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Abstract
Glaucoma is defined as an eye disease leading to vision loss due to the optic
nerve damage. It is often asymptomatic, thus, timely diagnosis and treatment
is crucial. In this article, we propose a novel approach for diagnosing glaucoma
using deep neural networks, trained on fundus images. Our proposed approach
involves several key steps, including data sampling, pre-processing, and clas-
sification. To address the data imbalance issue, we employ a combination of
suitable image augmentation techniques and Multi-Scale Attention Block (MAS
Block) architecture in our deep neural network model. The MAS Block is a
specific architecture design for CNNs that allows multiple convolutional filters
of various sizes to capture features at several scales in parallel. This will pre-
vent the over-fitting problem and increases the detection accuracy. Through
extensive experiments with the ACRIMA dataset, we demonstrate that our pro-
posed approach achieves high accuracy in diagnosing glaucoma. Notably, we
recorded the highest accuracy (97.18%) among previous studies. The results from
this study reveal the potential of our approach to improve early detection of
glaucoma and offer more effective treatment strategies for doctors and clini-
cians in the future. Timely diagnosis plays a crucial role in managing glaucoma
since it is often asymptomatic. Our proposed method utilizing deep neural net-
works shows promise in enhancing diagnostic accuracy and aiding healthcare
professionals in making informed decisions.
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1 INTRODUCTION

Glaucoma damages to the vision area causing vision loss.1 Sixty five million people worldwide are affected by glaucoma.2
Glaucoma can lead to serious damage or even complete loss of optic nerve fiber.3 The front of eye is filled with a clear
liquid called aqueous humor which is continuously produced and expelled from the eye to maintain constant pressure.
If the fluid is not properly secreted out of the eye, the pressure rises and leads to glaucoma. If the eye pressure (called
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intraocular pressure (IOP))4 increases from its normal value, it can lead to blood flow loss to the optic nerve. Popular
conventional examinations for the diagnosis of glaucoma are IOP evaluation, visual field test, evaluation of the head of
optic nerve, and gonioscopy. However, these techniques are not accurate enough for the diagnosis of glaucoma, especially
at early stages. As a result, visual impairment can even occur without a noticeable increase in the IOP and hence glaucoma
is often known to be asymptomatic, thus, early diagnosis of glaucoma is essential.

To further observe the eye structure, Figure 1 shows the image of the fundus, the inner view of the eye, including
the retina, optic nerve, macula, and blood vessels. The head of optic nerve is where the axons of ganglion cells leave the
eye and form the optic disc. The optic disc is divided into two bright and central areas called the outer rim and the cup,
respectively. The optic cup is placed in the center of the optic disc (Figure 1A) and is a white cup-like area, and a peripheral
part is called the retinal nerve edge.5

The abnormal cup size compared to the optical disc is a feature of glaucomatous eyes (Figure 1B). There are different
image processing approaches to cup and disc splitting to diagnose glaucoma in colored images of fundus. Some works
focus only on the optical cup or optical disc split,6,7 while others focus on calculating the ratio of the cup diameter to disc
(CDR),8 which is used as glaucoma indicator. However, measuring the cup to disc ratio requires a great deal of effort to
obtain an optical disc and segment the appropriate cup disc.

Classification of the medical images using deep learning models has become very popular in different applications.
However, accurate analysis of medical images using deep learning models requires access to large datasets. In medical
applications, the distribution of collected samples in the dataset is normally unbalanced due to the unbalanced prevalence
of each disease class among patients. Therefore, the diagnosis of diseases with insufficent and unbalanced datasets using
deep learning can be very challenging. In other words, it is difficult to obtain sufficient information for the training phase
of a neural network in some disease. In such circumstances, a reliable method of data augmentation will counteract the
effects of unbalanced data and improves the overall performance by preventing over-fitting.9 This has motivated us to
conduct our research on this topic.

We proposed a novel model using a combination of suitable MAS Block and image augmentation techniques. The
MAS Block consists of multiple parallel convolutional layers. This block has different filter sizes, followed by some con-
catenation and pooling operations. By using filters of different sizes, the MAS Block enables the network to learn features
at varying levels. The pooling operations help reduce spatial dimensions, while the concatenation operation combines
the outputs of different convolutional layers into a single tensor.

This architecture allows the network to capture both fine-grained details and broader contextual information, leading
to better representation learning and improved performance in numerous applications including image classification and
object detection.10

We also employed data augmentation to increase the size of the glaucoma dataset and hence achieving a reliable
diagnosis performance. To this end, we propose a new combination of data augmentation techniques that significantly
increases the classification accuracy with normalized parameters. This new combination includes cropping, rotation, flip
and zoom data.

Through our extensive experiments, it is shown that the obtained diagnosis accuracy when using the proposed
approach is higher than that of pre-trained networks. In the proposed method, as opposed to traditional approaches, there
is no need to use handcrafted features or measure the geometric optic nerve head structures such as cup to disc ratio,

F I G U R E 1 The main structures of the head of optic nerve that can be seen in of the fundus. It consists of (A) a healthy optical disk and
(B) an optical disc glaucomatous.
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which normally comes with error. Instead, the disease can be diagnosed using the features automatically extracted from
raw images in the dataset.

In the next section, the related works for glaucoma diagnosis is provided. Then, the proposed method will be described
in Section 3. Section 4 is devoted to presentation of the performance evaluation of the proposed method. Finally, we will
present the discussion and conclusion in Sections 5 and 6, respectively.

2 RELATED WORKS

To date, many algorithms for segmenting different layers of the retina have been proposed to diagnose glaucoma. Dividing
the retinal layers helps ophthalmologists diagnose eye diseases accurately. However, accurate extraction of the retinal
layer is very important for calculating various diagnostic parameters such as cup to disc ratio. Current techniques for
diagnosing glaucoma based on retinal layer extraction fall into three categories. The first group is related to cup and disc
area detection algorithms, and CDR index determination. The second group introduces deep learning algorithms based
on CNN for the automatic extraction of features in retinal layers. The third group is deep learning algorithms based on
transfer learning using pre-trained networks.11

Diagnosis of glaucoma needs the calculation of three indicators: optic disc, optic cup, and CDR. The CDR is often
calculated as the ratio of the vertical diameters of the cup and the disc. To find the exact size of the CDR, one usually needs
to calculate the diameter of optical disc and optic cup exactly. In addition, three-dimensional images may be used for this
purpose. However, the determination of the CDR for glaucoma diagnosis is not applicable for all patients. Yuji Hatanaka
et al. have proposed a method for diagnosing glaucoma using the CDR in two-dimensional retinal images. This method
has two steps. First, fundus images are captured using the retinal fundus camera, and the optic disc area is extracted. In
the Second step, the CDR index is determined.

