (showing some of the important percentage points

in the Appendix

(C.2.) ) with one major exception. This is the non-

f
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(in the tables in the Appendix these show, for convenience, as negative
 values). This apparént side issue, gave rise to some complications of

. non-existence of some schemes. The feature is likened to the problem

of percentage points in the discréte random variables such as in the
Binomial model. In fact the same basis for the argument of non—existénce
holds in our case giving rise to non-existent inverses of our composite
probability function. This problem will reappear in the context of
 establishing the parameters of our new schemes as will be discussed in

Chapter 4.

3.3.3 Mathematical Vision of the "New" Distributions as Related to

Trinomial Jumps

As another way of perceiving the above discussion, and though the

T

distribution produced by removing the contaminating discrete part is
stored in a tabular grid of M+2 points, it can be theoretically conceived

of as a function F(y: n,A,B) defined as:

F(y) = lim {F(y-d) + F(y+d)}/2
a0

»"The form of the distribution is useful in finding the probability for
any cut-off percentage point of the mean quality for given sample size,
n & {2k : k=0,1,2,3,...}, of Xi (distributed as N(u,1), and given

the specification limit A=0 and a level of B. Thus:

Pr[én £t given n, A, B]

j(t)
=F(t : n, A, B) + L H(i : n, A, B)
) i=0




where;

j(t) = integral part of (n.t)

and H(r : n,A,B) is a Trinomial probability term of 0 marginals,

r (total number of defectives plus effectives), with our usual parameters

n, pol pll p2'

What we have done is to replace the "continuous" part (given by the

| grid points) by a smoothly connected spline representation so as to enable

interpolation. Then the Trinomial jumps are allocated precisely and

integrated within this new representation.
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CHAPTER 4

ON THE DETERMINATION OF TEST CRITERIA

FOR NEW SCHEMES AND EQUIVALENCE

4.1 General

In the previous Chapter 3, the percentage points for the selected

- percentages of the cumulative probability of the "mew" average quality

statistic, én(x), were evaluated using the continuous spline-fit and

the discrete Trinomial jumps.{ These results were used here below to set

~up and establish the decision rules for our "new" schemes. Once these

were determined the "equivalences" (or matchings) with the orthodox

JIOESS

! schemes wg;gwggggg}}§§§qﬂnext;x In all these matchings interpolation

-

| was used extensively. The problem [discussed earlier in section 3.3.2]

| of "non-existence" of the percentage points for some probabilities of

the statistic én(x) arises more significantly for lower n values and

 tends to diminish as n gets larger.

:} Tﬁgyggggrmination of the decision rules and their_parameters are
based og_;@gwidgarpf the 0.C. curve. Two points on the 0.C. curve are felt
to be enough for fixing the plankparameters.“,If one or both of these
two O0.C. points correspond to pgf;entage points that are "non-existent"
then a plan with such 0.C. specifications will not be available.

aet

v Two points on the 0.C. curve are also used in the matching (or
equivalence) procedure of our schemes with other schemes. In the next
sections we give a review of the matching procedures in the literature

together with our chosen method. The sections following it (sections

!
e
T
i
i
ih
i
L
i
I
r;‘
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(4.5.1 - 4.5.4)) will consider the equivalence (or matching) of our

schemes with the orthodox ones, and the techniques used in making them.
These are followed by sections with notes and comments on equivalences
and the performance of sample savings of our "new" schemes in relation

to the orthodox ones.

4.2 Equivalence and Matching Procedures

. 4.2.1. The concept of "equivalence" in the literature: In theory, two
plapsmw;;hwd;ggsrent,parameters and decision procedures are said to be
"equivalent" if their 0.C. curves coincide. In practice this is not

needed exactly as it is a stringent requirement to meet. All the work

done in this respect is based on the fact that near the top (or bottom)
of the 0.C. curves the would-be-equivalent curves should be very close

and so close elsewhere that the protection levels are practically

. . '7/
coincident. i

In the literature, there are basically two definitions to this
effect; one is attributable to Hamaker and Van Strik (1955), and the
other is due to Bravo and Wetherill (1980). Hamaker and Van Strik (1955)

defined 0.C. curves to be "equivalent" when they share the point of
(vapffeenrst Bt 7

control p50 (i.e. fix the indifference point of 50% acceptance) and have

the same relative slope h at that point of p50; where

h=-(@d & Pa/d fn p)/p50 = - 2(p.4 Pa/dp)/pso.

- Bravo aqd Wetheri;l_(1980) suggested matching at the two points

corresponding to the AQL and the point of indifference quality stipulated

to be where the probability of acceptance is Pa = 50%. (There is a




{

{ 4.2.2. We find that the one point control on the 0.C. curve as in the

4 a numerical tabulation rather than a compact closed form. Moreover,

_know that our probability distribution of the test statistic én(x) is
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variant of this that uses 10% rather than the 50% but we have numerical

evidence that this would not matter in principle}. ”{t

Hamaker and Van Strik methods with its mathematical elegance necessarily

brings about unnecessary complications in our case especially when we

1 as can be seen, either definition reveals the same basic concept and that

the procedure due to Bravo and Wetherill (1980) is more appealing and
ecasier to implement especially for our tabulated distributions, and hence

it is adopted in furthering this research.

/ In line with this discussion our parameterisation and determination

 of the decision criteria would be made on the same basis, i.e. by solving

for two points of probability of acceptance as in the following section
(section (4.3)), and then uses these two points to find "equivalents".
Once "equivalences" are established tests on the properties under study

((as cited in section (1.1.1) of Chapter 1)) will be viable and possible

to carry out.

4.3. Determination of Decision Parameters and Criteria for the "New" Schemes

Y, As mentioned earlier the determination of the decision rules for a
plan in our "new" schemes and its parameters will be based on the idea

of the 0.C. curve. Two points on the O.C. curve fix the plan as follows:

(a) Given n (to be chosen from the set of {Zk, for k = 1,2,...},
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/and an AQL (appropriately chosen from the povyalues in the

“///ltables), then for a fixed value of B we have a unigque percentage

point, t, that gives a cumulative probability level a

(corresponding to an acceptance probability of Pa = 1-0). ?f

gk o
L P P

(b) Having determined the t value and the Q-risk point on the 0O.C.

7
vy

curve, we then search for the wvalue of P, that corresponds to

the acceptance level of B with the same percentage point t.

N
Y
V//in other words th§%293f9§f point, t, ofwgggwgigxxigggiggwgprhe

e

f%averagenQQQ;;ty is determined such that a batqgmg;phvpo(l) proportion

Afqe§§q§§ygulgggdﬂAQLlwwiLlwhave~auprebabilitywQ£m§§9§23§nce P, =1-0

(for prespecified @) while a batch with po(2) defective proportion,

(po(l) < p0(2)) is accepted with probability P, = B, (B < 1-a). «The 0.C.

i;curve will then pass through the points (AQL, 1-a) and (po(2), B) which,

] as mentioned before will act as a frame of reference for finding

equivalents later on and it is the base of that "“equivalence"..-

The result of this process of determining these two points arrives

'éat a unique point of (n, AQL, 90(2), t) on the parametric space of our

scheme, and hence determine the plan with the same protection levels as

? the 0.C. curve passing through the above-mentioned two 0.C. points. ~This

a4

|

set of parameters could also be translated into (n, u(i-o), p(8), B) or

other obvious forms depending on the circumstances and convenience.

There are two problems facing the evaluation process of these two
points on the 0.C. curve. The first is that interpolation in the tables

is needed to find the po(2) (or alternatively its corresponding w(B) for
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fixing the second 0.C. point. The other problem is that of "non-existence"

of the particular percentage point in the distribution representation. |

a. Interpolation: We need to igpg;pqlatgwfor the pO(Z) corresponding

v [

tgwgggwtwyalue because the distribution percentage points are,
again, on a grid of equi-spaced p's. This equi-spacing was
originally intended to facilitate interpolation. Linear inter-
polation between the U's is made possible and reliable by the

smallness of the spacing between the pu's. The only complication

for interpolation procedure is the possible occurrence of the
problem of "non-existence" of one or both of the bounding t-values
needed as interpclation parameters. There is a solution to such
a problem as is explained in details in the next procedure
section (section (4.3.1)).

—

b. "Non-existence": Non-existence in this context could only
prevail as a hindrance to the interpolation process above. The
problem that the interpolated value of p0(2) corresponds to a

non-existent t-value does not arise at all, obviously.

f4-3.1 Procedure for Determining the Decision Parameters (given n,B,0 and B)

J,

In our work we chose 0 = 0.05 and B = OL§O {(i.e. a 95% producer's
v:risk and 50% consumer's risk (or indifference point)). We have a
.;prespecified set of AQL's for 95% level (namely, the set of P, values of

4l {(0.0107, 0.0139, 0.0179, 0.0228, 0.0287, 0.0359, 0.0446, 0.0548, 0.0668,

'50.0808, 0.0968} corresponding to U values of {2.3(—0.1)1.3}, respectively.

¢ Ty
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Efollowing major steps:
|

(i) Choose a specific AQL (for 95% level) and so determine a

value for t, the test parameter for the test statistic.

(ii) Interpolate for the Py (or p) value in the percentage point
table at the 50% level such that its percentage point is

equal to t.

- If no problem of "non-existence" appears this procedure will

ﬁdetermlne po(2) the _broportion defective for the other 0.C. point, hence

;a plan lS determlned

The interpolation procedure changes its gtounds from being in terms
ZQOE the P, values to be in terms of their cor?E§ponding i values bécause
i these are equally spaced in the tables. In between two successive W
: values the interpolation used is linear since the interval spacing (of
0.1) of the u values df the percentage points is well behaved except,
| of course, in cases next to the jumps. This is when we encounter a
pfoblem of non-exiétence of a percentage point. In other words if no

discontinuity is caused by the value i/n for t then linear interpolation

should suffice; most of the cases are solved by this simple interpolation.

{Note here i = 0,1,2,...,n designates the points of discontinuities).

If there is a discontinuity problem then we need either to extrapolate
from above or below depending on the location of the discontinuity. ALl
the above search'procedure is best summarised in the following steps,

which apply to the tables of the percentage points shown in Appendix (C.2).

S
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Firstly, let u+ denote the smallest U for which the tabulated
percentage point, T, is such that T > t,Véﬁgrg t is the test criterion
determined by fixing the first 0.C. point of (AQL, 1-a). Similarly,
let u_ be the largest p for which T < t. 1In both cases ignorxe those
K's for which T is negative. (Remember that in the tables of percentage
points a negative T value is a convenient way of denoting a "non-existence”

of a percentage point for the specific given level of probability).

If u+ and L_ are spaced 0.1 apart, and the interval (T(u+), T(u_))
does not include a critical jump value then the mentioned interval is a

normal interval and linear interpolation in p's is carried out.

If not this case we then consider two situations:
(1) For t less than the critical position of i/n we extrapolate

from u_ upwards.
(2) For t > i/n we extrapolate from u+ downwards.

And since under such circumstances we cannot interpolate between
u+ and H_ we will need four U's to be able to fix our extrapolated p
then four values will be returned from these steps to be used in the
extrapolation. These four values are T(u+), T((u+) + 0.1), T(u_) and
T((u_) - 0.1). The steps of all this exercise are included in the computer

program EQUIV.FOR in Appendix (B.4.).

4.4 The Basic Ramp Decision Criteria: As a result of all the above

discussion we can get a po(2) for the 100 B% (second) point on the

0.C. curve. The protection level by this 0.C. curve which passes through
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(AQL, 1-0) and (pO(Z), B) is determined by the solution values of n, AQL,

t and B fixed in the above sections.

These decision parameters are used as in the following typical and

basic decision rules:

$4.5

Decide the values of n, B.
Determine t value by choice of protection level.

Take a sample of n r.v.'s Xl’ x2, ey xn drawn independently
from a batch, believed to be normally distributed,evaluate Q(xi)

for each and every x.
Evaluate the average of these Q(xi)'s, denote it by Qn(x).

1f é (x) > t accept, otherwise reject the batch from which the
n

sample was drawn.

Determination of the Orthodox "Equivalents" of our Plans

For the established plans of the "new" schemes as given by the 0.C.

curve fixed by the two points as shown above we can use such points in

moving the information to determine the "equivalents" to each and every

"new" plan in the orthodox field of schemes. The basis for this

equivalence is the same 0.C. curve on which the "new" plan was determined.

In the following sections we will discuss methods of finding the

""equivalents"” to our determined plans in the cases of two-class attributes

and O-known and unknown variables plans.

In each case we pick the

resultant 0.C. points of (AQL, 95%) and (p0(2), 50%) which were arrived
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at from establishing the "new" plans above, and use them to find a
"matching" (or "egivalent") plan of the well established orthodox schemes.
Results for all the matchings made are cited in the tables in Appendix

(C.3.).

4.5.1 The Two-Class Attribute "Equivalence"

t;? The parameters of importance in the two-class attribute schemes

are n, the attribute sample size, and c, the acceptance number of
defectives. In the equivalence process in principle the two given
probability of acceptance points of (AQL, (1-®)) and (p,(2), B) could

be solved for n and c to determine the attribute plan whichvis equ;valent

to the given "Ramp" plan.

/// Because the Binomial model (behind the acceptance probability of
the attribute caSe) is discrete it may not be a convenient method since
it will be difficult and sometimes impossible to satisfy the two 0.C.
points exactly. suggested legitimate flexibilities in the way of

approaching the problem are introduced as follows,
Let Pa(p) denote acceptance probability for p proportion defective:
then a way of finding a convenient form to work is to use the approximating

system of the following inequalities:

> 1~
Pa(AQL) 1~-0

Pa(pO(Z))>< B

where,
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Also, we make use of the fact that

B(c; n, p) = P(c, np) = Y(2np, 2(c+1))

where,

B(c;n,p) is the cumulative Binomial up to ¢ (with parameters n and p),
P(c, np) is the corresponding cumulative Poisson with mean np,

and Y(2np, 2(c+l)) is the Xtdistribution with "(c+1) 4.f. and a level

corresponding to a percentage point X2 > 2np".

These are well accepted approximations of one another (see Hald (1977)
and Wetherill (1969)). These would lead us to an easier system to solve
in terms of the %tdistribution rather than the more complicated Binomial

system of inequalities. So we have:
pr{ x2 > 2np : given 2(c+l) 4.f.} > 10 (5.1)
pr{ X* > 2np : given 2(c+1) d.f.} < B (5.2)

These inequalities should be constrained such as to provide a little
tolerance and no major discrepancies. They should be as close as
possible to the values on the right-hand-side of the inequalities. A

simple method of minimising ¢ will have such an effect and is described

below.
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/ A method due to Hald (1976-77) proved to be invaluable in solving
for n and ¢, was also used in Bravo and Wetherill (1980), and is followed

in the solution of (5.1) and (5.2) simultaneously, next.

/ Given AQL and p0(2) corresponding to o = 0.05 and B = 0.50 respectively,

then we require a solution for (n, c) such that

P_ (AQL) > 1-a

P_(py(2)) -ﬁ B

and ¢ is as small as possible, where AQL, p0(2), o and B are given

values such that:

0 < AQL < py(2) <1

and 0< B <1-00 < 1.

The tools for the solution are:

(1) The auxiliary function mP(c) which is the solution of

P(c, np) = Prfor 0 <P < 1

where P{c, np) is the usual Poisson distribution and can be

approximated by its above-mentioned approximation.

(2) The decreasing function of ¢ defined as:

R(c, a, B) = {mB (c)}/{ml_a(c)}
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which could be expressed as R(c) since O and B are given in

this context.

(3) (a) For integral value of ¢ we considered solving the above-
mentioned inequalities rather than the equalities. These

will imply that the smallest ¢ is uniquely determined by
R(c-1) > {p(2)/AQL} > R(c) (1)

(b) Later on, the corresponding n satisfies the constraint

that it should lie within the interwval:

({mB (C)/pO(Z)},{m (c) /AQL}) (II)

1-a

The importance of this method lies in the fact that the function
R(c) is not a function of n. By guess work and some small amount of
trial and error we could locate the smallest ¢ value. This ¢ is then

substituted in equation (II) above to find n [or probably an interval of

nl.

