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Abstract—Federated learning (FL) is an efficient and privacy-
preserving distributed learning paradigm that enables massive
edge devices to train machine learning models collaboratively.
Although various communication schemes have been proposed
to expedite the FL process in resource-limited wireless networks,
the unreliable nature of wireless channels was less explored.
In this work, we propose a novel FL framework, namely FL
with gradient recycling (FL-GR), which recycles the historical
gradients of unscheduled and transmission-failure devices to
improve the learning performance of FL. To reduce the hardware
requirements for implementing FL-GR in the practical network,
we develop a memory-friendly FL-GR that is equivalent to
FL-GR but requires low memory of the edge server. We then
theoretically analyze how the wireless network parametersaffect
the convergence bound of FL-GR, revealing that minimizing
the average square of local gradients’ staleness (AS-GS) helps
improve the learning performance. Based on this, we formulate
a joint device scheduling, resource allocation and power control
optimization problem to minimize the AS-GS for global loss
minimization. To solve the problem, we first derive the optimal
power control policy for devices and transform the AS-GS
minimization problem into a bipartite graph matching probl em.
Through detailed analysis, we further transform the bipartite
matching problem into an equivalent linear program which is
convenient to solve. Extensive simulation results on threereal-
world datasets (i.e., MNIST, CIFAR-10, and CIFAR-100) verified
the efficacy of the proposed methods. Compared to the FL
algorithms without gradient recycling, FL-GR is able to achieve
higher accuracy and fast convergence speed. In addition, the
proposed device scheduling and resource allocation algorithm
also outperforms the benchmarks in accuracy and convergence
speed.

Index Terms—Device scheduling, federated Learning, resource
allocation, unreliable transmission

I. I NTRODUCTION

To protect data privacy for wireless devices while jointly
training machine learning models, federated learning (FL)has
become a promising solution at the wireless mobile edge in
6G, which can realize collaborative learning among devices
without revealing the original data [2]. However, implementing
FL in practical wireless networks suffers from the limited
wireless resource [3], which restricts the participating de-
vice number in the per-round learning process. Since the
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local datasets among devices are typically non-independent
and identically distributed (non-IID), the limited participating
devices may lead to biased model aggregation and greatly
degrade the learning performance [4]. In addition, most FL
algorithms assume an error-free wireless channel and ignore
the unreliable nature of wireless communications [5]. Due to
devices’ constrained transmit power and bandwidth, it is hard
to guarantee all the scheduled devices successfully transmit
their parameters to the edge server [6]. This brings a new
challenge for FL to enhance the robustness of the training
process and mitigate the impact of erroneous transmission.
An intuitive solution [7] is to discard the devices’ parameter
with errors, but it further reduces the participating device
number and exacerbates the performance loss of FL. Thus, it
is essential to develop innovative approaches for FL to address
the scarcity of radio resources and the unreliability of wireless
transmissions.

A. Related Works

In wireless networks, FL is generally implemented by multi-
ple devices coordinated by an edge server, in which devices are
usually resource-limited in terms of wireless bandwidth, com-
puting capability, and battery capacity. Thus, it is important to
carefully design the device scheduling and wireless resource
management policies that maximize the learning performance
of FL. The existing device scheduling approaches mainly
focused on selecting devices with the best channel condition
[8], [9], most important parameters [10], [11], or both of them
[12], [13] to accelerate the learning process. Specifically, the
channel-aware device selection approach in [8] can maximize
the sum of scheduled data samples under devices’ long-term
communication energy constraints. Based on the communica-
tion time analysis of FL, an optimal probabilistic scheduling
policy has been proposed in [9] to reduce the training latency.
By measuring the significance of devices with their gradient
norm, a parameter importance-aware user selection scheme has
been developed in [10] to minimize the convergence time of
FL. In [11], prioritizing devices with rich and diverse datasets
in the device scheduling policy has achieved higher accuracy
and lower learning costs than random device scheduling. The
joint channel condition and local model significance-awarede-
vice scheduling policy in [12] can provide better performance
than scheduling policies based only on one of the two metrics,
in which the norm of model update measures the model
significance. By measuring the clients’ potential contributions
with the information entropy of their gradients, the joint
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channel and contribution-aware scheduling algorithm in [13]
significantly improve the model accuracy and convergence
speed of FL. In addition to the device scheduling policy, wire-
less resource allocation is crucial to improve energy efficiency
and reduce learning latency in FL. The joint time allocation,
power control, and computation frequency scaling approach
in [14] can substantially reduce the energy consumption of
FL while satisfying latency requirements. In [15], a multi-
dimensional control policy, including bandwidth allocation and
workload partitioning, has been studied to improve the energy
efficiency of FL. A joint communication and computation
resource allocation scheme has been proposed in [16] to
capture the trade-offs among convergence, wallclock time,
and energy consumption. Besides the above device scheduling
approaches, the over-the-air-based FL approaches in [17],[18]
effectively address the scalability issues for limited wireless
resources. Despite the effectiveness of the above approaches,
they assumed that the parameter server always successfully
receives the local models/gradients of all the scheduled devices
and did not consider the unreliability of wireless transmissions.

To cope with unreliable communications between devices
and the edge server, existing works focused on improving the
successful transmission probabilities of devices by resource
management [19]–[22] and retransmission mechanism design
[23], [24], as well as compensate for the unsuccessful received
devices’ models by the past models [25], [26]. The device
scheduling and resource allocation algorithm in [19] can
maximize the expected number of devices with successful
transmissions. A joint wireless resources and quantization bits
allocation scheme has been developed in [20] to alleviate
the effects of quantization errors and transmission outages on
FL convergence performance. The joint device selection and
resource allocation approach in [21] can effectively increase
the successful information exchange probabilities over wire-
less networks and thus improve the learning performance of
FL. The power allocation and gradient quantization scheme in
[22] can improve the convergence speed of FL over a noisy
wireless network. However, it only schedules a single device
per iteration based on the channel condition. The retrans-
mission protocol in [23] significantly increases the success
probability of devices’ model uploading, in which devices
transmit their local model parameters multiple times, and the
edge server uses the received signal with the highest signal-
to-interference-plus-noise ratio (SINR) to recover the local
models. Different from [23], the retransmission mechanismin
[24] utilized the arithmetic mean of the received multiple-times
signals from devices to update the global model, effectively
reducing global model aggregation errors induced by channel
fading in over-the-air FL. While demonstrably effective, the
above approaches that maximize devices’ successful transmis-
sion probabilities only aggregate the successfully uploaded
devices’ models and thus reduce the number of participants.In
addition, the retransmission approaches may cause additional
latency and energy consumption for FL. In the presence
of decentralized FL systems, by reusing past local models,
the robust decentralized stochastic gradient descent (SGD)
approach proposed in [25] under transmission error situations
can achieve the same asymptotic convergence rate as the

vanilla decentralized SGD with perfect communications. Ithas
been proved in [26] that the federated averaging (FedAvg)
algorithm replacing error models with past local models in
case of devices’ model uploading error converges to the
same global model parameters as the perfect FedAvg (without
communication errors). However, the approaches in [25], [26]
assumed that all devices participate in the per-round learning
process and did not consider the design of wireless networks.

B. Motivations and Contributions

Although the device scheduling schemes in [8]–[15] ef-
fectively cope with limited wireless resources, they have
assumed ideal wireless channels with reliable and lossless
transmissions between devices and the edge server, which
may not always hold in practical wireless networks. The
transmission designs for tackling unreliable channels in [19]–
[24] remain to drop out the unsuccessful-transmission devices
and reduce the number of participants of FL. In addition,
the compensation approaches in [25], [26] did not consider
wireless network design. They assumed all devices participate
in the per-round learning process, which may be incompatible
with the limited wireless resources. To mitigate the adverse
impact of unreliable wireless channels and limited resources
on FL, this work aims to jointly design the wireless network
and learning mechanism to enhance the robustness of the
training process and improve the learning performance of FL.
Inspired by the success of using stale model parameters to
accelerate the training process in asynchronous FL [27], we
propose a novel FL framework, i.e., FL with gradient recycling
(FL-GR), which recycles the latest historical local gradients
received at the edge server to update the global model in
each round. Note that unlike [25], [26] that utilize the past
local models to replace the transmission-failure devices’model
for global aggregation, this work recycles devices’ gradients
to update the global model and achieves a better learning
performance which verified in our simulations. In addition,
we investigate the effect of partial device participation and
the staleness of local gradients on the convergence bound. It is
worth mentioning that although FL-GR recycles the historical
local gradients to update the global model, it differs from the
asynchronous FL [27]. The asynchronous FL broadcasts the
global model to all devices at the beginning of FL, while
FL-GR only broadcasts the global model to the scheduled
devices. In addition, the asynchronous FL updates the global
model when receivingH local models of totalK devices
(H < K) that may be stale since they were updated at an older
version of the global model, while FL-GR is a synchronous FL
scheme and ensures the received local gradients are timely and
not stale. Thus, the staleness of the devices’ local gradients
in asynchronous FL is larger than that in FL-GR in each
round. Consequently, FL-GR achieves lower convergence error
than asynchronous FL and obtains better learning performance
[28]. The main contributions of this work are summarized as
follows:

• To cope with limited resources and unreliable channels
in wireless networks, we propose a novel FL framework,
i.e., FL-GR, which recycles the historical gradients of
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unscheduled and transmission-failure devices for global
model updates. This framework can achieve faster con-
vergence speed and higher accuracy than the conventional
FL that only aggregates the successfully received local
models. In addition, we formulate a joint device schedul-
ing, resource block (RB) allocation, and power control
problem to minimize the global loss, in which training
latency and devices’ energy consumption are considered.

• For the convenience of implementation in practical wire-
less networks, we propose a memory-friendly FL-GR
that is equivalent to FL-GR, but with low memory space
requirement of the edge server. Then, we theoretically
analyze how the wireless network parameters affect the
convergence bound of FL-GR. Based on the convergence
bound, we define a new objective function, i.e., the
average staleness of local gradients, and transform the
global loss minimization problem into an explicit one for
device scheduling, RB allocation, and power control.

• To solve the transformed problem, we first find the
devices’ optimal transmit power control policy under
any given RB allocation policy. Then, we transform the
original global loss minimization problem into a perfect
bipartite matching problem. Through detailed analysis,
we further transform the bipartite matching problem into
equivalent linear programming whose optimal solution
can be effectively solved with polynomial time complex-
ity.