Manual segmentation of the optical disc and optic cup images needs much time. Hence, scores of methods are pro-
vided to automatically split the optical disc and optic cup. Optical disc splitting methods are usually categorized into
pattern-based, modular-based, and pixel-based classification methods. In most pattern-based methods,12,13 the optical
disc is approximated in a circle or ellipse, and therefore the Hough transform is used. In Reference 12, for example, the
edge detection was performed by Sobel method, and then the approximate margin of the optical disc was determined by
Hough transform. To perform optical disc segmentation, Aquino et al.14 simultaneously used morphological and edge
detection methods along with the circular Hough transform. Regarding model-based deformable methods, Lowell and
colleagues14 found the optic disc first. Afterwards, the optical disc was divided using a contour deformation model, which
used a universal elliptical model and a local deformation model. To reduce the changes in the optical disc area, Joshi
et al.15 used strong multidimensional feature spaces extracted from points of interest. In the case of pixel-based classifica-
tion methods, in Reference 16 proposed a method for pixel classification to split the optical disc and optic cup. However,
to train the classification module, selecting pixels and extracting properties from a large number of pixels is challenging.
Cheng et al.17 reduced the number of pixels, optical disc, and optic cup using the superpixel strategy.18 This method is
used to increase the performance of optical disc splitting in superpixel classifications. The optical cup segmentation is
more challenging than optical disc segmentation due to the blurring of optical cup boundaries. Table 1 summarizes the
properties of the related works in the literature.

Retinal fundus images usually use two types of image surface information consist of paleness, and curvature of the
arteries to determine the boundary of the optic cup.19 In Reference 20, the researchers used fundus images to the intensity
of the optic cup extraction threshold. Wong et al.8 combined a variational level set and thresholding to divide the optical
cup. All of these methods classified the optic cup using pallor information. Because the inlet vessels to the cup often bend,
blood vessels were useful to detect the optic cup.15,21 Many other methods such as superpixel were also used to divide the
optic cup. Y. Xu et al.22 described superpixel classification as a low-grade superpixel representation problem.

Another way to diagnose glaucoma is to use convolution neural networks (CNN).23 These networks are focused on
new algorithms for automatic feature extraction.24 Bock et al. suggested a data-driven approach.25 Their method is not
based on the accurate measurement of the CDR index. Instead, they used “special images” idea to obtain features that
are Support Vector Machine (SVM)-classified. Evaluation of the algorithm on 575 from the Erlangen Glaucoma Reg-
istry (EGR) indicated an accuracy of 88%. However, these images are not publically available, and the method cannot be
compared with other methods.

Researchers have used CNN in areas such as artificial intelligence and machine vision. However, their importance
was not noticed until the introduction of ImageNet in 2012, whose primary purpose was to estimate the content of real
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images for automatic detection using the ImageNet dataset.26 Their success was achieved using Graphical Processing
Units (GPU) activation functions such as ReLU, data augmentation methods, and dropout technique.27 The main strength
of CNN architecture is its ability to automatically extract features.28,29

Proper training of CNNs needs labeled data. This is a limiting factor to address in assessing glaucoma and computa-
tional resources. Although data augmentation is valuable to artificially increase a dataset’s size, in the absence of sufficient
data for CNN training, transfer learning is also effective. However, there are some studies that use base deep learning
models in this regard. Chen et al.30 proposed a six-layer CNN architecture including (1) four convolutional and (2) two
fully connected layers for the automatic classification of images of fundus glaucomatous. Another study by Alghamdi
et al.31 used four public and four private datasets to diagnose visual disc abnormalities. They introduced a new approach
by using two CNN networks: first, a CNN is trained and classifies the visual disc area, and another to categorize the visual
disc area into normal, suspicious, and abnormal categories.

As mentioned above, transfer learning could be a useful approach to deal with small training data in glaucoma diag-
nosis. To exploit this strategy, one must obtain a fixed feature extractor by considering the CNN convolution layers as
an extractor and then transfer these features to a linear classifier for training.32 In Reference 5, the analysis was pre-
sented by five different CNN-trained architectures with ImageNet, which is used as a glaucoma classifier. They were
precisely tuned and tested using unique public datasets. The high accuracy and sensitivity of their analysis showed that the
CNN architecture trained by ImageNet was a powerful option for the automatic glaucoma detection algorithm. Carneiro
et al.,33 have shown that CNN models already trained in natural images, such as ImageNet, are very practical in medi-
cal image applications although images’ appearance is significantly different. In another study by Tajbakhsh et al.,34 the
researchers demonstrated the performance of CNN already trained for four medical imaging programs. CNN-trained net-
works with ImageNet can extract features so that where a CNN applies to an image, a specific hidden layer extracts the
features. Finally, the extracted features are classified using SVM, decision tree, k-nearest neighbor (KNN), or Naive Bayes
classification. For example, Barr et al.,35 used pre-trained CNN networks as feature extractors to identify chest pathology.

In Reference 36, is introduced Rethinking the Inception Architecture for Computer Vision. This work proposed
improvements to the original Inception module design by introducing several modifications such as dimension reductions
with 3× 3 convolutions, factorizing larger convolutions into smaller ones, and utilizing label smoothing regularization.

Christian Szegedy et al,37 introduced a modified version of an Inception module called a ‘grid reduction unit’ to
improve efficiency while maintaining accuracy. It explored different variants of convolutional layers and demonstrated
improved performance on image recognition tasks.

Medical image analysis has been widely used to diagnose diseases such as breast cancer, prostate cancer, and so forth.
Recently, due to great success of artificial intelligence techniques, deep learning analysis for medical images has been
widely studied. However, obtaining sufficient medical information is difficult, and the small amount of training data
prevents the improvement of deep learning performance. To solve these issues, various studies have been conducted and
data enhancement is one of the mitigation strategies. For example, Ronneberger et al.,48 added modification, rotation,
and deformation in microscopic images to the model during grid training.