Note that if the interval does not include an integral value of n

then increase ¢ and go through the process from (3) (b) all over again.

Also note that:

co
B(¢c; n, p) = P(c, np) = (1/c!) J £ e‘t dt
np

where the last term is the Xz—probability:

pr{x? > 2np : given 2(c+1) d.f.}
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the Fortran Routine called MATCH contained in the computer program called

EQUIV which is responsible for the matching of the two-class attributes

P

(as well as the other orthodox) plans to our "Ramp" plans. (These

programs are listed in Appendix (B.4.)). An illustrative part of the
results are shown in the tables in Appendix (C.3.) together with results
for the "equivalent" variables cases (whose decision parameters were
determined as discussed in the next two sections).

4.5.2 0O-known Variables Plans "Equivalence"

To match the O-known variables plans to our "new" plans we would
utilise the following standard univariate normal theory and its analytical
relations corresponding to the (1-a) 100% and (B) 100% levels, that is:

;. vz _ 4 .@‘1(1-a)

E)
|

, 1/2 -1
and {kO - u(B)} - (n) g.d " (R)

where kO and n are the usual parameters of the decision rules of the O-

known variables plans.

These equations solve for kG and B thus if o = 0.05 and B = 0.50:

o~ Ho.s0

and )?

js]
]

2 -
(1.64490)% /Uy 55 = Mg g5

It should be noted that in practice this sample size has to be




integral-valued (and usually small), so that an exact integral value

does not necessarily follow from these theoretical results but the size
of such a problem of non-exactness gets smaller for larger sample sizes.
Results for the matching of O-known plans are shown also in the same

tables of Appendix (C.3.).

4.5.3 "Equivalence" for Unknown-0 Variables Plans

For matching these S-plans to our new schemes given the two points
of the 0.C. curve we use the iterative approximating procedure for
finding the parameters of the Non-Central t-distribution suggested by
Hamaker (1976) and advocated by Wetherill and Kollerstrom (1979) and
Bravo and Wetherill (1980) who all checked it as adequate. Our results
using the same method compare very well with the Bravo and Wetherill (1980)
published results. The method uses the O-known results and is as

summarised in the following argument:

In the O-known plan based on m (sample size) and k (test constant)
we accept if the sample mean §m <A-kO. And if ¢ is unknown then
we will have the same 0.C. curve if n (the S-plan sample size) and h
(its test constant) are adjusted such that the random variables
[in +h . S] and [im + k . 0] are matched so as to have the same mean
and same variance, where S is the usual unbiased sample standard deviation.

As a result of equating mean and variance we get the following approximate

solutions:

h . (4n - 5)/(4n - 4) (1)

o
"

n/(1 + h?/2) (2)

=
1



A numerical solution could be sought iteratively noting that n has
to be greater than m with an incremental factor of 1 + h?/2. An initial
value for h is h=k since the factor (4n - 5)/(4n - 4) could be approximated,
first time, by 1. From the second equation, (2) above, we evaluate an
approximation for n by substituting for h=k. This value of n is then
used in (1) to give a better h value. A final approximation of n is

computed using (2).

We have found that this iterative process converges quickly to values
of k and n and a solution existed for all cases. ?Egmmgphod was used in
the'Fortxgnwpgggfggimqu;v, which gave the results partly displayed in
Aépendix {(C.3.) for cases of S-plan "equivalents" together with the other

cases.

/ 4.5.4. All the equivalences and their procedures are incorporated in the

FORTRAN program EQUIV mentioned above which is listed in the Appendix (B.4.).
Our work has arrived at the conclusion that matching (as is recognised in
many of the publications of the existing orthodox schemes, e.g. BS6002,
MIL-STD-414 ..., etc) is in some cases very poor indeed. For further

evidence in this respect we refer to Bravo and Wetherill (1980).

J The results of our matchings as discussed above are meant to serve

three purposes:

Give illustrations of the "equivalents" for their own sake and

« (a)
show procedures for moving from a scheme to another through
"equivalence".
(b) Show the performance of the sample size savings in the comparative




sense with and in relation to the two extremes (i.e. the g-known
variables and the two-class attribute schemes). A detailed
study of this phenomenon is given in section (4.5.5) below,

but some definite savings were made by our "new" schemes over
the attributes case and competitively with the variables

(unknown-0) schemes.

(c) Make a basis for the analysis of the robustness property since
under equivalence {(matching) all schemes will have the same
0.C. performance for the similar background assumption of a
Normal distribution model of the process. This point is used

in the robustness studies which are dealt with in Chapter 5.

4.5.5 Performance of the Sample Sizes under Eguivalence of Different

Schemes.

The results in the tables in Appendix (C.4.) about the behaviour of
sample size show the sample sizes for the different schemes under equivalence.
These results are reflected graphically in figure (4.5.5) below so as to
give a more illuminating insight of the behaviour of each scheme in so
far as sample size is concerned. The graphs show each plans performance
by plotting the ratio of their sample sizes to their "equivalent” Ramp sample

size against AQL's. The horizontal broken-line indicate such a curve for
—

the case of the Ramp itself. The bottom curves are the cases of the

orthodox by-variables plans, the lowest one refers to the U-plan. For

each B value there is a separate figure for different (Ramp) sample sizes,

As a function of AQL each figure shows quite clearly that the lower the

AQL the higher the gap between the Attribute curve and any other alternative

. case It is beyond doubt that there is a large amount of savings in the

—————— el




Ramp over the Attribute case. All the diagrams indicate how the Ramp
could act as a transition between the attribute and the by-variables
schemes. Moreover, and interestingly enocugh, there is evidence of sub-

stantial savings of the Ramp over the S-plan.




Figure (4.5.5) :

Sample size ratio nj/n as a function of AQL (where n is

the Ramp sample size and nj is the altermative-plan

sample size).

Note: The highest curve in each diagram is that of the attribute scheme,
the second is for the S-plan and the bottom is for the O-plan. The
broken line is for the Ramp case.
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CHAPTER 5

ROBUSTNESS STUDIES

(Analytical and Simulated)

5.1 Definition of Robustness Concept and Work in the Area

5.1.1 General Note and Definition Problems

From the beginning "robustness" has been, and still is, a rather
vague idea. Box and Anderson (1955) introduced "robustness" in the
following context. 'Procedures are requirea which are "robust" (insensitive
to changes in extraneous factors not under test) as well as powerful

(sensitive to specific factors under test)'.

Box and Tiao (1964-b) and later Barnard (1974-a) put forward the
case for the distinction between "criterion robustness” and "inference
robustness". They see "criterion robustness" as concerned with the effects
of departures from the assumptions on the null distribution when the test
criterion under investigation is taken as given,; with "inference
robustness" consideration is also given to questioning the appropriateness
of the test criterion on a sample to sample basis. Our analysis of the
problem takes the line of "criterion robustness" for two reasons. Firstly,
we are studying test criteria which are given in the sense that their
schemes have existed for a long time and are well established so that it
is only practical to look at their limitations and warn against them in

the short run while in the long run consideration of "new", better and

appealingly simple, alternatives could be sought. Secondly, the approach

AA———‘




by directly comparing methods forces us to take the test criterion as
given especially since these have some optimal properties when assumptions
are correct, which renders a study in terms of "inference robustness",

that might entail a change in the criterion, not recommendable.

At a different level, the literature has got two streams of thought,
one deals with large sample sizes aﬁd asymptotic studies while the other
looks at small sample sizes. In his paper Huber (1972) gave a review of
recent theoretical works on robustness and their different schools of
thought, citing many references in the area. In the paper there is a

discussion of the notions of robustness through asymptotic studies.

Huber seems to encourage problem-oriented or local goals since he

argues that:

(a) a small asymptotic variance over some neighbourhood of one

shape, in particular the normal one (Hube: (1964)), and;

(b) the distribution of the estimate should change little under
arbitrary small variations of the underlying distribution and
uniformly with n;
are the important criteria. Like Anscombe (1960) he advocates the view-
point that robustness is a kind of insurance problem whereby one is
willing to lose the premium (here, loss of efficiency of, say, 5% to 10%)

to guarantee and safeguard against ill effects caused by small deviations

from the ideal model.

s Huber (1972) admits that the

For finite small sampling robustnes
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appropriate robustness criteria are much more difficult to lay down. This
and other factors make our robustness studies difficult and the theoretical
literature in the area is not very helpful although directive. 1In the

next section we have a review of some of the work on robustness of

relevance to our problem to act as a broad guide and a base from which

to build.

The discussion, especially on the theoretical ideas on robustness
criteria shows that there are differences in emphasis but still quite an

agreement on the notion created by Box and Anderson (1955) mentioned above.

All the complex robustness requirements reviewed by Huber (1972)
are not easy to maintain. This is especially true if we are to handle
cases of robustness of estimators not only of locations or dispersion
but effectively of the whole distribution. This is because we need to
estimate the quality in terms of the proportions in the tails as in our
case of the triplets (po, Py p2). Under the circumstances we chose to
start thinking in terms of the Box and Anderson general notion and relate

to Huber's ideas ((a) and (b), above) with special reference to (b).

, Our strategy will have the following features. Whgghstudying the

distribution form to encompass reasonable changes in the process while
controlling and fixing the variance. As mentioned earlier one standard

measure of quality in acceptance sampling and which is common between all

distributions is the triplet (P,s Py~ py) - vVarying the variance alone

(under Normality), when studying variance effects, will have the effect of

changing these three components for a given mean or any other central

value The changes in the distribution form serves two purposes:

—ij----------;--------!llllll




(1) Indicate which departures from normality are most crucial

for each sampling scheme.

(2) Check which of the plans under study here can restrict the
range of variation of Pa over a reasonable range of non-normal
distributions. ([This could be facilitated by a standardised
measure of robustness to define such a range (see section

(5.2.1)) below].

5.1.2 Some Review of Work Related to the Problem

Past work relevant to our robustness studies was done by Wald and
Wolfowitz (1946), Rao, Subrahamaniam and Owen (1972) [who investigated

Owen's work (1964)]1, and Pearson, D'Agostino and Bowman (1977).

The work of Wald and Wolfowitz (1946) tried to control the overall
combined proportion in the tails but did not go beyond that to try to
control the level in each tail. To only guarantee that with probability
1 P the event that the proportion between (X - kl.s) and (X + k2.s) is at

least (1-p) would not necessarily guarantee that each of the tails carries

the right amount of the proportion defective p, say p/2 .

This last point constituted a motivation for the work of Owen (1964)
who developed certain methods to tie up the constants of the by-variables
sampling plans (with given limits of specifications) such that each tail
has p/2 proportion. In turn Owen's work was investigated in a robustness
sense by Rao, Subrahamaniam and Owen (1972). They looked into the effect

of non-normality on Owen's techniques and controlling the proportions of

p/2 in each tail. Their conclusion is that Owen's limits when subjected

"ﬂ---.IlIllI-IIIIIIIlIIIIIIIIIIIIIIIII.IIIII'




to "very moderately Non-Normal

" distributions, showed that non-normality

effects are:

- more pronounced as n increases,
- increasingly felt as p decreases and

- are dependent on relative magnitude and sign of the standardised

cumulants /El and (82 - 3.

Pearson et al (1977) showed that the error rates of the t-test were
approximately linear in /El and 82. This point together with the latest
peint (above) showed the significance of the factors of skewness and
peakedness in investigating any non-normality or indeed any robustness
studies. Partly for this reason we chose the specific alternative
distributional models (discussed in the next sections) to model the non-
normality of our production process. We also add the consideration of
variance changes from assumed values within normality and make studies on
such effects within non-normal distributions. The models show varying
degrees of peakedness and assymmetry together with other real considerations
of a process like variance changes. We note in passing that our results
agreed with Owen's results, especially for the first two points mentioned
above. In common with the work of Pearson, D'Agnostino and Bowman (1977)
our choice of the distributional models was primarily made so that we
could study the performance of our plans under non-normal models with
prior knowledge of the direction of non-normality in terms of the degrees
of symmetry and/or kurtosis. In their work they suggested specific regions
of non-normality related directly to the Normality point (0,3) in the general
sub-classification of the (61, 32) plane. These regions were (/§1=O' Bz > 3),

(/Bl=o, B, < 3), /él < 0 and /él > 0.




Relating our work to all the above

-mentioned works, Owen's invest-

igation is very relevant. Yet, it is limited in comparison with our

requirements in the following two senses:

(1) It considers a specific case in which p, the pioportion
defective is equally balanced in the two tails while our study
is interested in one-sided defective control. Moreover, they

limit non-normality to the close neighbourhood of normality.

(ii) It was shown that for low values of p the effect of non-normality
is increasingly noticeable. Though this does not tell us
specificallly about cases of smaller proportions in the lower
tails there is evidence (Pearson et al (1964)) that two-sided
control is more stable than one-sided control, and so we do not
seem likely to have satisfactory results if we judge by Owen's

results.

With reference to the investigation of Owen's methods for robustness
made by Rao et al (1972), who used Gayen's (1949) approach which is
highly tied to /El and (82 - 3) as parameters of departure from normality,
we would highlight as significant their conclusions that the variation

in (B, - 3) is compensated for by the effect of /El. Also the

2

correction afforded by (52 - 3) tends to increase P (the statistical

confidence that no more than p,., Say, is below (x - k,.s) and no more than

P, say, is above (x + k,.s)). Moreover, they remarked that for large p
values (< 0.5) the values of P are most robust to departures from normality.

We took non-normal cases as below in such a way as to reflect skewness in

a separate model from that reflecting kurtosis.
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5.2 Forms of Distribution Models used for Robustness

~ In accord with the previous discussion, (and alsc for other motivating
factors which will be mentioned in the following sections), we decided to

consider testing our plans with each of the following distributions as
alternative, non-normal, process models:
P At
(1) Contaminated Normal Distribution (defined as a mixture of two
normals) : this deals with real effects that could possibly be
experienced quite often, e.g., in a product of a six-headed
production unit or when a batch contains an output which is
supposed to come from a homogeneous grade but came from two

{(or more) processes with heterogeﬁeous grades of products.

(2) Lognormal Distribution: this reflects a skewness of the process.

Though it is skewed to the right one can imagine the impact

of the left-hand skewness.

(3) Two-point Distribution: this is expected to show the effects
of extremely polarised 2-class processes. It may not be a
realistic case to consider from a process point of view but it

is a simple extreme case of a mixture of distributions.

(4) Uniform Distribution: as a heavy-tailed distribution model it
can reflect the kurtosis requirements of a testing non-normal
process. It can arise as areasonable approximation to the

product from a batch which is selected before delivery.

The distributions (1) and (2) were dealt with by simulation while




- 85 -

(3) and (4) were amenable to analytical handling as is shown below in

the section relevant to each of thesé distribution models. The following
sections of detailed study of the performance of our plans' credibility
give clues about the effects of the distinctions between these four models
and the normal one.‘/%wo major features of these which are already

highlighted are skewness and kurtosis.

One other feature is the contamination of the distribution of the
process which besides reflecting changes in skewness and kurtosis give
more reality to mimicking the batches behaviour. Batches experience
mixed distributions when their contained items come from different lines

of production or even the same line but under different exogenous factors.

5.2.1 A Device for Measuring 0.C. Sensitivity to Assumptions

+~" The distributional changes will reﬁlect themselves on the resultant
0.C. curves. And we would like to be able to see the direction and
magnitude of the changes of the 0.C. resulting from these violations of
the distributional assumptions. This will give an idea about how robust
are the plans and a definitive measure is needed. The standardised

measure ROB.. below would show direction and magnitude of the resultant
i -

changes on 0.C. performance:

P;'(po) - Pa_(PO)
i J

/P;‘ (py) .{1-p;i(po) t/n
1

where P* (.) is the accept probability under the assumed type i distribution.
a,

i
P (.) is accept probability when distribution type i is violated

J
by type J-




.. However, one po—va]_ue of particular
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Py is the proportion defective at which the discrepancy is measured.
n is the sample size for the "equivalent" attribute plan.

