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Abstract—The proliferation of the Internet of Things (IoT) has
incentivised extending cloud resources to the edge in what is
deemed fog computing. The latter is manifesting as an ecosystem
of connected clouds, geo-dispersed and of diverse capacities. In
such ecosystem, workload allocation to fog services becomes a
non-trivial challenge. Users’ demand at the edge is diverse, which
does not lend to straightforward resource planning. Conversely,
running services at the edge may leverage proximity, but it comes
at higher operational cost let alone increasing risk of resource
straining. Consequently, there is a need for intelligent yet scalable
allocation solutions that counter the adversity of demand, while
efficiently distributing load between the edge and farther clouds.
Machine learning is increasingly adopted in resource planning.
This paper proposes a federated deep reinforcement learning
system, based on deep Q-learning network (DQN), for workload
distribution in a fog ecosystem. The proposed solution adapts
a DQN to optimize local workload allocations, made by single
gateways. Federated learning is incorporated to allow multiple
gateways in a network to collaboratively build knowledge of
users’ demand. This is leveraged to establish consensus on the
fraction of workload allocated to different fog nodes, using lower
data supply and computation resources. System performance is
evaluated using realistic demand from Google Cluster Workload
Traces 2019. Evaluation results show over 50% reduction in failed
allocations when spreading users over larger number of gateways,
given fixed number of fog nodes. The results further illustrate
the trade-offs between performance and cost under different
conditions.

Index Terms—Workload Allocation, Federated Learning, Deep
Q-network, Fog networks, Federated Average Aggregation

I. INTRODUCTION

The number of Internet of Things (IoT) devices currently

exceeds 13 billion, and is expected to reach 34.7 billion by

the end of 2028 [1]. This is expected to increase the demand

for cloud services of data offload, storage and processing

to unprecedented levels [2]. Orthogonally, time-criticality and

constraints on data sharing due to such reasons as cost and

privacy, increasingly favour proximity between end-users and

cloud services. This has incentivised shifting towards an edge-

to-cloud ecosystem, deemed as a form of fog computing [3],

[4]. The latter is a set of clouds: geo-dispersed, connected, de-

centralised and of variant resource capacity and locality to end-

users. While the extension promises significant advantages,

it comes with non-trivial challenges. The geo-dispersion and

diversity of operational cost, energy efficiency and constraints,

between the edge and the cloud, introduces trade-offs between

performance and cost [5], [6]. Evidence from existing research

and realistic cloud system indicates that edge resources are

sparse and operationally expensive [7], [8]. This requires

selective allocation to the edge on need-basis, to reduce the risk

of resource straining and Quality of Service (QoS) degradation,

for applications in need of the edge. Selective allocation is

further need to maintain sustainable operational cost.

Orthogonally, local demand at the edge is known to be

highly variant [9], and differs across multiple geographic

regions (i.e. hot spots). This hinders the ability to plan edge

resources as local demand is significantly less predictable. The

complexity is amplified when entwining locality with user

intents for data-consuming services, requiring user-generated

data. Aside from privacy constraints, data offload to the ecosys-

tem is associated with a network and storage costs, correlating

with data size. This presents a trade-off between favouring the

edge, to reduce network cost and the cloud to reduce storage

counterpart.

Machine learning has been increasingly adopted in resource

allocation to address some of the above challenges in fog

computing [10], [11]. However, traditional central learning

requires centralized data collation, in turn demand high stor-

age capacity and computation power to learn over large

datasets [12]. This further has a higher likelihood of conflicting

with user intents for privacy and reduction in data offload

cost. Instead, federated learning poses attractive opportunities

to address these challenges. It enables collaborative learning,

over distributed data owned by non-trusting entities [13]. This

can be leveraged to learn patterns of local demand at the

edge, in a scalable and intent-compliant manner, and optimized

workload allocation across fog nodes to minimize operational

costs while complying with user-intents. Moreover, federated

learning enables fog providers to withhold business-sensitive

information regarding the state of their fog nodes from end-

users, while still optimizing workload allocation.

This work proposes a novel federated deep reinforcement

learning system, for intelligent resource allocation in multi-

domain fog ecosystems. The proposed solution combines deep

Q-learning networks (DQN) with federated learning, to create

a federated DQN system. Here, localized DQN agents train

at the user side, while trained models are aggregated at the

fog side. In doing so, the solution mitigates the adversity



of local demand through consensus among access gateways,

connecting local groups of users. Complementary, business-

private information of fog nodes is preserved, by limiting input

to access agents to the cost of fog resources. The contributions

of this paper are three-fold:

• Propose a federated learning system, based on DQN

for optimized resource allocation in multi-domain fog

ecosystem, given limited information sharing.