Utilization of data augmentation could be different from one application to another. For example, in learning to recog-
nize human speech, a little noise is added to the voice signal so that the network can learn to recognize words or emotions
even with opaque sounds. In image processing applications, techniques such as rotating and changing the brightness
and cropping the image are used to detect the presence of an object in the image or to find the exact location of several
objects in an image. In image data augmentation, the modifications on images are applied in way so that the statistical
distributions and main properties of the images are preserved. The modified versions of images are generated by image
processing operations such as shifts, reversals, zooms. The new images should be probable and believable. For example,
the rotating 180◦ is not suitable for producing new images of dogs or cats because dogs and cats do not move on the ceil-
ing or in the air. Therefore, the data augmentation techniques should be carefully selected according to the content and
type of data.

Recent deep learning methods such as convolution neural networks are capable of learning features which are inde-
pendent of the location of the object of interest in the image. However, enhancing and adding data by changing rotation,
light, and color can further aid in the learning of independent features in the image. Image data augmentation is usually
applied to training images and not to test images.49

Fundus imaging is an effective and inexpensive tool for screening of retinal diseases. At the same time, deep learning
algorithms can perform similar to or even better than human experts (e.g., physicians) in some image classifications.
One key tool is the use of data enhancement techniques to improve the performance of such models. Commonly used
augmentation methods for eye fundus images include rotation, shearing, and flipping.

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12866 by T

est, W
iley O

nline L
ibrary on [22/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 17 KHAJEHA et al.

3 PROPOSED METHOD

In this section, we describe different steps of our approach for processing glaucoma images. The main part of this model
is a deep convolutional neural network for classifying input glaucoma images.

The CNN consists of several layers. The first layer is a Conv2D layer with 256 filters, each with a kernel size of
(3, 3), and ReLU activation function. It takes input images of size (256, 256, 3). This layer applies convolutional filters to
extract features from the input images. The second layer is Batch Normalization, which normalizes the outputs of the pre-
vious layer to ensure stable training. Third is the MaxPooling2D layer with a pool size of (2, 2), which reduces the spatial
dimensions of the previous layer’s output by selecting the maximum value in each pooling window. This helps in cap-
turing the most important features and reducing the computational complexity. The fourth layer is a Dropout layer with
a dropout rate of 0.4, which randomly sets a fraction of input units to 0 at each update during training, helping to pre-
vent over-fitting. The next few layers follow a similar pattern as the previous layers, with Conv2D, Batch Normalization,
MaxPooling2D, and Dropout layers applied successively.

The proposed network is a convolutional neural network (CNN) with three MAS Blocks that classify images into
predefined classes. Each MAS block consists of three filters: 1× 1, 3× 3, and 5× 5, which are located in the first, second,
and third layers, respectively.

3.1 Data augmentation techniques for fundus images

Classification of medical images plays a key role in patients’ treatment and diagnosis. This process can be performed
through either manual inspection or using artificial intelligence. In the former, a specialist visually inspects images which
is a highly error-prone and time-consuming process. On the other hand, extracting and selecting suitable image features
using classical machine learning techniques is very challenging. Deep neural network is currently an emerging machine
learning method that has shown its potential for various classification tasks. In addition, it has produced promising results
in the classification of medical images.

Furthermore, image data augmentation is a technique that artificially increases the size of the data without new
imaging and only by creating manipulated versions of existing images.50 Training deep neural networks with large-scale
data can lead to more accurate networks. Hence, image data augmentation process can increase the size and diver-
sity of the input images to allow learning detailed properties by the CNN and achieve better understanding of each
image class leading to a so-called generalized model. In this study, we tried using the GAN (Generative Adversarial Net-
work) method for image generation. But, due to the noisy nature of the generated images, the proposed model did not
train well.

3.2 Using MAS block to extract features of fundus images

In the following, we introduce the Multi-Scale Attention Block (MAS Block), a pivotal component that offers significant
advantages in the domain of fundus image feature extraction.51 By incorporating convolutions with different kernel sizes,
an MAS Block can gather contextual information from neighboring pixels in a fundus image. This is particularly useful
for understanding relationships between objects or regions within the image and capturing global context that aids in
distinguishing normal from abnormal areas. Fundus images typically have high-resolution input dimensions that may
lead to increased computational complexity and memory requirements in deep learning models.

The MAS Block is a building block used in deep learning models, particularly in CNNs. It was introduced by the
Google Research team in their paper “Going Deeper with Convolutions” for image classification tasks.37 The MAS Block
aims to capture multi-scale features within an image by applying multiple different-sized filters simultaneously and
concatenating their outputs. This allows the network to learn both local and global patterns effectively.

An MAS Block typically consists of a series of parallel branches, each performing different convolutions on the input
feature maps. These convolutions can include 1× 1, 3× 3, or 5× 5 filters as well as pooling operations. By combining these
different filter sizes together, the model can extract features at various spatial resolutions.

Overall, the MAS Block has been widely adopted in many state-of-the-art CNN architectures due to its ability to capture
diverse scale information efficiently, enabling better performance on image recognition tasks.
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KHAJEHA et al. 7 of 17

In addition to its role in capturing contextual information, the MAS Block operates as a complicated mechanism
for adaptive feature extraction. The incorporation of convolutions with different kernel sizes enables the MAS Block to
dynamically adjust its receptive field, facilitating the extraction of features at multiple scales within a fundus image.
This adaptability is particularly crucial in the analysis of complex structures and subtle variations present in medical
images, allowing the model to recognize detailed patterns, aiding in precise diagnosis. As a fundamental building block
in deep learning models, the MAS Block not only enhances feature extraction but also plays a key role in optimiz-
ing the model’s ability to generalize across diverse fundus images, contributing to its robust performance in real-world
scenarios.

The multi-scale attention block allows the model to capture both fine-grained details and broader contextual infor-
mation simultaneously. By attending to relevant regions at different scales, the model can effectively handle variations in
object sizes, complex scenes, and context-dependent classification scenarios. This network provides a new structure for
the diagnosis of glaucoma. As explained in the introduction, previous research on the diagnosis of the disease has been
based on pre-trained networks or the calculation of the CDR index.

