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Abstract—Federated learning (FL) is an efficient and privacy- local datasets among devices are typically non-independen
preserving distributed learning paradigm that enables masive and identically distributed (non-1ID), the limited paipating
edge devices to train machine learning models collaborataly. devices may lead to biased model aggregation and greatly

Although various communication schemes have been proposed . ..
to expedite the FL process in resource-limited wireless neforks, degrade the learning performance [4]. In addition, most FL

the unreliable nature of wireless channels was less explae algorithms assume an error-free wireless channel and égnor
In this work, we propose a novel FL framework, namely FL the unreliable nature of wireless communications [5]. Doe t
with gradient recycling (FL-GR), which recycles the histoical  devices’ constrained transmit power and bandwidth, it islha
gradients of unscheduled and transmission-failure device to to guarantee all the scheduled devices successfully tiansm

improve the learning performance of FL. To reduce the hardwae thei t to th d 61. This bri
requirements for implementing FL-GR in the practical network, eir parameters to the edge server [6]. This brings a new

we develop a memory-friendly FL-GR that is equivalent to Challenge for FL to enhance the robustness of the training
FL-GR but requires low memory of the edge server. We then process and mitigate the impact of erroneous transmission.
theoretically analyze how the wireless network parametersffect  An intuitive solution [7] is to discard the devices’ paraeret
the convergence bound of FL-GR, revealing that minimizing \yith errors, but it further reduces the participating devic

the average square of local gradients’ staleness (AS-GS) lhe .
improve the learning performance. Based on this, we formulte number and exacerbates the performance loss of FL. Thus, it

a joint device scheduling, resource allocation and power edrol IS essential to develop innovative approaches for FL toesidr
optimization problem to minimize the AS-GS for global loss the scarcity of radio resources and the unreliability ofelass
minimization. To solve the problem, we first derive the optimal transmissions.

power control policy for devices and transform the AS-GS

minimization problem into a bipartite graph matching probl em.

Through detailed analysis, we further transform the bipartite A Related Works

matching problem into an equivalent linear program which is

convenient to solve. Extensive simulation results on threesal- In wireless networks, FL is generally implemented by multi-

world datasets (i.e., MNIST, CIFAR-10, and CIFAR-100) verfied  ple devices coordinated by an edge server, in which deviees a

the efficacy of the proposed methods. Compared to the FL limi ; ; ;
algorithms without gradient recycling, FL-GR is able to achieve usually resource-limited in terms of wireless bandwidtime

higher accuracy and fast convergence speed. In addition, ¢h puting capability, and battery capacity. Thus, it is impattto

proposed device scheduling and resource allocation algenm carefully design Fh_e device sche(_juling and vv_ireless resour
also outperforms the benchmarks in accuracy and convergerc management policies that maximize the learning performanc

speed. of FL. The existing device scheduling approaches mainly

Index Terms—Device scheduling, federated Learning, resource focused on selecting devices with the best channel comditio
allocation, unreliable transmission [8], [9], most important parameters [10], [11], or both oéth
[12], [13] to accelerate the learning process. Specificafig

|. INTRODUCTION channel-aware device selection approach in [8] can magimiz

To protect data privacy for wireless devices while jointl)she sum .Of tgcheduled data tsam;t)lesBund;r det\r/:ces Iong-tgrm
training machine learning models, federated learning (s communication energy constraints. based on the communica-

become a promising solution at the wireless mobile edge tfﬁln t"ﬂe alr)1aly3|s of FL,da_n ngt'tmal grObatg'“it'C_ s_cheldgll
6G, which can realize collaborative learning among devic QlICy has been propose in [9] to reduce the training Iatenc

without revealing the original data [2]. However, implertieg y measuring the §ignificance of devices with t.heir gradient
FL in practical wireless networks suffers from the “mited;orm,aparameter|mportance—aware user selection schasne h

wireless resource [3], which restricts the participating d een developed in [10] to minimize the convergence time of

vice number in the per-round learning process. Since tﬁé‘ In [11]_’ pr|0r|t|2|ng dewcgs with rich gnd dlvgrse daéis
In the device scheduling policy has achieved higher acgurac
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channel and contribution-aware scheduling algorithm i8] [1vanilla decentralized SGD with perfect communicationbal$
significantly improve the model accuracy and convergenbeen proved in [26] that the federated averaging (FedAvg)
speed of FL. In addition to the device scheduling policyewir algorithm replacing error models with past local models in
less resource allocation is crucial to improve energy efficy case of devices’ model uploading error converges to the
and reduce learning latency in FL. The joint time allocatiorsame global model parameters as the perfect FedAvg (without
power control, and computation frequency scaling approacbmmunication errors). However, the approaches in [25] [2
in [14] can substantially reduce the energy consumption aésumed that all devices participate in the per-round ilegrn
FL while satisfying latency requirements. In [15], a multiprocess and did not consider the design of wireless networks
dimensional control policy, including bandwidth alloeatiand
Wo_rlfload part|t|on|ngz has been stu.dle(_j to improve the Bers  Motivations and Contributions
efficiency of FL. A joint communication and computation
resource allocation scheme has been proposed in [16] td\lthough the device scheduling schemes in [8]-[15] ef-
capture the trade-offs among convergence, wallclock timf€ctively cope with limited wireless resources, they have
and energy Consumption_ Besides the above device Schgduﬁ.ﬁsumed ideal wireless channels with reliable and lossless
approacheS, the over-the-air-based FL approaches |n[m], transmissions between devices and the edge server, which
effectively address the scalability issues for limited eldsss May not always hold in practical wireless networks. The
resources. Despite the effectiveness of the above apmsacHansmission designs for tackling unreliable channelslBj4
they assumed that the parameter server always successfidfyl remain to drop out the unsuccessful-transmissionasevi
receives the local models/gradients of all the scheduleites and reduce the number of participants of FL. In addition,
and did not consider the unreliability of wireless transitas. the compensation approaches in [25], [26] did not consider
To cope with unreliable communications between devic&4reless network design. They assumed all devices paatieip
and the edge server, existing works focused on improving tiithe per-round learning process, which may be incompetibl
successful transmission probabilities of devices by resou with the limited wireless resources. To mitigate the adeers
management [19]_[22] and retransmission mechanism desig}‘pact of unreliable wireless channels and limited resesirc
[23], [24], as well as compensate for the unsuccessfulvedei 0N FL, this work aims to jointly design the wireless network
devices’ models by the past models [25], [26]. The devi@d learning mechanism to enhance the robustness of the
scheduling and resource allocation algorithm in [19] calif@ining process and improve the learning performance of FL
maximize the expected number of devices with successtlppired by the success of using stale model parameters to
transmissions. A joint wireless resources and quantizdtits accelerate the training process in asynchronous FL [27], we
allocation scheme has been developed in [20] to allevidopose a novel FL framework, i.e., FL with gradient reaygli
the effects of quantization errors and transmission ostage (FL-GR), which recycles the latest historical local gradge
FL convergence performance. The joint device selection afffeived at the edge server to update the global model in
resource allocation approach in [21] can effectively iasee €ach round. Note that unlike [25], [26] that utilize the past
the successful information exchange probabilities oveewi local models to replace the transmission-failure devioesdel
less networks and thus improve the learning performancefef global aggregation, this work recycles devices’ gratie
FL. The power allocation and gradient quantization schemetP update the global model and achieves a better learning
[22] can improve the Convergence Speed of FL over a noigﬁrformance Wh|Ch Veriﬁed in our Simu|ati0ns. In addition,
wireless network. However, it only schedules a single devi®ve investigate the effect of partial device participatiarda
per iteration based on the channel condition. The retrarige staleness of local gradients on the convergence botisd. |
mission protocol in [23] significantly increases the susce¥/orth mentioning that although FL-GR recycles the histiric
probability of devices' model uploading, in which devicedocal gradients to update the global model, it differs frdme t
transmit their local model parameters multiple times, arel tasynchronous FL [27]. The asynchronous FL broadcasts the
edge server uses the received signal with the highest sigrfipbal model to all devices at the beginning of FL, while
to-interference-plus-noise ratio (SINR) to recover thealo FL-GR only broadcasts the global model to the scheduled
models. Different from [23], the retransmission mechanism devices. In addition, the asynchronous FL updates the floba
[24] utilized the arithmetic mean of the received multitimes model when receivingd local models of totalK devices
signals from devices to update the global model, effegtive{{ < K) that may be stale since they were updated at an older
reducing global model aggregation errors induced by cHan&rsion of the global model, while FL-GR is a synchronous FL
fading in over-the-air FL. While demonstrably effectivagt scheme and ensures the received local gradients are timely a
above approaches that maximize devices’ successful tiansriot stale. Thus, the staleness of the devices’ local gréslien
sion probabilities only aggregate the successfully uptdadin asynchronous FL is larger than that in FL-GR in each
devices’ models and thus reduce the number of participimtsround. Consequently, FL-GR achieves lower convergence err
addition, the retransmission approaches may cause aualitidhan asynchronous FL and obtains better learning perfocenan
|atency and energy Consumption for FL. In the presené@]. The main contributions of this work are summarized as
of decentralized FL systems, by reusing past local modefgllows:
the robust decentralized stochastic gradient descent YSGDe To cope with limited resources and unreliable channels
approach proposed in [25] under transmission error sdoati in wireless networks, we propose a novel FL framework,
can achieve the same asymptotic convergence rate as the i.e., FL-GR, which recycles the historical gradients of