• Formulate the proposed DQN structure and the mecha-

nism for model aggregation, and device a reward scheme

that maximizes compliance with user intents, while min-

imizing operational cost.

• Evaluate the performance of the proposed system for joint

data offloading and workload allocation.

The remainder of this paper is organized as follows: Section II

reviews state-of-the-art work in resource allocation in fog

systems. Section III outlines the model of the fog ecosystem

and formulates the problem of request allocation. Section IV

describes the proposed federated learning system, the structure

of the proposed DQN and the model aggregation mechanism

and introduces the respective algorithms. Section V evaluates

the performance of the proposed system under different condi-

tions. Finally, Section VI draws the conclusions of this work.

II. RELATED WORK

In recent years, the issue of workload allocation in fog

networks has attracted increasing attention. The work of [14]

proposes an approximation method by separating the main

problem into three sub-problems, for optimal workload allo-

cation to balance delay and minimize power consumption in

a Fog-Cloud computing framework. However, this study does

not consider the heterogeneity between fog and cloud nodes,

which can negatively impact the algorithm’s efficiency.

The work of [15] introduces a distributed framework that

utilizes dual decomposition and develops two distributed al-

gorithms to achieve optimization of workload. Fog nodes

collaborate through an offload forwarding strategy, enabling

them to transfer their workload to other fog nodes. With

two algorithms that are based on the subgradient method

with dual decomposition and the distributed ADMM-VS. The

framework enhances the performance of fog computing. Even

though distribution and privacy protection are considered in the

research [15], it still faces issues when dealing with fog node

communication. It needs to find a balance between workload

and node communication, and the information of fog nodes is

shared under the offload forwarding strategy. The work in [16]

employs a deep reinforcement learning algorithm to achieve

resource allocation in a dynamic fog computing environment.

A deep Q-network (DQN) is applied to optimize resources

to maximize the number of requests that the whole network

can satisfy, which performs well in the result of the research.

However, it only focuses on a single DQN system, lacking

considerations of cooperation among multiple DQNs.

Based on the issues of workload allocation in fog networks

above, the implementation of federated learning is being con-

sidered. In [17], an integrated edge-AI framework of deep

reinforcement learning and federated learning is proposed to

optimize edge computing, caching, and communication in mo-

bile edge systems. The research in [18] proposes a distributed

federated learning algorithm for the resource-constrained fog

computing environment to reduce communication latency and

energy consumption. Even though the solution provision a

certain number of agents for local training, the performance of

local models is not considered as a decision factor to trigger

model aggregation. This causes significant increase in resource

utilisation and churn in model performance. In [19], a federated

learning framework named FedFog is proposed to balance

the trade-off between network communication efficiency and

model accuracy and achieve network-aware optimization of

wireless fog-cloud systems. However, there is still a possibility

of experiencing high latency as the aggregation occurs in the

cloud layer, which is located at a far distance. To address the

issues from the above discussion, we proposed a distributed

federated learning system based on deep reinforcement learn-

ing, for workload allocation in multi-domain fog ecosystems

where information sharing is limited across domains.

TABLE I
SUMMARY OF NOTATION

Notation Definition
g,G Number and set of gateways
f,F Number and set of fog nodes
Tc, Tm, Te Cloud tier, Medium tier, Edge tier

Cf Capacity of CPU of each fog node f

Mf Capacity of memory of each fog node f

Bf Bandwidth on the path between f and g

D
f,T
g , D

f
g , D

T
g Distance between g and f per tier T

d
f
g Hop count between gateway g and fog node f

Ef Energy cost of each fog node f

Sg Number of requests for gateway g

cs Required CPU of the request s
ms Required memory of the request s
bs Required bandwidth of the request s
ls Latency priority of the request s
αs
g,f

the binary decision variable of s

θ
s,c
f

, θ
s,m
f

CPU and memory cost of serving s at f

θs
f,g

network cost of sending s response back from f to g

III. THE FOG ECOSYSTEM AND PROBLEM OF RESOURCE

ALLOCATION

This section outlines the model of the fog ecosystem and

formulates the problem of resource allocation. The summary

of notation for some key parameters is shown in Table I.

A. The Ecosystem Model

We consider a fog ecosystem the inline with the OpenFog

reference architecture [4], and modeled similar to [20] with

suitable adaptations. It is composed of three resource tiers,

shown in Figure 1: the edge tier, medium tier and cloud tier.