A multi-scale attention block for image classification is a building block or module that combines the concepts of
multi-scale processing and attention mechanisms in CNNs. It aims to improve the performance of image classification
models by capturing contextual information at different scales or resolutions. The multi-scale attention block consists of
the following components:

I. Multi-Scale Feature Extraction: The input image is processed by a set of convolutional layers to extract features at
different scales or levels. These convolutional layers capture information at various receptive field sizes, allowing the
model to capture both local details and global context.

II. Attention Mechanism: Within each scale, an attention mechanism is applied to compute the importance or rele-
vance of different spatial positions or regions. This is typically achieved through self-attention, where each position is
compared to all other positions within the same scale, and attention weights are assigned accordingly. The attention
weights reflect the significance of each position in relation to others within the same scale.

III. Attention Fusion: The attention weights obtained from each scale are combined or fused to create a unified repre-
sentation that incorporates contextual information from multiple scales. This fusion enables the model to have a
comprehensive understanding of the image, considering both local and global relationships.

IV. Integration and Classification: The fused representation is then further processed by subsequent layers, such as fully
connected layers or a classifier, to perform the final image classification task.

In addition to its primary function in integration and classification, the multi-scale attention block plays a key role in
enhancing the model’s robustness. The adaptability of the attention mechanism ensures that the model can effectively
handle variations, making it resilient to noise, diverse image qualities, and potential variations in fundus images. This
adaptability is paramount in real-world applications, where the conditions of capturing images may vary. The multi-scale
attention block’s capacity to capture both local and global context allows the model to generalize well across different
datasets, ensuring consistent performance across a spectrum of glaucoma cases.

Because of high computational demand, most deep learning applications require high powered computing resources.
As the number of layers in a deep neural network increases, the number of required calculations will significantly
increase, and thus using GPUs would be necessary. As the number of layers of deep neural networks increases, more
training data would be needed compared to classical artificial neural networks. The more the training data, the more
accurate the learning for deep multilayer networks can be obtained. Therefore, increasing the amount of data alongside
using GPUs improve the performance of deep neural networks.

There are several software libraries for designing deep learning structures. In this article, a CNN image classifier was
created using Tensorflow. Figure 2 depicts the detailed architecture of our proposed model.

4 EXPERIMENTAL RESULTS

In this study, we used an HP Proliant DL380 G10 and an NVIDIA Quadro RTX 5000 16 GB graphics card to implement
and evaluate the proposed method. We also used Python version 3.9 and CUDA Toolkit 11.3 for the graphics card to run
the proposed model. In the following section, the details of setting the parameters and results of each module are provided
along with the performance criteria of the whole system.
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8 of 17 KHAJEHA et al.

F I G U R E 2 Proposed convolutional neural network architecture.

T A B L E 2 Number of images in public datasets labeled with glaucoma.

Dataset Glaucoma Normal Total

HRF52 27 18 45

Drishti-GS16 70 31 101

sjchoi8653 101 300 401

RIM-ONE54 194 261 455

ACRIMA5 396 309 705

T A B L E 3 Number of images of training ACRIMA, RIM-ONE and Sjchoi86 datasets after data augmentation.

Dataset Glaucoma Normal Total

ACRIMA 2219 1729 3948

RIM-ONE 1085 1463 2548

sjchoi86 576 1680 2256

4.1 Dataset

To train a CNN model, a large collection of retina images is required. Five public datasets are available for glaucoma. The
specifications of these datasets are listed in Table 2.

ACRIMA5 clinical dataset is the largest public dataset for glaucoma diagnosis. This dataset contains 705 labeled
images, including 396 glaucoma and 309 normal images. Patients provided the images with prior consent and by the ethi-
cal principles and standards set out in the 1964 Helsinki Declaration. During the examination, all patients were selected by
specialists based on clinical criteria and findings. Some images have been discarded due to noise and poor contrast. They
were taken with a Topcon TRC retina camera and an IMAGE net imaging system with a 35◦ field of view. All ACRIMA
dataset images are annotated by two glaucoma experts who have 8 years of experience. No other clinical information was
considered when labeling the images.

To train a CNN network, a large collection of retina images is required. Therefore, according to Table 2, we have used
ACRIMA, RIM-ONE, and Sjchoi86 separate datasets to train the model. We almost included 10% of the data in these
datasets as a test set and examined the results of various experiments on this data set. Since the number of images in
this dataset is not enough to train the model, we have used the data augmentation technique in this study to increase the
number of images. Table 3 shows the number of glaucoma and non-glaucoma images of training data after performing
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data augmentation on the ACRIMA, RIM-ONE, and Sjchoi86 datasets. As one of the most popular techniques to evaluate
the classification performance, K-fold cross-validation was used with K = 10.

4.2 Tuning hyperparameters

4.2.1 Tuning optimization functions

To improve the accuracy and performance, we have used three optimizer functions in the proposed model. Two major
performance metrics including loss function and are used to measure the performance of the model after each iteration
According to Table 4, the highest accuracy has been obtained for the Adam optimizer.

The Loss function is equivalent to the mean square error (MSE) which can be calculated via Equation (1) where n is
the number of data points, Y is the vector of observed, and ̂Y is the predicted values:

MSE = 1
n

n∑

i=1

(
Yi − ̂Yi

)2
(1)

In other words, the MSE is the mean ( 1
n

∑n
i=1) of the squares of the errors

(
Yi − ̂Yi

)2
. This is an easily computable

quantity for a particular sample.

4.2.2 Tuning nonlinear functions

In the proposed model, we use three nonlinear functions Elu, ReLU, and Tanh. According to Table 5, the highest accuracy
was obtained for the Elu function.

The proposed model includes three stages of preprocessing, training, and model evaluation. In the first step, ini-
tial preprocessing consists of normalization, and unsharp masking (USM) on all training, validation, and testing data
for each image in the entire dataset. We used the unsharp masking technique to enhance the quality of fundus images
and reduce the natural noise. Using this technique, some image features such as edges, boundaries, or contrast are
improved. In the second stage, we trained the proposed neural network through 200 iterations. Finally, in the third
step, which is model evaluation, we evaluate the trained model and checked the accuracy and loss obtained on the
experimental data.