unscheduled and transmission-failure devices for global TABLE |

model updates. This framework can achieve faster con- NOTATION SUMMARY

vergence speed and higher accuracy than the conventiongbziion Definition

FL that only aggregates the successfully received locaK: x; Set of devices; size ot

models. In addition, we formulate a joint device schedul-M; M; Set of resource blocks(RB); size oft
ing, resource block (RB) allocation, and power control Px: Dk Local dataset of device; size of Dy

Overall dataset in the system; size Bf

Local model of devicek in the I-th iteration of
roundt; global model in round

Local loss function of devicek; global loss

problem to minimize the global loss, in which training D'(l)l?
latency and devices’ energy consumption are considered?.t> ¢
« For the convenience of implementation in practical Wire-Fk w);

less networks, we propose a memory-friendly FL-GR p(w) ' function
that is equivalent to FL-GR, but with low memory spacen; A : Learning rate; local iteration number
requirement of the edge server. Then, we theoretically': CPU frequency of devicé;

Latest successfully transmitted gradient of de-
vice k in round¢;
¢ Pk,max; Transmit power of deviceé in round ¢; maxi-

analyze how the wireless network parameters affect th& .t
convergence bound of FL-GR. Based on the convergence

bound, we define a new objective function, i.e., the mum transmit power of devick;
average staleness of local gradients, and transform the..: Stochastic gradient of devidein roundt
global loss minimization problem into an explicit one for Pt Power control policy of devices in round

Computation workload of one data sample at
devicek; data size of local gradient
.max; Tmax | ENergy constraint of devicé; maximum com-

device scheduling, RB allocation, and power control. Crs
o To solve the transformed problem, we first find theEk

devices’ optimal transmit power control policy under pletion time for each round

any given RB allocation policy. Then, we transform the ,(™); z, Allocation indicator of RBm to device k in
original global loss minimization problem into a perfect round¢; RB allocation policy for all devices
bipartite matching problem. Through detailed analysisak.t; ¢ Scheduling indicator of devic& in round ¢;

we further transform the bipartite matching problem into device scheduling vector in round

equivalent linear programming whose optimal solution

can be effectively solved with polynomial time complex- L. . .
ity y POy P unscheduled and transmission-failure devices to acceldra

« We provide extensive experimental results on real—wor|8arnlng process. In addition, we characterize the Iegr_m;;t- .
datasets (i.e., MNIST, CIFAR-10, and CIFAR-100) with® of the propo_se@ .FL framework and formu_late an optimization
a typical non-1ID setting to demonstrate the eﬁectivene§)§0blem to minimize the global loss function.
of the proposed FL-GR and device scheduling algo-
rithm. Compared to the FL algorithm without gradienk Federated Learning System
recycling, FL-GR achieves higher learning accuracy and
faster convergence speed. In addition, the proposed deThe considered FL system consisting of one edge server
vice scheduling algorithm outperforms the benchmarks @nd i devices indexed byC = {1,2,---, K'}. Each device
convergence speed and test accuracy. k (k € K) has a local dataseP, with D, = |Dy| data

samples. Without loss of generality, we assume that there is

o . no overlapping between local datasets from different deyic

C. Organization and Notations i.e., D, N Dy = 0 (Vk,h € K). Thus, the entire dataset is

The rest of this paper is organized as follows: In Section lenoted byp = U{Dy }/<, with a total number of samples
we introduce the proposed FL-GR and system model, thepn _ ZkK—le‘ Given a data sampléz,y) € D, where

formulate a global loss minimization problem. A memory;. - Rrd is the d-dimensional input data vectog, € R is

friendly implementation of FL-GR and the convergence anghe corresponding ground-truth label. Lgtz, y;w) denote
ysis are |Ilust_rated in Se_ctlon Il Sectl_on IV illustratéise e sample-wise loss function, which captures the errohef t
proposed device scheduling, RB allocation, and power obntf,odel parametew on the input-output data paft, y). Thus,

algorithm that solves the global loss minimization problenye |ocal loss function of devicé that measures the model
Section V verifies the effectiveness of FL-GR and the progosgyror on its local dataset is given by

device scheduling algorithm by simulations. The conclus$so ]
drawn in Section VI. The main notations used in this paper Fp(w) = — Z f(z,y;w). (1)
are summarized in Table I. Dy, (@.y) €Dy

Accordingly, the global loss function associated with ai-d

Il. SYSTEM MODEL AND LEARNING MECHANISM tributed local datasets is given by
. : . . K
In this work, we investigate an FL system under a noisy F(w) = Zk:lkak(w)7 )

and resource-limited wireless network, where the unridiab
property of the wireless uplinks, i.e., transmission erisr where p; is the weight of devicek such thatp, > 0 and
considered. To tackle the transmission error effect on Iing:lpk = 1. Similar to many existing works, e.g., [9] and
performance, we propose a new FL framework in which tH&5], we consider a balance size for local datasets and set
edge server recycles the historical latest received gn&lief py, = %,Vk e K.
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Fig. 1. llustration of conventional FL framework and theoposed FL-GR: (a) Conventional FL only uses the currentessfally received gradients from
scheduled devices to update the global model. (b) The peap&4-GR recycles the latest historical successful trattedhigradients of unscheduled and
transmission-failure devices for the global model updétg Memory-friendly FL-GR.