Each tier T , has FT ⊆ F set of fog nodes, and those in

the same tier are assumed to have a comparable resource

configuration. This means they have similar CPU and memory

capacity, as well as energy cost. They are too connected

by paths of similar bandwidth capacity and range of metric



distance DT to G set of access gateways. Each gateway is

connected from one side to F fog nodes, and from the other

side to a group of end-devices that request fog services, with

different latency requirements. In this paper, we focus on three

metrics of each f ∈ F , i.e., the CPU capacity, Cf compute

units; the memory capacity Mf in MB; and the energy cost

Ef in $ per compute unit. The latter is defined as 2× 106MI,

following [7]. Furthermore, each path between fog node f and

gateway g has a bandwidth capacity Bf
g in Gb/s, and a metric

distance, Df
g ∈ [DT

LB , D
T
UB ] in km. Where DT

LB and DT
UB are

the lower and upper bounds on DT , respectively. As fog nodes

get closer to access gateways (i.e. approaching the network

edge), the CPU, memory and bandwidth capacities as well as

distance decrease, while energy costs increase. Each gateway

g ∈ G receives a number of end-device requests, denoted by

Sg . Each request can be described as sg = ⟨cs,ms, bs, ls⟩,
where cs, ms, bs and ls denote: the required CPU and memory

of the request, the required bandwidth for sending the response

back to the gateway, and the latency priority of the request.

The latency priority determines the appropriate fog tier for

allocation, whereby: high priority requests should be allocated

to the edge tier, medium priority ones should be allocated to the

medium tier and low priority counterparts should be allocated

to the cloud tier.

Fig. 1. The three-tier architecture of the fog ecosystem

B. The Problem of Resource Allocation

Given the above the problem of resource allocation in such

a fog ecosystem can be described as that of maximizing total

allocations with the minimum overall cost, incurred by both

parties: access gateways and fog nodes. Subject to capacity

constraints of the fog nodes and latency constraints of requests.

Mathematically, the problem can be formulated as:

min
∑

g∈G

∑

s∈Sg

∑

f∈F

αs
g,f

(

cs ∗ θ
s,c
f +ms ∗ θ

s,m
f + bs ∗ θ

s
f,g

)

(1)

subject to:
∑

g∈G

∑

s∈Sg

αs
g,fcs ≤ Cf , ∀f ∈ F (2)

∑

g∈G

∑

s∈Sg

αs
g,fms ≤ Mf , ∀f ∈ F (3)

∑

f∈F

αs
g,f = 1 , ls = T (4)

whereby αs
g,f is a binary decision variable, defined as:

αs
g,f =

{

1, if sg is allocated to f

0, otherwise
(5)

θs,cf , θs,mf denote the CPU and memory costs of serving request

s at fog node f , while θf,g is the network bandwidth cost

for sending the response data back to the gateway. Each cost

may be a combination of the energy cost incurred by using

the resources along with value of the resource in the fog

node. The constraints of (2) and (3) the total allocation of

CPU and memory resources does not exceed the respective

CPU and memory capacity of any fog node. The constraint

of (4) ensures that each request is allocated to a fog node

in the appropriate tier, restricted by the mapping between the

latency priority of the request, ls and the tier T . Notably, when

DQN does not obey these constraints, a violation and request

failure is recorded. Note that we omit the bandwidth capacity

constraint, assuming that the network has sufficient bandwidth

to accommodate all traffic demand. This is represented by an

equality between the priority and the tier. Such a problem is

well-known to be NP-hard and difficult to solve centrally, as

that requires all stakeholders in the ecosystem to share state

information with the solver. However, such information are

typically business-sensitive and not subject to external sharing.

Hence, to solve the problem of (1), we propose a federated

learning system described next.

IV. THE FEDERATED DEEP Q-NETWORK SYSTEM

This section presents the FDQN system in two aspects, i.e.,

the network architecture and model structure.

A. Federated DQN Structure

Given the model and problem formulations above, we pro-

pose a federated DQN system (FDQN) for intelligent work-

load allocation to fog nodes, shown in Figure 2. DQN is a

reinforcement learning algorithm that combines deep learning

techniques with the Q-learning algorithm [21]. Local agents

learn by using deep neural networks to estimate the Q-values

for each (state, action) pair, aiming to maximize the total

reward. A FDQN system comprises local learning agents and

a centralised aggregator.