Here, v/n is meant to crudely adjust for the steepness of the 0.C.
curve such that a compressed O.C. (as when n,the equivalence 2-class
sample size,is high) is compared on the same basis with a flatter O.C.
{as when that n is low). This is to facilitate the comparison of large-
sample-size equivalents with small-sample-size ones irrespective of the
biasedness due to n. We should mention that the /(—P_a(l—_l::t)_) factor in
the measure relates systematic differences to the standard error for a
single Bernoulli trial. With this the absolute differences in Pa are

turned into standardised and, therefore, comparable ones.

., Distribution type i is the N(ui,l) . Distribution j is any of the
alternative models with the same proportion defective Py but some shape

other than that of the normal. In another context, namely the study of
. 2
the variance-effect robustness , type J could be N(u,07) where the

variance 0% is not equal to 1.

ROB could, for example, be evaluated at a particular value of po

above the indifference point or alternatively, for a pre-determined set

of Py's in which case a modification is needed, e.g. taking the average.

interest in Acceptance Sampling is

the AQL, which will receive the special consideration in this research.

Note that above the indifference point (as compared with below it) the
sign (read, direction) changes.

The measure ROB is irrelevant when the plans under study are
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"equivalent” since equivalence by definition implies a given 0.C. performance

for all the concerned plans.

Pa is chosen to be 95% throughout the rest of this work. This choice
is made for the following reason. Sampling schemes should encourage
submission of good quality material, hence the top-end of the curve is

most likely to be used.

5.2.2 Matching the Distribution Models

Before assessing the robustness we should agree on a frame or basis
for matching all of the distributional models so as to make them comparable.
The most sensible basis for this is matching the three proportions of
quality (po, Py p2) but unfortunately it is not strictly applicable.

For the discrete distributions especially the ones with relatively few
values this basis is particularly unreasonable. An example here is the
case of the two-point distribution (considered in section (5.2.2.3) below.

Under such circumstances we shift the basis to matching the mean and

variance but under all circumstances fix po.

Since the mean and variance are very effective in matching the

discrete distributions we will let the basis of comparison be the mean

and variance such that the proportion defective matches. The necessary

Procedures for this are shown below. The matchings are done for each of

the distributional models as in the next sections.

5.2.2.1. Normal model: BHere, for given Py and Py (hence p2) we have:




o

1
o

1
Q
-

0 (1)

1]

where @(ko) = Pg and @(kl)

Solving (1) and (2) we

and

These mean and standard deviation could act as the matching points
for purposes of comparing the performances of the plans. This device of
translating the (po, Pl' p2) into a mean-and-variance copes spendidly with

the transition from the continuous to the discrete distribution models.

The evaluation of Pa (the acceptance probability) for the normal
model has already been handled and its results were given by Chapter 4 which
matches the 0.C. curves under the assumption of normality. What the rest
of this chapter poses to accomplish is to use the test criteria and
parameters of Chapter 4 (under equivalence) and subject them to the following
non-normal models. A note of how each of the schemes under study performed

is made therewith.

5.2.2.2. Uniform model: for a specific (Pyr Py p,) point our uniform

distribution theory tells us that;




l—p B - A - C, - B
- - 7 — =p an =p (1)
€= ¢ 70 Cy-¢, 71 , -¢, P2

where Kﬁf C2] is the domain of definition of the uniform distribution.

If we define Gj = Pj/P1 for j = 0,2; then from (I) above we get:

Ci -Gy -B+ (Gy+1) .a

and C

]

> (G, + 1) .B~-G. . A

And knowledge of the mean and variance of the uniform in (C], CZ) gives us:

{B. 1 +c

Mean 5 =Gyl v A L(1 -G, GO)}/z

Variance {B-8(1 +¢c

+ 2 /12,
5 GO)} /

This mean and variance of the uniform mayv not be needed if the
matching with the discrete distributions is made via the normal model
only. If we feel that we need to match the two distributions on the

(PO, Pl, p2) basis we have to let the variance loose and unrestricted. .

5.2.2.2.1 The P for the Ramp plan under the uniform distribution, given
a

the test criteria T, could be evaluated as follows.
n
P =pr{ I ©0(x.) > n.T : given n}t (*)
a
i L = lutio
Consider the n random variates Q(Xi), i 1,2,...,n. The convolution

of these r.v.'s will be composed of three variables Tar Ty and r, (corres-

ponding to -the numbers of defectives, marginals and effectives, respectively).
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roand r, have spike probabilities P, and P, respectively, while each of the

rlmarglnals have a continuous uniform in (0,1). Denoting the convolution

of these rl r.v.'s by S(r,) then

1

r

-

S(rl) I Q(x.), for 0 <x. < 1
j=1 3 3

= 0 el sewhere.

Considering the fact that all the ro defectives score a sum of 0, and

that all the r2 in the sample score a sum of r2, then the acceptance

condition as in the argument in (*) above will give:

S(rl) >n.T - r (**)

2

For the given n and T we have S(rl) representing a sum of r1 uniforms

in (0,1) and the right-hand-side of (**), above, is a constant for a

given combination of rl, r2 in n. In other words, in evaluating Pa for a

given combination of rl, r, in n we are dealing with a cumulative

distribution of a sum of r, uniforms being greater than (n.T - r2). If

we define F(t) as the distribution function for the mean of r1 uniforms

then the probability of the event (**) above is available by substituting

the pivotal quantity (n.T - r2)/r1 for t in F(t). And as clear rys ¥y

and r, are random variables and their distribution depends on the triplet

(po, pl, pz) [a trinomial r.v.]. Consequently, we find that (*) developes

into the following composite form:

n
5 z . Pr{S(rl)/rl > (nT—rz)/rlz given rl,r2}
= r:

ro rl r -

2
x Pg 1) P, n!/(rolrllrz!) (+)
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(1) 1In case of r1=0 r 1.e. no marginals, this Pa turns out to be the

conditional Binomial exactly as:

r (n—r2)

? n! [ P2 } 2( _Pg
Y :[nT] 1’.'2! (n-rz)! po + p2 ( po + p2

(put in this way for computational purposes).

(2} In case of 0O < r, £ 10, we calculated the exact Pa replacing the
factor Pr{s(rl)/r1 2 (nT-rz)/r1 I rl} by the complement of the

cumulative uniform distribution, F(.), that is:

r,} =1 - F(t)

Pr{S(rl)/r 2 t: r,, ¥,

1

According to Kendall and Stuart (1963):

k k+1

.~ and k=O,1....,r1—1. A suitable FORTRAN routine was developed to
evaluate this F function (listed as UNFRMF in the Appendix (B.5.) within

the program UNIFRM.FOR) .

(3) Cases of r1 > 10 were computed via the Normal Approximation to the

Uniform F using the relation

- 0.5
F(t)=®(£——9-—)

where s = 1/V(12.r1).

(Some work on this Normal Approximation with some other more precise

versions of it is reported in Appendix (A.1.)).

—————————————————




5.2.2.2.2 Results of Robustness under Uniform Model

The following comments describe the results of Uniform robustness

as shown in the tables in Appendix (C.3.) (on the right side of the tables

in a column under the heading of "Uniform Robustness").
\

For any B value and given AQL then as Ramp n increases robustness

Pa decreases. This is more so for small AQL's than for large ones. In

terms of n the robustness Pa of the Ramp scheme,given AQL,decreases as

B increases for small AQL. For medium AQL it decreases, flattens and then

increases. For large AQL this increases. All this is a reflection of the
level of contribution from the continuous (variable) part of the r.v.,
Q(X). The more the continuous part (i.e. the larger pl) the less are the

chances for acceptance (and so, low robustness lewvel).

In comparative terms the Ramp competes with the S-plan from earlier
AQL's than with the o-plan (if at all). The O-plan is more enduring than
the S-plan under uniformity. Coupled with the Property "Q" this makes
the O-plan more recommendable than the S-plan, which only rivals the O-plan

on the variance-effect robustness.

Most interesting is the‘result that the Ramp plans are more robust
than any other by-variables plan for any AQL 2 0.0445 for as small a Ramp n
as 4. Moreover, here, the Ramp is better than the S-plan for earlier AQL,
AQL > .02875. It should be added that if a fair amount of flexibility
is allowed then in cases of AQL < 0.0445 we can say that with respect of
robustness (under Uniformity) the Ramp is not so markedly worse than the
other by-variables plans, and is definitely better than them for AQL = 0.0445

as mentioned.




- 93 -

For n 2> 8 a different picture appears. The Ramp Uniform-robustness

gets worse compared with other schemes as n increases. There are some

cases where they are comparable but these cases are the exception rather

than the rule. However the discrepancies between the Ramp and by-variables

(which are always in favour of the G-plan) could be thought of as not

markedly large for n as small as 8. For values of n greater than 8 it is

quite noticeable that the S-plan is marginally better than the Ramp, and
as Ramp n gets larger and larger the Ramp falls far behind the rest but

then all plans become very poor indeed and prove not to be all that useful

except for the 2-class attribute schemes of course.

For high Ramp n values, low AQL's are markedly in favour of the
orthodox by-variables when compared with Ramp for B values greater than

B = 0.5. The robustness levels in this context are low anyway especially

for small AQL.

As could be seen the cases where the Ramp plan competes with the
O-plan (under Uniformity) are less than with the S-plan and are negligible.
We can generalise that under Uniformity the by-variables plans for n > 8
are better than the Ramp; and that for high n the only winner is the Ramp
with small B (cleose to 0) since the high B values and the other by-
variables seem to fail to give any reasonbly acceptable level of protection

and are proving to be useless.

If a maximum difference of 0.3 between values of Pa under uniformity
is acceptable as reasonable then we can strongly recommend replacing the
2-class attribute by their equivalent Ramp plans if B < 0.5 in the

following cases:




H

AQL > 0.01785 for Ramp n 16

AQL > 0.0287 for Ramp n 32

AQL 2 0.0445 for Ramp n = 64

This i1s because of the savings in sample size, as the discussion on sample

savings of section (4.5.5) of Chapter 4 shows. A general conclusion in
the light of the analytical results of the FORTRAN program UNIFRM.FOR -

(Iisted in Appendix (B.5.), and which studies the robustness of the schemes

under the Uniform distribution model) - is that the Ramp plans are only

robust enough when used for fat-tailed symmetrical distributions when B
is small. Alsc significant is the point that the by-variables plans are

infelxible to overcome their weak robustness as far as heavy-tailed distri-

butions are concerned.

5.2.2.3 The Two-Point Model

As mentioned earlier the matching of this discrete distribution
could not be done directly in terms of the (po, Py p2) basis. It could
be handled through the mean and variance basis such that the proportion
defective is fixed as Py« Depend;ng on the position of the mean (or in
fact Xz,the second point of the distribution) the proportion (1—po) is

either Py or p,. It is P, if B is less then X,, otherwise it is Ps-

The mean, M, and variance , V, are

=
!

(1-pg) -X, * P Xy

v = (1_po)_'(x2-M)2 + po.(Xl—M)2

.We have fixed X. at 0, and with the variance made equal to 1 we have

1
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=
il

(1-p0) . X2

1
V(Po(l‘Po)

and' X, =

5.2.2.3.1.

Probability of Acceptance in Two-Point with Variance = 1 and

given Py:

Suppose in a sample of n r.v.'s from a Two-point distribution we have

r, defectives, then we get the following binomial density:

Probability : Py 1—po
1 —
No. of r.v.'s ro n rO
Value of Q(x) X1 X2
1
where as before X1 = 0 and X2 = —
Vpo(l—po)
And so,
n-rx
0
% - Z X - —— .
e -
po(l po)

The P for each of the schemes under study are shown below:
a
(a) Under 2-class Attribute there is no difference from that under
normality (and indeed any other model). So, the Pa is the same as in

each of the plans in this category.

(b) Under the Ramp: the r.v. statistic is
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_ n - ro
Q(xX) = o if X2 2 B (1)
_ n - r, .
= — if X2 < B (2)
n'po(l—PO)

i t
We spot that Iy is the r.v. and in order to satisfy the acceptance

criterion (i.e. Q(X) > T) we have to have:

ro <n(l - mT) for case (1)

and rO <n{1 -TB8 Vpo(l—po) ) for case (2)

(¢} Under S-plan: if n and K are the sample and the test criterion in

the S-plan respectively, and the mean and variance are

n-—-r

= 0
X =
v —
n (po(l po))
r (n-r.)
S22 = 1 . 0 0 respectively,

po(l—po) n(n-1)

X . X
Then the acceptance condition (namely that §-> K), will imply that

- - . -1
n N po(l po) n(n-1)
r. (n-r,.) > K
- 0 0
nv (p_(1-py))
This gives the condition as:

n{n-1)

0 “Taxz + ) - 17

r

[and because of the integral reguirements on r_ we may have an erratic

Pa for small nl.




(d) Under the O-plan with test parameters n and k the mean is as in (c)

above. And as the variance is 1, the acceptance rule of X > k implies

n -
=]

nV(pO(l-po))

Therefore,

ry <nll - kip (Tp)) }

[This could only make sense if k? < ———J;———-]

5.2.2.3.2. Results of Robustness under the Two-Point Model

The results revealed that except for low AQL's with small Ramp n
« values therby—variables plans (Ramp included) tend to have an acceptance
probability greater than the target 95% (ranging from 99% to 100%).
However, the Ramp is closer to the target than other plans. The cases

where Pa's are reasonably close to 0.95 indicate that the Ramp is the best

in the sense of being closest to the target more especially for small n.
Given both AQL and Ramp n, small B values in Ramp tend to give a
Pa closer to the target than the high B-values do. As n gets larger Pa

for all by-variables tend to 1.

5.2.2.4 The Lognormal and the Contaminated Normal

The discussion of matching these two distributions so as to have
a unit variance and Py proportion defective is left for later. They are

treated by simulation, and their matching is described in sections (5.3.5.1)
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and (5.3.5.2). 1In the next few sections we will set the general guide

lines of the simulation exercise and a broad layout of its planning.

5.3 Simulation for Robustness Study of Lognormal and Contaminated Neormal

5.3.1. Aims of the Simulation, Design of the Generators and Preparations

As mentioned in Chapter 2, the distribution of the mean quality
function for the Ramp (and indeed alsc the Cumulative Normal and the
Cumulative Logistic) plan was not derivable analytically. Now, not only
do we have this complexity but, moreover, we have more intractable
alternative background distributions than the Normal one used then. Here,

we are referring to the Lognormal and the Contaminated Normal models as

non-normal alternatives.

We would like to compare the sensitivity of the different schemes
to the changes in the background assumptions from Normality to a
Contaminated Normal or a Lognormal, both of which come from the Normal
model whose pseudo-random variables generator is described and justified

as in the next paragraph.

Some planning and timings of the generation of the normal r.v.'s
needed for generation of the Lognormal and the Contaminated Normal processes
was carried out. In this respect the work reported by Atkinson and Pearce
(1976) and their review comments were found invaluable. They studied the
performances of different methods of generation of the random normals
together with their properties. In the light of their comments we used

Brent's Algorithm (1974) as recommended by them because we were trying to
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insure against a slow generation of random numbers on the Computer of the

university of Essex (a DEC-System 10). Brent's algorithm reduces the number

of calls to the random number generator using 1.37 random numbers on average

per one normal. In doing so it takes advantage of the theoretical results

that if a uniform U, < U then (u_ - Up_y)/(1 - U _) is also uniform in (0,1).

Moreover, Brent's Method is basically a Forsythe method but an improve-
pent over it and Forsythe's method is amongst the best according to

Atkinson and Pearce.

>We used Brent's Grand algorithm together with our local random number
generator (RAN(O)) to create a supply of normal pseudo r.v.'s. A block of
a 1000 r.v.'s is generated at a time, shuffled and then stored on disc ready
for use in the simulations. Generation of such a block costs 60 milliseconds
and so it was found that this strategy of blocks of 1000 is cheaper especially
that writing and reading from disc costs virtually nothing. The justification
of all this and others is given by the following disucssion describing some

preliminary experiments on which outcome we based our simulations plans.