The objective of the FL system is to train a global modeits cumulative local stochastic gradigjf; to the edge server.
w, SO as to minimize the global losg;(w), on the whole gy, is given by
datasetD. The optimization objective of FL can be expressed A1 1
. 5 VE (w?) = = M) 5
asmin F(w). Gkt leo k(wy ) n Wi — Wy ()

Due to the unreliable wireless channels, the local gradieyt
not be successfully transmitted to the edge server.sl.gte
B. FL with Gradient Recycling {0, 1} denote the successful transmission indicator of device
in roundt, wheresy, ; = 1 represents the uploaded information
To address the unreliable transmissions and limited refdevicek is successfully received at the edge servgr, = 0
sources in the FL system, we propose a new FL framewogktherwise.
namely FL with gradient recycling (FL-GR), in which the « Step 4 (Global model update) After the edge server
edge server maintainsgradient array{G; : Yk € K} that receives the local gradients from the scheduled devices, th
caches the latest successfully received gradients foesités edge server updates the gradient array as
and uses them for the global model update. Note that, at the
Gii = {

Gkt, if k8Kt = 1, VEe K. (6)

beginning of The FL process, the gradient array is initediz Grr 1, otherwise

as G+ = 0 (Vk € K). The learning process consists Bf
global rounds and performs the following steps in each roual (6), the edge server only refreshes the scheduled and suc-
t(tef{0,1,---,T—1}. cessfully transmitted devices’ gradient and maintaindatest
historical successfully received gradients for unschedidr

- Step 1 (Global model broadcast) The edge server transmission-failure devices. Then, the edge server epdaé

selects a subset of devices to participate in the curremtdrou global model as

training process and then broadcasts the latest global Imo

wy, 10 the §e|gcted dewcgs. Let. . € {0,1} t_o Qenote the Wit = Wi — 1) Z Gt

scheduling indicator of device, whereay, ; = 1 indicates that K k=1

devicek is scheduled in round, oy, = 0 otherwise. We use K _

a; = {14,004, -, ax ) to represent the device scheduling — Wt = 157 Z (ahtshtgki +(1 - O‘k=t5k=t)Gk=t*1)'

decision in round. k=1 %
« Step 2 (Local model training} After receiving the global

model from the edge server, each scheduled device upddi¥eée that, in (7), the edge server utilizes the successfully

its local model by running\ steps stochastic gradient descerfeceived gradient from scheduled devices in the currentdou
(SGD) on its local dataset, according to and the historical latest received gradients of unschedote

W+ transmission-failure devices to update the global modeis T
wy, = wy) 4=V Ey (wy t) VIi=0,--,A=1, (3) (differs from the existing works in [19]-[24] that only aggee

wherew,(gy)t is the local model of devicé in the I-th local the scheduled and successfully transmitted devices’ gnath

update the global model, i. = w; — M.
iteration in roundt with w},} = w, andy > 0 is the learning P g S v S TR
rate. In (3), the stochastic grad|e‘ﬁtFk(wk t) is given by For the proposed FL-GR, we have the following remark:

1 Remarkl. The recycling of historical local gradients in FL-

VF (wk)t) L, Z(m_’y)elggz V(e y7wl(cl)t) (4)  GR has lower model aggregation error than the approaches
. in [25], [26] that reusing of historical models. For ease of
wherelﬁ’,(f_at is a mini-batch data uniformly sampled frofy, comparison, we define the perfect updated global model based
with L = |B,(£| data samples. on all devices' local models a&; ;, = + S Wi =
. Step 3 (Local gradient uploading) After accomplishing w;—74 S5, gr... Note that, in [25], [26], the updated glob-
local model training, each scheduled devicg: € K) uploads al model in roundf+1) iswi% ; = + Zle(akﬂtskytwkﬂt+1+



(1 — ag,¢8k,¢)Wh,t -1, ,+1), Wherery ; is the interval between C. Computation model
the current round and the last round that devidereceived Let O, denotes the number of CPU cycles required for

global model._ Thus, the ggg_regation model error of reusin@yice (k € K) to process one data sample, which can be
local models in [25], [26] is given by measured offline as a priori knowledge. Lt represents the

A = llwk, . —w™ .| computation capability (CPU cycles per second) of device
m = [[wi, —wi, | : : TN
1 K o Thus, the computational time of local training is given by
= HE Zk:1(1 — p8ht) (Whtp1 — Whytry ,41) e _ ALyCh ©)
1 K 5 k.t fk .
= HE Zk—1(1 — Skt ) (We — NGt _ . N
= ) The corresponding energy consumption of device
_ 'wk,tfrkm + ngk.,tf‘rkwt) ‘ Ekcjt — ﬂ)\LbCk(fk)Q, (10)

The aggregation model error of reusing gradients is given Qiere . is the energy coefficient of devices, which depends

A — 1 K 1 . e 2 on the chip architecture.

9= HnK Zk:l( Ok t5kt) (G, = G H Note that we have ignored the computation cost of global
Based on the triangle inequality, we hade, > A,, i.e., the model update at the edge server and focused on resource-
proposed approach that recycles historical local gragieas limited edge devices since the edge server usually hasgstron
a smaller model aggregation error than the approaches Jn [Z®Mputation capabilities and is supplied by the grid power.
[26] that reuse past local models. Thus, the proposed FL-GR

outperforms the approaches in [25], [26], which is alsofi@li D communication Model

in our simulations in Section V. : . .
In this work, we consider the orthogonal frequency division

It is worth mentioning that without gradient recycling, oufyltiple access (OFDMA) withM/ RBs indexed byM =
FL-GR degrades to the FedAvg algorithm [29]. For illustngti (1 9 ... Ar} for devices to upload their local gradients. Each

this, we rearrange the model update rule in (7) as device can occupy one uplink RB in a communication round
1 K 1 K to upload its local gradient. Lety,, = (z\'), 2% ... 2"
Wil = W =13 Zkil Gt = i Zkzl (we = nGit) déen)ote the RB (all)ocation vector for deviken roundt, where
o o -
e (2o st =G o locned s e, anco — o oereioe, For aasn o
X . , kit — .
+ Zk_l(l — pySi) (W — nGk,t)) representation, we usB; = (z1+, 224, -, 2K,) denote the

K X RB allocation decision for all devices in roumdDenotepy, ;
(@) i(za < w n Z(l Qs w ) ®) as the transmit power of devide in roundt, its maximum
K\~ Pk L P T value iSpy,max. The channel gain from devide to the edge
- ] - . server is modelled ad;: = pi(t)d, ", wherepy(t) is the
where (a) is due to without gradient recycling, the unsusites gy q)1-scale fading gain between devicand the edge server,
participating devices’ gradients abe From (8), without gra- ;, is the distance between devigeand the edge server, and
dient recycling, the global model is updated as averagihg @Fbeing the path loss exponent. We consider Rayleigh fading,
devices’ models, which includes the successful partigigat j o pi(t) ~ exp(1), and it is independent and identically
devices’ updated models and the unsuccessful partic@atifisributed across devices and rounds. Thus, the achivabl
devices’ models that are replaced with the current globghsmit rate of devicé in round? is
model. Thus, without gradient recycling, FL-GR will degead v .
to FedAvg. _ (m) Pr,tNkt
To better explain FL-GR, we illustrate the conventional FL it (2t Phot) = Z %k Blogy (1 + Ln + BN0> > (1)
framework ar_ld FL_GR in Fig. 1. Assume that one edge Servv%ereB is the bandwidth of each resource bloc¥, is the
and four devices are in the system to perform three roundsn%ise . ; )
power spectral density,, is the interference caused

_th_e_ FL process. At the beginning of the F.L’ the edge servte)z)r/ the devices that are located in other service areas and use
initials the global modehkvy and the gradient array for all

i . . . ihe same resource block [19]. It is noted that each device can
devices ta0. Take round 3 as an example, in which devices
only occupy at most one resource block, and each resource

3, and 4. are scheduled to participate in the _Iearnlng_ PrOCe®dek can be accessed by at most one device. Thus, the RB
and device 1 cannot successfully transmit its gradient. T M (m

conventional FL in Fig. 1(a) only aggregates the succelysful"‘ﬁocat;?n poh)cy for devices should satis}y,,.,_, Zk-,t) =1
transmitted devices’ gradientgs(> and gs) to update the and}_,_, z;i"Z <L

global model, i.e.ws = wsy — in(gss + Gao). However, LetQ denote the size of each gradient, i.e., the number of
the FL-GR in Fig. 1(b) utilizes the successfully receivefits used to quantify the gradients. If deviees scheduled to
gradients §3 o and g4 ) and the historical received gradiemparticipate in the training process of routidts transmission

of unscheduled or transmission failure devic€ ¢ = g, time is given by

and G2 2 = g2,) to update the global model, i.ew, = Q

~ ~ ~ ~ U - v
w1 — 11(g1,1 +g2,0 + g3,2 + Ga2). Tt Thot(Zk,ts i) (12)

m=1



The corresponding energy consumption of devider trans- Solving problemP requires the explicit form of the global
mission is loss function related to the device scheduling, power abntr
U U and RB allocation policy. However, the evolution of machine
Bre = Pl (13) learning models in the learning process is very complex. It
is almost impossible to find an exact analytical expressifon o
E. Successful Transmission Probability E[F (wr)] with respect tax;, Z;, andp;. Thus, we turn to find
an upper bound oE[F(wr)] in Section [lI-B and minimize