Since a gateway serves as a point of connection for end-

devices, we consider gateways to host the local agents. Each

agent trains a DQN for one round over a subset of local

requests, to determine an optimal local offloading strategy. A

local score is then calculated based on accumulated reward

from requests allocations. Meanwhile, the aggregator is hosted



at the fog side. For example, co-located with an orchestrator

of fog nodes. At the end of each round of training, agents

send their local models and their respective scores to the

aggregator, along with the volume of demand allocated to each

fog node. The aggregator calculates a global score from local

counterparts. If the global score has improved, from the last

calculation, the aggregator generates a global model from local

alternatives and send it back to learning agents. Irrespective

of the score, the aggregator further calculates new capacity

allocation per access gateway per fog node, along with costs

of CPU and memory resources per fog node based on available

capacities and allocated demand in the round. These updates

are communicated to learning agents at the end of each round.

Fig. 2. Process of Federated Deep Q-Network Model

B. Local DQN Model

Each agent trains a DQN to allocate a local request to one of

the fog nodes and reserve CPU and memory resources. Here,

we formulate the problem of fog node selection and resource

allocation as a Markov decision process (MDP) with: a state

space, action space and a reward scheme. The set of local

requests represent the state space, while the set of fog nodes

represent the action space. The reward scheme incorporates the

memory-CPU capacity along with the energy price and PUE

of each fog node, as well as the length and bandwidth on the

path between an access gateway and a fog node.

• State Space: the state space for each gateway g ∈ G is

the set of requests, Sg , described earlier in Section III-A.

Note that t = {1, 2, . . . , |Sg|} is the requests’ index of

Sg , with st referring to the t-th request.

• Action Space: the action space for gateway g is denoted

by Ag . Each action represents a fog node and can be

described as afg = ⟨Cf
g ,M

f
g , E

f
g , B

f
g , D

f
g , d

f
g ,W

f
g,i−1

⟩,

where Cf
g and Mf

g are the current CPU and memory

availability of f to the g. Ef
g is the energy cost of f at g.

Bf
g , Df

g and dfg are: the bandwidth on the path between f
and g, the nominal distance of g from the respective tier

of the fog node and the hop count on the path. W f
g,i−1

represents the weight of fog node f after the last round

i − 1 of local training and cost updates. Notably, Cf
g,t,

Mf
g,t are updated before each request allocation (i.e. state-

action mapping of t), calculated as:

Cf
g,t = Cf

g,t−1 − cg,t (6)

Mf
g,t = Mf

g,t−1 −mg,t (7)

• Reward Scheme: the objective of the reward scheme is to

maximize the number of successfully allocated requests,

while minimizing the allocation cost per request. Accord-

ingly, the reward scheme is an inverse representation of

the cost functions of (1), θs,cf , θs,mf , θsf,g , defined as a joint

function of: the current resource availability, the energy

cost, the path conditions and the latency requirement. The

function is formulated as:

R(sgt , a
f
g ) = Rcap,f

g,t +W f +RE,f
g,t +RB,D,f

g,t +Rl,f
g,t (8)

where Rcap,f
g,t is derived from the current capacity of fog

node f when processing state t, defined as:

Rcap,f
g,t =























λcap log5(cap
f
g,t + 1), Cf

g,t ≥ 0,Mf
g,t ≥ 0

−1− e−C
f
g,t , Cf

g,t < 0,Mf
g,t ≥ 0

−1− e−M
f
g,t , Cf

g,t ≥ 0,Mf
g,t < 0

−1− e−cap
f
g,t , Cf

g,t < 0,Mf
g,t < 0

(9)

capfg,t = Cf
g,t + Mf

g,t and λcap is a tuning parameter

that controls the weight of Rcap,f
g,t in the reward function.

Recall that W f is an attraction term that represents the

weight of f for all gateways based on its total capacity.

The term is calculated by the aggregator, and shared

with all gateways following each round of training. RE,f
g,t

corresponds to the energy reward of f , denoted as:

RE,f
g,t =

λe

Ef
g,t

(10)

where λe is a tuning parameter that controls the weight of

RE,f
g,t in (8). Notice that a higher energy cost incurs lower

energy reward. RB,D,f
g,t corresponds to the reward compo-

nent of the network path. It is derived from the bandwidth

capacity of the path, the nominal metric distance between

any gateway and fog nodes of tier T and the hop count

of the path, denoted as:

RB,D,f
g,t =

Bf
g

dfgD
f
g

(11)

Note that the term dfgD
f
g represents the effective distance,

i.e. proximity, between gateway g and fog node f . Smaller

values indicates higher proximity between the gateway

and fog node. Rl,f
g,t is the reward-penalty term, correspond-

ing to the satisfaction of the latency requirement. Recall

that the latency priority maps to an appropriate tier of

allocation. A request allocated to a fog node in the correct



priority-tier map incurs a reward (i.e. match), otherwise

incorrect allocation incurs a penalty. The term is defined

as:

Rl,f
g,t =

{

+λl, if lg,t matches T

−λ
l̂
, otherwise

(12)

where λl and λ
l̂

are configurable parameters. Notice that

the magnitude of the reward may not necessarily equal

that of the penalty. This is to allow for added flexibility

to independently control the two sides of the term.