• We provide extensive experimental results on real-world
datasets (i.e., MNIST, CIFAR-10, and CIFAR-100) with
a typical non-IID setting to demonstrate the effectiveness
of the proposed FL-GR and device scheduling algo-
rithm. Compared to the FL algorithm without gradient
recycling, FL-GR achieves higher learning accuracy and
faster convergence speed. In addition, the proposed de-
vice scheduling algorithm outperforms the benchmarks in
convergence speed and test accuracy.

C. Organization and Notations

The rest of this paper is organized as follows: In Section II,
we introduce the proposed FL-GR and system model, then
formulate a global loss minimization problem. A memory-
friendly implementation of FL-GR and the convergence anal-
ysis are illustrated in Section III. Section IV illustratesthe
proposed device scheduling, RB allocation, and power control
algorithm that solves the global loss minimization problem.
Section V verifies the effectiveness of FL-GR and the proposed
device scheduling algorithm by simulations. The conclusion is
drawn in Section VI. The main notations used in this paper
are summarized in Table I.

II. SYSTEM MODEL AND LEARNING MECHANISM

In this work, we investigate an FL system under a noisy
and resource-limited wireless network, where the unreliable
property of the wireless uplinks, i.e., transmission error, is
considered. To tackle the transmission error effect on FL
performance, we propose a new FL framework in which the
edge server recycles the historical latest received gradients of

TABLE I
NOTATION SUMMARY

Notation Definition
K; K; Set of devices; size ofK
M; M ; Set of resource blocks(RB); size ofM
Dk; Dk Local dataset of devicek; size ofDk

D; D Overall dataset in the system; size ofD

w
(l)
k,t; wt Local model of devicek in the l-th iteration of

round t; global model in roundt
Fk(w);
F (w)

Local loss function of devicek; global loss
function

η; λ : Learning rate; local iteration number
fk; CPU frequency of devicek;
Gk,t; Latest successfully transmitted gradient of de-

vice k in round t;
pk,t; pk,max; Transmit power of devicek in round t; maxi-

mum transmit power of devicek;
g̃k,t Stochastic gradient of devicek in round t
pt Power control policy of devices in roundt
Ck; Q Computation workload of one data sample at

devicek; data size of local gradient
Ek,max; Tmax Energy constraint of devicek; maximum com-

pletion time for each round
z
(m)
k,t ; Zt Allocation indicator of RBm to device k in

round t; RB allocation policy for all devices
αk,t; αt Scheduling indicator of devicek in round t;

device scheduling vector in roundt

unscheduled and transmission-failure devices to accelerate the
learning process. In addition, we characterize the learning cost-
s of the proposed FL framework and formulate an optimization
problem to minimize the global loss function.

A. Federated Learning System

The considered FL system consisting of one edge server
andK devices indexed byK = {1, 2, · · · ,K}. Each device
k (k ∈ K) has a local datasetDk with Dk = |Dk| data
samples. Without loss of generality, we assume that there is
no overlapping between local datasets from different devices,
i.e., Dk ∩ Dh = ∅ (∀k, h ∈ K). Thus, the entire dataset is
denoted byD = ∪{Dk}Kk=1 with a total number of samples
D =

∑K
k=1 Dk. Given a data sample(x, y) ∈ D, where

x ∈ R
d is the d-dimensional input data vector,y ∈ R is

the corresponding ground-truth label. Letf(x, y;w) denote
the sample-wise loss function, which captures the error of the
model parameterw on the input-output data pair(x, y). Thus,
the local loss function of devicek that measures the model
error on its local dataset is given by

Fk(w) =
1

Dk

∑
(x,y)∈Dk

f (x, y;w) . (1)

Accordingly, the global loss function associated with all dis-
tributed local datasets is given by

F (w) =
∑K

k=1
pkFk(w), (2)

where pk is the weight of devicek such thatpk ≥ 0 and∑K
k=1 pk = 1. Similar to many existing works, e.g., [9] and

[15], we consider a balance size for local datasets and set
pk = 1

K , ∀k ∈ K.
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Fig. 1. Illustration of conventional FL framework and the proposed FL-GR: (a) Conventional FL only uses the current successfully received gradients from
scheduled devices to update the global model. (b) The proposed FL-GR recycles the latest historical successful transmitted gradients of unscheduled and
transmission-failure devices for the global model update.(c) Memory-friendly FL-GR.

The objective of the FL system is to train a global model,
w, so as to minimize the global loss,F (w), on the whole
dataset,D. The optimization objective of FL can be expressed
asmin

w
F (w).

B. FL with Gradient Recycling

To address the unreliable transmissions and limited re-
sources in the FL system, we propose a new FL framework,
namely FL with gradient recycling (FL-GR), in which the
edge server maintains agradient array{Gk,t : ∀k ∈ K} that
caches the latest successfully received gradients for all devices
and uses them for the global model update. Note that, at the
beginning of The FL process, the gradient array is initialized
as Gk,t = 0 (∀k ∈ K). The learning process consists ofT
global rounds and performs the following steps in each round
t (t ∈ {0, 1, · · · , T − 1}.

• Step 1 (Global model broadcast): The edge server
selects a subset of devices to participate in the current round
training process and then broadcasts the latest global model,
wt, to the selected devices. Letαk,t ∈ {0, 1} to denote the
scheduling indicator of devicek, whereαk,t = 1 indicates that
devicek is scheduled in roundt, αk,t = 0 otherwise. We use
αt = {α1,t, α2,t, · · · , αK,t} to represent the device scheduling
decision in roundt.

• Step 2 (Local model training): After receiving the global
model from the edge server, each scheduled device updates
its local model by runningλ steps stochastic gradient descent
(SGD) on its local dataset, according to

w
(l+1)
k,t = w

(l)
k,t − η∇̃Fk(w

(l)
k,t), ∀l = 0, · · · , λ− 1, (3)

wherew
(l)
k,t is the local model of devicek in the l-th local

iteration in roundt with w
(0)
k,t = wt, andη > 0 is the learning

rate. In (3), the stochastic gradient∇̃Fk(w
(l)
k,t) is given by

∇̃Fk(w
(l)
k,t) =

1

Lb

∑
(x,y)∈B

(l)
k,t

∇f(x, y;w
(l)
k,t), (4)

whereB(l)
k,t is a mini-batch data uniformly sampled fromDk

with Lb = |B(l)
k,t| data samples.

• Step 3 (Local gradient uploading): After accomplishing
local model training, each scheduled devicek (k ∈ K) uploads

its cumulative local stochastic gradientg̃k,t to the edge server.
g̃k,t is given by

g̃k,t =
∑λ−1

l=0
∇̃Fk(w

(l)
k,t) =

1

η

(
wt −w

(λ)
k,t

)
. (5)

Due to the unreliable wireless channels, the local gradientmay
not be successfully transmitted to the edge server. Letsk,t ∈
{0, 1} denote the successful transmission indicator of devicek
in roundt, wheresk,t = 1 represents the uploaded information
of devicek is successfully received at the edge server,sk,t = 0
otherwise.

• Step 4 (Global model update): After the edge server
receives the local gradients from the scheduled devices, the
edge server updates the gradient array as

Gk,t =

{
g̃k,t, if αk,tsk,t = 1,

Gk,t−1, otherwise,
∀k ∈ K. (6)

In (6), the edge server only refreshes the scheduled and suc-
cessfully transmitted devices’ gradient and maintains thelatest
historical successfully received gradients for unscheduled or
transmission-failure devices. Then, the edge server updates the
global model as

wt+1 = wt − η
1

K

∑K

k=1
Gk,t

= wt − η
1

K

K∑

k=1

(
αk,tsk,tg̃k,t + (1 − αk,tsk,t)Gk,t−1

)
.

(7)

Note that, in (7), the edge server utilizes the successfully
received gradient from scheduled devices in the current round
and the historical latest received gradients of unscheduled or
transmission-failure devices to update the global model. This
differs from the existing works in [19]–[24] that only aggregate
the scheduled and successfully transmitted devices’ gradient to

update the global model, i.e.,wt+1 = wt−η
∑K

k=1 αk,tsk,tg̃k,t∑
K
k=1 αk,tsk,t

.

For the proposed FL-GR, we have the following remark:

Remark1. The recycling of historical local gradients in FL-
GR has lower model aggregation error than the approaches
in [25], [26] that reusing of historical models. For ease of
comparison, we define the perfect updated global model based
on all devices’ local models asw∗

t+1 = 1
K

∑K
k=1 wk,t+1 =

wt−η 1
K

∑K
k=1 g̃k,t. Note that, in [25], [26], the updated glob-

al model in round (t+1) iswm
t+1 = 1

K

∑K
k=1(αk,tsk,twk,t+1+
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(1−αk,tsk,t)wk,t−τk,t+1), whereτk,t is the interval between
the current roundt and the last round that devicek received
global model. Thus, the aggregation model error of reusing
local models in [25], [26] is given by

∆m =
∥∥w∗

t+1 −wm
t+1

∥∥2

=
∥∥∥ 1

K

∑K

k=1
(1− αk,tsk,t)

(
wk,t+1 −wk,t−τk,t+1

) ∥∥∥
2

=
∥∥∥ 1

K

∑K

k=1
(1− αk,tsk,t)(wt − ηg̃k,t

−wk,t−τk,t
+ ηg̃k,t−τk,t

)
∥∥∥
2

.

The aggregation model error of reusing gradients is given by

∆g =
∥∥∥η 1

K

∑K

k=1
(1− αk,tsk,t)

(
g̃k,t−τk,t

− g̃k,t
) ∥∥∥

2

Based on the triangle inequality, we have∆m ≥ ∆g, i.e., the
proposed approach that recycles historical local gradients has
a smaller model aggregation error than the approaches in [25],
[26] that reuse past local models. Thus, the proposed FL-GR
outperforms the approaches in [25], [26], which is also verified
in our simulations in Section V.

It is worth mentioning that without gradient recycling, our
FL-GR degrades to the FedAvg algorithm [29]. For illustrating
this, we rearrange the model update rule in (7) as

wt+1 = wt − η
1

K

∑K

k=1
Gk,t =

1

K

∑K

k=1
(wt − ηGk,t)

=
1

K

(∑K

k=1
αk,tsk,t(wt − ηGk,t)

+
∑K

k=1
(1− αk,tsk,t)(wt − ηGk,t)

)

(a)
=

1

K

( K∑

k=1

αk,tsk,twk,t+1 +
K∑

k=1

(1− αk,tsk,t)wt

)
, (8)

where (a) is due to without gradient recycling, the unsuccessful
participating devices’ gradients are0. From (8), without gra-
dient recycling, the global model is updated as averaging all
devices’ models, which includes the successful participating
devices’ updated models and the unsuccessful participating
devices’ models that are replaced with the current global
model. Thus, without gradient recycling, FL-GR will degrade
to FedAvg.