In this work, we consider characterizing the unreliabibfy it for the global loss minimization

uplink transmissions of devices by the successful trarsions

probability. Before studying the uplink success probapili

we assume the downlink transmission is always successful,|||. M EMORY-FRIENDLY EL-GR AND CONVERGENCE

i.e., devices successfully receive the global model. Itdsthv ANALYSIS

mentioning that this assumption is valid since the edgeeserv

usua”y has more transmit power and can occupy more Rlen this SeCtion, to improve the implementation feaS|blllty

for the global model broadcasting compared to devices. ©Of the proposed FL-GR in practical wireless networks, we
Let v, denotes the signal to interference plus noise ratfsst propose a memory-friendly FL-GR that is equivalent to

(SINR) threshold for successful data decoding. The suidesghe proposed FL-GR in Section II-B but with low memory
transmission indicator of devicé in round t is s,, — requirements of the edge server. Then, we theoreticalllyzea

ZM (m)q gSINRz(ﬁ) > v WhereSINR,(C"Z) _ peihie  the convergence bound of FL-GR to reveal how the device

m=1%kt , Im+BNo  gcheduling, RB allocation, and power control policies etffe
is the SINR of device: in m-th RB. The successful transmis- 9, ' P P aff

sion probability of device: throughm-th channel in round

its learning performance. Motivated by this, we define a new
objective function, i.e., the average staleness of locadignts,

is given by to transform problen into a tractable one for guiding the
m h i i
Pr(SINR; t) > %h) — pr (ka_,: Bf]t\/' > %h) wireless network design.
’ m 0
I+ BN _ e Um +BNg)
=Pr (Pk(t) > %) =e "% (14)  A. Memory-friendly FL-GR
g,

It is worth mentioning that implementing the proposed FL-
GR in Section 1I-B requires the edge server to maintain a huge
array to cache the latest gradient information for eachadevi
F. Problem Formulation Thus, the cache size requirement of the edge server in FL-

In this work, we aim to minimize the global loss functiorCR scales with the model size and the number of devices.
after T training rounds in the resource-limited and unreliabl&his may restrict the scale of the wireless FL system since

wireless network. To this end, we formulate an optimizatiofi€ Server's memory may be exhausted when the number of
problem to jointly optimize device scheduling, RB allocaj devices is very large. To address this issue, we propose a

wheree refers to the Euler’'s number.

and power control as follows: memory-friendly FL-GR in W_hich ea\_ch devicé mair_1tains
a gradient arrayxy, ; to cache its previous latest gradient, and
P min  E[F(wr))] (15) the edge server maintains a gradient anéyto cache local
{"(‘;Z”’f}{;“ gradients’ aggregation information. Then we replace step 3
s. t. By + By < Egmax, Yk € K, Vt, (15a) and step 4 in Section 1I-B with the following steps:
Ty + Ty < Toax, Vk € K, Vt, (15b) . Replace Step 3 in Section II-B with: After all selected
Z,(:Z) € {0,1},Vk € K,Vm € M, Vt, (15¢) d_evices accomplish Iocz_;\I model training, they gpload the
Y difference between their current and the previous latest
Z » z,i"z) <1,Vk € K,Vt, (15d) cumulative gradient, i.egx . — G+ 1, to the edge server.
® (m) « Replace Step 4 in Section II-B with: The edge server
Zk:l zy < 1,Yme M, Vt, (15e) updatesGy as Gy = Gi_1 + = S5 s (Gre —
0 < prt < Promax, Yk € K, VE, (15f) G.+—1), and all devices update their gradient ar@ly ;

according to (6). Then, the edge server updates the global
model asw;1 = wy — NG

where (15a) stipulates that the energy consumption for eactpy replacing step 3 and step 4 in Section 11-B with the above
participating devicé (k € K) in each round cannot exceed ity steps, the edge server distribute the memory requiremen
budgetEx max- Tmax in (15b) is the maximum delay of one-tq the devices and form a memory-friendly FL-GR algorithm,

round FL training. (15c), (15d) and (15e) correspond to tBe Rys shown in Fig. 1(c). For this memory-friendly FL-GR
allocation restrictions, indicating that one device caoupy g|gorithm, we have the following theorem.

at most one RB for uplink transmission, and one RB can only _ _
be allocated to one device. (15f) is the devices’ transmitggo Theorem 1. The memory-friendly FL-GR which formed by

constraint. (15g) indicates which devices are scheduledan replacing step 3 and step 4 in Section II-B with the above two
round. steps is equivalent to the proposed FL-GR in Section II-B.

ake € {0,1},Vk € K, Vt, (159)



Proof. We prove Theorem 1 by Mathematical inductionAlgorithm 1 Memory-friendly Implementation of FL-GR

Firstly, the maintained gradient array; at the edge server 1: Initialization: The edge server initials its gradient ar =
satisfies: 0 and the global modelvo, each device: (k € K) initial thelr
gradient array a&#;,,_1 =0

2: Server side:
Gi=Gi 1+ — Z k,t Skt (Grt — Gre—1) 3 fort=0,1,---,7—1do
4: dSellect a %ubset of devices and broadcast the latest global
model w; to them
=G+ Z kel (Gri = Gr-1)- (16) 5: N if Reé:eive the gradient information from the selected devices
then
Note that at the beginning of the learning process, the: Update the gradient arraye; as G: = Gi_1 +

devices’ gradient arrags,, _; and the server's gradient array % L ks a(@rs — Gri1)

G _; are all initialized with0. Thus, whent = 0, we have z e|sédeate the global model accordingdn. 1 = w; —nG.
9: W1 = Wy
— _ 10: Device side:
Go=Git g Z Gro = Gr-1) Z Gro- (17) 11: if Device k is scheduledhen
k 1 12: Receive the global modeb; from the edge server and initial
0) _
Whent =1, wy = Wy;
L K o or Update the Tocal dd | ding (3)
G =Q - G.i-G 14: pdate 'the local model according
! ot K Zlczl( hat ko) 15: Compute the cumulative stochastic gradiepi,, =
K K 1 (N
1 ~ 1 (Wt — Wy
= K Z Gk,l +Go— K Z Gk 0= Z Gk 1. (18) 16: (Upload thegk + — Gg,+—1 to the edge server.
k=1 k=1 17: Update the gradient arra#'s,; according to (6).

Similarly, we can conclude that for anyG; = + Zk L Gy
is established. Thus, the updated global model by this mgmor

friendly FL-GR isw; 1 = w; — Gy = w; —14 Zk e Assumptiortl. All the local loss functionsf.(w) (Vk € K),
which is equivalent to update rule of the gIobaI model in (7€ L-smooth. That is, for alb andw,
in Section I1-B. O