C. An Agent: Training Local DQN

Each gateway g deploys an agent, which trains their DQN

as shown in Algorithm 1. Note that ϵ, σ and β are the

hyper parameters of DQN. ϵ is the exploration parameter

while σ is the decrement rate of ϵ, and β is the minibatch

size. For any training round, e, an agent runs an internal

loop of size |Sg|, corresponding to the total state size

at the gateway (i.e. total number of requests). For each

state t, the gateway chooses an action afg,t (i.e., a fog

node) and obtains the reward Rt(.) and a next state st+1

(Lines 2-7). After that, a transition containing the current

state, selected action, new state and the reward is stored

in the experience replay memory (Line 9). Before the

iteration ends, the gateway randomly samples a minibatch

of transitions from the replay memory buffer and updates

the Q network (Lines 9-10). At the end of the round,

the gateway calculates the total reward of this round,

regarded as a score reflecting the performance of DQN

in this round. The score and the model parameters are

then shared with the aggregator to calculate the global

score and generate a global model of the round.

D. The Aggregator: Generating A Global Model

The algorithm for calculating a global score and model is

outlined in Algorithm 2, based on earlier work in [22] with

suitable modifications. Similar to [22], the global score Re is

calculated as an average of the local scores {Re,g|g ∈ G},
following the end of each round e (Lines 3-4). Note that

the averaging strategy is a mere example here. Alternative

strategies can be adopted in a straightforward manner to

suit different federation approaches. If Re exceeds the best

score so far Rbest, local models are aggregated to generate

a global counterpart, using a federation function of choice.

This work adopts Federated Averaging (FedAvg) as an example

function, while noting that alternatives can substitute FedAvg

in a straightforward manner. The global model parameters are

sent to the gateways for the next round of local training,

e+ 1, (Lines 10-12). Otherwise, if Re < Rbest, the gateways

are notified to continue training using their pre-existing local

models. In parallel, the aggregator assesses the volume of

request allocations to each fog node against the capacity of

the node to update the value of {W f |∀f ∈ F}, tuning the

attraction of f . In cases where a fog node f decides to scale

up or down the capacity allocation per gateway, the aggregator

may further calculate a new Cf
g , representing a fraction of the

actual total capacity of f and share it with gateway g.

Algorithm 1 Local DQN Model Training

Input: last aggregate model, hyper parameters (ϵ, σ, β), state

space {sgt |t ∈ 1, 2, . . . , |Sg|}, action space {Af |f ∈ F},
initial local score {R0,g|g ∈ G}, experience replay mem-

ory M.

Output: local model parameters (we,g, be,g), local score

Re+1,g .

1: Initialization: Re,g

2: for t = 1 to |Sg| do

3: if (Random() > ϵ) then

4: Select a random action afg,t
5: else

6: Select afg,t ← argmaxaQ(st+1, a
f
g,t)

7: end if

8: Take action afg,t, observe reward R(sgt , a
f
g,t) and the next

state st+1

9: Store transitions {st, a
f
g,t, st+1, R(sgt , a

f
g,t)} into M

10: if t ≥ β then

11: Randomly sample a β-size minibatch of transitions

from M
12: end if

13: Update evaluation Q network and target Q̂ network

14: end for

15: Calculate the score of the DQN agent Re,g ←
∑|Sg|

t=1 R(sgt , a
f
g,t)

16: Send local model parameters (we,g, be,g), the score Re,g

and the volume of request allocations to the aggregator.

Algorithm 2 Global Model: Federated Averaging

Input: the number of gateways (agents) |G|, best global score

Rbest

Output: the aggregated model parameter

1: Initialisation : Rbest, number of episodes H
2: for episode e = 0 to H do

3: for each agent of g ∈ G in parallel do

4: Obtain the locally trained DQN model of g, the local

score Re,g and volume of request allocations

5: end for

6: Calculate the global score Re ← (
∑

g∈G Re,g)/|G|
7: if e > 0 and Re > Rbest then

8: Rbest ← Re

9: Calculate (we+1, be+1) parameters of the global

model using FedAvg: we+1 ← (
∑

g∈G we,g)/|G|,
be+1 ← (

∑

g∈G be,g)/|G|

10: Calculate a new {W f | ∀f ∈ F} based on local

request allocations per g
11: Send aggregated model parameter {we+1, be+1} and

{W f} to local agents.