To better explain FL-GR, we illustrate the conventional FL
framework and FL-GR in Fig. 1. Assume that one edge server
and four devices are in the system to perform three rounds of
the FL process. At the beginning of the FL, the edge server
initials the global modelw0 and the gradient array for all
devices to0. Take round 3 as an example, in which devices 1,
3, and 4 are scheduled to participate in the learning process,
and device 1 cannot successfully transmit its gradient. The
conventional FL in Fig. 1(a) only aggregates the successfully
transmitted devices’ gradients (g̃3,2 and g̃4,2) to update the
global model, i.e.,w3 = w2 − 1

2η(g̃3,2 + g̃4,2). However,
the FL-GR in Fig. 1(b) utilizes the successfully received
gradients (̃g3,2 and g̃4,2) and the historical received gradient
of unscheduled or transmission failure devices (G1,2 = g̃1,1
and G2,2 = g̃2,0) to update the global model, i.e.,w2 =
w1 − 1

4η(g̃1,1 + g̃2,0 + g̃3,2 + g̃4,2).

C. Computation model

Let Ck denotes the number of CPU cycles required for
devicek (k ∈ K) to process one data sample, which can be
measured offline as a priori knowledge. Letfk represents the
computation capability (CPU cycles per second) of devicek.
Thus, the computational time of local training is given by

TC
k,t =

λLbCk

fk
. (9)

The corresponding energy consumption of devicek is

EC
k,t = κλLbCk(fk)

2, (10)

whereκ is the energy coefficient of devices, which depends
on the chip architecture.

Note that we have ignored the computation cost of global
model update at the edge server and focused on resource-
limited edge devices since the edge server usually has strong
computation capabilities and is supplied by the grid power.

D. Communication Model

In this work, we consider the orthogonal frequency division
multiple access (OFDMA) withM RBs indexed byM =
{1, 2, · · · ,M} for devices to upload their local gradients. Each
device can occupy one uplink RB in a communication round
to upload its local gradient. Letzk,t = (z

(1)
k,t , z

(2)
k,t , · · · , z

(M)
k,t )

denote the RB allocation vector for devicek in roundt, where
z
(m)
k,t ∈ {0, 1}, z(m)

k,t = 1 indicates that them-th resource block

is allocated to devicek, andz(m)
k,t = 0 otherwise. For ease of

representation, we useZt = (z1,t, z2,t, · · · , zK,t) denote the
RB allocation decision for all devices in roundt. Denotepk,t
as the transmit power of devicek in round t, its maximum
value ispk,max. The channel gain from devicek to the edge
server is modelled ashk,t = ρk(t)d

−v
k , whereρk(t) is the

small-scale fading gain between devicek and the edge server,
dk is the distance between devicek and the edge server, and
v being the path loss exponent. We consider Rayleigh fading,
i.e., ρk(t) ∼ exp(1), and it is independent and identically
distributed across devices and rounds. Thus, the achievable
transmit rate of devicek in roundt is

rk,t(zk,t, pk,t) =

M∑

m=1

z
(m)
k,t B log2

(
1 +

pk,thk,t

Im +BN0

)
, (11)

whereB is the bandwidth of each resource block,N0 is the
noise power spectral density,Im is the interference caused
by the devices that are located in other service areas and use
the same resource block [19]. It is noted that each device can
only occupy at most one resource block, and each resource
block can be accessed by at most one device. Thus, the RB
allocation policy for devices should satisfy

∑M
m=1 z

(m)
k,t ≤ 1

and
∑K

k=1 z
(m)
k,t ≤ 1.

Let Q denote the size of each gradient, i.e., the number of
bits used to quantify the gradients. If devicek is scheduled to
participate in the training process of roundt, its transmission
time is given by

TU
k,t =

Q

rk,t(zk,t, pk,t)
. (12)
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The corresponding energy consumption of devicek for trans-
mission is

EU
k,t = pk,tT

U
k,t. (13)

E. Successful Transmission Probability

In this work, we consider characterizing the unreliabilityof
uplink transmissions of devices by the successful transmission
probability. Before studying the uplink success probability,
we assume the downlink transmission is always successful,
i.e., devices successfully receive the global model. It is worth
mentioning that this assumption is valid since the edge server
usually has more transmit power and can occupy more RBs
for the global model broadcasting compared to devices.

Let γth denotes the signal to interference plus noise ratio
(SINR) threshold for successful data decoding. The successful
transmission indicator of devicek in round t is sk,t =∑M

m=1 z
(m)
k,t 1

(
SINR

(m)
k,t ≥ γth

)
, whereSINR(m)

k,t =
pk,thk,t

Im+BN0

is the SINR of devicek in m-th RB. The successful transmis-
sion probability of devicek throughm-th channel in roundt
is given by

Pr
(
SINR

(m)
k,t ≥ γth

)
= Pr

( pk,thk,t

Im +BN0
≥ γth

)

= Pr
(
ρk(t) ≥

γth(Im +BN0)

pk,td
−v
k

)
= e

−
γth(Im+BN0)

pk,td
−v
k , (14)

wheree refers to the Euler’s number.

F. Problem Formulation

In this work, we aim to minimize the global loss function
afterT training rounds in the resource-limited and unreliable
wireless network. To this end, we formulate an optimization
problem to jointly optimize device scheduling, RB allocation,
and power control as follows:

P : min
{αtZt,pt}

T−1
t=0

E[F (wT )] (15)

s. t. EC
k,t + EU

k,t ≤ Ek,max, ∀k ∈ K, ∀t, (15a)

TC
k,t + TU

k,t ≤ Tmax, ∀k ∈ K, ∀t, (15b)

z
(m)
k,t ∈ {0, 1} , ∀k ∈ K, ∀m ∈ M, ∀t, (15c)
∑M

m=1
z
(m)
k,t ≤ 1, ∀k ∈ K, ∀t, (15d)

∑K

k=1
z
(m)
k,t ≤ 1, ∀m ∈ M, ∀t, (15e)

0 ≤ pk,t ≤ pk,max, ∀k ∈ K, ∀t, (15f)

αk,t ∈ {0, 1} , ∀k ∈ K, ∀t, (15g)

where (15a) stipulates that the energy consumption for each
participating devicek (k ∈ K) in each round cannot exceed its
budgetEk,max. Tmax in (15b) is the maximum delay of one-
round FL training. (15c), (15d) and (15e) correspond to the RB
allocation restrictions, indicating that one device can occupy
at most one RB for uplink transmission, and one RB can only
be allocated to one device. (15f) is the devices’ transmit power
constraint. (15g) indicates which devices are scheduled ineach
round.

Solving problemP requires the explicit form of the global
loss function related to the device scheduling, power control,
and RB allocation policy. However, the evolution of machine
learning models in the learning process is very complex. It
is almost impossible to find an exact analytical expression of
E[F (wT )] with respect toαt, Zt, andpt. Thus, we turn to find
an upper bound ofE[F (wT )] in Section III-B and minimize
it for the global loss minimization.

III. M EMORY-FRIENDLY FL-GR AND CONVERGENCE

ANALYSIS

In this section, to improve the implementation feasibility
of the proposed FL-GR in practical wireless networks, we
first propose a memory-friendly FL-GR that is equivalent to
the proposed FL-GR in Section II-B but with low memory
requirements of the edge server. Then, we theoretically analyze
the convergence bound of FL-GR to reveal how the device
scheduling, RB allocation, and power control policies affect
its learning performance. Motivated by this, we define a new
objective function, i.e., the average staleness of local gradients,
to transform problemP into a tractable one for guiding the
wireless network design.

A. Memory-friendly FL-GR

It is worth mentioning that implementing the proposed FL-
GR in Section II-B requires the edge server to maintain a huge
array to cache the latest gradient information for each device.
Thus, the cache size requirement of the edge server in FL-
GR scales with the model size and the number of devices.
This may restrict the scale of the wireless FL system since
the server’s memory may be exhausted when the number of
devices is very large. To address this issue, we propose a
memory-friendly FL-GR in which each devicek maintains
a gradient arrayGk,t to cache its previous latest gradient, and
the edge server maintains a gradient arrayḠt to cache local
gradients’ aggregation information. Then we replace step 3
and step 4 in Section II-B with the following steps:

• Replace Step 3 in Section II-B with: After all selected
devices accomplish local model training, they upload the
difference between their current and the previous latest
cumulative gradient, i.e.,̃gk,t−Gk,t−1, to the edge server.

• Replace Step 4 in Section II-B with: The edge server
updatesḠt as Ḡt = Ḡt−1 + 1

K

∑K
k=1 αk,tsk,t(g̃k,t −

Gk,t−1), and all devices update their gradient arrayGk,t

according to (6). Then, the edge server updates the global
model aswt+1 = wt − ηḠt.

By replacing step 3 and step 4 in Section II-B with the above
two steps, the edge server distribute the memory requirement
to the devices and form a memory-friendly FL-GR algorithm,
as shown in Fig. 1(c). For this memory-friendly FL-GR
algorithm, we have the following theorem.

Theorem 1. The memory-friendly FL-GR which formed by
replacing step 3 and step 4 in Section II-B with the above two
steps is equivalent to the proposed FL-GR in Section II-B.
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Proof. We prove Theorem 1 by Mathematical induction.
Firstly, the maintained gradient arraȳGt at the edge server
satisfies:

Ḡt = Ḡt−1 +
1

K

∑K

k=1
αk,tsk,t(g̃k,t −Gk,t−1)

= Ḡt−1 +
1

K

∑K

k=1
(Gk,t −Gk,t−1) . (16)

Note that at the beginning of the learning process, the
devices’ gradient arrayGk,−1 and the server’s gradient array
Ḡ−1 are all initialized with0. Thus, whent = 0, we have

Ḡ0 = Ḡ−1 +
1

K

K∑

k=1

(Gk,0 −Gk,−1) =
1

K

K∑

k=1

Gk,0. (17)

When t = 1,

Ḡ1 = Ḡ0 +
1

K

∑K

k=1
(Gk,1 −Gk,0)

=
1

K

K∑

k=1

Gk,1 + Ḡ0 −
1

K

K∑

k=1

Gk,0 =
1

K

K∑

k=1

Gk,1. (18)

Similarly, we can conclude that for anyt, Ḡt =
1
K

∑K
k=1 Gk,t

is established. Thus, the updated global model by this memory-
friendly FL-GR iswt+1 = wt−ηḠt = wt−η 1

K

∑K
k=1 Gk,t,

which is equivalent to update rule of the global model in (7)
in Section II-B.