Fr(v) < Fp(w) + (Fi(w),v — w) + g v —w|*. (20)
According to Theorem 1, one can implement the above
memory-friendly FL-GR to achieve an equivalent learningssumption2. The stochastic gradieri¥ Fy,(w,) (Vk € K)
process with the proposed FL-GR in Section Il in practicé an unbiased estimator of the full gradiewt, (w;), i.e.,
wireless networks. It is worth mentioning that the comgdotat E[V F,(w;)] = VF(w,), and its variance is upper bounded
costs, communication costs, and the learned global mo#gl a constant?, i.e., E||VFy(w;) — VFj(w;)|]*< o2

of these two algorithms are the same. The memory- eﬁ'c'eﬂgsumpnom The expected squared norm of dewces gradi-
FL-GR only requires the edge server to maintain a smgé Sts is uniformly bounded b2, i.e. HVFk('wt)H < o2
gradient array, whereas FL-GR necessitates the malntenaﬁt)t:r al k=1.2...- K andf =0 1 T_1 -

of all K users’ gradient arrays. For clarity, we summarize the

detailed steps of memory-friendly FL-GR in Algorithm 1. In Assumption 1, 2, and 3 are standard and widely used in
the following, we analyze the convergence performance of Ffhe FL literature for convergence analysis, e.g., [10],][12
GR and transform probler® into an tractable one for device[30]. These assumptions are satisfied by the loss functions

scheduling, RB allocation, and power control. of widely used learning models, e.g., support vector maghin
(SVM), Logistic regression, and most neural networks [31].
Particularly, a deep neural network defined by a composition
of functions is a Lipschitz neural network if the functioms i
For the simplicity of notation, we define the local fulla|| layers are Lipschitz [32]. It has been proved in [32] and
gradient on devicek in the l th local iteration of thet- [33] that the convolution layer, linear layer, some nordine
th round asVFk(wk)t) = D > wen, Vfz, y,w,(f)t) Let activation functions (e.g., Sigmoid, tanh, Leaky RelLU, and
F( *) denote the loss function of the optimal global modedoftPlus), and the widely used cross-entropy function have
w*, and7 = nA as an auxiliary variable. In addition, it isLipschitz smooth gradients. That is, the loss functions of
worth mentioning that we recycle the latest historical @ats most neural networks that are consisted of Lipschitz layers
of the unscheduled and transmission-failure devices t@t@pdare Lipschitz continuous.
the global model. To identify the time information of devdte  Before illustrating the details of convergence bound, we
gradients, we define the staleness of deviselocal gradient jntroduce two lemmas based on the above assumptions to assis
asTx,:, Which evolves as our convergence analysis.

B. Convergence Analysis

Tht = { -1+ 1, ag sk, =0, Vke k. (19) Lemma 1. Let Assumption 1, 2, and 3 hold, the learning rate
7 0, it agesee =1, satisfyn < 537, the drift of the local model from the global
Before starting the convergence analysis of FL-GR, wwodel afterl iterations is bounded as
make the following standard assumptions for the local loss . 2 4\ — 1) o2
functions, i.e.,F (w), Fs(w), - - -, Fic (w). E [l - wi < f(m? + 7). (21)



Proof. See Appendix A. O 1) the initial gap between the global loss and the optimal
loss. 2) a constant term related to the system hyperparesnete
Raused by multiple local iterations\ (> 1) and stochastic
gradient error. 3) the cumulative staleness of local gradie
overT training rounds. The first two terms determined by the

Lemma 2. Let Assumption 1, 2, and 3 hold, the learning rate
satisfyn < %L, the difference between the global models in
two different rounds, i.ez andt’' (¢t > t'), is bounded as

2 09 "o 8PLA(A—1), system hyperparameters and the initial global model are-unr
EJlw; — we " <30°(t = 1) ((1 + A )G lated to device scheduling, RB allocation, and power cdntro
4P L2\ = 1), , policies. The last term is highly related to the wirelessvoek
+1+ T)U ) (22) design, which indicates that an out-of-date local gradieay
Proof. See Appendix B. 7 degrade the learning performance. To minimize the glotss lo

function and improve the learning performance, one should

Based on Lemma 1 and Lemma 2, we derive the one-rouggrefully design the device scheduling, RB allocation, and
convergence bound of the proposed FL-GR in Theorem 2 ggwer control policy to minimize the average staleness cdllo
follows: gradients (last term on the RHS of (24)) for preventing therov

Theorem 2. Let Assumption 1, 2, and 3 hold, the Iearningiale local gradients. For the global loss optimization haee

rate satisfyn < -, the one-round convergence bound i§"® following remark:
given by Remark 2. It is worth mentioning that similar to many
1 ) existing works, e.g., [16], [34], the available devices and
E[F(wit1) — F(wy)] < (—5ﬁ+3Lﬁ) IVE(wy)||” + e wireless resources in problef@ are independent across d-
K M ifferent rounds. Thus, the convergence bound in (24) can

¢ (m) (m) be minimized by directly minimizing the average staleness
F SN (st + 1) (1—% 2™ Pr(SINRU™ > ) by directly g g
kz o tz e P e Z) of local gradients in each round, i.ex ZkK 1 (Thp—1 +
(23) 1)2 &1 — e M 1zkt)Pr (SINR(’”) > 'yth)g. Inspired
- _ _ by this, we define a new objectlve function based on The-
wherec = 2(7j + 1 (14——2(A G2 4 (1+ B4 2),and )
c= s+ ) ( X ) orem 2 and Corollary 1, i.e. s S (741 + 1)2(1 —

=1 m=1

— @31 92 | o?y 4 (+1)o®
€1 X ( _ ) 2 aktzm 1Zk ! Pr(SINRan) > %h)), which directly mini-
Proof. See Appendix C. 0 mizes the upper bound GB[F (wy1)—F(w;)] in each round

According to Theorem 2, the summation of the squaﬁ?d achieves the minimization of tl#-rounds convergence
of local gradients’ staleness, i.e., the last term on thatrig bound in (24).
hand side (RHS) of (23), is a critical factor that negative-
ly affects the learning convergence rate. By increasing the V. OPTIMAL DEVICE SCHEDULING, RESOURCE
number of scheduled devices and their successful trangmiss ALLOCATION, AND POWER CONTROL
probabilities, the expected staleness of local gradiemsidv In this section, we propose an effective device scheduling,
be reduced and thus accelerate the learning process. Du@allocation, and power control algorithm that solves prob
the limited wireless resources, one should carefully desigem P. Towards this end, we first transform probléMinto a
the device scheduling, RB allocation, and power control tgactable one based on the convergence analysis in Section
improve the number of devices with successful transmissignB. Then, we solve the optimal power control and RB
while satisfying their energy and delay constraints. allocation policies in an effective manner.

Based on Theorem 2, the convergence performance of FL-

GR afterT training rounds is given by the following c:oroIIary.A Problem Transformation

Corollary 1. Let the assumptions in Theorem 2 hold, the The convergence analysis results in Theorem 2 and Corol-
expected gap between the global loss affetraining rounds jary 1 reveal how the wireless network design affects the
and the optimal loss is bounded by learning performance of FL-GR. According{to Remark 2,
E [F(wr) — F(w")] we2 transform problemP) into mmmrll)ze = D e 1(7'-]€7t_1 +
< (1 — 7L + 67L2)TE [F(uwn) — F(w") 1) (1 — e M A Pr(SINRYY > M)P in each
. T round through device schedullng, RB allocation, and
1—-(1—-7L+67L%)

~L GiL? power control policies. Sinceny,: = >, 2., €
+CZ 1—77L+6nL2)T 1=t

+c1

Lk {0,1}, we haveay, M 2" Pr(SINRY"Y > ~u) =

sz:1 (Tht—1 + 1) MY t) Pr(SINR(m) > 7). That is, when the RB
m) (m allocation decision is given, the deV|ce schedullng potian
(1 Okt Z Zkt Pr(SINR,, = %h))' (24 pe directly computed by, , = S-M_ zk ") (Vk € K). There-
Proof. See Appendlx D. q fore, we transform problenP into minimizing the average
square of local gradients’ staleness in each round as fsllow
From Corollary 1, the expected gap between the global loss

afterT rounds and the optimal loss is bounded by three terms: P: min R(Z:,pt) (25)



s. t. (15a)- (15f). E.max—KALyCy, 2. Combining with (15f), the optimal power
control policy for devicek is

where R(Zip) = S e + 12(1 - .

M m) (m) g pz,t = mln{p]l;:tvpk-,max}ka S\ (30)
D ome lzkt Pr(SINR;,” > %h)z. Problem 7 is a non-
convex optimization problem which is difficult to solve. Inwherepkt satlsfyA = Bk max — kAL Cy f2.