In this study, the proposed model was evaluated on the ACRIMA, RIM-ONE and Sjchoi86 datasets. By reviewing and
comparing the results obtained from the model, the lack of data in the training phase results in over-fitting the data of
the experimental set (Table 6). According to Table 6, the accuracy of the model in the training phase is very good, but it
is low in the testing phase, and it indicates the over-fitting phenomenon.

T A B L E 4 Comparison of optimizer functions in the proposed model.

Optimizer functions Test accuracy (%) Test loss

Adam 97.18 12.2

Adamx 87.32 26.4

SGD 78.87 40.2

T A B L E 5 Comparison of nonlinear functions in the proposed model.

Activation function Test accuracy (%) Test loss

Elu 97.18 12.2

ReLU 90.14 22.9

Tanh 87.32 26.2
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10 of 17 KHAJEHA et al.

T A B L E 6 Accuracy obtained in ACRIMA, RIM-ONE and Sjchoi86 datasets before data augmentation technique.

Dataset Training accuracy (%) Test accuracy (%)

ACRIMA 99.63 67.6

Sjchoi86 83.4 23.6

RIM-ONE 85.6 21.1

F I G U R E 3 An example of data augmentation on a sample of the fundus Image.

F I G U R E 4 Accuracy in ACRIMA dataset.

Additionally, given the disparity in image quantities between the ACRIMA dataset and the RIM-ONE and Sjchoi86
datasets, Specifically, the images in the ACRIMA dataset were artificially augmented through the utilization of data
augmentation techniques.

The data augmentation step is applied before preprocessing stage, i.e. before normalization and unsharp masking.
Data augmentation techniques including operations such as rotation range of 10◦, zooming range of 0.2, shearing

range of 0.2, horizontal flip, height shift range, and width shift range of 10% are shown in Figure 3. This figure depicts
the influence of data augmentation on a subset of fundus images, potentially enhancing the generalization and resilience
of a machine learning model. The visualization showcases the original fundus image alongside its diverse augmented
versions, serving to exemplify the capacity of data augmentation in generating varied renditions of the original image.
This process aims to furnish the model with a more extensive array of instances for learning purposes.

Note that the data augmentation is performed only for training data. Therefore, the validation and testing conditions
are the same as in the previous experiment. Figure 4, shows the training and validation accuracy of a convolutional
Neural Network (CNN) over time. The x-axis represents the number of training epochs, while the y-axis represents the
accuracy of the model on the training and validation datasets. According to Figure 4, is observed how the accuracy of the
CNN model changes as it is trained on the training data and then evaluated on the validation data. We aim to observe a
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concurrent increase in both the training and validation accuracy over time, signifying the model’s adeptness in learning
and effectively generalizing to novel data. Conversely, if the training accuracy demonstrates persistent improvement while
the validation accuracy reaches a plateau or diminishes, this could suggest potential over-fitting of the model to the
training data, thus hindering its generalization capabilities.

4.3 Effect of using MAS block

In this subsection, we delve into the impact of incorporating the Multi-Scale Attention (MAS) Block within our proposed
framework. To thoroughly evaluate its impact, we compared the performance of our CNN model with and without the
MAS Block. The results demonstrated a substantial increase in accuracy when utilizing the MAS Block, underlining its
pivotal role in enhancing the model’s predictive capabilities.

Our experiments demonstrated that the MAS Block effectively captures multi-scale features within fundus images,
allowing the model to discern intricate patterns crucial for accurate diagnosis. By applying multiple filters simultaneously
in a series of parallel branches, the MAS Block facilitates the extraction of features at various spatial resolutions. This
adaptability is especially crucial in analyzing complex structures and subtle variations present in medical images. The
MAS Block’s ability to capture both local and global context contributes significantly to the model’s improved performance
in distinguishing normal from abnormal areas within fundus images. As shown in Table 7, utilizing the MAS Block
resulted in an increase in accuracy by 3.29%.

Furthermore, the integration of the MAS Block into our framework showcases its efficiency in optimizing the model’s
ability to generalize across diverse fundus images. Despite the additional complexity introduced by the MAS Block, the
increase in accuracy is substantial, demonstrating its robustness and utility in real-world scenarios. These findings under-
score the MAS Block’s instrumental role in advancing the accuracy and efficacy of our proposed model for glaucoma
diagnosis.

4.4 Performance metrics of the proposed model

Here, the overall performance of our model will be discussed. The confusion matrix consists of actual and predicted
classification results. The performance of such systems is usually assessed using the data in this matrix. This matrix is
used to extract some important criteria such as accuracy, precision, recall, F-measure score and MCC etc. Table 8 shows
the Confusion Matrix for a two-class classifier.

To facilitate the evaluation of the performance of the glaucoma diagnosis system, three criteria for evaluating the
Accuracy (Equation (2)), Precision (Equation (3)), Recall (Equation (4)), and F-measure score (Equation (5)) and MCC
(Matthews Correlation Coefficient) (Equation (6)) can be used.55

The F-measure score is commonly used in imbalanced datasets because it provides a balanced evaluation of a classi-
fier’s performance, taking into account both precision and recall. In imbalanced datasets, where the number of instances
in different classes is uneven, accuracy alone may not be a reliable measure of a model’s performance. When a dataset
is imbalanced, accuracy can be misleading because a classifier can achieve high accuracy by simply predicting the

T A B L E 7 The effect of MAS block.

Accuracy % Precision % Recall % F-measure score % MCC %

Baseline without MAS block 90.14 90.47 92.68 91.77 79

Baseline with MAS block 97.18 100 95.12 97.06 94.43

T A B L E 8 Confusion matrix for classification of two classes.

Predicted positive Predicted negative

Actual positive TP FN

Actual negative FP TN
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T A B L E 9 Results of performance evaluation of our model and pre-trained models.