According to Theorem 1, one can implement the above
memory-friendly FL-GR to achieve an equivalent learning
process with the proposed FL-GR in Section II in practical
wireless networks. It is worth mentioning that the computation
costs, communication costs, and the learned global model
of these two algorithms are the same. The memory-efficient
FL-GR only requires the edge server to maintain a single
gradient array, whereas FL-GR necessitates the maintenance
of all K users’ gradient arrays. For clarity, we summarize the
detailed steps of memory-friendly FL-GR in Algorithm 1. In
the following, we analyze the convergence performance of FL-
GR and transform problemP into an tractable one for device
scheduling, RB allocation, and power control.

B. Convergence Analysis

For the simplicity of notation, we define the local full
gradient on devicek in the l-th local iteration of thet-
th round as∇Fk(w

(l)
k,t) = 1

Dk

∑
x∈Dk

∇f(x, y;w
(l)
k,t). Let

F (w∗) denote the loss function of the optimal global model
w∗, and η̃ = ηλ as an auxiliary variable. In addition, it is
worth mentioning that we recycle the latest historical gradients
of the unscheduled and transmission-failure devices to update
the global model. To identify the time information of devices’
gradients, we define the staleness of devicek’s local gradient
asτk,t, which evolves as

τk,t =

{
τk,t−1 + 1, if αk,tsk,t = 0,

0, if αk,tsk,t = 1,
∀k ∈ K. (19)

Before starting the convergence analysis of FL-GR, we
make the following standard assumptions for the local loss
functions, i.e.,F1(w), F2(w), · · · , FK(w).

Algorithm 1 Memory-friendly Implementation of FL-GR

1: Initialization: The edge server initials its gradient arraȳG−1 =
0 and the global modelw0, each devicek (k ∈ K) initial their
gradient array asGk,−1 = 0

2: Server side:
3: for t = 0, 1, · · · , T − 1 do
4: Select a subset of devices and broadcast the latest global

modelwt to them.
5: if Receive the gradient information from the selected devices

then
6: Update the gradient arrayḠt as Ḡt = Ḡt−1 +

1
K

∑K

k=1 αk,tsk,t(g̃k,t −Gk,t−1)
7: Update the global model according towt+1 = wt−ηḠt.
8: else
9: wt+1 = wt

10: Device side:
11: if Devicek is scheduledthen
12: Receive the global modelwt from the edge server and initial

w
(0)
k,t = wt;

13: for l = 0, 1, · · · , λ− 1 do
14: Update the local model according (3)
15: Compute the cumulative stochastic gradientg̃k,t =

1
η

(
wt −w

(λ)
k,t

)

16: Upload theg̃k,t −Gk,t−1 to the edge server.
17: Update the gradient arrayGk,t according to (6).

Assumption1. All the local loss functions,Fk(w) (∀k ∈ K),
areL-smooth. That is, for allv andw,

Fk(v) ≤ Fk(w) + 〈Fk(w),v −w〉+ L

2
‖v −w‖2 . (20)

Assumption2. The stochastic gradient̃∇Fk(wt) (∀k ∈ K)
is an unbiased estimator of the full gradient∇Fk(wt), i.e.,
E[∇̃Fk(wt)] = ∇Fk(wt), and its variance is upper bounded
by a constantσ2, i.e.,E‖∇̃Fk(wt)−∇Fk(wt)‖2≤ σ2.

Assumption3. The expected squared norm of devices’ gradi-
ents is uniformly bounded byG2, i.e., ‖∇Fk(wt)‖2 ≤ G2,
for all k = 1, 2, · · · ,K and t = 0, 1, · · · , T − 1.

Assumption 1, 2, and 3 are standard and widely used in
the FL literature for convergence analysis, e.g., [10], [12],
[30]. These assumptions are satisfied by the loss functions
of widely used learning models, e.g., support vector machines
(SVM), Logistic regression, and most neural networks [31].
Particularly, a deep neural network defined by a composition
of functions is a Lipschitz neural network if the functions in
all layers are Lipschitz [32]. It has been proved in [32] and
[33] that the convolution layer, linear layer, some nonlinear
activation functions (e.g., Sigmoid, tanh, Leaky ReLU, and
SoftPlus), and the widely used cross-entropy function have
Lipschitz smooth gradients. That is, the loss functions of
most neural networks that are consisted of Lipschitz layers
are Lipschitz continuous.

Before illustrating the details of convergence bound, we
introduce two lemmas based on the above assumptions to assist
our convergence analysis.

Lemma 1. Let Assumption 1, 2, and 3 hold, the learning rate
satisfyη ≤ 1

2λL , the drift of the local model from the global
model afterl iterations is bounded as

E

∥∥∥w(l)
k,t −wt

∥∥∥
2

≤ 4(λ− 1)η̃2

λ

(
2G2 +

σ2

λ

)
. (21)
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Proof. See Appendix A.

Lemma 2. Let Assumption 1, 2, and 3 hold, the learning rate
satisfyη ≤ 1

2λL , the difference between the global models in
two different rounds, i.e.,t and t′ (t ≥ t′), is bounded as

E ‖wt −wt′‖2 ≤3η̃2(t− t′)2
(
(1 +

8η̃2L2(λ− 1)

λ
)G2

+ (1 +
4η̃2L2(λ − 1)

λ2
)σ2

)
. (22)

Proof. See Appendix B.

Based on Lemma 1 and Lemma 2, we derive the one-round
convergence bound of the proposed FL-GR in Theorem 2 as
follows:

Theorem 2. Let Assumption 1, 2, and 3 hold, the learning
rate satisfyη ≤ 1

2λL , the one-round convergence bound is
given by

E [F (wt+1)− F (wt)] ≤ (−1

2
η̃ + 3Lη̃) ‖∇F (wt)‖2 + c1

+
c

K

K∑

k=1

(τk,t−1 + 1)2
(
1−αk,t

M∑

m=1

z
(m)
k,t Pr(SINR

(m)
k,t ≥γth)

)
,

(23)

wherec = 9
8 (η̃ +1)

(
(1 + 2(λ−1)

λ )G2 + (1 + (λ−1)
λ2 )σ2

)
, and

c1 = (η̃+3η̃L)(λ−1)
λ (2G2 + σ2

λ ) + (η̃+1)σ2

2 .

Proof. See Appendix C.

According to Theorem 2, the summation of the square
of local gradients’ staleness, i.e., the last term on the right-
hand side (RHS) of (23), is a critical factor that negative-
ly affects the learning convergence rate. By increasing the
number of scheduled devices and their successful transmission
probabilities, the expected staleness of local gradients would
be reduced and thus accelerate the learning process. Due to
the limited wireless resources, one should carefully design
the device scheduling, RB allocation, and power control to
improve the number of devices with successful transmission
while satisfying their energy and delay constraints.

Based on Theorem 2, the convergence performance of FL-
GR afterT training rounds is given by the following corollary.

Corollary 1. Let the assumptions in Theorem 2 hold, the
expected gap between the global loss afterT training rounds
and the optimal loss is bounded by

E [F (wT )− F (w∗)]

≤ (1 − η̃L+ 6η̃L2)TE [F (w0)− F (w∗)]

+ c1
1− (1 − η̃L+ 6η̃L2)T

η̃L− 6η̃L2

+ c
∑T−1

t=1
(1− η̃L+ 6η̃L2)T−1−t 1

K

∑K

k=1
(τk,t−1 + 1)2

×
(
1− αk,t

∑M

m=1
z
(m)
k,t Pr(SINR

(m)
k,t ≥ γth)

)
. (24)

Proof. See Appendix D.

From Corollary 1, the expected gap between the global loss
afterT rounds and the optimal loss is bounded by three terms:

1) the initial gap between the global loss and the optimal
loss. 2) a constant term related to the system hyperparameters
caused by multiple local iterations (λ > 1) and stochastic
gradient error. 3) the cumulative staleness of local gradients
overT training rounds. The first two terms determined by the
system hyperparameters and the initial global model are unre-
lated to device scheduling, RB allocation, and power control
policies. The last term is highly related to the wireless network
design, which indicates that an out-of-date local gradientmay
degrade the learning performance. To minimize the global loss
function and improve the learning performance, one should
carefully design the device scheduling, RB allocation, and
power control policy to minimize the average staleness of local
gradients (last term on the RHS of (24)) for preventing the over
stale local gradients. For the global loss optimization, wehave
the following remark:

Remark 2. It is worth mentioning that similar to many
existing works, e.g., [16], [34], the available devices and
wireless resources in problemP are independent across d-
ifferent rounds. Thus, the convergence bound in (24) can
be minimized by directly minimizing the average staleness
of local gradients in each round, i.e.,1K

∑K
k=1(τk,t−1 +

1)2
(
1 − αk,t

∑M
m=1 z

(m)
k,t Pr (SINR

(m)
k,t ≥ γth)

)
. Inspired

by this, we define a new objective function based on The-
orem 2 and Corollary 1, i.e.,1K

∑K
k=1(τk,t−1 + 1)2

(
1 −

αk,t

∑M
m=1 z

(m)
k,t Pr (SINR

(m)
k,t ≥ γth)

)
, which directly mini-

mizes the upper bound onE[F (wt+1)−F (wt)] in each round
and achieves the minimization of theT -rounds convergence
bound in (24).

IV. OPTIMAL DEVICE SCHEDULING, RESOURCE

ALLOCATION , AND POWER CONTROL

In this section, we propose an effective device scheduling,
RB allocation, and power control algorithm that solves prob-
lem P . Towards this end, we first transform problemP into a
tractable one based on the convergence analysis in Section
III-B. Then, we solve the optimal power control and RB
allocation policies in an effective manner.