Tktzkrpk )

the following, we derive the optimal power control policy
for each device under any given RB allocation decision and
transform problenP into an equivalent linear programmingC. Optimal Resource Block Allocation

problem that can be effectively addressed. .
Up to now, we can compute the optimal power control

policy for each devicek (k € K) with any aIIocated RB

B. Optimal Power Control m (m € M) based on (30), denoted by, ,(m). Thus, we
compute the optimal power control policy for aII devicesih a
Bs (i.e.{pj, t( m) : Vm € M,Vk € K}) and substitute them

|nt0 problemP to simplify it as the following RB allocation

For any given RB allocation policg;, it is straightforward o
to see that the power control policies of devices do no
affect each other and independently contribute to the titsgec

function. Therefore, the power control policy for each devi problem.
can be solely optimized by itself. With given RB allocation Mﬂfﬁfﬂ
policy Z;, we decompose the power control optimization P2 : max—z Z Zkt (Th—1 +1)%e  "Re™% - (31)
problem for each devicgé (k € K) as follows: k=1m=1
) s.t. (15c¢)(15d) (15€)
Py min hg(pre) (26)
Ph.t ALyCy Q
- < Tk max, Vk,m.  (31a)
s. t. (15a)(15f). fr Tt (2k,t5 DF (M) '
where ProblemP, is a typical non-linear integer programming prob-
' rnUm+BNg) lem which is difficult to solve. Below we transform it into
hi(prt) = —(Thi—1 + 1) Z Zkt e pradp’ 7) @ maximum weight perfect bipartite matching problem and

find its optimal solution within polynomial time. The bipaet
o matching problem is to find a matching (i.e., a set of edges
Problem P, is ‘a non-convex optimization problem. Tochosen such that no two edges share an endpoint.) with the

solve the optimal power control policy, below we analyze thmaX|mum weight for the bipartite graph, where the weight is
properties of the objective function and constraints obﬂHm_ the summation of all the edges in the matching [35].

P1. Firstly, the first-order partial derivative of the objeeti To transformP;, into a bipartite matching problem, we

function with respect ty, is given by construct a complete and balanced bipartite giéaph (V, &),
Ohy(pr,t) whereV = K UM is the vertex set, anél is the set of edges
6pk e that connect the vertices i and M. In G, each vertex: in
_ 2 Um+BNo) e (I + BNG) K corresponds a devide M = M U M, is an extended set
X Z Ae  meatt M TR0 vk e K. (28)  of M, where each vertex in M corresponds to RBr. M,
pk #d, is the virtual vertex set used to construct a balanced lifipart

It is straightforward to see tha%—h’“ Pt} < 0 sincepy: > 0. graprﬁ,jvhich makes _the size ok e_qu_al to the size ok,
e., |M|= |K|. The weight of edges i is given by
That is, the objective funCtIOI‘hk(pk ¢+) is a monotonically
decreasing function with the transmit powgr, (V& € K).
Thus, the optimal transmit power for each device is itsAk,m =
maximum available power. Based on constraint (15a), the
energy consumption of gradient information uploading $thou (32)
satisfy B, < Ej. max— Ej . In addition, the first-order partial  Note that this work assumes that the number of devices
derivative ofE,CU,t with respect topy, ; is given by exceeds the number of RBs. When the number of RBs exceeds
M omon the number of devices, we can introduce a virtual device set
OEY, Z_:l W((l + Yio,t) In(1 + yet) — %i) K. such that the[K|+|K,|= |M]|, and construct a similar
m= graph to the case dK|> |M|.
According to the above-defined bipartite graphwe trans-
(29) form P, into a maximum weight perfect bipartite matching
problem, which aims to find a perfect matchirig of G
Where'yk = f’“i’é’“ﬁ Sinceln(1 + ) > 1% for z > 0, we maximi;ing > eer Dkm- Let Oy, € {0,1} be the edge
8EY, connecting verteX (k € K) and vertexm (m € M), where
have 5 o 0. Therefore Ekt is monotonically increases 6..m = 1 denote that RBm is allocated to device, and
with p’“ Hence, the transmit power of devide should 0r.m = 0 otherwise. For the sake of presentation, we use

P Q Ok = {ok-rl"”’ek,lml} to denote the connection indicator

Tk t(zk tapk,t)

—(Thi1 +1)?

_ ‘Vch(Im+BiVUo)
(Thi—1 +1)%e "% if(31a) Yk, m,
0, else.

2 ?

F) ,
Pht (anf L t>BlOg2(1 + YV, t))

satisfiespy; < pj,, where p;’, satisfy
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of devicek to all the RBs. Hence, we formulate the bipartitéor all devices in all RBs and judging whether the devices’

matching problem as the following optimization problem.

Poi DDAND D V)

st S M g =1 vhex, (33a)
m=1

Zk: O = 1,Ym € M, (33b)

Oom €{0,1},Vk € K,¥me M. (33c)

It is worth mentioning that any solution to probleﬁg corre-
sponds to a perfect matching of gragh However, problem

delay satisfies the latency constraint. The time complexdty
this step isO(2K M). Finally, we transform probler®, into
equivalent linear programming (i.€2) and utilize the current
matrix multiplication time algorithm [36] to solve its optil
solution for obtaining the RB allocation policy. After thate

find the optimal power control of scheduling devices based on
the RB allocation policy and compute the device scheduling
policies asaj , = Y, zfg’;)* (Vk € K). Thus, the overall
time complexity of Algorithm 2 isO(2K M + (K?+1/6)2),

Algorithm 2 Optimal Device Scheduling, Power control, and

P, is a linear integer programming, which is still difficultRB allocation

to solve. By relaxing the integrality constraint (33c), wenc
obtain the following linear programming problem:

P, K ™
P (o5, Yo OemBim (34)
s. t. (33a)(33b)
0< bpm < 1,Vk € K,¥m € M. (34a)

1: Compute the optimal power control policy for each devicelin a
RBs according to (30 o .

2: Compute the successful transmission probabilities fodelices
with all RB, i.e., Pr(SINR{™ > ~.1,) (Vk € K,Vm € M)

3: Construct a bipartite grapt = (V, £) and compute the weight
of each edge I according to (32) .

4: Construct the linear programming problefa

5: Solve problenfP, and obtain the optimal bipartite perfect match-
ing {61.}i -

6: Compute the optimal RB allocation polic¥; = {z,”,”" : k €

Problem P, is the linear programming relaxation of prob-

lem P, which can be solved by using the current matrixy.

K,m € M}, wherez{"""* = 6 ,,
Compute the optimal device scheduling polieyf = {og :

multiplication time algorithm [36] with time complexity of
O((K*t1/%)?) since it hasK? variables (i.e.0km : k € &
K, m € M). Note that in problenP,, each row in the coeffi-
cient matrix corresponding to (33a) and constraint (338y on

contains a ‘1’. This implements that each square submatrix

of this coefficient matrix has a determinant equal to 0, +1, or V. NUMERICAL RESULTS

-1. Thus, this coefficient matrix is a totally unimodular meat  In this section, we evaluate the performance of our proposed
Based on [35], the optimal solution of problém is an integer FL-GR and the device scheduling algorithm.

solution which is equal to the optimal solution of problem
P». That is, the optimal solution 0P, can be obtained by
directly solving probleniP,. In the above analysis, we first

Vk € K}, wherea; , = SM_ 2" (vk € K)
Return the optimal device scheduling poliey, RB allocation

policy Z;, and power control policy;

TABLE Il
NETWORKARCHITECTURE FOR THECLASSIFICATION MODEL

transform problemP into an equivalent maximum weight Dataset Model Name | Model Architecture

perfect bipartite matching problem, i.e., problgf. Then, MNIST MLP F: [784, 128, 10]

we further transform problen®, into its equivalent linear ciFar-10 | CNN C:[6, M, 16, M]
programmingP-. It is worth mentioning that these are two E [\}S%O_’ﬁsfeg tGUA;,ele?(]tractor 37
equivalent transformations and do not change the optiyalit CIFAR-100| VGG-11 = [512, 256, T00]

of problem73. Thus, the optimal solution of proble can be

addressed by first solving the optimal solution of problEm

When the optimal solution of proble®, is found, the optimal A. Simulation Settings