We have carried out some necessary experiments on costs using a
stored block of a 1000 pseudo-randem normal variates at a time. We
selected random samples of some (arbitrary) sizes of 30, 40 and 50 from
this array of a 1000 variates and timed the selection process in milliseconds.
The selection is made by two methods which were compared for time: a
"erude" selection (whereby any of the chosen random normal variates could
possibly be re-selected in the sample) and a "refined" selection (in which
no re-selection of any random variate is permitted). The experiment is
to give us an idea on the costs of the operations of the desirable refined
selection and to indicate how the overall plan of the simulation exercise
would be affected by these costs. For the sample sizes above we found

that for crude selection, on the average, the absolute times taken were
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. . oy
(56, 69, 101) in milliseconds respectively. For refined selection the

respective scores were (96, 129, 187). 1In relative terms we have (1.9

1.8, 2.0) for crude and (3.2, 3.2, 3.7) for refined selection. Though as

is obvious from these results refined selection is less expensive the larger

n is, but generally it is expensive. Still, it is very important to have

refined selection for the real representation of the process under study
and for the genuine standard statistical considerations. One indirect

way of achieving a refined selection is to sequentially use an already
shuffled and stored supply of random variates, since shuffling will ensure
randomisation and the sequential use of the r.v.'s is a neat way of ensuring
no re-selection. So we decided to adopt the strategy of separating the
generation and shuffling processes from the simulation main computations

in such a style that the former is done once and for all. Having found

that writing on and reading from a disk is very cheap indeed then according
to this strategy all our needs of the normal variates were generated and
shuffled once and for all. BAnd as we need them and through no costly
operations we can read them sequentially since they were well shuffled
already. Advantages of this strategy are enormous. To name some we have
the same large set of normals that can be used for Normal, Contaminated
Normals and Lognormal processes and therefore routine cocrrelation between
these processes. arise, hence facilitating comparisons by producing
differences between methods with smaller variance than in case of
uncorrelated streams. Details of the shuffling procedures are given in the
Computer program CONTAM (listed in Appendix (B.6.)). Aanother advantage

is that this helps to speed-up the simulation operations as well as improve
its efficiency. In line with the recommended simulation practices these
operations are described together with the recording techniques of
acceptance probability and the precision levels in the next few sections.

Also mentioned there is the use of the technique of the Monte Carlo control-

variate for reduction of the variation of the estimations.
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&
At

The simulation (experiments) will give a P_ under non-normality
a -

(of Lognormal and Contaminated-Normal) for given proportion p. of
0

gefective, for predetermined A and B and the given plans parameters and

decision rules. There will be N' simulation samplings the aggregate

effect of which is to give a point (po, P_) on the 0.C. curve where P
a T T Ta

is estimated by:

Nl
P = 1 '
Eouy/N
i=1
and where u in its simplest form (that of the attribute plan) is ! or O

indicating an acceptance or a rejection of the i-th sample simulated.

[For other forms of u see below].

5.3.2. Variance-Reduction Monte Carlo Methods (Control-Variate)

Monte Carlo technigues suggest in comparison with Crude simulation
of a certain sampling variance (of e.g. the usual PQ/N, in our case) some
more sophisticated techniques that can favourably reduce the sampling
error of estimation (Hammersley and Handscomb (1964)). One suitable
technique of those is what is known as the control-variate method. The
basic idea of this method is that instead of directly estimating a parameter,

T, by an estimator t, (by the crude simulation) a new "strongly positively

1

correlated" estimator t2 (which can mimic t1 and absorb most of its

variation) and whose statistical expectation is numerically (or thecretically)

known, T, say, could be used in the estimation process. The idea of

2
this method is the improvement in efficiency (less labour and more precision).
The procedure is to sample tl amd t2 simultaneously (by using the same

random numbers) and then use the estimator [(tl—té) + T2] for estimating

T. The reduction in variation comes from the fact that:
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t, -t =
Var ( 178y * T2) Var(tl) + Var(tz) -2 Cov(tl,tz)

i i maller th .
which 1s s an Var(tl) (the variance of crude estimation) if

2 Cov(t ,t2) > Var(tz).

1

In our case we let Tbhbe P , T. be P and (t
aj 2 a1
sampled difference between P and ga ;i and the whole argument applies.
1 ]
In this way we can take advantage of the Monte Carlo control-variate

1 - t2) be the

since we can estimate the difference between P and the alternative
a
1
scheme and the true value for Pa (the attribute case) is known.
1

As will be shown in the details of the plan we will economise by

re-using the same random numbers whenever possible, and the advantages of

that are:

(1) It ensures positive correlation between the estimates of the Pa
for all the "equivalent" plans. This means that the difference
in Pa's is almost completely caused by the effect of the
distribution change only {[as is generally recommended in the

literature, e.g., see Hammersley and Handscomb (1964)].

(2) Where applicable it ensures more precision. When a larger sample
(attribute) can be proportioned into at least two smaller sample
sizes of any other eguivalent plan, then this plan will be
simulated at least as twice to the original attribute one.

And with more samplings smaller sample plans will as a by-

product of such a strategy experience more precise estimation.




5.3.3 The Basic Simulation Operations

If for simplicity we use the subscript j to refer to the j-th scheme
(let j=1 refer to the attribute plan) then at the i-th simulation sampling

we select a sample [of pseudo-random Lognormal or Contaminated-normal

variates] of the attribute plan. Then using the Attribute test parameters

and decision rules we record uy =1 or 0 depending on whether the sample

is accepted or rejected, respectively. For the attribute case the true

Pa could be assessed analytically via the binomial model but the simulation
result checks the simulation performance. Similarly let uij stand for

the same idea as ui1 with the only difference that it now records the
overall average performance of as many sub-samples as are allowed within
the attribute i-th sample. This is crucial to the idea of positive
correlation needed in the simulation using a control variate. It relates
directly to the idea of re-using the same sample discussed above (in

section 5.3.3).

Noting that generally n, = nj for all j, then for j > 1 define

1
s-1 1
d  =u.. - u., where u,. assumes the value 1, — , ..., —or O
ij i3 il ij n S s
where s = integral part of ( E—-). Record is kept of dij and d;j.
J
Also recorded are the sums and sums of squares of dij and Uy

The estimate of Pa for the j-th plan is:

where, P is the true attribute acceptance probability,
a
1

and' a. is the mean of dij over 1i.




5.3.4. Precision

The number
standard of 2000
Attribute sample size).

than or equal to 0.01.

- Vg -

The variance of this estimate is given by:

Var(P_ ) = var(3.)
a j

3

of samplings for simulation purposes were made to be a’

samples for the largest sample size (generally the

This leaves us with a sampling error of less

This is even improved upon by the fact that any

attribute sample is sub-divided into as many smaller samples as is possible

by using the fact that plans have an n less than in the attribute case.

5.3.5. Matching the Simulated Processes and Transforming the r.v.'s

N(u,0?%)

LN(M,V)

v_.,V
CN(MC,MO,G, c’ O)

d(z)

To start with let us use some notation for the following sections
in order to clearly show the procedures of matching the two simulated

processes (the Lognormal and the Contaminated-Normal). Let,

be the Normal distribution function with mean, u,

and standard deviation, G;
be the Lognormal function with mean M and variance V.

be the Contaminated-Normal which is a mixture of
two normals; an “original" Normal N(MO,VO) and

a "contaminant" Normal N(MC,VC), mixed in the
proportions (1-G) and G, respectively, and where G

(such that O < G << 1) is the contamination-fraction,

denotes the standard Cumulative Normal probability

at 2.
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5.3.5.1 The Contaminated Normal Process

If in terms of the above notation we let the two components of

i i 2 .
the mixed contaminated Normals be N(M_,05) as the original Normal and

2 , ,
N(MCIGC) as contaminating Normal. Let G be the contamination fraction

then the Contaminated process is defined by the following distribution
CN(MC'MO’OC’OO) = (1-6). N(Mo’oé) +G. N(Mc,Ué)

And if we assume Oc = OO = 0 then this distribution will have a

mean of {(1—G).MO + G.Mc} and a variance of
(1-G) . (0% + M2) + G.(02? + M*) - {(1-G).M + G.M }2
o) c o c

Implementing the constraint that the overall variance should be equal to
1 defines a relation between Mo’ MC and §. However, if we then set MC=O
we will be able to determine Mo and ¢ from the following constraint when

the value of the AQL is given:
AQL = (1—G).®(—Mo/c) + G.@(—MC/G)

/ This will determine the distribution of the contaminated process. A
simulation of such a process is derivable from the basic Normal r.v.'s
generated in the manner described before. Such a simulation has been
incorporated in the Fortran program CONTAM listed with full details and

comments in Appendix (B.6.).

If we are considering variance-hererogeneity in the two Normals

then the algebra is similar to the above except that OC = D. Oo will be
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another relation to add to the above system and solve simultaneously.

3 " . 1 .
Here D is a "heterogeneity" constant to inflate the variance of the

contaminant Normal.

We select a Normal deviate in the manner discussed earlier and then

a new and independent uniform deviate is generated. If this new uniform
deviate is less than G (the contamination fraction) the selected Normal
deviate is then transformed into a contaminant Normal (by rescaling for

variance and adding mean MC) and similarly for an original variate which

occurs when that uniform is greater than or equal to G.
‘\
Y of course, it is sensible and realistic to make G << 0.5.

5.3.5.2 The Lognormal Process

The Lognormal distribution is only defined in the domain of (0,®).
The parameters linking the background Normal and the mean and variance
of the Lognormal appear only in exponential type functions and require
numerical methods for the determination of the appropriate values of the
specification limit and mean, for the parameters especially the variance

are inflexibly exponential.

A

Y/ We would exploit the fact that if ¥ is distributed as N(u,E?) then

W = exp(Y) is distributed as LN (M,V) where the Lognormal mean is

M = exp(u + E*/2)

and the wvariance is

V = exp(2u).{exp(28?) - exp (E?) }.
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We know that the Normal theory of N(u,E?) gives us the lower

specification limit A as
A =u + K.E

to ensure a proportion defective (left tail) of po; but such A as set
to be 0 is not convenient for the Lognormal distribution because of the

domain of definition. We re-defined the lower cut-off point, since the

conventional setting at zero is no longer convenient, at C where
n C = u. + K.E (1)

where C is a constant (> 0) such that if Y is N(uO + &n C, E?*)

then W = exp(¥) is LN(M,V) such that

M = exp(uO + n C + E*/2) (2)
and

V = exp(2(uy + n ) .{exp(2E?) - exp(E®)} (3)
and

= o7 (4)

K =9 (po)

If we fix E and uo by solving for them using (1), (3) and (4)
simultaneously such that V = 1 in (3), then we will have defined a

Lognormal distribution such that we have:

(i) same proportion of 1 below C

(ii) a unit variance, V =1

as would be needed for the matching.
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unfortunately, we woul
‘ d not have the p1 to match. This is a

dmrmﬂmrising feature of all our alternative distribution forms

In all

these one can not fix the vari
of lance and po and then be in a position to

£ix pl(and consequently p2) as well.

For solving for E, mentioned above, we have an exponential function

to solve for which Newton-Raphson iterative technique is used

These results are used to create the Lognormal process using X, the

normal r.v. ({where X is distributed as N(0,1}) by the following simple

algorithm:

1. ¥Y¥¥=X .E+u. .+ 4nc¢

[\e)
o
I

exp (Y¥")
This ¥ is a Lognormal wvariate with mean M and variance V = 1 and a

proportion, po, below C (which is +wve, and is determined above). For

this Y to represent and mimic the actual process we require the displacement:

Thus, W is ready as aLognormally distributed process for studying

the robustness performance of the different plans under test.

5.3.6 Simulation Results of Contaminated-Normal and the Lognormal Distribution

Effect

5.3.6.1 Contamination Robustness

We dealt with two cases of Contamination processes; One 1s when




L =

the variances in th ,
c o @ Contaminant and the Original processes

(poth Normally distributed) are equal). The second case is when

. But under all th i
Oc 5 o’o €Se cases the overall variance is held to pe 1.

(Results are displayed in the tables of Appendix (F.1.))

case (i): Gc = Co

It would be clearly seen in the tables that for the two mixed normals
(agreeing in variances but with different central tendencies) the Ramp
plans are frequently marginally better (in robustness) than their equivalent
orthodox by-variabkles plans. But for all practicai reasons the discrepancy
is immaterial which will conseguently lead to these plans being comparable.
We believe that the real reason behind this is the established belief that
the mixture of two normals is not markedly different from Noxmal,
especially for as a small Y (the contamination fraction) as 10% (Tukey
(in Olkin et al [Eds] (1960)). The noticeable fact is that regardless of

n, B and AQL our Pa results are indistinguishable from those under normality.

Case (ii): o > O

The tables in Appendix (F.l1.), show the performance under a process
which is a mixture of two normals with the contaminant normal of not only
an inferior mean buf.: of an "out-of-control" variance. The variance of
the contaminant distribution is inflated by & reasonable constant. If ©
and Oc/are the standard deviations of the original and the contaminant

Processes respectively then we can have:
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where d is an arbitrary constant such that 4 > 1. (Note that d=1 is in

fact case (1) discussed above).

We only loocked at two cases of d; a case of d = 1.2 which is a

reasonable choice and a case of d = 2 which is a bit wild and just enough

to establish our case. The results of robustness for d = 1.2 did not

give any basically different results from those of d = 1.

However, in the case of d = 2 (and where computations are mathematically

feasible) there is some evidence of some instances of small losses of
robustness by all the variables plans (including Ramp). But more important

is that the Ramp is slightly more discriminatory and more robust than the

orthodox variables plans.

5.3.6.2 The Lognormal Robustness

Similar to previous distributions we impose the constraint that
the overall variance is constrained to be 1, and the proportion defective
matched as po. The results of the Lognormal robustness appear in
Appendix (F.1.) in the first column of the tables in the appendix. Discussions

of the trends of these results follow here below.

The Ramp behaviour under the Lognormal process varies wildly with
B. Rightfully this is not strictly true for the orthodox schemes. As B
increases the Ramp P robustness decreases. This is expected of the
Ramp because of the earlier argument that as B ~ 0 the Ramp tends to the
2-class attribute scheme whereby "perfect" robustness is maintained. Note
that irrespective of anything, the Lognormality results in the orthodox

schemes show how comparable (though sometimes appearing very poor) are the
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s-plan and O-plan schemes under thisg distribution-effect

Comparing the Ramp with the orthodox by-variables schemes under

Lognormality, the Ramp gives better performance for small B and AQL but

gives way to them for large AQL's. This is generally so for any n (with

a difference of intensity or degree as would be revealed in the next

paragraphs) .

For Small AQL

If we consider small values of B then large Ramp n values appear
toc be more indicative of a better performance of the Ramp scheme than
the orthodox variables schemes. Though for small Ramp n this is still i
true yet it is not as significant and acute as for large Ramp n. This is

. . . \
as far as comparison between the schemes is concerned. In another wider |

context than this comparison we f£ind that: for large n values under
Lognormality all the variables schemes (Ramp of B >> 0 included) seem to
give way as unreliably weak schemes (in the Lognormal robustness). (Note
that the Ramp with B close to O could then be of possible comparability
as opposed to the "ideal-robust" (i.e. the 2-class attribute schemes),

since the latter is the limiting case of the Ramp as B * O.

For large B values and large Ramp n values though as mentioned earlier
the orthodox schemes are better yet the differences are not markedly
noticeable; and for what matters all appear to be very poor and bad for
lognormality distributed processes. Therefore, for skewed processes never

mix high B values with high n values.

For large AQL a similar analogy reveals that for small B values and
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large Ramp n values the orthodox variables are markedly more robust than
the Ramp, while if Ramp n is small this is still true but there is not

mich of a distinction as is the case for large Ramp n.

(Note the persistent result that the S-plan and the o-plan are

comparable (even when poor!) under the understanding that the process

variance is 1).