A. Problem Transformation

The convergence analysis results in Theorem 2 and Corol-
lary 1 reveal how the wireless network design affects the
learning performance of FL-GR. According to Remark 2,
we transform problemP into minimize 1

K

∑K
k=1(τk,t−1 +

1)2
(
1 − αk,t

∑M
m=1 z

(m)
k,t Pr (SINR

(m)
k,t ≥ γth)

)
in each

round through device scheduling, RB allocation, and
power control policies. Sinceαk,t =

∑M
m=1 z

(m)
k,t ∈

{0, 1}, we haveαk,t

∑M
m=1 z

(m)
k,t Pr(SINR

(m)
k,t ≥ γth) =∑M

m=1 z
(m)
k,t Pr(SINR

(m)
k,t ≥ γth). That is, when the RB

allocation decision is given, the device scheduling policycan
be directly computed byαk,t =

∑M
m=1 z

(m)
k,t (∀k ∈ K). There-

fore, we transform problemP into minimizing the average
square of local gradients’ staleness in each round as follows:

P̂ : min
Zt,pt

R(Zt,pt) (25)
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s. t. (15a)− (15f).

where R(Zt,pt) = 1
K

∑K
k=1(τk,t−1 + 1)2

(
1 −

∑M
m=1 z

(m)
k,t Pr(SINR

(m)
k,t ≥ γth)

)
. Problem P̂ is a non-

convex optimization problem which is difficult to solve. In
the following, we derive the optimal power control policy
for each device under any given RB allocation decision and
transform problemP̂ into an equivalent linear programming
problem that can be effectively addressed.

B. Optimal Power Control

For any given RB allocation policyZt, it is straightforward
to see that the power control policies of devices do not
affect each other and independently contribute to the objective
function. Therefore, the power control policy for each device
can be solely optimized by itself. With given RB allocation
policy Zt, we decompose the power control optimization
problem for each devicek (k ∈ K) as follows:

P1 : min
pk,t

hk(pk,t) (26)

s. t. (15a), (15f).

where

hk(pk,t) = −(τk,t−1 + 1)2
M∑

m=1

z
(m)
k,t e

−
γth(Im+BN0)

pk,td
−v
k . (27)

Problem P1 is a non-convex optimization problem. To
solve the optimal power control policy, below we analyze the
properties of the objective function and constraints of problem
P1. Firstly, the first-order partial derivative of the objective
function with respect topk,t is given by

∂hk(pk,t)

∂pk,t
= −(τk,t−1 + 1)2

×
M∑

m=1

z
(m)
k,t e

−
γth(Im+BN0)

pk,td
−v
k

γth(Im +BN0)

p2k,td
−v
k

, ∀k ∈ K. (28)

It is straightforward to see that∂hk(pk,t)
∂pk,t

< 0 sincepk,t > 0.
That is, the objective functionhk(pk,t) is a monotonically
decreasing function with the transmit powerpk,t (∀k ∈ K).
Thus, the optimal transmit power for each device is its
maximum available power. Based on constraint (15a), the
energy consumption of gradient information uploading should
satisfyEU

k,t ≤ Ek,max−EC
k,t. In addition, the first-order partial

derivative ofEU
k,t with respect topk,t is given by

∂EU
k,t

∂pk,t
=

M∑
m=1

z
(m)
k,t

QB

(1+γk,t) ln 2

(
(1 + γk,t) ln(1 + γk,t)− γk,t

)

(∑M
m=1 z

(m)
k,t B log2(1 + γk,t)

)2 ,

(29)

whereγk,t =
pk,thk,t

Im+BN0
. Sinceln(1 + x) > x

1+x for x > 0, we

have
∂EU

k,t

∂pk,t
> 0. Therefore,EU

k,t is monotonically increases
with pk,t. Hence, the transmit power of devicek should

satisfies pk,t ≤ pEk,t, where pEk,t satisfy
pE
k,tQ

rk,t(zk,t,pE
k,t

)
=

Ek,max−κλLbCkf
2
k . Combining with (15f), the optimal power

control policy for devicek is

p∗k,t = min{pEk,t, pk,max}, ∀k ∈ K, (30)

wherepEk,t satisfy
pE
k,tQ

rk,t(zk,t,pE
k,t

)
= Ek,max − κλLbCkf

2
k .

C. Optimal Resource Block Allocation

Up to now, we can compute the optimal power control
policy for each devicek (k ∈ K) with any allocated RB
m (m ∈ M) based on (30), denoted byp∗k,t(m). Thus, we
compute the optimal power control policy for all devices in all
RBs (i.e.,{p∗k,t(m) : ∀m ∈ M, ∀k ∈ K}) and substitute them

into problemP̂ to simplify it as the following RB allocation
problem.

P2 : max
Zt

1

K

K∑

k=1

M∑

m=1

z
(m)
k,t (τk,t−1 + 1)2e

−
γth(Im+BN0)

p∗
k,t

(m)d
−v
k (31)

s.t. (15c), (15d), (15e),
λLbCk

fk
+

Q

rk,t(zk,t, p∗k,t(m))
≤ Tk,max, ∀k,m. (31a)

ProblemP2 is a typical non-linear integer programming prob-
lem which is difficult to solve. Below we transform it into
a maximum weight perfect bipartite matching problem and
find its optimal solution within polynomial time. The bipartite
matching problem is to find a matching (i.e., a set of edges
chosen such that no two edges share an endpoint.) with the
maximum weight for the bipartite graph, where the weight is
the summation of all the edges in the matching [35].

To transformP2 into a bipartite matching problem, we
construct a complete and balanced bipartite graphG = (V , E),
whereV = K∪M is the vertex set, andE is the set of edges
that connect the vertices inK andM. In G, each vertexk in
K corresponds a devicek. M = M∪Mv is an extended set
of M, where each vertexm in M corresponds to RBm. Mv

is the virtual vertex set used to construct a balanced bipartite
graphG, which makes the size ofM equal to the size ofK,
i.e., |M|= |K|. The weight of edges inG is given by

∆k,m =

{
(τk,t−1 + 1)2e

−
γth(Im+BN0)

p∗
k,t

(m)d
−v
k , if(31a), ∀k,m,

0, else.
(32)

Note that this work assumes that the number of devices
exceeds the number of RBs. When the number of RBs exceeds
the number of devices, we can introduce a virtual device set
Kv such that the|K|+|Kv|= |M|, and construct a similar
graph to the case of|K|> |M|.

According to the above-defined bipartite graphG, we trans-
form P2 into a maximum weight perfect bipartite matching
problem, which aims to find a perfect matchingH of G
maximizing

∑
e∈H ∆k,m. Let θk,m ∈ {0, 1} be the edge

connecting vertexk (k ∈ K) and vertexm (m ∈ M), where
θk,m = 1 denote that RBm is allocated to devicek, and
θk,m = 0 otherwise. For the sake of presentation, we use
θk = {θk,1, · · · , θk,|M|} to denote the connection indicator
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of devicek to all the RBs. Hence, we formulate the bipartite
matching problem as the following optimization problem.

P̂2 : max
{θk}K

k=1

∑K

k=1

∑|M|

m=1
θk,m∆k,m (33)

s. t.
∑|M|

m=1
θk,m = 1, ∀k ∈ K, (33a)

∑K

k=1
θk,m = 1, ∀m ∈ M, (33b)

θk,m ∈ {0, 1} , ∀k ∈ K, ∀m ∈ M. (33c)

It is worth mentioning that any solution to problem̂P2 corre-
sponds to a perfect matching of graphG. However, problem
P̂2 is a linear integer programming, which is still difficult
to solve. By relaxing the integrality constraint (33c), we can
obtain the following linear programming problem:

P̃2 : max
{θk}K

k=1

∑K

k=1

∑|M|

m=1
θk,m∆k,m (34)

s. t. (33a), (33b),

0 ≤ θk,m ≤ 1, ∀k ∈ K, ∀m ∈ M. (34a)

Problem P̃2 is the linear programming relaxation of prob-
lem P̂2, which can be solved by using the current matrix
multiplication time algorithm [36] with time complexity of
O((K2+1/6)2) since it hasK2 variables (i.e.,θk,m : k ∈
K,m ∈ M). Note that in problem̃P2, each row in the coeffi-
cient matrix corresponding to (33a) and constraint (33b) only
contains a ‘1’. This implements that each square submatrix
of this coefficient matrix has a determinant equal to 0, +1, or
-1. Thus, this coefficient matrix is a totally unimodular matrix.
Based on [35], the optimal solution of problem̃P2 is an integer
solution which is equal to the optimal solution of problem
P̂2. That is, the optimal solution of̂P2 can be obtained by
directly solving problemP̃2. In the above analysis, we first
transform problemP̂ into an equivalent maximum weight
perfect bipartite matching problem, i.e., problem̂P2. Then,
we further transform problem̂P2 into its equivalent linear
programmingP̃2. It is worth mentioning that these are two
equivalent transformations and do not change the optimality
of problemP̂. Thus, the optimal solution of problem̂P can be
addressed by first solving the optimal solution of problem̃P2.
When the optimal solution of problem̃P2 is found, the optimal
RB allocation is determined. Furthermore, the optimal device
scheduling policy can be computed byα∗

k,t =
∑M

m=1 z
(m),∗
k,t

(∀k ∈ K), and the optimal transmit power of each device can
be determined by (30).

According to the above analysis, we can solve problemP̂ in
an effective manner to obtain the optimal device scheduling,
power control, and RB allocation policies. For clarity, we sum-
marize the detailed steps of solving problem̂P in Algorithm 2.
Firstly, Algorithm 2 requires computing all devices’ optimal
power control policies in all RBs according to (30), which
requires computingK × M times of power control policy
and has a time complexity ofO(KM). Then, we construct
a bipartite graph to transform problem̂P into a maximum
weight perfect bipartite matching problem, i.e.,̂P2. This step
requires calculating the successful transmission probabilities

for all devices in all RBs and judging whether the devices’
delay satisfies the latency constraint. The time complexityof
this step isO(2KM). Finally, we transform problem̂P2 into
equivalent linear programming (i.e.,̃P2) and utilize the current
matrix multiplication time algorithm [36] to solve its optimal
solution for obtaining the RB allocation policy. After that, we
find the optimal power control of scheduling devices based on
the RB allocation policy and compute the device scheduling
policies asα∗

k,t =
∑M

m=1 z
(m),∗
k,t (∀k ∈ K). Thus, the overall

time complexity of Algorithm 2 isO(2KM + (K2+1/6)2).