12: end if

13: end for



V. EVALUATION

Here, we evaluate the performance of the proposed solution

over realistic cloud requests from Google Cluster Workload

Traces 2019 [23]. First, we obtain a total number of requests

for cloud services, by randomly sampling the data from the

instances table of the traces dataset. The requests are then

evenly distributed among one or multiple gateways to simulate

a geo-distribution of demand. We consider requests from

various users, and the number of users in a particular region

remains constant. In this case, the number of requests per

gateway decrease as the number of gateways increases. Each

request specifies: the latency priority along with the CPU and

memory requirements. Based on the explanation of the priority

range in [24], we assume priority classes to represent the

latency requirement of requests, indicating the preferred fog

tier for allocation.

To emulate a realistic fog ecosystem, we extract details of

Google machines from the traces and use them to represent

tier-based fog nodes. To do so, machines are grouped together

to provided aggregate memory and CPU capacities following

the distribution described in [7]. This distribution model is

further used to define the energy price and PUE per fog node,

along with the average bandwidth, range of metric distance

and hop count on the path between a fog node and any access

gateway. The energy cost per request per fog node is calculated

by a combination of the PUE and the price per computing unit

in each fog node along with the task size. The range of PUE

values per fog tier is assumed to follow the distribution of the

average PUE of data centers [25].A summary of the evaluation

parameters and settings is provided in Table II. All results are

shown for the validation dataset, using trained models. Note, all

models have been trained until convergence is reached where

the reward value is within acceptable bounds of variation. Such

convergence required an average of 200 training rounds to be

achieved.

A. Request Allocation Failure Rate

Here, we evaluate performance given a priority-tier-based

allocation strategy. Requests are successfully allocated if fog

resources are provisioned and the request priority matches the

tier of the fog node, serving the request. We focus on the

rate of allocation failure, as opposite to the rate of successful

allocation. Because, the former allows a microscopic zoom

on performance under different conditions. Figure 3 shows

the ratio of request allocation failures given increasing spread

of demand over a larger access network. This is illustrated

by increasing number of gateways. The results indicate that

allocation failures primarily occur within requests of medium-

to-high priority, need to be allocated to fog nodes in medium

and edge tiers, respectively. This is caused by the higher

constraint on capacities of fog nodes in those tiers compared to

the cloud counterpart, as shown in Table II, leading to resource

strain in those nodes that results in failed allocations.

The failure rate decreases from ≈ 60% to ≈ 2% as the

number of gateways increases from 1 to 20. This is caused by

the difference between the volume of demand per gateway and

capacity per fog node closest to the gateway. Since fog nodes in

the same tier have similar capacities, selection of a fog node in

a tier depends on the path settings. When the volume of high-

priority demand is concentrated in one gateway, it poses higher

strain on the edge node closest to the gateway and requests will

fail to allocate under the dominance of latency requirement

in the reward function even with a higher attraction of the

medium and/or cloud tiers than edge nodes farther from the

gateway. This results in a higher failure rate of allocation in

the requests with medium and high priority latency demand in

one gateway. As the number of gateways increases and demand

spreads, the number of edge nodes closest to gateways grows

too. The combined growth and demand spread alleviates the

resource burden on specific, ‘nearest’, fog nodes in each tier.

As a result, the failure rate decreases significantly.

Fig. 3. Failed request allocation per priority having fixed set of fog nodes
{2, 15, 20} for increasing number of gateways.

B. Resource Utilization

Figure 4(a) shows resource utilization per tier when in-

creasing the number of gateways. Notice, that there is no

guarantee allocations always have a priority-tier match. Hence,

figures 4(b)-4(c) reveal incorrect allocations per priority class

and per tier, respectively. The former shows the volume of

incorrect allocations per priority, while the latter shows to

which tier they have been directed. The cloud tier maintains

a consistent ratio of request allocation, hovering around 35%,

regardless of the number of gateways. The allocation ratio to

the medium and edge tiers increases as the number of gateways

increases. The issue is attributed to the limited capacity and

communication distance of these tiers. Increasing the number

of gateways leads to higher spread of the workload across more

fog nodes. With the proximity advantage of fog nodes in the

medium and edge tiers, a trade-off in choosing fog nodes in

different tiers arises in DQN. Due to this, the allocation request

ratio has increased from ≈ 40% to ≈ 100%.