The results show the clear pattern that for any Ramp scheme cases
of say, B < 0.9 the performance of the Ramp is better than other wvariables
schemes (and than other Ramp with B values > 0.9). This confirms our
intuition about the relation of the Ramp with the other variables plans.
The comparative pattern of the behaviocur between the three variables
schemes is summarised by the following figure which shows that the rate
of decrease of P, with respect to B is higher for the Ramp than for the
o-plan and S-plan, hence the conspicuous intersection on the diagram

(Figure (5.3.1.)):




et

Figure (5.3.1): The Lognormal Robustness comparison between schemes for

given AQL (as a function of B).
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In the results asg Ramp n increases the Ramp P -curve tends to
a

inate the O-plan an - .
domin P d s-plan Pacurves (but as the discussion above

revealed, all these 3 curves move towards the point of origin indicating

a poor performance by all variables schemes as they move).

The point of intersection when it occurs is of special significance
in the comparative study of robustness. Note that for small AQL, e.g.

AQL = 0.0139, at n = 16 the intersection of Ramp with O-plan curve is

close to B = 1.3. Below this value of B the Ramp is dominant and above

it it is dominated by other by-variables schemes. As n increases this is

still true for small AQL but by then all the plans seem to perform poorly.
So for maintaining the same level of Pa the intersection point will have

to move to the right if n is higher (i.e. a lower B value).

This is also txrue for large AQL too with the exception that as n
increases there is a tendency for a shift of the intersection point to

move to the left.

Another pattern in the results is that for small B a given B and
AQL the Pa varies with n as in the following figure (Figure (5.3.2.)).
The curves are dominated by the Ramp Pa—curve. This indicates the
resilience of the Ramp plan under Lognormality. The "orthodox" by-variables

tend to lose more on robustness for large Ramp n than does the Ramp.
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Ramp
S-otan
S-plan
|
T
Figure (5.3.2): The Pa performance against n under the Lognormal Model

for the three by-variables schemes.
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5.4 The Variance-Effect Robustness

Here, we will only deal with the changes in the variance of the

process but still under normality assumption

5.4.1 The Variance-Effect for Each of the Equivalent Schemes

It is interesting to note that the change in variance in the Normal
process will imply a change in the scale of the Ramp Quality function and
by the same factor (as shown in section (2.2.3.1(a)) of Chapter 2). Not only
that but considering the shape of the quality function which is imune to

scale effects at the two tails the changes in scale (if variance changes)

would only be reflected on B. 1In this context, of variance robustness,

this point will be an advantageous basis in the evaluation of the

robustness Pa' Simply, a change of twice the variance will mean a change

in B to half B.

As for the Two-class Attribute scheme the variance changes are
absolutely immaterial. The S-plan is not affected directly by the value of
02, it evaluates a sample-counterpart S* and, so, effectively has a built-
in flexibility to accommodate such variance changes. It can be said that

the S-plan is robust as far as the variance-effect is concerned.

The only other scheme that is very responsive to variance changes
is the o-plan since it assumes knowledge of O. The evaluation of such
changes on the Pa are analytically manageable. Analogous to the Ramp
this scheme will experience the scaling effects on K of changing the
variance, as on B. Intuitively, and because of the partial effect on

the Ramp system (i.e. only on the marginal zone) as opposed to the total
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effect on the O-plan system we would expect the Ramp to do better than the

g-plan when subjected to the same variance change

5.4.2 The Strategy for the Study

It would have been a natural strategy to ask the direct question

"what is the effect on Pa of changing ¢ from the standard 1 to a pre-

determined set of O values?" But since we already know that a change

in 0 is ‘a rescaling of B in the Ramp plan (and of KO in the J-plan) and
also, since we are constrained by a tabular grid distribution of the

Ramp statistic we have changed the strategy. We would rather be investigating
the effects on Pa when the planned Ramp B value, say B*, is rescaled by

0 such that we move to a new "True" B value, say BT within the given grid
points of B. The question asked becomes: "what are the effects on Pa

if ¢ changes to the “True" o, say GT = B*/BT?" This strategy simplifies the
computations and avoids unnecessary interpolation between the B values

when evaluating Pa since it uses the tabulated B grid. The results shown

on table (5.4.3) in Appendix (F.2.) answer such a question.

5.4.3 Results of Variance Robustness

The table (5.4.3) shows the variance-effect robustness for Ramp
and O-plan. For a given Ramp n and a proportion defective AQL there is
a sub-table. B* values appear on the left of every sub-table in brackets;
while the true g‘values are shown at the heads of the columns. For each
B there are two rows. The first row is for the Ramp plan with the first
entry representing the Ramp test criterion t. (If t is negative it means
that there is a problem of "non-Existence" and hence the entries "NE"

indicate such a problem). The second row for each B is for the (equivalent)
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g-plan, and similarly this row is prefixegd by value of X , the t
g’ est

criterion for the O-plan. This gives us a double entry for each (B% BT)

cell; the top P 1s the Ramp performance and the bottom is that for the

(equivalent) O-plan.

To conserve space the true value of g, i.e. O_T, is not shown on

the table since it is easy to evaluate as shown above. (gT = B*/ BT
which in the sub-table below correspond to dividing the row B value (shown

in brackets) by the column B value). 1In fact the tables below do not

need any display of the 0 values, and are easy to follow as the following

summary and conclusions of these sub-tables show.

In these tables it is clear that the Ramp shows remarkable
resilience to changes in variance, while the 0-plan the unfavourable
dependency on the "known" wvalue 0. This shows in the tables simply by
the fact that almost every double entry the Ramp Pa is closer to the goal
Pa (of 0.95) in these sub-tables than its O-plan counterpart. The few
entries where this is not strictly true show a tie between Ramp and
o-plan. So we should emphasise that no O-plan behaves better than the

Ramp plan in the Variance-effect robustness.

The conclusive evidence in these sub-tables indicates one clear
result that under Variance-effect the Ramp is more robust than the o-plan.
A blurred but still noticeable result in terms of n is that as n increases
the stability of the Ramp becomes more pronounced: the O-plans start to
collapse more quickly for these large values of n than for smaller n

values.




B

the tables of the Variance

T L1y -

The following table is useful in giving the true changes in ¢ for

(F.2.):

B*

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

{B* :

0.5

1.400
1.800
2.200
2.600
3.000
3.400

3.800

—effect robustness resylt given in Appendix

Value of True g = B*/B

is the planned value, and B is the True value)
0.7 0.9 1.1 1.3 1.5 1.7 1.9
0.714 0.556 0.455 0.385 0.333 0.294 0.263
1 0.778 0.636 0.538 0.467 0.412 0.368
1.286 1 0.818 0.692 0.600 0.529 0.474
1.571 1.222 1 0.846 0.733 0.647 0.579
1.857 1.444 1.182 1 0.867 0.765 0.684
2.143 1.667 1.364 1.154 1 0.882 0.789
2.429 1.889 1.545 1.308 1.133 1 0.895
2.714  2.111  1.727 1.462 1.267 1.118 1
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CHAPTER 6

EXTENSIONS AND DEVELOPMENTS

6.1 Extensions and Developments of the New Schemes

With the level of robustness decided upon in Chapter 5 we make use

of cur new schemes to exXploit their potentialities. Their basic concepts

are extended to mixed (or "attri-var") dependent plans. We will show

how we would use the whole of the new variables Ramp schemes to fit the
system of mixed dependent plans maintaining their best properties and
acquiring new ones as well. We are not to broaden the scope of this
chapter and will confine it to the exfent of substantiating our claims
about the potentials and adaptability 5f our "new" schemes. Besides, we
will give the theoretical results and framework of the operating
characteristics of the developments suggested in this chapter, together
with an example to show our attri-var précedures in relation to an
example of the Schilling and Dodge plans. Some simulation of these two

plans has been made for comparison.

The motivating factor here is that the Schilling and Dodge (1969)
formulation of the mixed dependent plans has a number of favourable
properties, so we can build on their results. On the other hand one
certain important weakness of their procedure is that it is not safe-
guarded against non-normality effects when accepting, first-time, the
batch in the by-variables-sample stage. One argues that rejection occurs
only after re-sampling i.e. on the attributes basis according to the set-up

of their plans. Acceptance, according to their scheme can possibly occur
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on the variables first sample. And as a consequence of the reliance of

the variables plan (especially the O-plans) on normality assumption, and

how non-robust they are, the acceptance decision may not be very solidly

based.

\

They rightfully detected this fault and suggested as a remedy that
one should accept (on first sample i.e. variables basis) only the "wvery
clear cases". One thinks that this could imply an increase in the ASN
(average sample number) by a factor equal to the proportion of the
occurrence of the "not very clear cases" times the attfibute sample size.
After all it is the minimisation of the ASN which motivated the attri-var
schemes.

With the call for easy~to-operate schemes in acceptance sampling

such statements like the "not very clear cases" are a complication.

With the established favourable property of'robustness of our Ramp
schemes we can trade-off more robustness for more (or conceivably no)
remium at all. With this discussion in the background we could propose
three developments in the attri-var area. In the order below, each
development is an evolutionary progress from its predecessor. This
culminates in a "new" "attri-var" scheme based on the single Ramp scheme

advocated in the previous chapters.

6.1.1 Development I

The mixed dependent plans as discussed by Schilling and Dodge (1969)

have the following procedure. For given parameters n n. (first and

17 72

second sample sizes), cl, c12 (attribute acceptance numbers on first and

combined n1+n2 sample, respectively) and A (the acceptance specification

limit); take a first sample, nl. If on the basis of the by-variablesplan of n
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and test constant k, one had the sample mean, X, such that X > A + k

then one accepts the batch, otherwise test the n. sample on by-attribute
1 s -
pasis accepting if the number of defectives (i.e. item below specification

, < . .
A is € c1 ; and if not accepted then resample a further n (Note

e
is never rejecti i . .

cne 1 J ing on the basis of nl) . Now, if re-sampling takes

place a dichotomcous decision is made on the basis of the combined

(n, + nz) sample as follows: accept if number of effectives 3 n, + n. - C

L 1 2 127

but reject otherwise.

Now, our development I has two versions, (Ia) and (Ib), both of
which use our idea of marginal cquality (between the limits A and B) and
the idea that the decision to resargple is done on the variables-basis
(viz; when the batch gquality is marginal) rather than on the attribute (nl~,cl)
basis used by Schilling and Dodge. But version (Ia) has more ASN than

(Ib) due to its allowing more chance of resampling than (Ib).

6.1.1.1. Version (Ia): This allows rejection and acceptance on the first
sample but only in a precisely defined "very clear cases", otherwise

resample. Its procedures are:

Take a sample n,

Accept if X >A + K .
Redject if X <A+ K

Resample otherwise.




In the Combined n, o+ n, Sample

EEmm— A
I
'
;
W)
I

Accept when the number of combined effectives >

2 N + -
17 "2 T G-
Reject otherwise.
where the test constants K and -1
0,0 Kl,c are such that A + Ky 5 = o - (po)
+ K = ¢ i i i
and A 1.0 Py + p,) and Gy, 1s the maximum of permissible

nmper of defectives in the usual by-attributes plan of sample size equal

] Ao + . .
o7 + 1. (And ¢(.) is the standard Normal Distribution Function].

This development is very useful and recommendable because it gives
a second chance only for the marginal cases to be re-examined under more
information. So, it is not only a producer-oriented plan (as is the case
of Schilling and Dodge's scheme) but considers producer and consumer

interests simultaneously and impartially.

The mentioned development necessitates different computations but we
can use Schilling and Dodge's conditional results and the approximates

given by Elder and Muse (1982) as well as the identity:

Pn(r defectives: u,Q0) Pn(r | "vi", u,0) LPr("VLt| w,0)

+ P_(r | "v3", u,0) .Pr("v3"| u,0

+ Pn(r , w2, 1,0) .Pr(“V2“5 uw,o)

where,
"Yi" is the event of X <A+ K

0
"y2" is the event of A + KO,O < X 1,0

"y3" is the event of X > A+ Kl,G'
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The left-hand-side is computable through the binomial distribution

; ar te =
with parameters n and p, = &(a + KO,O) . On the right-hand-side the

first and the second terms could be evaluated using Schilling and Dodge

(1969) conditional probabilities [or the approximation of Elder and Muse

(1982)] with the necessary adjustments. The third term is deduced as a

solution of this whole equation. This third term is of direct interest

to us. It is the probability of re-sampling (in version (Ia)) on which

the contribution to the probability of acceptance from the attribute

combined basis is conditional.

Pa’ the acceptance probability, under this scheme is

C

: 12

P(accept: 1,0) = P_ ("v3"\u,c) + TP (x,"v2"| n,o0)
1 r=0

where M = +
By By

and "vi1", "v2", "v3" are as above.

6.1.1.2. Vversion {(Ib): It is the same as version (Ia) except that there
is a chance of assessing the first n, sample on its attribute characteristics
whenever A + KO o < X <A+ Kl g before resampling. Here, 1if d1 (the

L ’

number of defectives in the n, sample) is less than c

1 we accept the lot,

1

otherwise resample and carry on as in version (Ia) above.

If, for convenience, we developed the following notation:

P_(E) is the probability that event E occurs in a sample of n,

P (El,E2) joint probability of events El and E2 in sample of n,
n

B(j;n) probability of J defectives in a sample of n;
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then the acceptance probability is:

C1 c2—r

P,=P ("V3") + I I b

a (r,|lv2|l) -B(j;n )

1 r=0 j:O nl 2

NOTE: The modification in version (Ib) on (Ia) is a technical device

meant to reduce the average sample number (ASN) .

6.1.2 Development II

This uses our previous results of single sample quality functions of

the new designs. Here, for the variables part of mixed plans we suggest

using our "equivalent" variables schemes; thus:

- Take a first n, sample X

1 X X

1! 2] « s o7 -
g

- Evaluate the quality functions for each Xi, and find é(x), the sample

quality mean.

- For the relevent test criterion, t, and parameters of our plan:

Accept if Q(x) > t, otherwise use "attribute" test whereby if dl’

the first sample number of defectives, is such that d1 > c1 reject

and if d1 < <y resample a second n,- On resampling, if the

combined total defectives (d1 + d2)< c accept, and otherwise

12

reject, where d, is the sample number of defectives in the second

2

sample.

The acceptance probability here is:
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c1 02—1

P, = Pnl{Q(X’nl) > t(X,nl)} + I X Pn {l,é(xi,nl) < t(xi,nl)}_B(j;n

)
1=0 j=0 1 2

where (in addition to the notation defined above, we have:

X Xi are the observation and population r.v. of the process

respectively. \

Q is the sample mean of the observed quality functions.

6.1.3 Development III

The basic idea in this development is that we will be using our B-
values (used in our basic single sampling plans) to cater for both the
by-variables and the by-attribute counterparts of the mixed plans.
Then, we will not be talking about the plans as "mixed" in the sense
that we are mixing attributes with by-variables schemes but that we are

L/fjustip}xing different B and n values within the context of the "new"

by-variables scheme.

The algorithmic procedures of this plan are as follows:

(i) Stretch B towards the extreme (i.e. approach the variables schemes),

call this Bl'

(ii) Use a sample size n, with the test criterion t,. Denote the drawn

1 1

gt ey X )

sample by (Xl’ X
1

(iii) Evaluate the quality function§ for each x, and find §(§,n1,B1)‘

(iv) cCcompare:
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If Q(x, n,, B,)

17 71

W

t1(§1 N, B,) then accept, otherwise resample

a further n2 items.

[NOTE: no rejection is allowable vet].

(v) If not accepted in (iv), then collapse Bl to a smaller value,

say B2 (i.e. approach the attribute scheme within the variables

one). 2nd using the combined sample of m=n, + n, evaluate the

statistic Q(Ec' m, B2) and compare:

e = (m) . .
if Qx_ , m, B, > €,X", m, B,) accept,and reject otherwise.