# Model name Accuracy % Precision % Recall %
F-Measure
score % MCC %

1 DensNet201 70.42 78.79 65.00 70.02 42.18

2 InceptionResNetV2 81.69 90.91 75.00 80.79 64.95

3 InceptionV3 63.38 62.07 90.00 75.99 24.40

4 MobileNet 73.24 78.38 72.50 74.80 46.35

5 Resnet101 84.51 100 72.50 81.71 73.15

6 Resnet152V2 74.65 82.35 70.00 74.58 50.28

7 VGG 16 84.51 96.77 75.00 82.62 71.77

8 VGG 19 83.10 96.67 72.50 80.78 69.55

9 Xception 63.38 93.75 37.50 49.73 40.68

10 ConvNeXtTiny 64.79 94.12 40.00 52.33 42.73

11 ConvNeXtBase 76.06 89.66 65.00 73.26 55.82

12 ConvNeXtLarg 76.06 87.10 67.50 74.36 54.59

13 Our model 97.18 100 95.12 97.06 94.43

majority class for most instances, while performing poorly on the minority class. This can lead to a false sense of the
model’s effectiveness. The F-measure score, which combines precision and recall into a single metric, is particularly use-
ful in imbalanced datasets because it considers both false positives (precision) and false negatives (recall), providing a
more comprehensive assessment of the classifier’s ability to correctly identify instances from all classes.

In this study, we employed Equation (5) to compute the F-measure score. The parameter β regulates the emphasis on
recall in relation to precision. A higher β value assigns greater weight to recall, whereas a lower β value assigns greater
weight to precision. Our proposed model aims to reduce the occurrence of false positives (FP). To accomplish this, we
have specified the β as 1.2 in Equation (5), thereby highlighting the significance of recall over precision.

The variables accuracy, precision, recall, F-measure score and MCC (Matthews Correlation Coefficient) are perfor-
mance metrics commonly used in classification tasks to evaluate the quality of a machine learning model. The variables
TP, TN, FP, and FN stand for true positives, true negatives, false positives, and false negatives, respectively.

The obtained variables are shown in Table 9 (#13) according to the data of the evaluation section of the proposed
model for the data in Table 3.

Accuracy = TP + TN
TN + FP + TP + FN

(2)

Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

F −Measure score =
(
1 + 𝛽

2) Precision × Recall
𝛽

2 × (Precision) + Recall
(5)

MCC = (TP × TN − FP × FN)
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6)

5 DISCUSSION

Artificial intelligence, such as machine learning and deep learning, has been widely used in various fields, including
cancer treatment, biomedical information, industrial electronics, the Internet of Things, machine translation, and more.
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In ophthalmology, artificial intelligence has shown great potential in diagnosing various eye diseases, including diabetic
retinopathy, glaucoma, retinopathy, and OCT (optical coherence tomography). These algorithms have performed well in
image classification and evaluation and have even been comparable to human clinicians. However, challenges remain in
clinical and technical aspects, including algorithm interpretability by physicians and patients, and potential over-fitting
due to small and imbalanced datasets. The proposed method has solved the problem of over-fitting to an extent and
achieved promising results in diagnosing glaucoma using fundus images, but this limitation has not been fully resolved.
Although the data will be increased by using the image augmentation technique to solve the over-fitting problem, there
is a possibility that the model may make an error in the testing section and make an incorrect diagnosis, which is caused
by not training the proposed model with a publicly available dataset with a large number of glaucoma data samples.

In this study, we addressed the diagnosis of glaucoma using a deep learning approach. First, we applied raw data to
our model based on the obtained results. Because of the small amount of data in the training phase, the phenomenon
of over-fitting occurred in the model. To reduce the effect of over-fitting, we presented the use of the data augmentation
technique and adding MAS Block. And trained the proposed model after adding dataset images on the dataset images
in Table 3.

The results of the performance of the proposed model with data augmentation and adding MAS Block were evaluated
using measures like accuracy, precision, recall, F-measure score and MCC (Table 9). Figure 4 show the amount of accuracy
measured in the model. Afterward, we compared the performance of the proposed model with 12 pre-trained networks.
In order to evaluate and compare the performance of the proposed model with pre-trained networks, we used the same
test dataset for both the proposed model and the pre-trained networks. The results of which are shown in Table 9. Based
on the findings in Table 9, the performance of Resnet101 and VGG16 models is higher than in comparison with other
pre-trained networks. While the performance of the proposed model is more than in comparison with these two models.
It should be noted that the results of Table 9 are based on the implementation of the methods by the researchers of this
article and testing on the same test set.

Extensive research has been done on the diagnosis of glaucoma using fundus images on images of the ACRIMA
dataset. The results of different methods of diagnosing glaucoma are shown in Table 11. These results are based on reports
presented in different articles, which can have different test data sets. As an example, the accuracy of InceptionV3 is
three different values, which include of 93.87, 98.25, and 98.5. These results are also given in this article to make a fair
comparison. Another important parameter for comparing different methods is the number of parameters of models. In
Table 10, the number of parameters of pre-trained models.

As per the findings presented in Table 11, some methods such as DenseNet56 have higher accuracy compared to the
proposed method. However, these methods have more parameters compared to the proposed method (Table 10), which

T A B L E 10 Number of parameters for pre-trained models.

Model name # Parameters (in millions)

DenseNet201 20.2

InceptionResNetV2 59.9

InceptionV3 23.9

MobileNet 4.3

Resnet50 25.6

Resnet101 44.7

Resnet152V2 60.4

VGG 16 138.4

VGG 19 143.7

Xception 22.9

ConvNeXtTiny 28.6

ConvNeXtBase 88.5

ConvNeXtLarg 197.8

Our model 3.4
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T A B L E 11 Comparison of different results of glaucoma diagnosis in ACRIMA dataset.

Title Network Accuracy (%)

53 Xception 70.00

ResNet-50 84.00

GoogLeNet 87.00

ResNet-152 83.00

5 Xception 96.05

47 Inception V3 98.25

VGG19 92.64

ResNet50 95.58

57 Alex Net 99.50

InceptionV3 98.50

InceptionResNetV2 99.00

NasNet-Large 99.50

56 AlexNet 96.23

GoogleNet 91.51

InceptionV3 93.87

XceptionNet 98.11

ResNet50 95.75

SqueezeNet 95.75

ShuffleNet 96.23

MobileNet 98.58

DenseNet 99.53

InceptionResNet 96.23

NasNet-Large 96.23

requires more computation power and resources. For the DenseNet method, the number of parameters of model is about
6 times of the proposed method. It is also noteworthy that Sreng et al.56 merely acknowledged the presence of a significant
class imbalance in the ACRIMA dataset and did not take steps to address it during their research.