Algorithm 2 Optimal Device Scheduling, Power control, and
RB allocation

1: Compute the optimal power control policy for each device in all
RBs according to (30)

2: Compute the successful transmission probabilities for alldevices
with all RB, i.e.,Pr(SINR

(m)
k,t ≥ γth) (∀k ∈ K,∀m ∈ M)

3: Construct a bipartite graphG = (V, E) and compute the weight
of each edge inE according to (32)

4: Construct the linear programming problem̃P2

5: Solve problem̃P2 and obtain the optimal bipartite perfect match-
ing {θk}

K
k=1

6: Compute the optimal RB allocation policyZ∗

t = {z
(m),∗
k,t : k ∈

K,m ∈ M}, wherez(m),∗
k,t = θk,m

7: Compute the optimal device scheduling policyα∗

t = {α∗

k,t :

∀k ∈ K}, whereα∗

k,t =
∑M

m=1 z
(m),∗
k,t (∀k ∈ K)

8: Return the optimal device scheduling policyα∗

t , RB allocation
policy Z∗

t , and power control policyp∗

t

V. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
FL-GR and the device scheduling algorithm.

TABLE II
NETWORK ARCHITECTURE FOR THECLASSIFICATION MODEL

Dataset Model Name Model Architecture
MNIST MLP F: [784, 128, 10]

CIFAR-10 CNN C: [6, M, 16, M]
F: [1600, 256, 64, 10]

CIFAR-100 VGG-11 C: VGG-11 feature extractor [37]
F: [512, 256, 100]

A. Simulation Settings

For the simulations, we consider a cellular network with
a coverage radius of 500m, in which one base station is
located at its centre andK devices are randomly distributed.
The CPU frequency of each device is randomly selected from
{0.8, 1.0, 1.2, 1.4} GHz. We evaluate the proposed algorithm
under three classification learning tasks, i.e., the handwritten
digits classification task on the MNIST dataset, as well as the
image classification tasks on the CIFAR-10 and CIFAR-100
datasets. The network architectures used for the learning tasks
on these three datasets are summarized in Table II, where ’F’
denotes the fully connected module, ’C’ denotes the convo-
lution module, ’M’ denotes the2× 2 max-pooling layer, and
the number indicates the number of neurons in fully connected
layers or filters in convolution layers. Particularly, for the CNN
used on the CIFAR-10 dataset, the size of convolution kernels
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TABLE III
SYSTEM PARAMETERS

Parameter Value Parameter Value
K 100 M 10
B 1MHz N0 -174dBm
v 2 γth 0dB
κ 5×10−27 η 0.05
τ 5 Lb 64
pk,max(∀k) 30mW Im(∀m ∈ M) [102, 105]BN0

Q(CNN) 1,962,016 Ck(CNN) 326,338,5
Ek,max(CNN) 1.0J Q(VGG-11) 305,685,860
Ck(VGG-11) 76,421,465 Ek,max(VGG-11) 230J
Tmax(CNN) 0.3s Tmax(VGG-11) 35s

TABLE IV
REQUIREDROUNDS TOREACH A TARGET ACCURACY

Dataset S Target
Accuracy

Proposed Best
Baseline

Saved
Time

MNIST 5 85% 48 80(MC) 40%
10 90% 50 233(MC) 78.5%

CIFAR-10
5 50% 128 318(W/GR) 59.7%
10 55% 147 376(W/GR) 60.9%

CIFAR-100 5 65% 457 640(W/GR) 28.6%
10 70% 509 760(W/GR) 33%

are all set to be5× 5. The input and hidden layers in all the
learning models are all activated by the ReLU function. For all
three datasets, we adopt a typical heterogeneous data-splitting
method that is widely used in the existing FL works, e.g.,
[16], [34]. We first classify the training data samples according
to their labels, then split the data samples in each class into
2K/N shards (N = 10 on MNIST and CIFAR-10;N = 100
on CIFAR-100), and finally randomly distribute two shards
of data samples to each device. That is, each device has a
data distribution corresponding to at most 2 classes. That is,
each device has a data distribution corresponding to at most
2 classes. For all models, a momentum of 0.9 is adopted and
cross-entropy is adopted as the loss function. In addition,each
parameter of these models is quantitated as 16 bits [15]. Forall
devices in the system, each CPU cycle can process 4 FLOPs.
Thus, the required CPU cycles to process one data sample
are equal to the number of FLOPs of its model divided by
4. The parameters chosen in the simulations are based on the
parameter settings of a typical wireless FL system [10], [14],
[19], [38], [39]. If not specified, the default system settings
are listed in Table III.

B. Effectiveness of Gradient Recycling

To evaluate the effectiveness of the proposed FL-GR, we
compare it with the following benchmarks in terms of test
accuracy under different numbers of successful transmission
devices (denoted asS) per round. Note that we do not consider
the wireless resource limitations and unreliable channelsin
this subsection. The edge server randomly selects a subset of
S devices to undertake the local training process, and FL-GR
recycles the historical gradients of unscheduled devices for the
global model update. 1) Without gradient recycling (W/GR):
In each round, the edge server only aggregates the successfully

received gradients from the scheduled devices to update the
global model. This scheme is widely used in existing literature,
e.g., [19], [21]–[24]. 2) FedProx [40]: FedProx utilizes a
proximal term to limit the impact of local updates for improv-
ing model performance under heterogeneous data distributions
among devices. 3) Model compensation (MC) [25], [26]: In
each round, the edge server uses the successfully received local
models and the past local models of transmission-failure or
unscheduled devices for global model aggregation.

Fig. 2 shows that FL-GR outperforms the benchmarks on all
three datasets. In addition, the learning performance of all FL
algorithms improved with the increasing number of successful-
transmission devices, i.e., the test accuracy ofS = 10 is
greater than that ofS = 5 for all FL algorithms. Specifically,
from the results on the MNIST dataset in Fig. 2(a), when
S = 5 devices successfully transmitted their gradients to the
edge server in each round, FL-GR achieved a 1.49% accuracy
improvement compared to the FL algorithms without gradient
recycling. Although FL-GR only achieves a slight performance
gain (i.e., 0.95%) whenS = 10, its learning process is more
stable than the benchmarks. Fig. 2(b) and Fig. 2(c) evaluate
the learning performance of FL-GR on CIFAR-10 and CIFAR-
100, respectively, drawing a similar conclusion to the MNIST
dataset. In particular, we can observe a more distinct accuracy
boosting of FL-GR on these two complicated datasets than
the MNIST dataset. From Fig. 2(b), FL-GR obtains 6.46%
and 5.1% accuracy improvement whenS = 5 and S = 10,
respectively. Fig. 2(c) shows that FL-GR boosts 5.94% and
4.2% accuracy whenS = 5 andS = 10, respectively.

In Table IV, we present the number of optimization rounds
necessary to achieve a target accuracy for both the proposed
approach and the top-performing baseline algorithm. Specifi-
cally, on the CIFAR-100 dataset, whenS = 5, FL-GR spends
only 457 rounds to achieve 65% accuracy, while W/GR (the
best benchmark) requires 640 rounds. That is, FL-GR can
reduce by 28.6% training time to obtain 65% test accuracy
compared to the benchmarks. WhenS = 10, FL-GR is able to
save 33% training time to achieve 70% test accuracy compared
to the benchmarks.

It is worth mentioning that the simulation results in Fig.
2 show that the proposed FL-GR outperforms the model
compensation approach in [25], [26]. This verified the analysis
result in Remark 1, i.e., FL-GR recycles the historical local
gradients has a smaller model aggregation error than the model
compensation approach in [25], [26] that reusing past local
models. Thus, FL-GR outperforms the model compensation
approach. In addition, although the simulations in [25], [26]
demonstrated that the model compensation approach outper-
forms the W/GR method under full participation and small
transmission error rates, our simulation results on the CIFAR-
10 and CIFAR-100 datasets show that it does not perform
better than W/GR under small successful participation ratios
(i.e.,S = 5 andS = 10 correspond to 5% and 10% successful
participation ratio, respectively).

C. Comparison of Device Scheduling Policies

In this subsection, we compare the proposed device schedul-
ing algorithm to the following scheduling policies: 1) Random
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(a) (b) (c)

Fig. 2. Comparison of learning performance of different FL algorithms: (a) on MNIST dataset; (b) on CIFAR-10 dataset; (c) on CIFAR-100 dataset.

scheduling: In each round, the edge server randomly selects
a subset of devices and their corresponding RBs that satis-
fy the constraint (15a)-(15f). 2) Gradient importance-aware
scheduling (GI-Scheduling): The edge server selects a subset
of devices with the maximum gradient norm and satisfies the
constraint (15a)-(15f) in each round. 3) Successful transmis-
sion probability-aware scheduling (STP-Scheduling): Theedge
server selects a subset of devices with the maximum successful
transmission probabilities and satisfies the constraint (15a)-
(15f). Note that all the device scheduling approaches in this
subsection serve the proposed FL-GR to schedule devices in-
stead of other learning frameworks. In fact, random scheduling
is equivalent to randomly selecting a perfect matching in the
constructed bipartite graph of the proposed device scheduling
algorithm instead of the maximum weight perfect matching
to schedule devices. GI-Scheduling and STP-Scheduling both
construct a similar bipartite graph to the proposed scheduling
algorithm and find the maximum weight perfect matching
corresponding to their device scheduling policy. In the graph
of GI-Scheduling, the weight of each edge is equal to the
gradient norm times the successful transmission probability. In
the STP-Scheduling, the weight of each edge is the successful
transmission probability.

Fig. 3 shows the learning performance of different device
scheduling algorithms on the CIFAR-10 dataset. From Fig.
3(a), we can see that the proposed device scheduling algo-
rithm performs better than the other three device scheduling
approaches in terms of convergence speed and final test ac-
curacy. Specifically, the proposed device scheduling algorithm
achieves around 6.44% accuracy improvement compare to the
random scheduling approach. Fig. 3(b) presents the average
staleness of local gradients for all four device scheduling
algorithms. It is observed that the proposed algorithm pos-

(a) (b)

Fig. 3. Comparison of learning performance for different device scheduling
algorithms on the CIFAR-10 dataset.

(a) (b)

Fig. 4. Comparison of learning performance for different device scheduling
algorithms on the CIFAR-100 dataset.

sesses the lowest staleness of local gradients. In addition, for
the three benchmarks, the device scheduling algorithm with
lower staleness obtains higher accuracy and faster convergence
speed. This verified our theoretical analysis results in Theorem
2 and Corollary 1, which suggests scheduling the devices with
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Fig. 5. Impacts of energy and delay constraints on the learning performance
on CIFAR-100 dataset.

large staleness to reduce the average square staleness of local
gradients in each round.