The probability of acceptance in this case is:

.. (m)
\2(_ 7 nlr Bl)}

o
I

0 >
N Pnl{Q(i'anl’ t,

= (m)
+2 ox ,m B) >t,x, m B}

_ (ny)
= Pn1{Q(§' n,, By) <t (X ;. B
Here, Bl and B2 are pre-determined values that depend on our
certainty of the knowledge of the model of the background distribution
or the variance. Large values of B2 imply thaf we are reasonably certain of

the model. This relates and ties in well with the discussion in

section (2.2.3.2) about the decision levels and risks of non-robustness.
It is implied in this approach that Bl would be greater than B2°

6.1.4. An Example

In this section we cite an example to show how our attri-var plans
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could represent those of Schilling and Dodge and to reflect the operating

procedures of both schemes.

To select an attri-var plan from our scheme we need the AQL and

1 s
the producer's and consumer's risks. There is an arbitrary element in

the choice of the first and second sample sizes and also in the test

criteria used to decide when to re-test. In our case we set B1 = 1.9 to

produce a sensitivity close to that of the by-variables plans, and

choose o, and Ti to give a rough equivalence with the first stage acceptance

by the Dodge and Schilling procedure.

A second test value TI is used to give an approximate equivalence

with the rejection stage using the first sample only in Dodge and Schilling.
The decision to re-test uses the two criteria Ti and TI. The choice

of second sample size is set at n2 = 3n1 so that n1 + n2 = 4n1, and in

the case of the Dodge and Schilling plans the second sample is set equal

to the difference between their first sample size and the attribute

(second) sample size equivalent to 4n1, using B2 = 0.5 and the corresponding
T2 for the AQL. A literal reproduction of the Dodge and Schilling scheme
would require B2 = 0 but this is an extreme case and we have seen that

82 = 0.5 gives many of the advantages of attribute plans but with a

smaller sample size.

The choice of Ti and TI is made as if the acceptance and rejection

at the first stage was made with sample size nl, B1 = 1.9, and the AQL's
equal to 0.77 and 1.64 times the desired AQL. T2 is chosen to correspond

with the true AQL and sample size n, +mn, and B, = 0.5.

To illustrate the techniques consider the following example.
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Example

Suppose we have the following pool of randomly selected data
measuring the yield point for certain steel castings (in 1000's) drawn

from the same batch which is to be inspected for acceptance.

50.8 50.5 49.9 50.0 50.0 49.7 50.6 48 .6 49.9 51.2
52.5 '51.4 50.9 50.7 50.1 49 .4 50.1 51.7 53.0 49.9
52.9 51.2 49.3 51.9 52.1 51.4 50.7 50.2 50.1 49.8
53.2 49.3 51.3 49.7 51.1 51.0 49.9 47.9 51.0 50.2

51.0 51.3 50.7 51.1 49.7 50.3 50.3 50.7 51.0 51.2

50.6 50.2 50.1 49 .2 49.5 50.0

Suppose that their order of appearance is immaterial, and for
convenience we will pick the first samples from the first sequence of

measurements and the second sample from what is left.

Let the specified minimum yvield point for these castings (shown in
units of 1000's), be L = 48.7psi. The batch submitted for inspection is
believed tc have a “known" standard deviation of 0 = 1.0psi. Suppose
the specified Schilling and Dodge attri-var plan to be used here had

AQL = 1.39%, a first sample size m, = 6, a first acceptance number r, =1

1
and an acceptability (by-variables) constant k = 1.5537; while for the

1

second sample m, = 50 and r, = 2.

Then for Schilling and Dodge we have the following table of decision

rules and results, where w = L + kO = 48.7 + 1.5537 (1.0) = 50.25:
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Decision Steps

Results

1.

Determine the parameters.

. First sample my specimens from

the batch. Compute X.

. Accept and terminate if x > w

otherwise continue.

If x < w test the m1 specimens

(by-attributes) enumerating the
number of defectives, d, in m

1 1’

If x ¢ w and d1 > <, reject and

terminate, otherwise continue to

next stage.

. Second sample of m2=50 is drawn and

number of defectives, d2, in m, is

observed. (I d1+d2 < c2 accept,

otherwise reject).

For variables stage: m1=6,w=50.25

For transitional stage: c1=1

For final combined stage: c2=2

m1+m2=6+50=56.

x = 50.233.

Ll

is not > w, so next stage.

Since d1 is not > Cys go to

next stage.

d2 = 1 (since one defective

item of 47.9 is noted} in m2,

implying 4 +d2=0+1=1 as the

1

overall combined number of

defectives in m1+m2. Hence

d1+d2 is not > c2(=2), and

the batch is accepted.
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Our plan to correspond to this one will be based on rough
equivalence as stated above. The equivalence tables give us the

following parameters. For first stage

n, = 8, B1 = 1.9, AQL' = 1.39 (.77)
= 1.07% giving Ti = 0.7330 while AQL"

1.39 (1.64) = 2.275%

giving TI = 0.6463. For second sampling n

5 = 3 (8) = 24 (so that
nl + n, = 32), with B

5 = 0.5 and T2 = 0.9264.

are arbitrary constants to deflate and inflate AQL respectively.)

(Note that 0.77 and 1.64

The values of Xli (i.e. the first sample values are standardised

Xli - L Xli - 48.7

by the transformation Z1i = 5 = G before being evaluated
by the Ramp scorxe function:

0 ifz ., <0

1i
Qsl(zli) = 21,1/131 if 0 < zli < B1

1 elsewhere,

and similarly for B2 and X2i (the second sample values).

On the following table we have the decision rules and the results

for the Ramp attri-var version. The middle column of the tables shows

how the calculations were made especially for the scores.




Decision Steps

Necessary Computation

Results

1. Parameters

2. First n, sample and their
0 (Z .} scoring functions.
B 1i
1
Compute é
B
1
3. If Q > T! accept and
B1 1

terminate, otherwise continue

€ T

B 1 then compare with

5. If TV < Q < T! then second
1 B1 1
sampling, while if éB < T;
1
reject and terminate.

6. Second sample of n, is taken,
scoring functions and Q

evaluated and on the bas%s of

(nlJ_rnz),B2 and T2, compare:

if Q > T
B2 2

wise reject.

accept and other-

Zli: 2.11.81.81.21.31.01.9-0.1

QB : 1.0 .95 .95 .63 .68 .53 1.0 0.0
1
™
Loz, .)
. 1i
é - i=1 - 5.74 = 0.7175
B1 n1 8

Some voluminous necessary computations
were made similar to above, and whose
summary is given as:

ny Ty
= igl QBZ(ZZi) 31 0
Z )= - = hd =
QBZ( 21) n, + n, 35 0.9688

First and transitional stage:

n1=8, B=1.9,Ti=0.7330,TI=O.6463

Final combined stage: n

B2=0.5,T2=O.9264

1+n2=32

QB = 0.7175
1
!
-
- w
Q is not > T! = 0,7330 N
B 1
1 |
So no acceptance yet, so compare
with T".
1
QB =7175 is not > T}= .7330 and
! "o . n ~ '
is not < Tl—.6463 (J,e.T1 < QB g T1

1
hence second sample).

O =.9688 is > T.=0.9264 hence
B, 2

acceptance of the batch.
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Simulation of the Example

This same example was run under a variety of simulated processes

each for 1000 simulation runs. The simulated processes were the normal,

uniform and lognormal (all having a unit variance). For each case two

processes with relatively good and poor quality respectively were

studied. The performances of the above plan of Schilling and Dodge

and our plan are recorded and reported below for:
(i) The average sample number, ASN.

(ii) The probabilities of acceptance, Pa’ and of rejection,

P_.
r

Note that in the following tables the "relatively good gquality"
and the “"relatively bad quality" refer to the proportions defective

Py = 0.0139 and Py = 0.1601 respectively.

We used the abbreviation "Ramp" to stand for our attri-var,

and "S & D" for Schilling and Dodge attri-var plan.
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Normal Model

- Uniform Model Lognormal Modelé

| S&D Ramp © S &D Ramp ; S & D Ramp .

; | !

_ |

Relatively |ASN 6 9 6 15 6 15 |

\ H

qood P 0.939 0.978 0.620 0.570|  0.408 0.511 |

quality P 0.061 0.022 0.380 0.430 0.592 0.489 |

(p=.0139) | |
had P 0.075 0.039 0.182 0.107 0.054 0.006
quality P 0.925 0.961 0.818 0.893 0.946 0.994

(p=.1601)

In this example it is clear that the probability of second sampling
is greater for the Ramp plan than for that of "S & D". The conditions
for a decision on the first sample are more stringent in the former than

the latter. We could not exactly match the conditicn for re-testing in

S & D, and the overall matching of the twoattri-var plans is therefore
approximate. This partly explains why the value of ASN is the value of
m, the plan has more contribution from the second sampling than in the
caée of S & D. Second sampling is not taking place for $ & D in the
cases cited in the table above except for relatively bad quality undex
Normal Model where ASN for S & D is 20 and is higher than that of the

Ramp.

The Ramp has a better discrimination than S & D plan for both good
and bad quality under both Normality and Lognormality. It is also better
under the Uniform model for bad quality batéhes. The word "better" here
refers to the probability of having greater acceptance of good quality and

greater rejection of bad quality.
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g.2 Property "Q" in the Attri-var Schemes

1f a final decision on the batch is reached on the basis of the

first (i.e. variables) sample of the attri-var plan then the plan definitely

nas property "Q" only if the o-known normality assumption holds. This is

pecause here we will effectively be dealing with a variables scheme

gnder known 0 and normality assumption. The proof of Property "Q" holding

in this case is dealt with by Farlie (1981). (Verification of Property "Q"

is given in Appendix (A.2.)).

By the definition of Property "Q" a plan is questioned in its
acceptance stage. SO no matter how an attri-var scheme of known-g schemes
is designed then for the purposes of Property "Q" we would generally
postulate that the attri-var has Property "Q" if-and-only-if all its
acceptance phases have Property "Q". So, as a consequence of this, ;:he
attri-var plan will have Property "Q" if the decision of accepting the

batch is reached on the basis of the attribute quality.

The advantage of our developments II and IITI is that the acceptance
is made on the basis of the average quality é(x) which is monotonic,
and bounded by 0 and 1; and no matter how extreme are the values of Xi
the quality function records them as O's or 1's, depending on whether

the values are at the low or high extreme.
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CHAPTER 7

CONCLUSIONS ( WITH RECOMMENDATIONS)

All the variables plans have a more robust performance for small n
than for large n. Large n performances only show some degree of

robustness for high AQL's.This is a general phenomenon that is true

irrespective of the alternative (non-normal) distribution. The exception

implied above (i.e. cases of large n for small AQL) is due to the failure

of the by-variables schemes to perform well under the heavy-tailed model

represented by the Uniform Distribution. So the recommendations for

heavy-tailed processes can be as in the next two paragraphs.

For large n values all by-variables schemes (including the Ramp)
are not robust for detecting small AQL's, and so one of the following

strategies can be taken:

(2) use a smaller n with any of the orthodox by-variables scheme,

(b) use Ramp with the (same) large n choosing a value of B that
is reasonably close to 0. The argument on "reasonableness"

could be shifted to Property "Q", or any other relevant property,

or (c) use attribute scheme (probably for a higher n) which amounts

to using a Ramp with B = O.

For small n values all the by-variables are reasonably robust. So,
choose any of them (Ramp included) according to the different other
properties (e.g. Property "Q", ease of operation and/or variance

importance as relevent).
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with the finding that the Ramp is reasonably competitive to the

s-plan in the properties of sample saving and robustness coupled with

the improvement of the Ramp over the S-plan in the Property "o" we

feel that the conclusion that the Ramp could replace the S-plan is a

quite credible one. We are aware of the favourable quality of the

s-plan that it is immune to bad variance changes effects, but so relatively

is the Ramp in this respect as long as we assume these variance changes

(when they occur) are not very high. Such an assumption would be

realistic because most (and probably all) processes under inspection
are controlled in variance so reasonably that the wvariance changes are
constrained at low levels. The value of variance though very crucial
to the credibility of the O-plan is very much less so for Ramp. The
efficiency of the by-attribute and the S-plan schemes is not affected

\ in this respect.

Property "Q" favours the by-attributes schemes, 0-plan and the Ramp

in that order. The S-plan shows its weakness in this respect (Farlie

(1981)) .

The ease with which the Ramp could be operated stems from the fact
that the variance exact computations are cumbersome for floor operators.

They are crucial to the orthodox by-variables plans but not to the Ramp.

0f course, the attributes scheme is again the best in this respect. 1In

fact the only objection to the attribute schemes is the sample size needed.

The flexibility of B to enable acceptance sampling to encompass

the by-attribute qualities as well as the by-variables ones in one system

gives more reason for it replacing that of the awkward dichotomous system
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of inspection sampling. We are aware that a lot of more work h to b
as e} e

mde to exploit this flexibility quality. It is outside the objectives

of this research to do so since we are only interested in giving evidence

and persuasion towards its credibility and feasibility We believe we

nave done so.

The fundamental comment and recommendation that can sum up all the
findings of this research are given in the following points. The
attributes scheme is the best in all facets other than sample sizes.
all other facets including sample savings indicate that with a small B

value it is always safe for the Ramp to act as one of the alternatives

to by-variables schemes' and indeed to the by-attributes.

The Ramp is generally very reliable for destructive sampling (or

any other small sample requirements sampling) for the following reasoning:

1. For small sample size of, e.g. 4 (as compared to 2,3,4 or 5 in
other variables plans) we have a reasonbly comparable Pa under

heavy-tailed (e.g. Uniform) distribution model.

2. For any sample size the Ramp is affected very less dramatically

than small-sample O-known by variance changes.

3. In Lognormal robustness the Ramp in "small sample" area is better
than either of the S-plan and the g-plan schemes except for very

high B-values.

4. The knowledge of ¢ 1is, usually, not reliably good for small

samples. This 1imits the power of the O-plan and we have seen
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-plan schemes.

The following table can give clues to the performance of the different

schemes under study:

Ramp S-plan o-plan

Small Robust and sometimes Robust and can give Robust and reliable,
(Ramp) better than S-plan way to Ramp and best except for

n when comparing certainly dces to limitation of its.

sample sizes too. O-plan in n .(worst variance sensitivity.
Property "Q").

Large more robust only (Poor for detecting small AQL)
(Ramp) for small B values.

n
Table 6.1:

General and Robustness trends of preferability among the

By-variables schemes under "Equivalence".

The ideas of the schemes dealt with in the single sampling discussions
were usefully and forcefully extended to fit in with the natural process
of progress of acceptance sampling in the direction of multiple sampling.
Some suggestions of extensions and developments of the "new" schemes
(represented by the Ramp) were made along the lines of argument of the
proponents of "attri-var" (or "mixed") schemes as in the work of, e.g.,

Schilling and Dodge (1969). The successful aim of establishing these

extensions and developments is to show the potentialities of the "new"

schemes, and more specifically to give concrete evidence that the "new"
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scheme could be the basis for all acceptance Sampling including double

(and hence multiple) sampling. This can unify the methodologies of

acceptance sampling on the same basic ground. The suggested extensions

and developments satisfy the qualities of the existing "mixed" schemes

and even improve on them. For the same reasons as in single sampling,
they showed consistency in being purely "by-variables", and still one

can achieve with them whatever one could achieve with any other attri-

var scheme.
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APPENDIX (A.1.)

APPROXIMATING THE DISTRIBUTION OF THE MEAN OF n UNIFORMS IN ([0,1]
(4

BY
THE NORMAL CURVE AND MIXTURE OF NORMALS

We found that the convention of approximating the normal by a sum
of 12 uniforms is a reasonable one but the level of accuracy is
unsatisfactory if the desired absolute error is to be < 2.4 x 10_3,

for n=12. Moreover, the distribution of the mean of n uniforms is

composed of n polynomials of degree (n-1), and as n gets larger their
computations get more cumbersome and expensive compared with the normal
distribution whose computations do not necessarily increase with n. In
our research we deal with large values of n. And for all these reasons

we would do better with some normal approximations of such uniform

distributions. Some methods are suggested below and assessed.