Figure 4(b) shows that incorrect allocation primarily happens

with low-priority requests, ≈ 0.02% − 0.25% are allocated

incorrectly. Figure 4(c) shows incorrect allocations mainly ob-

served in the medium tier, meaning that non-medium-priority

requests are allocated incorrectly to the medium tier with a

range of ≈ 0.02%−0.25%. Meanwhile, a few non-high-priority

requests are allocated to the edge tier. The reason for this is

that the reward values of fog nodes in the cloud and medium

tiers are close in some situations, particularly if there is enough



TABLE II
EVALUATION PARAMETERS AND SETTINGS

Parameter Setting
Number of gateways [1, 4, 10, 20]
Total number of requests for all the gateways 40000
Number of requests per gateway (gw) {1gw : 40000, 4gw : 10000, 10gw : 4000, 20gw : 2000}
Latency priority (p) of requests per tier (T ) {Tcloud : p ≤ 115, Tmid : 116 ≤ p ≤ 119, Tedge : p ≥ 120}
Number of Fog nodes per tier (T ) {Tcloud : 2, Tmid : 15, Tedge : 20}
Capacity ratio per node per tier {Tcloud : Tmid : Tedge = 60 : 3.75 : 1}
Average energy cost per node per tier {Tcloud : [0.04− 0.05], Tmid : [0.12− 0.15], Tedge : [0.97− 1.22]}
Bandwidth capacity between fog nodes and gateways [Gbps] {Tcloud : [100− 150], Tmid : [10− 15], Tedge : [1− 1.5]}
Metric distance between fog nodes and gateways [km] {Tcloud : [100− 120], Tmid : [10− 20], Tedge : [3− 5]}
Hop count between fog nodes and gateways {Tcloud : 100, Tmid : [12, 13], Tedge : [1− 10]}

(a) Gateways Request Allocation - Overall (b) Gateways Incorrect Allocation per Priority (c) Gateways Incorrect Allocation per Tier

Fig. 4. Resource utilisation having fixed set of fog nodes {2, 15, 20} for increasing number of gateways.

TABLE III
SETTING OF ENERGY COST

Tier PUE Range Price ($) [7]
Cloud Tier [1.25− 1.55] 0.032339
Medium Tier [1.55− 1.8] 0.080848
Edge Tier [2− 2.5] 0.485090

available capacity in the medium tier. A small part of cloud-

priority requests are allocated to the medium tier because of the

higher reward. Notably, overall the rate of incorrect allocation

is low due to the severe penalty in DQN.

C. Energy Cost

Fig. 5. Average energy cost per tier having fixed number of 10 gateways (i.e.
10GW) for different sets of fog nodes

Figure 5 presents the results of the energy cost, incurred

when varying the number of fog nodes per tier. The number

of gateways is fixed at 10, with 4000 requests per gateway. We

analyze the energy cost given variant number of nodes in the

edge and medium tiers. First, we compare {10, 20, 30} edge-

tier nodes, having fixed 2 cloud-tier nodes and 15 medium-tier

nodes. Second, we compare {10, 15, 20} medium-tier nodes

for fixed 2 cloud-tier counterparts and 20 edge-tier nodes.

The results show that the total energy cost of the fog

ecosystem strongly correlated with the energy cost of the edge

tier. The energy cost of the cloud tier is the lowest, while the

edge tier has the highest energy cost, as adapted in Table III

from [7]. The energy cost increases when scaling the edge

tier, resulting in an overall cost increase. On the other hand,

scaling up the medium tier only results in small increase of the

energy cost, with a lower overall cost than that when scaling the

edge. Combined with the resource allocation in Figure 4(a), the

number of fog nodes in each tier becomes crucial for lowering

the overall energy cost, given similar request rate from a fixed

number of gateways.

D. Sensitivity

Fig. 6. Request allocation sensitivity with the episode parameter
{50, 200, 400} and decay rate {10−4, 10−5} (fixed number of gateways:
10GW, fixed set of fog nodes: {2, 15, 20})

Figure 6 shows the sensitivity of the FQDN system to

different episode numbers (i.e. learning rounds) and epsilon

decay rate. The number of gateways is fixed at 10 with 4000



requests per gateway, while the number of fog nodes is fixed at:

2 nodes in the cloud tier, 15 nodes in the medium tier and 20
nodes in the edge tier. We use the rate of allocation failure

to describe the sensitivity, due to its microscopic zoom on

performance under different conditions. Increasing the number

of episodes from 50 to 400 incurs fewer failed allocations with

less variation of the standard error. On the other hand, a faster

decay rate 10−4 causes a DQN to have insufficient exploration,

of the diversity of states and actions and immaturity of the

trained model. This can lead to a sub-optimal allocation policy

of DQN, particularly when the number training episodes is low.