A similar comparison is made on the CIFAR-100 dataset
in Fig. 4. We can observe the same conclusion with the
simulation on the CIFAR-10 dataset. Specifically, The pro-
posed device scheduling algorithm boosts 6.53% accuracy and
possesses the lowest staleness of local gradients compared
to the three benchmarks. This simulation further verifies the
effectiveness of our convergence analysis in Theorem 2 and
Corollary 1. In addition, it is worth mentioning that the
simulation results on both CIFAR-10 and CIFAR-100 show
that random scheduling performs better than STP-scheduling
and GI-scheduling when they serve FL-GR. This is because
STP-scheduling and GI-scheduling induce higher average stal-
eness of local gradients, as shown in Fig. 3(b) and Fig.
4(b). However, when these scheduling approaches serve for
FedAvg, some existing works, e.g., [12], [19], have shown
that random scheduling performs worse than STP-scheduling
and GI-scheduling.

D. Impact of Wireless Parameters

This section analyzes the impacts of wireless network
parameters on the learning performance of the proposed FL-
GR, including energy constraint, delay constraint, the number
of RBs, and the successful decode threshold. Note that in
this section, the test accuracy on CIFAR-10 and CIFAR-100
is achieved after 150 and3.5 × 104 seconds of training,
respectively. Based on our simulation results in Section V-C,
FL-GR can converge within the pre-setting training time.

In Fig. 5, we test the impacts of energy and delay constraints
on the final test accuracy of the proposed FL-GR on CIFAR-
100 datasets. From Fig. 5(a), with the increase in energy and
delay budgets, we can see that FL-GR achieves higher test
accuracy. The reason is that the large energy and delay budgets
can increase the number of successful participating devices and
reduce the average staleness of local gradients, as shown in
Fig. 5(b). When the energy and delay budgets are small, the
devices with long time delays and large energy consumption
may not satisfy the delay and energy consumption constraints
or cannot successfully upload their gradient information to the
edge server. Thus, the number of successful participants has
been restricted, which results in the high average staleness of
local gradients and low test accuracy.

(a) (b)

Fig. 6. Impacts of wireless parameters on the learning performance: (a)
Successful decoding threshold; (b) Number of RBs.

Fig. 6 evaluates the impacts of wireless network parameters
on the learning performance of the proposed FL-GR on both
CIFAR-10 and CIFAR-100 datasets. From Fig. 6(a), we can
see the test accuracy of FL-GR on CIFAR-10 and CIFAR-100
decrease with the increase ofγth. This is because the largeγth
reduces the successful transmission probabilities of devices,
decreasing the number of successful participants. Hence, the
average staleness of local gradients increased. Based on our
convergence analysis results, the learning performance ofFL-
GR will decrease with the increase ofγth. Fig. 6(b) shows
how the number of RBs affects the learning performance of
FL-GR. It is observed that the test accuracy on both CIFAR-
10 and CIFAR-100 increases with the increase in the number
of RBs. The reason is the rise in RBs improves the number
of successful participants in each round and thus reduces the
average staleness of local gradients.

VI. CONCLUSION

In this work, we have developed a novel FL framework,
namely FL-GR, that recycles devices’ historical gradientsto
update the global model in the learning process. This frame-
work efficiently copes with the scarcity of radio resources
and the unreliability of wireless communications in practical
wireless networks. To improve the learning performance of
FL-GR, we have formulated an optimization problem to mini-
mize global loss through device scheduling, RB allocation,and
power control. To solve this problem, we have investigated the
convergence bound of FL-GR and transformed the global loss
minimization problem into a tractable one. Then, we derived
the optimal power control for any given RB allocation policy
and further transformed the global loss minimization prob-
lem into an equivalent linear programming problem, which
can be solved efficiently. Simulation results on three real-
world datasets (i.e., MNIST, CIFAR-10, and CIFAR-100) have
shown that the proposed FL-GR achieves higher accuracy
and faster convergence speed compared to the FL algorithms
without gradient recycling. In addition, the proposed device
scheduling algorithm outperforms the existing algorithm in
accuracy and convergence speed.



14

APPENDIX

A. Proof of Lemma1

For λ = 1, the bound trivially holds sincew(0)
k,t = wt. For

λ ≥ 2, we have

E‖w(l)
k,t −wt‖2 = E‖w(l−1)

k,t −wt − η∇̃Fk(w
(l−1)
k,t )‖2

(a)
= E‖w(l−1)

k,t −wt − η∇Fk(w
(l−1)
k,t )‖2

+ η2E‖∇Fk(w
(l−1)
k,t )− ∇̃Fk(w

(l−1)
k,t )‖2

(b)

≤ E‖w(l−1)
k,t −wt − η∇Fk(w

(l−1)
k,t )‖2 + η2σ2

= E‖w(l−1)
k,t −wt‖2+η2E‖∇Fk(w

(l−1)
k,t )‖2+η2σ2

− 2E
〈 1√

λ− 1
(w

(l−1)
k,t −wt), η

√
λ− 1∇Fk(w

(l−1)
k,t )

〉

(c)

≤ (1 +
1

λ− 1
)E‖w(l−1)

k,t −wt‖2

+ λη2E‖∇Fk(w
(l−1)
k,t )‖2 + η2σ2

(d)

≤ (1 +
1

λ− 1
)E‖w(l−1)

k,t −wt‖2 + 2λη2‖∇Fk(wt)‖2

+ 2λη2E‖∇Fk(w
(l−1)
k,t )−∇Fk(wt)‖2 + η2σ2

(e)

≤ (1 +
1

λ− 1
+ 2λη2L2)E‖w(l−1)

k,t −wt‖2

+ 2λη2‖∇Fk(wt)‖2 + η2σ2, (35)

where (a) is derived by adding and subtracting∇Fk(w
(l−1)
k,t )

into ∇̃Fk(w
(l−1)
k,t ) and using the unbiased stochastic gradient

in Assumption 2, (b) is due to the bounded variance of s-
tochastic gradient in Assumption 2, (c) comes from the triangle
inequality, (d) is derived by adding and subtracting∇Fk(wt)

into ∇Fk(w
(l−1)
k,t ) and using the triangle inequality, (e) is due

to theL-smooth of local loss functions in Assumption 1. Let
η ≤ 1

2λL , we have2λη2L2 ≤ 1
2λ ≤ 1

2(λ−1) . Thus, we have

E‖w(l)
k,t −wt‖2︸ ︷︷ ︸

yl

≤
(
1 +

3

2(λ− 1)

)

︸ ︷︷ ︸
c1

E‖w(l−1)
k,t −wt‖2︸ ︷︷ ︸

yl−1

+ 2λη2 ‖∇Fk(wt)‖2 + η2σ2

︸ ︷︷ ︸
c2

. (36)

By telescoping the above inequation, we haveyl ≤ c2
1−cl1
1−c1

≤
c2

cλ−1
1 −1

c1−1 . That is,

E‖w(l)
k,t −wt‖2≤(2λη2 ‖∇Fk(wt)‖2 + η2σ2)

×

(
1 + 3

2(λ−1)

)λ−1

− 1

3
2(λ−1)

. (37)

In (37), we have(1 + 3
2(λ−1) )

λ−1 = (1 + 3
2(λ−1) )

2(λ−1)
3

3
2 ≤

e
3
2 ≤ 5 and 2(λ−1)

3 ≤ (λ− 1). Thus,

E‖w(l)
k,t −wt‖2 ≤ 4(λ− 1)

(
2λη2 ‖∇Fk(wt)‖2 + η2σ2

)

(a)

≤ 4(λ− 1)(2λη2G2 + η2σ2), (38)

where (a) follows Assumption 3. Letη = η̃
λ , the proof is

completed.

B. Proof of Lemma2

For any two roundt and t′ that satisfiest ≥ t′, we have

E‖wt −wt′‖2 = E

∥∥∥
∑t−1

j=t′
(wj+1 −wj)

∥∥∥
2

= η̃2E
∥∥∥
∑t−1

j=t′

1

λK

∑K

k=1

∑λ−1

l=0
∇̃Fk(w

(l)
k,j−τk,j

)
∥∥∥
2

(a)

≤ η̃2(t− t′)
∑t−1

j=t′
E

∥∥∥ 1

λK

∑K

k=1

∑λ−1

l=0
∇̃Fk(w

(l)
k,j−τk,j

)
∥∥∥
2

(b)

≤ 3η̃2(t− t′)
∑t−1

j=t′

1

λK

∑K

k=1

λ−1∑

l=0

E

∥∥∥∇̃Fk(w
(l)
k,j−τk,j

)

−∇Fk(w
(l)
k,j−τk,j

)
∥∥∥
2

+ 3η̃2(t− t′)
∑t−1

j=t′

1

λK

∑K

k=1

∑λ−1

l=0
E

∥∥∥∇Fk(w
(l)
k,j−τk,j

)

−∇Fk(wj−τk,j
)
∥∥∥
2

+ 3η̃2(t− t′)
∑t−1

j=t′

1

K

∑K

k=1
E
∥∥∇Fk

(
wj−τk,j

)∥∥2

(c)

≤ 3η̃2(t− t′)

t−1∑

j=t′

1

λK

K∑

k=1

λ−1∑

l=0

L2
E

∥∥∥w(l)
k,j−τk,j

−wj−τk,j

∥∥∥
2

+ 3η̃2(t− t′)2(σ2 +G2), (39)

where (a) is due to Jensen’s inequality, (b) is derived by adding
and subtracting both∇Fk(w

l
k,j−τk,j

) and∇Fk(wj−τk,j
) in-

to ∇̃Fk(w
l
k,j−τk,j

), then using the triangle inequality and
Jensen’s inequality, (c) comes from the Assumption 1, 2, and
3. According to Lemma 1, we have

E‖w(l)
k,j−τk,j

−wj−τk,j
‖2≤ 4(λ− 1)η̃2

λ

(
2G2 +

σ2

λ

)
. (40)

Substituting (40) into (39), the proof is completed.