RB allocation is determined. Furthermore, the optimal cevi i , ) ,
For the simulations, we consider a cellular network with

scheduling policy can be computed by , = S 20" ; ) . o
(Vk € K), and the optimal transmit power of each device ca\% coverage radius of 500m,_ in which one basg s_tatlon IS
ocated at its centre anH devices are randomly distributed.

be determined by (30). N The CPU frequency of each device is randomly selected from
According to the above analysis, we can solve probem  {0.8,1.0,1.2,1.4} GHz. We evaluate the proposed algorithm
an effective manner to obtain the optimal device schedulingnder three classification learning tasks, i.e., the haitigwr
power control, and RB allocation policies. For clarity, wevs  digits classification task on the MNIST dataset, as well as th
marize the detailed steps of solving probl&nin Algorithm 2. image classification tasks on the CIFAR-10 and CIFAR-100
Firstly, Algorithm 2 requires computing all devices’ optin datasets. The network architectures used for the learasigt
power control policies in all RBs according to (30), whiclon these three datasets are summarized in Table Il, where 'F’
requires computing’ x M times of power control policy denotes the fully connected module, 'C’ denotes the convo-
and has a time complexity ad(KM). Then, we construct |ution module, ‘"M’ denotes the x 2 max-pooling layer, and
a bipartite graph to transform problef into_a maximum the number indicates the number of neurons in fully conmecte
weight perfect bipartite matching problem, i.@,. This step layers or filters in convolution layers. Particularly, foetCNN
requires calculating the successful transmission prdiiebi used on the CIFAR-10 dataset, the size of convolution kernel
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TABLE Il received gradients from the scheduled devices to update the

SYSTEM PARAMETERS global model. This scheme is widely used in existing literat
Parameter Value Parameter Value e.g., [19], [21]-[24]. 2) FedProx [40]: FedProx utilizes a
K 100 M 10 proximal term to limit the impact of local updates for improv
B 1MHz No -174dBm ing model performance under heterogeneous data distiimiti
v R 0dB among devices. 3) Model compensation (MC) [25], [26]: In
" gx 10 zb 8;105 each round, the edge server uses the successfully recenad |
— 30mW L (Ym € M) [102, 10°] BN, models and the !oast local models of transmlsglon-fanure or
Q(CNN) 1,962,016 | C},(CNN) 326,338.5 unscheduled devices for global model aggregation.
Ej.max(CNN) | 1.0J Q(VGG-11) 305,685,860 Fig. 2 shows that FL-GR outperforms the benchmarks on all
Cr(VGG-11) | 76,421,468 Ej max(VGG-11) | 230J three datasets. In addition, the learning performanceldilal
Twax(CNN) | 0.3s Tnax(VGG-11) | 35s algorithms improved with the increasing number of sucagssf

transmission devices, i.e., the test accuracySot= 10 is
greater than that of = 5 for all FL algorithms. Specifically,
from the results on the MNIST dataset in Fig. 2(a), when
S = 5 devices successfully transmitted their gradients to the

TABLE IV
REQUIREDROUNDS TOREACH A TARGETACCURACY

Dataset S | Target Proposefd Best Saved - .
Accuracy Baseline | Time edge server in each round, FL-GR achieved a 1.49% accuracy

MNIST 5 | 85% 48 80(MC) 40% improvement compared to the FL algorithms without gradient

10 | 90% 50 233(MC) | 78.5% recycling. Although FL-GR only achieves a slight performan
CIFAR-10 |2 | 50% 128 318(W/GR] 59.7%  gain (i.e., 0.95%) wher§ = 10, its learning process is more

10 | 55% 147 376(W/GR] 60.9% . .

51 65% 757 640(WIGR) 28.6% stable than the benchmarks. Fig. 2(b) and Fig. 2(c) evaluate
CIFAR-100— 5095 509 760(WIGR] 33% the learning performance of FL-GR on CIFAR-10 and CIFAR-

100, respectively, drawing a similar conclusion to the MNIS
dataset. In particular, we can observe a more distinct acgur
are all set to b& x 5. The input and hidden layers in all theboosting of FL-GR on these two complicated datasets than
learning models are all activated by the ReLU function. Hor ¢he MNIST dataset. From Fig. 2(b), FL-GR obtains 6.46%
three datasets, we adopt a typical heterogeneous dattigpli and 5.1% accuracy improvement whén= 5 and S = 10,
method that is widely used in the existing FL works, e.grespectively. Fig. 2(c) shows that FL-GR boosts 5.94% and
[16], [34]. We first classify the training data samples adaog 4.2% accuracy whel = 5 and S = 10, respectively.

to their labels, then split the data samples in each class int In Table IV, we present the number of optimization rounds
2K /N shards {V = 10 on MNIST and CIFAR-10;N = 100 hecessary to achieve a target accuracy for both the proposed
on CIFAR-100), and finally randomly distribute two shard@pproach and the top-performing baseline algorithm. Sipeci
of data samples to each device. That is, each device hagady, on the CIFAR-100 dataset, wheéh= 5, FL-GR spends
data distribution corresponding to at most 2 classes. That @nly 457 rounds to achieve 65% accuracy, while W/GR (the
each device has a data distribution corresponding to at mBgst benchmark) requires 640 rounds. That is, FL-GR can
2 classes. For all models, a momentum of 0.9 is adopted dgduce by 28.6% training time to obtain 65% test accuracy
cross-entropy is adopted as the loss function. In additanh compared to the benchmarks. When- 10, FL-GR is able to
parameter of these models is quantitated as 16 bits [15plForsave 33% training time to achieve 70% test accuracy compared
devices in the system, each CPU cycle can process 4 FLOWsthe benchmarks.

Thusy the required CPU Cyc|es to process one data Samp|g is worth mentioning that the simulation results in Flg
are equal to the number of FLOPs of its model divided bg show that the proposed FL-GR outperforms the model
4. The parameters chosen in the simulations are based onaf@pensation approach in [25], [26]. This verified the asialy
parameter settings of a typ|ca| wireless FL System [10]]’[14'esult in Remark 1, i.e., FL-GR recyCleS the historical loca

[19], [38], [39]. If not specified, the default system segin gradients has a smaller model aggregation error than theimod
are listed in Table III. compensation approach in [25], [26] that reusing past local

models. Thus, FL-GR outperforms the model compensation
_ ) ) approach. In addition, although the simulations in [25F][2
B. Effectiveness of Gradient Recycling demonstrated that the model compensation approach outper-
To evaluate the effectiveness of the proposed FL-GR, i@rms the W/GR method under full participation and small
compare it with the following benchmarks in terms of tegransmission error rates, our simulation results on theARH
accuracy under different numbers of successful transamissilO and CIFAR-100 datasets show that it does not perform
devices (denoted &) per round. Note that we do not considebetter than W/GR under small successful participatiorosati
the wireless resource limitations and unreliable chanirels (i.e.,S =5 andS = 10 correspond to 5% and 10% successful
this subsection. The edge server randomly selects a subseparticipation ratio, respectively).
S devices to undertake the local training process, and FL-GR
recycles the historical gradients of unscheduled devicethe C. Comparison of Device Scheduling Policies
global model update. 1) Without gradient recycling (W/GR): In this subsection, we compare the proposed device schedul-
In each round, the edge server only aggregates the sudéessing algorithm to the following scheduling policies: 1) Ramal
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Fig. 2. Comparison of learning performance of different Fgoathms: (a) on MNIST dataset; (b) on CIFAR-10 datase};de CIFAR-100 dataset.