(1) "Straightforward" Normal Approximation

This simply matches the means and variances of the two distributions.
Though, generally speaking this is not a bad approximator to the distribution
of n uniforms but it tends to overestimate it most of the time towards
the middle. Numerical evidence showed an absolute error of <€ 5.8 X 10_3

for n=5. For our purposes this is not satisfactory and indeed not for

any serious purposes.

(2) "Adjusted" Normal Method

The fact that method (1) located the maximum absolute error at

the first guartile suggested that we could adjust the standard deviation
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1

— b £ i .

= y a factor ¢ defined by matching the first quartiles. Interpolation
12n

was used to determine the value of ¢ as follows. Instead of

1
x =0.5+ X . —— used

. as a transformation of the normal, X

N’ into a

uniform mean, Xu’ we use:

where the fraction:

¢ = (0.25 - P (2_))/(P (Q) - B (P_))

1
and where P_1 indicates the percentile immediately before Qi' the first
quartile; and Pu(.) denotes the cumulative distribution of the mean of

n uniforms in ([0,1] up to the given cut-off point.

Results tabulated below showed a significant improvement in general.
In more detailed assessment we found that except for regions below the
first and above the last decile the error is € 3 x lO_3 for n=5. This
also indicates that in these regions the "straightforward" method is more
efficient than this "adjusted" method, while the latter supersedes the
former in the rest of the regions, i.e., in the central part. Unfortunately,
we could not switch from the "straightforward" normal approximation to the
other (or vice versa) because the transition will not be smooth. Moreover,

the approximation in the tails by the two methods is still unsatisfactory.

(3) Mixture of "Decile-Adjusted" Normals

A relatively better approximator would be a mixture of two adjusted

normals:
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o . (X0 - §(1-p)) + (1=
N (1-p) . CD(XN.G + §p)

were

c
5= S . .

— (c is decided by the quantile
and § =0.5 0.

This has the same characteristics of the "adjusted" normal, method

()) above, but significantly better especially towards the middle.

In the empirical results given on the tables we could be a bit
concerned about the fit in the tails. It is apparent in the data below
that this weighting factor p was useful in bringing down the inflated
values around the middle of the distribution. Yet, it adversely clustered
all the discrepancy along the tails where maximum absolute error is about

4.3 x 10_3.

However, if the adjustment is done around the first decile rather
than the quartile we would spread the discrepancy almost evenly throughout
the whole distribution. This is why we recommend the mixture of two
'decile adjusted" normals as an approximation of the distribution of
the mean of n uniforms. As for n we could be safe with n=10 since the

3

mximum error is nearly 10‘3, For n=8 it is just under 2 x 10




n 8 10
tails | centre | tails| centre| tails | centre| tails | centre | tails | centre | tails centre
Method (1) 2.4 5.8 2.3 4.8 2.3 4.1 2.0 3.6 1.7 3.2 1.5 2.9
|

Method (2) 4,34 2.8 3.6 2.5 3.1 1.9 2.7 1.7 2.4 1.5 2.2 1.4
quartile |, 431 5 5| 3.6 2.4 | 3.1 1.9 ] 2.7 1.6 ] 2.4 1.4 | 2.1 1.3
adjusted

Method (3)

(p=0.1) decile 2.9 2.4 | 2.3 2.1 ] 2.0 1.8 | 1.7 1.6 | 1.4 1.4 | 1.3 1.3
adjusted

Table:

Maximum absolute error

(x 103)

for n=5(1)10 in the tails and centre




pistribution of n=5
A.
B.

Percentiles
XN
010 -2.327
020 -2.054
030 -1.821
-040 =-1.751
050 -1.645
<060 -1.555
070 -1.476
<&l =-1.405
0390 -1.341
»10C -1 a2 82
-110 —-1.227
120 -1.175
«1320 -1.126
140 -1.080Q
-150 -1.038
«160 -0.994
170 -0.954
-120 ~0.915
~.190 -0.878
.200 ~-0.841
~.210 -0.806
220 -0_.772
220 -0.739
- 240 -0 .706
<250 -0.674
-260 -0.643
270 -0.612
-280 -0.582
-29C ~0.553
300 -0.524
-3210 -0.495
-320 -0 .467
-330 -0.439
L340 -0.412
-350 -0.385
-360 -0.358
-370 -0.331
=230 ~-0.305
-2%0 -0.279
-4(0 -0.253
-4610 -0.227
-420 -0.202
-430 -0.176
a4 40 ~-0.151
-450 -03.125
.460 -0.100
470 -0.075
4850 -0.050
-.650 -0.G25
-5C0 -0 .0GCO

uniforms and its approximation by

"straightforward" normal distribution

"adjusted"

XI
u

0.191
0.228
0.251

- 0.268

0.282
0.294
0.304

0.522
0.339
0.337

0.344

0.351

- 0.357

0.363

B

0.363.

0.373

0.379 -

0.384
0.388
0.393
0.398
0.4602

- 0.4606

0.411

0.415

0.419
0.423
Q.427
0.431
0.434
0.438
0.442
0.4L4L5S
0.449
0.453
0.4656
0.460
0.463
0.466
0.470
0.473
0.477
0.480
U.4L83
0.487
C.490
0.493
D.497
0.35080

PI
u

-0159

.0325%6

.0%68
SN971
.1073
.1176
.1279
~1381
.1483

-1585

-1687
-1789
-1891
-1993
-2094%
-2196

.2297

.2398
22499
L2600
.2701
.2302
2903
.30C3

-3104°

-3204
-3305
=3L05

- .3505

.3605
-3705
-3505
-3%05
-4005
4105
-4204
4304
~44C3
4503
4602
-4702
<4201
4900

500C ~ 112E=-17

normal distribution.

Exror

0066 -_330E-i2
-410E-02
0256 - .434E-72,
--.432E-D2
-0458 =417 E-is2;
.0560 - _.395€e-02:
20663 - 3708-07]

S0765 ~.3435-02

=--315e-02
= o287 E=i32

-.260%5-C2

= a23LE=012

-.210e-02
- 186E-02

-.1635-02

- 142E=-32
—ni22E=J2
- JA03E=-D2
-.856E5-03
~ S6FIE-{3
- .534E-03
- o392 E={13
-.25%<~-03
- 137E-63
- 2L2E=Q4
o/ 3TE-D4
-170£-03
.25328-i13
L325€-03
3BT E-UZ
A41E-03
L84 E-(3
«S519E~03
oS GSE-OT
.562E-03
ST1TE-03
.572E-03
o365£-17
.550¢E-02
529 E-13
-501e-03
LG5 E-D3
LL25E8-03
379 E=03
327E~03
Wl TDE=D3
L209E-03
J143E=-1
wT3ILE~-DS

X
u

0.200
0.235
6.257
.27+
C.28¢
0.296
0.305¢

0.4 7
g.5C¢

P
u

Error

a0082=175E-02
.0185=.142E-02
0291 =.805E~:13
398 a115E-03

-U505
0612
-0718

0823

.0929
18533
<1137
21241
13644
1447
=1549
1651
«1753
-1854:
1956
-2 056
-2157
<2257
-2357
2457
.2557,
2656
-2755
.2854
2353
«3052
«31350
.3249
<3347
3445
23543
L3641
3738
3336
=3933
.4031
6128
4225
-4322
A419
4516
4613
oL 709

L4806

~4903

o537 2E~i3
«123E-Q2
1854 E-12
_=260E-Q2
.231E-Q2
'J337E-02
~378E~Q2
414E=-D2
LALEE-(2
~49EE-Q2
a319E=22
«D38E~-Q2
<35 fiE-D2
«341E~-Q2
o58IFE-122
-575E~Q2
«573E-{2
‘«378E~-Q2
oSTTE~12
~S73E-(Q2
S87E=-i2
<S5S9E-Q2
-550E-Q2
-S38E-(Q"
«S25E-{2
«S10E-02
JA93E~Q2
4 7SE~{2
455E-Q7
=43 LE-{12
“A12E-C2
=38S5E~47
36LE-02
«338E-U12
-311E-02
-283E~-012
~-254E-02
a225E=-1i2
.195E-02
1835~ :2
~a132E-02
s995E-33
b658E-QZ
-33 o) E"“.‘3

-5000~-.112E-07



Distribution of

Percentiles

XN
010 =2 .327
,020:-2.05%
.030 -1.831
.C40.~1.751
L0506 =-1.645
.060 ~1.555
L7703 =1.476
.080 =-1.405
.CS0 =1.341
.100 -1.282
. 110 =1.227
120 -1.1758
.130 -1.126
» 140 -1.080
150 -1 .036
160 -0 .994
.170 -0 .954
»180 -0.915
.190 -0.8&78
.200 -0.841
.210 -0.806
.220-0.772
.230 -0.7375
240 -0.706
,25C -0.674
.260 -0.643
.270 -0_612
.280-0.582
.20 -0.553
.300~0.524
.310-0.495
2320 -0.467
320 -0.439
.340~0.412.
.350 -0.385
S360-0.358"
370 ~-0_.331
.340~0.305
.360-0_.279
.4&C0-0.253
,£10-0.227
L2C0-0.202
L30-0.176
L6460 -0.151
.450-0.125
.4L60-D.100
AT70~-0.075
L4 80 -0.050
.49C-0.025

.500-0.000

n=6

A. "Straightforwarg"
B.

X! =
u u

0.220 .0Q72512
0.252 -0166059
0.273 .0264119
0.289 0364147
0.302 .0465193
0.313 0566807
0.322 .0&6874¢4
0.331 0770860
0.238 .0373067
0.346 .097530C3
0.352 .1Q77527
0.358 1179710
0.364 .1281831
0.270 .1383874
0.375 .14E5829
0.3280 .15876¢8
0,335 1689446
0.390 .17%1079¢
0.394 _189264E
0.399 .1994029
0.403 =2 025426
0.407 .2196658
0.411 2897788
0.415 .239381¢&
0D.419 02499750
0.422 .2&005¢&7
0.426 .2701333
0.430 .2R019&9
0.433 .2902561
0.437 .30030540
0.440 .3103459
0.444 3203793
0.447 «3304054
0.450 .340424¢
0.454 35046371
0.457 3604432
0.460 03704433
0.463 3804375
0.L66 .3904262
0.470 .4004097
0.473 41038380
0.476 .4Z20361¢
0.479 .6303305
0.482 .4602951
0.4835 4502554
0.483 .4602118
0.491 ~L701643
0.4G4 48017130
0.497 .49005€3
0.500 .5000CCO

!

1

!

uniforms and approximations by

normal distributions

Error
~.27SE-G2
- 339E-12

i~a35%E~-(Q2
= W3S9 E-O2

= W342E-02
1= a332E-112
".3135"'02
i=.291E-712

-~ .269E-02 0.342 -

- 24TE~-Q2
~.225E-D?2
- 203 E-37

'~ .182E-02

-.161e~02
~.142E-02
-.123E-02
- Jd06E-G2
~-.890E~-02
—~ J735E-i43
~.591E-03
~ L457E=N3
~-.334E-03%

~a221E-DF

-.112E-03
~ 250E-i34
-S87E-04
J133E-13
-199E-03
258E-013
.305-03
S3L6E-D3
379E-03
LNSE~0F
-425E~03
JL37E-D3
b43E-03
L bL3E-03
438E-D3F
L26E-03
.410E-C3
388E-0F
.362E-03
331E-03
.295€6-03
0255E-03
.212:¢~03
66603
-113e-03
,583&"\?4
-.2615-07

"Adjusted" normal distributions.

X
u
0.22¢
0.25¢%
g.27¢
G.294
0.30¢
g.317
0.32¢
C.334

0.349
0.355
0.362
0.367
0.375

0.37¢2
1.383
0.358
0,392
0.397
G.401
0.405
0.409
0.413
0.417
0.421
D.424
0.42¢
0.431
0.435
C.43¢&

0.442

C.445
C.442
0.451
0.455
0.45:2
0.461
0.464
0.467
J.470
J0.6753
J. 475
J.47%
2.487¢
0.485%
0.48¢&
0.491
1.494%
2.497
0.5010

PU.
008546
-012884
02935
-03990
-05045
-G60%¢
07147
08192
-09234

.10272.
.11306
.12337"

-13365
-1433¢%

-1541 0

16428
17444

-18456

.19466

20474
2214769,

022482
-23483

~24482 .
~2547% .
26474 -

L27467
28458
-29449
230437
231424

32410
-33395 -
«34378
»35360

236342
237322
38301
239280
40257
561234
242210
43186
64161
~435135
66109
47082
.4 8055
.49027

Exrror
"‘-1 43&"‘02
-<11SE-(Q2
~bH4E2E-03
-.942E-0L

~455E-Q3
~93C0E~-03
«147E-Q2
«193E-072
-234E-Q2
«272E-02
W307E-02
«3323E-~(2
S36SE-Q2
-390E-Q2

L4V TE-Q2
JAL2FE-(2
LAbLLE-Q7
OS5 7E-02
467E-Q2
~H7S5E-Q2
480E-02
-433E-02
~483E~Q2
~432E~-p2
L73E-Q2
L7 LE-]2
A467E~02
~H59E~-(2
L4 PE~Q2
432E-(2
-425E-02
LBH11E-02
.395€E-02
379E-Q2
«361E-02
“SL2E- (2
«322E~-02
o30N2E-Q2
L28CE~Q2
LSEE-(2
<235&E-02
L211E~-02
~186E-(Q2
A51E-Q2
-135€-02
+10%E~-Q2
.825€E-03
“SS4E-Q3
L273E~-03

~-50000.-,2515-07
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APPENDIX (A.2.)

VERIFICATION OF PROPERTY QO IN ATTRI-VAR PLANS UNDER KNOWN G NORMALITY

Let xi and zi denote the first (variables) sample of size n1

and the second (attributes) sample of size n, respectively. Define

X(i)' z(i) as their respective order statistics. Let Y denote the

amalgamated samples with size n, + n, and likewise define y(i

1 ) -

Under normality N(u,cz) with known 0, the decision rule "Accept

if Q(x) > t1 where t1 is the given decision constant" has property "Q"

since any increment in any x(i) (i.e. a better sample and consequently

better scoring Q(k(i)) since the function Q(.) 1is an increasing function)

will lead to acceptance if the lesser sample is accepted. This is

because é will not decrease:

n
Q(x)y = iil ai . Q(x(i))
n-1
- i§1 ay - Q) Fay - Qlxg,)

where a. =-£ > 0 and Q(x) is a monotonic increasing function. Hence,
i n

property Q holds.

i then under the attribute
On taking the amalgamated sample of {yi}
decision rule : "Accept if number of defectives < c" (i.e. "Accept if
number of effectives 2 n, +n, - c") we have "property Q". This is
because any increase, say O, in any of the overall order statistics

v would never decrease the actual number of effectices, thus
(1)

guaranteeing an acceptance if acceptance was granted before the increment.



-y
|
—
(€2}
B
i

Number of effectives = I

1t
(@

where H(y) if vy € specification limit, A

=1 if y > A.

Here, also property Q holds since an increment in y can never

decrease the corresponding H.



APPENDIX (D.1.)

GRAPHS OF SOME REPRESENTATIVE CASES OF THE AVERAGE Q(X)

[y

The following graphs are to represent the convoluted distributions

for some cases of n

8, 16, 32 and 64

B

0.5 (0.4) 1.3.

On each separate figure we have 32 distribution functions. From

top to bottom these represent the cumulative distribution for cases of

Py corresponding to the following p-values:

p = 0.4 (0.1) 3.4.



. 8 b= .50 : - B b= 0 - 8 b=1.30
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APPENDIX (D.2.)

GRAPHS TO REFLECT C-PLAN O.C. RESPONSE TO SOME CHANGES IN G

Some representative code letters (namely E, F, H and L from
BS6002) are chosen each with one case of AQL as shown. In the diagrams

the code letter E/0.65 means the code letter E for AQL = 0.65%.

The 0 changes are shown on each curve each passing through the

indifference point of 50% acceptance.