6 CONCLUSIONS

Fundus images are currently used as a complement to other important clinical parameters in the diagnosis and pro-
gression of glaucoma. This paper demonstrates a process of classifying fundus images using CNNs that has a deep
learning architecture. Although there are various algorithms that classify images, CNN is the standard method. One of
the challenges on CNN is the need for a large number of images to train the model. In this article, we used of the data aug-
mentation technique and MAS Block to reduce model over-fitting, improve image classification accuracy, and increase
model accuracy by 97.18%.

The patient’s clinical findings, and other ophthalmologic images such as OCT, Pentacam, Perimetry, and genetic test-
ing are data of a different nature, each offering a different and potential perspective on the patient’s condition. This type of
data, along with a comprehensive glaucoma diagnosis application could be a new approach to enhance diagnostic accu-
racy. An accurate and early diagnosis of glaucoma is essential for early treatment before the patient begins to permanently
lose vision. One of the limitations of this study is the lack of access to the OCT and Perimetry data of the patients. Today,
with the advent of smartphones and the possibility of installing various applications, the authors of this study suggest the
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development of a proposed model using OCT data And perimetry data of each patient on smartphones as a next step that
can be made available to the public as a glaucoma screening program.

CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

PEER REVIEW
The peer review history for this article is available at https://www.webofscience.com/api/gateway/wos/peer-review/10
.1002/eng2.12866.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no datasets were generated during the current study.

ORCID
Mansoor Fateh https://orcid.org/0000-0003-2133-3480

REFERENCES
1. Ham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through

2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081-2090.
2. Bourne RRA. Worldwide glaucoma through the looking glass. Br J Ophthalmol. 2006;90(3):253-254.
3. Selvathi D, Prakash NB, Gomathi V, Hemalakshmi GR. Fundus image classification using wavelet based features in detection of glaucoma.

Biomed Pharmacol J. 2018;11(2):795-805.
4. Soanes M, Essa K, Butt H. Testing the viability of measuring intraocular pressure using soundwaves from a smartphone. Eng Rep.

2021;3(7):12355-12369.
5. Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A. CNNs for automatic glaucoma assessment using fundus images: an

extensive validation. Biomed Eng Online. 2019;18:1-19.
6. Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, Ujjwaft Syed Tabish A. Drishti-gs: retinal image dataset for optic nerve head (onh)

segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). IEEE; 2014:53-56.
7. Morales S, Naranjo V, Angulo J, Alcañiz M. Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans

Med Imaging. 2013;32(4):786-796.
8. Wong DWK, Liu J, Lim JH, et al. Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. 2008

30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2008:2266-2269.
9. Goodfellow I, Bengio Y, Courville A. Deep Learning (Adaptive Computation and Machine Learning Series). MIT press; 2016:321-359.

10. Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence. 2017;31(1).

11. Zhang Y, Zhang K, Ding Y, et al. Deep transfer learning from ordinary to capsule esophagogastroduodenoscopy for image quality
controlling. Eng Rep. 2023:e12776.

12. Zhu X, Rangayyan RM. Detection of the optic disc in images of the retina using the Hough transform. In: 2008 30th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2008:3546-3549.

13. Yin F, Liu J, Ong SH, et al. Model-based optic nerve head segmentation on retinal fundus images. In 2011 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE; 2011:2626-2629.

14. Aquino A, Gegúndez-Arias ME, Marín D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection,
and feature extraction techniques. IEEE Trans Med Imaging. 2010;29(11):1860-1869.

15. Joshi GD, Sivaswamy J, Krishnadas SR. Optic disk and cup segmentation from monocular color retinal images for glaucoma19 assessment.
IEEE Trans Med Imaging. 2011;30(6):1192-1205.

16. Abramoff MD, Alward WLM, Greenlee EC, et al. Automated segmentation of the optic disc from stereo color photographs using
physiologically plausible features. Invest Ophthalmol Vis Sci. 2007;48(4):1665-1673.

17. Cheng J, Liu J, Yanwu X, et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans
Med Imaging. 2013;32(6):1019-1032.

18. Cheng J, Tao D, Wong DWK, Liu J. Quadratic divergence regularized SVM for optic disc segmentation. Biomed Opt Express.
2017;8(5):2687-2696.

19. Brezinski ME, Tearney GJ, Bouma BE, et al. Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. Am
J Cardiol. 1996;77(1):92-93.

20. Joshi GD, Sivaswamy J, Karan K, Krishnadas SR. Optic disk and cup boundary detection using regional information. In 2010 IEEE
International Symposium on Biomedical Imaging: from Nano to Macro, IEEE; 2010:948-951.

21. Wong DWK, Liu J, Lim JH, Li H, Wong TY. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images.
Medical Imaging 2009: Computer-Aided Diagnosis. SPIE; 2009;7260:459-466.

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12866 by T

est, W
iley O

nline L
ibrary on [22/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/eng2.12866
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/eng2.12866
https://orcid.org/0000-0003-2133-3480
https://orcid.org/0000-0003-2133-3480


16 of 17 KHAJEHA et al.

22. Xu Y, Duan L, Lin S, et al. Optic cup segmentation for glaucoma detection using low-rank superpixel representation. In: Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14–18, 2014,
Proceedings, Part I 17, Springer International Publishing; 2014:788-795.

23. Rostami M, Muhammad U, Forouzandeh S, Berahmand K, Farrahi V, Oussalah M. An effective explainable food recommendation using
deep image clustering and community detection. Intell Syst Appl. 2022;16:200157-200170.

24. Chen J, Chen D, Liu G. Using temporal convolution network for remaining useful lifetime prediction. Eng Rep. 2021;3(3):12305-12321.
25. Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G. Glaucoma risk index: automated glaucoma detection from color fundus images.

Med Image Anal. 2010;14(3):471-481.
26. Russakovsky O, Deng J, Hao S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211-252.
27. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting.