C. Proof of Theorem2

By using theL-smooth of the loss functions, we have

F (wt+1)− F (wt)

≤ 〈∇F (wt),wt+1 −wt〉+
L

2
‖wt+1 −wt‖2 . (41)

Thus, we have

E [F (wt+1)− F (wt)]

≤ −η̃E
〈
∇F (wt),

1

Kλ

∑K

k=1

∑λ−1

l=0
∇̃Fk(w

(l)
k,t−τt,k

)
〉

+
Lη̃

2
E

∥∥∥ 1

Kλ

∑K

k=1

∑λ−1

l=0
∇̃Fk(w

(l)
k,t−τt,k

)
∥∥∥
2

= −η̃E
〈
∇F (wt),xt−τt,k

〉

︸ ︷︷ ︸
A1

+−η̃E
〈
∇F (wt),

1

Kλ

∑K

k=1

∑λ−1

l=0
∇Fk(w

(l)
k,t−τt,k

)
〉

︸ ︷︷ ︸
A2
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+
Lη̃

2
E

∥∥∥ 1

Kλ

∑K

k=1

∑λ−1

l=0
∇̃Fk(w

(l)
k,t−τt,k

)
∥∥∥
2

︸ ︷︷ ︸
A3

, (42)

where xt−τt,k = 1
Kλ

∑K
k=1

∑λ−1
l=0 (∇̃Fk(w

(l)
k,t−τt,k

) −
∇Fk(w

(l)
k,t−τt,k

)). Below we focus on bounding the three terms
in (42). Due to reuse of noisy gradient, the stochastic gradient
noise∇̃Fk(w

(l)
k,t−τt,k

)−∇Fk(w
(l)
k,t−τt,k

) is correlated withwt.
Thus,A1 6= 0. For A1, we have

A1 = −η̃E
〈
∇F (wt)−∇F (wt−τt,k),xt−τt,k

〉

︸ ︷︷ ︸
B1

− η̃E
〈
∇F (wt−τt,k),xt−τt,k

〉

︸ ︷︷ ︸
B2

. (43)

Since wt−τt,k is independent with ∇̃Fk(w
(l)
k,t−τt,k

) −
∇Fk(w

(l)
k,t−τt,k

), we haveB2 = 0. For B1, we have:

B1 = −η̃
1

Kλ

∑K

k=1

∑λ−1

l=0
E

〈
∇F (wt)−∇F (wt−τt,k),

∇̃Fk(w
(l)
k,t−τt,k

)−∇Fk(w
(l)
k,t−τt,k

)
〉

(a)

≤ 1

2
η̃
1

K

∑K

k=1
E
∥∥∇F (wt)−∇F (wt−τt,k)

∥∥2

+
1

2
η̃

1

Kλ

K∑

k=1

λ−1∑

l=0

E

∥∥∥∇̃Fk(w
(l)
k,t−τt,k

)−∇Fk(w
(l)
k,t−τt,k

)
∥∥∥
2

(b)

≤ 1

2
η̃
1

K

∑K

k=1
E
∥∥∇F (wt)−∇F (wt−τt,k)

∥∥2 + 1

2
η̃σ2

(c)

≤ 1

2
η̃L2 1

K

∑K

k=1
E
∥∥wt −wt−τt,k

∥∥2 + 1

2
η̃σ2, (44)

where (a) follows the triangle inequality, (b) is due to As-
sumption 2, (c) comes from theL-smooth of the loss function.
According to the above analysis, we have

A1 ≤ 1

2
η̃L2 1

K

∑K

k=1
E
∥∥wt −wt−τt,k

∥∥2 + 1

2
η̃σ2. (45)

For A2, we have

A2 = −η̃E
〈
∇F (wt),

1

Kλ

∑K

k=1

∑λ−1

l=0
∇Fk(w

(l)
k,t−τt,k

)
〉

≤ −1

2
η̃‖∇F (wt)‖2

+
1

2
η̃E

∥∥∥ 1

Kλ

K∑

k=1

λ−1∑

l=0

(
∇Fk(wt)−∇Fk(w

(l)
k,t−τt,k

)
)∥∥∥

2

≤ −1

2
η̃‖∇F (wt)‖2

+ η̃E
∥∥∥ 1

Kλ

K∑

k=1

λ−1∑

l=0

(
∇Fk(wt)−∇Fk(wt−τt,k)

) ∥∥∥
2

+ η̃E
∥∥∥ 1

Kλ

K∑

k=1

λ−1∑

l=0

(
∇Fk(wt−τt,k)−∇Fk(w

(l)
k,t−τt,k

)
) ∥∥∥

2

≤ −1

2
η̃‖∇F (wt)‖2 + η̃

1

K

∑K

k=1
L2

E
∥∥wt −wt−τt,k

∥∥2

+ η̃
1

Kλ

K∑

k=1

λ−1∑

l=0

L2
E

∥∥∥wt−τt,k −w
(l)
k,t−τt,k

∥∥∥
2

. (46)

For A3, we have

A3 =
Lη̃

2
E

∥∥∥ 1

Kλ

∑K

k=1

∑λ−1

l=0
∇̃Fk(w

(l)
k,t−τt,k

)
∥∥∥
2

(a)

≤ Lη̃
1

Kλ

K∑

k=1

λ−1∑

l=0

E

∥∥∥∇̃Fk(w
(l)
k,t−τt,k

)−∇Fk(w
(l)
k,t−τt,k

)
∥∥∥
2

+ Lη̃E
∥∥∥ 1

Kλ

∑K

k=1

∑λ−1

l=0
∇Fk(w

(l)
k,t−τt,k

)
∥∥∥
2

(b)

≤ Lη̃σ2 + Lη̃E
∥∥∥ 1

Kλ

K∑

k=1

λ−1∑

l=0

∇Fk(w
(l)
k,t−τt,k

)
∥∥∥
2

, (47)

where (a) is derived by adding and subtracting∇Fk(w
(l)
k,t−τt,k

)

into ∇̃Fk(w
(l)
k,t−τt,k

), then using the triangle inequality and
Jensen’s inequality, (b) is due to the bounded variance
of stochastic gradient in Assumption 2. Below we bound∥∥∥ 1
Kλ

∑K
k=1

∑λ−1
l=0 ∇Fk(w

(l)
k,t−τt,k

)
∥∥∥
2

in (47) as:

E

∥∥∥ 1

Kλ

∑K

k=1

∑λ−1

l=0
∇Fk(w

(l)
k,t−τt,k

)
∥∥∥
2

(a)

≤ 3

Kλ

K∑

k=1

λ−1∑

l=0

E

∥∥∥∇Fk(w
(l)
k,t−τt,k

)−∇Fk(wt−τt,k)
∥∥∥
2

+
3

K

K∑

k=1

E
∥∥∇Fk(wt−τt,k)−∇Fk(wt)

∥∥2 + 3 ‖∇F (wt)‖2

(b)

≤ 3
1

Kλ

∑K

k=1

∑λ−1

l=0
L2

E

∥∥∥w(l)
k,t−τt,k

−wt−τt,k

∥∥∥
2

+ 3
1

K

∑K

k=1
L2

E
∥∥wt−τt,k −wt

∥∥2
+ 3‖∇F (wt)‖2, (48)

where (a) is derived by adding and subtracting∇Fk(wt−τt,k)

and ∇F (wt) into ∇Fk(w
(l)
k,t−τt,k

), then using the triangle
inequality and Jensen’s inequality, (b) is due to Assumption
1. Substituting (48) into (47), we have

A3 ≤ Lη̃σ2 + 3Lη̃
1

Kλ

K∑

k=1

λ−1∑

l=0

L2
E‖w(l)

k,t−τt,k
−wt−τt,k‖2

+ 3Lη̃
1

K

K∑

k=1

L2
E
∥∥wt−τt,k−wt

∥∥2+3Lη̃ ‖∇F (wt)‖2 . (49)

Substituting (45), (46), and (49) into (42), we have:

E [F (wt+1)− F (wt)] ≤
(
− 1

2
η̃ + 3Lη̃

)
‖∇F (wt)‖2

+ (
1

2
+L)η̃σ2 + (

3

2
+ 3L)η̃L2 1

K

∑K

k=1
E
∥∥wt −wt−τt,k

∥∥2

+ (1 + 3L)η̃L2 1

Kλ

K∑

k=1

λ−1∑

l=0

E‖wt−τt,k −w
(l)
k,t−τt,k

‖2. (50)

According to Lemma 1, Lemma 2, and̃η ≤ 1
2L we have

E [F (wt+1)− F (wt)] ≤ (−1

2
η̃ + 3Lη̃) ‖∇F (wt)‖2

+ c1 + cE
[ 1

K

∑K

k=1
τ2k,t

]
. (51)

where c1 = (η̃+3η̃L)(λ−1)
λ (2G2 + σ2

λ ) + (η̃+1)σ2

2 , c =
9
8 (η̃ + 1)

(
(1 + 2(λ−1)

λ )G2 + (1 + (λ−1)
λ2 )σ2

)
. According to
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the evolution of devices’ staleness in (19), we haveτk,t =
(1− αk,tsk,t)(τk,t−1 + 1). Note thatαk,tsk,t ∈ {0, 1}, which
induces(1− αk,tsk,t)

2 = (1− αk,tsk,t). Thus, we have

E

[ 1

K

∑K

k=1
τ2k,t

]
= E

[ 1

K

K∑

k=1

(1− αk,tsk,t)
2(τk,t−1 + 1)2

]

= E

[ 1

K

∑K

k=1
(1− αk,tsk,t) (τk,t−1 + 1)2

]

=
1

K

K∑

k=1

(τk,t−1 + 1)2(1− αk,t

M∑

m=1

z
(m)
k,t Pr(SINR

(m)
k,t ≥ γth)),

(52)

where the last inequality is due toE [sk,t] =∑M
m=1 z

(m)
k,t Pr(SINR

(m)
k,t ≥ γth). By substituting (52)

into (51), the proof is completed.

D. Proof of Corollary1

To prove Corollary 1, we first prove a key property of
smooth functions. LetF (w∗) denote the optimal global loss,
i.e., F (w∗) ≤ F (w), ∀w. Based on theL-smooth ofF (w),

F (w∗) ≤ F
(
w − 1

L
∇F (w)

)

≤ F (w)− 〈∇F (w),
1

L
∇F (w)〉 + 1

2L
‖∇F (w)‖2

= F (w)− 1

2L
‖∇F (w)‖2. (53)

By rearranging the above inequality, the global loss function
F (w) with L-smooth satisfies

‖∇F (w)‖2 ≤ 2L (F (w) − F (w∗)) . (54)

LetF (wt+1) andF (wt) in (51) subtractF (w∗), then utilizing
the property ofL-smooth in (54), we have

E [F (wt+1)− F (w∗)] ≤ (1−η̃L+6η̃L2)E [F (wt)− F (w∗)]

+ c
1

K

K∑

k=1

(τk,t−1+1)2
(
1−αk,t

M∑

m=1

z
(m)
k,t Pr(SINR

(m)
k,t ≥ γth)

)

+
(η̃ + 3η̃L) (λ−1)

λ
(2G2+

σ2

λ
) +

(η̃ + 1)σ2

2
, (55)

By telescoping the above inequality, the proof is completed.
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