Below is a table of the test parameters of the plans for the four

code letters:

Code Letter E/Q.65 F/1.0 H/1.5 L/2.5

(kc,n) (1.69,3) (1.69,4) (1.68,8) (1.65,32)

. . C .
where k_,n are the test criterion and sample size respectively.
g



.507

Code Letter: E/0.65

.046



.50

Code Letter: F/1.0

.046



1

.00

.50

Code Letter: H/1.5

.046

0.50

Code Letter:

L/2.5

.05
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APPENDIX (E.1.)

THE JOHNSON SYSTEMS AND THE DISTRIBUTION OF THE RAMP Q(X)

1. A Note on the Distribution Fitting Systems

Some work has been done on applying some transformations of systems
of non-normal univariate curves to approximate the sampling distributions
of random variables whose moments are known but whose exact density

and/or distribution functions are unknown (or difficult to find).

Pearson (1963) has found that there is often remarkable similarity in
shape if the first four moments are identical. For many practical reasons
the equivalence is adequate though in the strict mathematical sense they
may not be exactly equivalent. Any system of distributions which can

be easily transformed into a normal (or any other well known and

manageable) distribution has certain obvious practical advantages.

The literature on fitting systems is wide ranging and has expanded
rapidly. Reference works of Patil and Joshi (1968) and Johnson and Kotz
(1969, 1970) are invaluable to statisticians . Also useful is the
monograph by Ord (1972) with ample useful information on methods of
analysis and problems involved in selecting and fitting an appropriate

model.

.~ Johnson (1949) proposed new positive steps to develop the basic
claim that the first four moments of any distribution are sufficient
to determine its shape and define it reasonably well, The approximations
of Pearson type of curves to densities and distributions was discussed

by Solomon and Stephens (1978).



5 Like Pearson, Johnson has mainly used /Bl and 62 (the standardized
third and fourth moments to determine the general shape leaving the
mean and variance (the standardising first and second moments) for the
obvious secondary role of shifting and scaling the domain. This is why
a "Bl, 2" plane is being used naturally as the main tool of analysis
in choosing the appropriate system from among the exhaustive set of
systems of transformations (a typical set is discussed below) . «The
central idea is the transformation of the r.v. under consideration into
a Normal one. He established a set of standard systems that can
approximate almost any continuous univariate distribution. The system
proposed by Johnson (1949) consist of the following three basic families

of distributions, each with different form of transformation (which assume

72 is the standard Normal r.v. and X is the r.v. to be transformed):

(1) Bounded System (S;): 2 =7 + § . An((X=E)/(E+A-X)), & < X < &+A
(2) Lognormal System (SL):Z =v + 36 . n(Xx=&), X >§

. =1
(3) Unbounded System (S ):Z =Y * § . sinh T ((X-&)/X)

Hill et al (1976) suggested, for the sake of completeness, the

explicit inclusion of the following special cases:

(4) the Normal Curve itself (SN);

(5) A special case [which he called (S;)1 of Sy on the line 8, =8, * 1.

For the first four moments of X toO match those of any required

‘distribution it is necessary to find out which of the above transformations
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is needed and thereafter evaluate the parameters Y, 8, X and &

We should note that fitting by moments is not always desirable but

in a number of situations it gives an adequate, though not necessarily

the "best", solution. A need to fit a distribution by moments could

arise in a purely theoretical context or else in finding an empirical

fit to some data obtained from a random sample. In the empirical or

sampling area we have the "generalised Lambda distribution®” due to

Ramberg et al (1979), the Pearson (81' 82)-plane systems for which Johnson,
Nixon and Amos (1963) provided tables, and we also have the Johnson

(1949) systems.

These are all examples of empirically fitting distributions

to model some sampling data.

The Johnson systems mentioned above relate uniquely to the (61, 82)
plane as the picture on (Fig (1)) shows. If we evaluate and plot the

(81, 82) point of each system the S_ is the point (0,3), the S. is a

N L
line from this point (0,3) - (emphasising that the Normal system is a
special case of the Lognormal) - and separating the two other regions

of the Bounded and the Unbounded systems. The SL as a major boundary is

characterised by the locus of (Bl’ 82) defined by the following parametric

equations:

B, = (w=-1) (w+2)? , (»/B1 > 0)

w' o+ 2w + 3w? - 3

>w
[\
it

-1
where w = exp{§ ).
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0f these regions th i
g e SU lies below the Lognormal line while the

SBJs above it. A region above the Bounded System is the impossible or

inaccessible region. Johnson and Kotz (1970) claimed that it can be

proved analytically that for any (Bl' BZ) point below or above the

ognormal line therxe is an i : . .
Log: appropriate SU or SB distribution respectively,

and that the SB' SU and SL cover the whole possible (81, 82) plane

uniquely. In other words there is just one appropriate distribution

corresponding to each (81, 82) point.

The general procedure for the use of the Johnson System is summarised
by the following steps (which assume the availability of the first four

moments) :

(i) evaluate the Bl and 82 which on the plane determines the exact

system according to the above standard mapping procedure;

(ii) transform into a normal r.v. (using the appropriate selected
form as given by (i) above) via the appropriate estimation
procedure of the parameters &, A, Y and 6. This estimation
procedure is probably the most difficult part of the whole
operation and where most of the developments in this area are

taking place.
In the case of empirical moments:

The details of (i) are obvious though computational problems are
possible. As for (ii) there are many detailed procedures. Johnson (1949)

suggests matching the percentiles for SB and gave useful formulae for the
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two cases of knowing only one or both end points And if neith £
: er of the

two end points is given he advocated a solution of a non-linear £
- system

of equations to solve. Aitchison and Brown (1957) gave procedures f
or

evaluating the parameters of the S_.
L

A two-way look-up table is Johnson's method for estimating the
parameters of the SU from the sample estimates. Mage (1980) and Bukac
(1972) gave procedures of (ii) for SB based on symmetrical points.
ord (1972) discussed different methods for (ii) in the estimation of

§, Y, & andA. Slifker and Shapiro (1980) introduced a selection rule

which depends on four percentiles for (i) and (ii) without the need of
solving any simultaneous equations or looking-up special tables. According

to slifker and Shapiro (1980) the major snags of almost all these procedures

are:

the high variability of the estimates of the higher moments,

- the estimates of these moments are highly biased for small

samples (see Johnson and Lowe (1979),

the moment estimators are greatly affected by outliers.

In case of Availability of the theoretical parametric moments:

Originally the Johnson System of curves was mainly used for fitting
to empirical data, but use has been extended to theoretical distributions.
Leslie (1959) claimed that the generating function for some distributions
though explicitly derivable in an exact form but still not amenable to
inversion iﬁtegral. Again, as in this research, only the moment

generating function but not the compact form of the distribution 1is
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obtainable, especially that the distribution is a mixture of discrete

and continuous r.v.'s. When the first four moments are available

parametrically the snag of sampling precision mentioned above are ruled

out completely for the better. Necessarily, all the procedures meant

to fit empirical sampling data are also applicable to parametric moments

!
and at an advantage.

Despite all these favourable circumstances the computations in
the estimation of the parameters v, ¢, § and A are tedious and sometimes
not very stable numerically. That explains why well written and

validated computer routines are vital for enhancing these systems. Hill

et al (1976) published a well-received FORTRAN Algorithm to select the
P

v

appropriate system, estimate these parameters and fit the selected
system to the Normal r.v. though not without inadequacies on the

boundaries.



w'!julE-n-————* e

- 170 -

2. The Johnson Fit and the Case of the Distribution of the Ramp Q(x)

(a) Some comments on our application:

When applying the Johnson fits to approximate our Ramp distributions

we need the moment generating function (m.g.f.). This m.g.f. for the

Ramp case has been derived as shown in sub-section (b) below

The moments were evaluated by the lengthy and cumbersome computations

entailed by this specific derived m.g.f.. Hill's Algorithm was then

used to locate the (Bl' 82) points corresponding to these moments

wherever the algorithm is appropriate.

Some effort was made to isolate and then represent the continuous
part of the distribution only. In the figure (Fig (1)) we have shown
some example points of the distribution for the continuous part of the
Ramp average Q(X) for one sample size. The different points of (Bl, 62)
plotted and shown by a "A" in the figure correspond to distributions
for different B-values. The values of n and Py were 32 and 0.05

respectively.

The arrow indicates the direction of the motion of the plotted

(Bl' 62) points in terms of an increasing B, (i.e. allowing more continuity
and less discreteness). In other words as B increases the corresponding
(Bl’ 82) of the distribution approach (0,3) (the normality point on the

plane) as would be expected especially for a large n such as n=32.
Though smaller n values have a similar pattern these tend to shift the
1

(B,, 82) points towards the boundaries between Sj and S, where Hill's

algorithm is expected to show some instability. Since we are interested



in small n values (as the main attraction of by-variables sampling pl )
plans
ehe (By, By) points tend to be awkwardly placed for the Hill's algorithn

which we were to use in fitting the Johnson Systems to our distributio
ns.

The case plotted above can be handled by Hill's algorithm for the

two following reasons which help to explain the difficulties encountered

for other cases:

1. The reasocnably large value for n, namely n=32.

2. The reasonably high B values (here, in the above case the least

value of B is 0.845).

This latter reason is critical since small B values would conly allow low
levels of contribution to the distribution from the continuous

part to be approximated by the Johnson system. In fact we need to

consider small B values in our research.

It should be mentioned that even if we work only with the continuous
part then, for any parameters, if Py and P, absorb most of the distribution
the residual continuous part would be too scanty for approximation
purposes. That is because, then, we will be trying to approximate a
distribution which is predominantly a discrete distribution with effectively
zero probability density between the discrete values. We will definitely
need to work witﬁ P, of a substantial size because batches, in acceptance
sampling, are expected to be of a reasonably good quality, that is a

high proportion have quality characteristics equal to 1.



n
The Moment Generating Function o
b) £ _Z Q(Xi) for the Ramp case:

i=1
If 1X. . i
{ 1} i=1,2,...,n ;S a random sample from a N(Ho,l) distribution
the random variabl ; :
then iable 121 Q(X,) of the Ramp defined in Chapter 1, will

have a derived moment generating function (m.g.f.) as obtained below

A ai e
ccording to the definition of Q(Xi) for the Ramp case we would

be dealing with a continuous and a discrete part of the random variable

n
z Q(Xi) as defined by:

i=1
n r
.Z Q(Xi) = .Z vy + s (1)
i=1 i=1
where y. =x,/B , A <X, <B
i i i
=0 , elsewhere
and s, r are integers (assuming there are r marginal ("continuous")

items in the sample).

The first term in (1) is the continucus variable part, while s and

(n-r-s) constitute the discrete part.

Obviously, the continuous part has a double~truncated normal distrib-

ution and, hence, the m.g.f. for it is wc(t)=

b (k) = exp{uot/B+t2/(2B2)}.{@(B—uo—t/B) - <1>(—uo—t/B)}/p1 (2)



where p, = <I>(B-uo) - <I>(—u0)

®(.) is the Cumulative Normal Distribution

v, o+ s (where r and s are given values)

and g is the mean such that the proportion below A = O is equal
to py-
r
The m.g.f. for the r.v. I

i=1

is

(3)

But since s varies together ¥ (or n-r-s) according to their corresponding
probability distributions the m.g.f. of the variable Zyi + S (where S

is a r.v.) would be looked upon as a probabilistic occurrence of G.

n
If we denote the overall m.g.f. by M({ I Q(Xi), t) and suppose
i=1

([ B

yi has a probability density function (p.d.f.) of £(.). Then

i=1

n
z y, + s (vhere s is fixed) has a p.d.f. £(.), too. Hence, Zyi + S
i=1

with S a random variable has a p.d.f. composed of the terms of

T £(.) pr{s=s}.
s



The overall m.g.f. is therefore:

co

t(X
M(ZQ,t) = J e (Ly+s) (Z £(.). Pr{s=s} at
. S
= ¥ Pr{s=s, R=r} J et(Zy+S) £(.) at
s,r

¥ Pri{s=s, R=r} . G(t)
s,r

= ¥ Pr{s=s, R=r} eSt [ll)c(t)]r , using (3) above.
s,r
: _ _ _ n! - n-r-s r _s
and since Pr{s=s, R=r} = 1s! (nor=5) 1 (1 Py 92) Py Py
then
n! n-r-s r s st r
Mz, = E 2 risinr-s)1 (P17Pp) Py Py e [V (8]
n! n-r-s _s _st
=L ris!(n-r-s)! (1_pl_P2) Py €
L LB/ (2R Hpgt/b) {@(b_uo_ %') - @(—uo—t/s)}r

Since p, = @(b—uo) - D(=uy)

0

if we define yY*(t) = wc(t).p1 then



M(ZQ(X),t)

Hence:

M(ZQ(X),t) = (p,

This includes the case
continuous curve are p

conditional m.g.f., Mc

t

n
n! s st (n-s)! n-s-
o Sh-st ®2° TrmesiT Po o r(en”
n
nt tys _ (n-s)! n-s-r
ril s! (n-S) ! (p2 ) r! (n_s_r) ! po [w* (t)]r +
n
T nt S est -s
s=0 st (n-s)! ) Py
e + by + r(e)1”

of r=0 where spike probébilities rather than a
revalent. To exclude this case we derive the

(t) excluding r=0 (i.e. zero marginals).

t
[p2 e  + Py + lp*(t)]n - [p2 e + pO]n
Mc(t) = =
1 - (1-91)
The moments:
Letting o = 1 - (1—p1)n then
oM (t) = [p, e" + p. + Y*(0)1" = [p, e + pyl" ... (1)
c = Py Py 2 0
where Ho 2
5t * 5 t t
P*(t) = e {@(b—uo-g) AN —g)}

Operating on

(1)

by differentiating w.r.t. and setting t=0 we get:




! (L) = a{p, + ¥*'(0) - P, Py + pz)n_l}
t=0
mg(tt_; n{(p2 + P*"(0)) - pz(po + pz)n'l

+ (n-1) {(p, + ¥*' (0% = p}(py + " 21}

m - "t n—l
! (tg_(; n{(p, + ¥*" (0)) - p,(p, + p,)

+ (n-1) {3(p2 + P*'(0)) (p2 + P*"(0)) - 3p22(po + pz)n—2
+ (a-2) {(p, + U*' (0))° - p’(p. + p )" 3}}}
P2 P2'Pg T Py

iv n-1
oM (t/= n{(p2 + P*77(0)) - py(py + Py)

n-2

+ (n-1) {4(p, + Y*'(0)) (p, + Y*™ (0)) - 4p%(py + Py + 3(p, + Y*"(0))*

-3
+ (n=2) {6(p, + Y*'(0))% (p, + Y*"(0)) - 6P5(py + By

-4
+ (n-3) {(p, + ¥*' (0" - p}(py + pz)n 113}

These results are used to evaluate the following 3rd and 4th moments:

3

[} 1 " 1 3 n - MI(O))Z) "2
/B, = MY (0) - 3M1(0).MI(0) + 2{M (0)} ]/ (MI(O) - (M,

1

[o>]
i}

Uo 2
(—— t + 57 t
2b Ly -
Note that since Y*(t) = p, %}t) = e b {op - “O__ b) o Mo

. ' L " M2
L7 (0) =4 w2 (0) . w2t (0)+6 M (0) . L g (03231 g (031 / TG () = (O3




1
g0y = ¢ {ugpy = Loy - ¢u1}

1

P*"(0) = g}{(ug t 1) py - 29 o-ny) - 9 (k)]
- Lo-kg) d=py) + ug du)1}
pr Q) = %3{“6 +3ug) By - (Gud + 3 [0 - ¢(uo)i
- 3ugLo=Hy) dlb-Hg) + Ky )]
- {lb-uy)? - 11 d-ny) - ug - 1] (ug) }3
w*iv<0>=‘§u{“5 + 6ul + 3) py

(4“5 + 12“0) [¢(b—u0) - ¢(uo)]

(6u6 + 6) [(b-py) ¢(b-uo) * Hy ¢(uo)]

- 4, {[(b—uo)z - 11 ¢o-uy) - (ug - 11 ¢(uo)}

{l-uy? = 3(b-u] dlb-ug) + (W - 3] ¢ (1g) 1}

where ¢(.) is the standard normal p.d.f.
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