In contrast, a slower decay rate of 10−5 allows for greater

exploration of states and actions space, leading to higher

maturity of the trained model and better allocation policy . This

is reflected by having ≈ 16% reduction in failed allocations

from 0.25 to ≈ 0.21 across all priorities, when increasing the

number of episodes from 50 to 400.

Comparing the different episodes between the decay rate

10−4 and 10−5, the performance with a slower decay rate

10−5 is worse than that with a faster decay rate 10−4 under

50 episodes but the performance of 10−5 is better as the

episodes increase. This is caused by the exploration under

different decay rates. With the decay rate 10−5, the probability

of choosing exploration is still larger than exploitation, which

can cause a higher failure rate in 50 episodes because of the

higher randomness. This increases the chance to obtain the

optimal policy of DQN with a more sufficient exploration.

Even though the performance of 10−4 is better than that of

10−5 in 50 episodes, the failure rate under 10−4 is slightly

higher than under 10−5 in 200 and 400 episodes. This is

because of the less sufficient exploration in 10−4, which means

less experience for training.

For the request with medium priority, the reason for the

increasing failure rate from 50 to 200 episodes under 10−4

is that some medium fog nodes gain the advantage too early

during the training under the less sufficient exploration (i.e. less

experience for training), resulting in a shortage of capacity in

these fog nodes and causing an increase in failed allocation of

requests with medium priority.

E. Reward Scheme

Fig. 7. Reward discussion of request allocation per tier per dominance with
fixed gateways: 10GW, fixed set of fog nodes: {2, 15, 20}

Figure 7 shows the resource allocation based on the domi-

nance of different terms in the reward scheme. Recall that each

term corresponds to a cost metric of interest to fog nodes or

access gateways or both. The number of gateways is fixed at

10 with 4000 requests per gateway, while the number of fog

nodes is fixed at: 2 in the cloud tier, 15 in the medium tier and

20 in the edge tier. When there is no dominant metric in the

reward function, most of the requests are allocated to the cloud

tier due to the advantage of high capacity and low energy cost.

This trend becomes clearer when the capacity or energy metrics

are dominant in the reward function. Almost all the requests

are allocated to the cloud tier. In contrast, less than 40% of

the requests are allocated in total when the bandwidth metric

is dominant. Here, requests are allocated to the medium and

edge tiers because the reward is determined by the bandwidth

capacity, hop count and metric distance of each gateway-fog

node path. Although the bandwidth capacity on paths towards

the cloud tier is greater than the other two tiers, the metric

distance is farther too. In this case, requests tend to be allocated

to the tier closer to the gateways, i.e., the edge and medium

tiers. This causes high resource strain in those tiers, resulting

in performance degradation. When latency is the dominant

metric, requests with different latency priorities are allocated to

different tiers. Comparing with the no-dominance alternative,

the total request allocation when latency is dominant is worse.

Since requests can only be sent to the matching tier based on

latency priority, resource strain is more likely to happen in the

edge and/or medium tiers. In other words, if a tier is strained,

there is no leniency to allocate requests in a different tier when

latency is the dominant metric.

VI. CONCLUSIONS

This work proposed a novel federated deep reinforcement

learning system, for efficient workload allocation in multi-

domain fog computing ecosystems. Our system incorporated

a set of local agents, training DQN models to intelligently

allocate requests of a single gateway to different fog nodes.

The adversity of demand at the edge is mitigated by intro-

ducing consensus among gateways through federated learning,

achieved by aggregating local models. This has further allowed

for faster model convergence and higher workload balance.

Moreover, by limiting the information sharing from fog nodes

to the cost of resources and allocated capacity per gateway, the

solution allows fog nodes to maintain their autonomy and pre-

serve their private information. We evaluated the performance

of the solution with respect to allocation failure, resource uti-

lization and energy cost. The results showed that the allocation

failure decreases with the increase of gateways. Whilst the low

rate of incorrect allocation mainly happens between the cloud

tier and the medium tier. Moreover, the sensitivity of the system

is evaluated when varying the number of learning rounds, the

exploration decay rate and the dominance of different terms

in the reward scheme. Evaluation results have shown CPU or

energy dominance in the reward scheme results in dominant

allocation to the cloud due to the cheaper costs. Our future

work intends to evaluate larger volume of requests, addressing

other trade-offs between the distribution of gateways and fog

nodes.
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