J Mach Learn Res. 2014;15(1):1929-1958.
28. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556. 2014.
29. Rostami M, Oussalah M, Farrahi V. A novel time-aware food recommender-system based on deep learning and graph clustering. IEEE

Access. 2022;10:52508-52524.
30. Chen X, Yanwu X, Wong DWK, Wong TY, Liu J. Glaucoma detection based on deep convolutional neural network. In 2015 37th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE; 2015:715-718.
31. Alghamdi HS, Tang HL, Waheeb SA, Peto T. Automatic optic disc abnormality detection in fundus images: a deep learning approach. In:

Proceedings of the Ophthalmic Medical Image Analysis International Workshop, vol. 3, no. 2016. University of Iowa, 2016.
32. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? Adv Neural Inf Process Syst. 2014;27.
33. Carneiro G, Nascimento J, Bradley AP. Unregistered multiview mammogram analysis with pre-trained deep learning models. In:

International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer International Publishing;
2015:652-660.

34. Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE
Trans Med Imaging. 2016;35(5):1299-1312.

35. Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. Medical Imaging
2015: Computer-Aided Diagnosis. Vol 9414. SPIE; 2015:215-221.

36. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition; 2016:2818-2826.

37. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015;1-9.

38. Muramatsu C, Nakagawa T, Sawada A, et al. Determination of cup-to-disc ratio of optical nerve head for diagnosis of glaucoma on stereo
retinal fundus image pairs. Medical Imaging 2009: Computer-Aided Diagnosis. SPIE; 2009;7260:1028-1035.

39. Hatanaka Y, Noudo A, Muramatsu C, et al. Automatic measurement of cup to disc ratio based on line profile analysis in retinal images.
In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2011:3387-3390.

40. Mookiah MR, Krishnan UR, Acharya CM, Lim AP, Suri JS. Data mining technique for automated diagnosis of glaucoma using higher
order spectra and wavelet energy features. Knowl-Based Syst. 2012;33:73-82.

41. Pathan S, Kumar P, Pai RM, Bhandary SV. Automated segmentation and classifcation of retinal features for glaucoma diagnosis. Biomed
Signal Process Control. 2021;63:102244.

42. Elangovan P, Nath MK. En-ConvNet: A novel approach for glaucoma detection from color fundus images using ensemble of deep
convolutional neural networks. Int J Imaging Syst Technol. 2022;32(6):2034-2048.

43. Elangovan P, Nath MK. Glaucoma assessment from color fundus images using convolutional neural network. Int J Imaging Syst Technol.
2021;31(2):955-971.

44. Nath MK, Dandapat S. Differential entropy in wavelet sub-band for assessment of glaucoma. Int J Imaging Syst Technol. 2012;22(3):161-165.
45. Elangovan P, Nath MK, Mishra M. Statistical parameters for glaucoma detection from color fundus images. Procedia Comput Sci.

2020;171:2675-2683.
46. Madhusudhan M, Malay N, Nirmala SR, Samerendra D. Image processing techniques for glaucoma detection. In: Advances in Comput-

ing and Communications: First International Conference, ACC 2011, Kochi, India, July 22–24, 2011, Proceedings, Part III 1, pp. 365–373.
Springer Berlin Heidelberg; 2011.

47. Shyamalee T, Meedeniya D. CNN based fundus images classification for glaucoma identification. In: 2022 2nd International Conference
on Advanced Research in Computing (ICARC), IEEE; 2022:200-205.

48. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III
18, pp. 234–241. Springer International Publishing, 2015.

49. El-Amir H, Hamdy M, El-Amir H, Hamdy M. Data wrangling and preprocessing. Deep Learning Pipeline: Building a Deep Learning Model
with TensorFlow. Apress; 2020:147-206.

50. Jiang K, Xiong Z, Yang Q, Chen J, Chen G. An interpretable ensemble method for deep representation learning. Eng Rep. 2023;e12725.
51. Yang S, Xing L, Li Y, Chang Z. Implicit sentiment analysis based on graph attention neural network. Eng Rep. 2022;4(1):12452-12467.
52. Budai A, Bock R, Maier A, Hornegger J, Michelson G. Robust vessel segmentation in fundus images. Int J Biomed Imaging.

2013;2013:154860-154870.

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12866 by T

est, W
iley O

nline L
ibrary on [22/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KHAJEHA et al. 17 of 17

53. Serte S, Serener A. A generalized deep learning model for glaucoma detection. In: 2019 3rd International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT), IEEE; 2019:1-5.

54. Fumero F, Alayón S, Sanchez JL, Sigut J, Gonzalez-Hernandez M. RIM-ONE: an open retinal image database for optic nerve evaluation.
In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), IEEE; 2011:1-6.

55. Anbalagan T, Nath MK, Vijayalakshmi D, Anbalagan A. Analysis of various techniques for ECG signal in healthcare, past, present, and
future. Biomed Eng Adv. 2023;6:100089-100116.

56. Sreng S, Maneerat N, Hamamoto K, Win KY. Deep learning for optic disc segmentation and glaucoma diagnosis on retinal images. Appl
Sci. 2020;10(14):4916-4934.

57. Taj IA, Sajid M, Karimov KS. An ensemble framework based on deep CNNs architecture for glaucoma classification using fundus
photography. Math Biosci Eng. 2021;18(5):5321-5347.

How to cite this article: Khajeha HR, Fateh M, Abolghasemi V. Diagnosis of glaucoma using multi-scale
attention block in convolution neural network and data augmentation techniques. Engineering Reports.
2024;e12866. doi: 10.1002/eng2.12866

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12866 by T

est, W
iley O

nline L
ibrary on [22/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Diagnosis of glaucoma using multi-scale attention block in convolution neural network and data augmentation techniques 
	1 INTRODUCTION
	2 RELATED WORKS
	3 PROPOSED METHOD
	3.1 Data augmentation techniques for fundus images
	3.2 Using MAS block to extract features of fundus images

	4 EXPERIMENTAL RESULTS
	4.1 Dataset
	4.2 Tuning hyperparameters
	4.2.1 Tuning optimization functions
	4.2.2 Tuning nonlinear functions

	4.3 Effect of using MAS block
	4.4 Performance metrics of the proposed model

	5 DISCUSSION
	6 CONCLUSIONS

	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