— Proposed

- - Random Scheduling

——STP-Scheduling .
GI-Scheduling yd

scheduling: In each round, the edge server randomly sele °¢ sasn] 40
a subset of devices and their corresponding RBs that sa '
fy the constraint (15a)-(15f). 2) Gradient importance-mva _

scheduling (GI-Scheduling): The edge server selects aesuk s o
of devices with the maximum gradient norm and satisfies tl‘gO
constraint (15a)-(15f) in each round. 3) Successful tragsm™

Average Staleness of Local Gradients

/ — Proposed

sion probability-aware scheduling (STP-Scheduling): @tige  o2{) 5P Seheining

server selects a subset of devices with the maximum suctes | SrSee

transmission probabilities and satisfies the constraibayl = = 0L oo 20 0 B g T
(15f). Note that all the device scheduling approaches is thi (a; | (b)b |

subsection serve the proposed FL-GR to schedule devices in-
stead of other learning frameworks. In fact, random schiegul Fig. 3. Comparison of learning performance for differenvide scheduling
is equivalent to randomly selecting a perfect matching @ ti90rithms on the CIFAR-10 dataset.

constructed bipartite graph of the proposed device schadul
algorithm instead of the maximum weight perfect matchin °7
to schedule devices. Gl-Scheduling and STP-Scheduling b os
construct a similar bipartite graph to the proposed sclieglul .
algorithm and find the maximum weight perfect matchin :
corresponding to their device scheduling policy. In thepbra ;f“
of GI-Scheduling, the weight of each edge is equal to tt“os; /277

©

~

)

o

w

Average Staleness of Local Gradients
IS

. . A . oy 0 —Proposed 2 — Proposed
gradient norm times the successful transmission prolwbiti .- ,f_;/ 7 oo Seeduling {5 - Random Scedling
the STP-SCheduIing, the WEight of each edge is the sucdes: . - GI-Scheduling - GI-Scheduling

1 i il "o 0.5 1 1.5 2 25 3 3.5 0 0.5 1 15 2 25 3 3.5
transmission prObablllty' Training Time (s) <104 Training Time (s) 104
Fig. 3 shows the learning performance of different device @ (b)

scheduling algorittms on the CIFAR-10 dataset. From Figig. 4. Comparison of learning performance for differentide scheduling
3(a), we can see that the proposed device scheduling alggerithms on the CIFAR-100 dataset.

rithm performs better than the other three device scheglulin

approaches in terms of convergence speed and final test ac-

curacy. Specifically, the proposed device scheduling @élyor sesses the lowest staleness of local gradients. In additon
achieves around 6.44% accuracy improvement compare to the three benchmarks, the device scheduling algorithm with
random scheduling approach. Fig. 3(b) presents the averémeer staleness obtains higher accuracy and faster coeneeg
staleness of local gradients for all four device schedulirgpeed. This verified our theoretical analysis results inofém
algorithms. It is observed that the proposed algorithm po2-and Corollary 1, which suggests scheduling the devicds wit
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Fig. 5. Impacts of energy and delay constraints on the legrperformance Fig. 6. Impacts of wireless parameters on the learning pedace: (a)
on CIFAR-100 dataset. Successful decoding threshold; (b) Number of RBs.

large staleness to reduce the average square stalenesslof lo

radients in each round.
J the learning performance of the proposed FL-GR on both

_ A _S|m|lar comparison is made on the CIFAR-_lOO d_atas IFAR-10 and CIFAR-100 datasets. From Fig. 6(a), we can
in Fig. 4. We can observe the same conclusion with thé

simulation on the CIFAR-10 dataset. Specifically, The pro-c the test accuracy of FL-GR on CIFAR-10 and CIFAR-100

posed device scheduling algorithm boosts 6.53% accuraty gr? Cri::et;’]\gitr;ég‘;;eﬁfaﬁgggs'.soﬁ b?g;‘;gﬁ. :.Zi Is;?fhe .
possesses the lowest staleness of local gradients comp . thu bu f ' If Ip tici . It Heh V! ¢
to the three benchmarks. This simulation further verifies ti <o coond the NUMDET of Successiul participants. Henee,

. - average staleness of local gradients increased. Basedron ou
effectiveness of our convergence analysis in Theorem 2 ah

Corollary 1. In addition, it is worth mentioning that theconvergence analysi_s result§, the learning performanEdLof
simulation results on both CIFAR-10 and CIFAR-100 shogR will decrease with the increase ofs. Fig. 6(b) shows

Fig. 6 evaluates the impacts of wireless network parameters

that random scheduling performs better than STP-scheglul ow the n_umber of RBs affects the learning performance of
and Gl-scheduling when they serve FL-GR. This is becau -GR. It is observed that the test accuracy on both CIFAR-

STP-scheduling and Gl-scheduling induce higher average slff sgd CEI_IEAR':LOO m_crtisses with tgg increase |nttr:1e numger
eness of local gradients, as shown in Fig. 3(b) and Fi S- 1he reason IS he Nse n KBS Improves the numbuer
4(b). However, when these scheduling approaches serve &successful participants in each round and thus reduees th

FedAvg, some existing works, e.g., [12], [19], have showf
that random scheduling performs worse than STP-scheduling
and Gl-scheduling.

erage staleness of local gradients.

D. Impact of Wireless Parameters VI. ConcLusion

This section analyzes the impacts of wireless network
parameters on the learning performance of the proposed FLin this work, we have developed a novel FL framework,
GR, including energy constraint, delay constraint, the beim namely FL-GR, that recycles devices’ historical gradieots
of RBs, and the successful decode threshold. Note thatipdate the global model in the learning process. This frame-
this section, the test accuracy on CIFAR-10 and CIFAR-1QQork efficiently copes with the scarcity of radio resources
is achieved after 150 and.5 x 10* seconds of training, and the unreliability of wireless communications in preati
respectively. Based on our simulation results in Sectio@, V-wireless networks. To improve the learning performance of
FL-GR can converge within the pre-setting training time. FL-GR, we have formulated an optimization problem to mini-

In Fig. 5, we test the impacts of energy and delay constraimtsze global loss through device scheduling, RB allocataom
on the final test accuracy of the proposed FL-GR on CIFARower control. To solve this problem, we have investigaled t
100 datasets. From Fig. 5(a), with the increase in energy atwhvergence bound of FL-GR and transformed the global loss
delay budgets, we can see that FL-GR achieves higher taghimization problem into a tractable one. Then, we derived
accuracy. The reason is that the large energy and delay tsudgiee optimal power control for any given RB allocation policy
can increase the number of successful participating deeicd and further transformed the global loss minimization prob-
reduce the average staleness of local gradients, as showiein into an equivalent linear programming problem, which
Fig. 5(b). When the energy and delay budgets are small, tten be solved efficiently. Simulation results on three real-
devices with long time delays and large energy consumptiemrld datasets (i.e., MNIST, CIFAR-10, and CIFAR-100) have
may not satisfy the delay and energy consumption conssraishown that the proposed FL-GR achieves higher accuracy
or cannot successfully upload their gradient informatmthe and faster convergence speed compared to the FL algorithms
edge server. Thus, the number of successful participarsts dthout gradient recycling. In addition, the proposed devi
been restricted, which results in the high average stadeofs scheduling algorithm outperforms the existing algorithm i
local gradients and low test accuracy. accuracy and convergence speed.
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A. Proof of Lemmdl
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A > 2, we have
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where (a) follows Assumption 3. Let = § the proof is
completed.

B. Proof of Lemm&
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where (@) is due to Jensen’s inequality, (b) is derived byragd

into VF,c(w,(g . ) and using the unbiased stochastic gradieghd subtracting bOtIVFk('wa e ) and VF,(wj_r, ) in-

in Assumpuon 2, (b) is due to the bounded variance of % ¥ Fy (w! ), then using the triangle inéquélity and

tochastic gradientin Assumption 2, (c) comes from the gian Jensen’s |ﬁ1éqaa1|t;/ (c) comes from the Assumption 1, 2, and

inequality, (d) is derived by adding and subtractMd. (w;) 3. According to Ler,‘nma 1, we have
¢ 1)) and using the triangle inequality, (e) is due "
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where the last inequality is
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D. Proof of Corollary 1 [13]

To prove Corollary 1, we first prove a key property of
smooth functions. Lef'(w*) denote the optimal global loss,
i.e., F(w*) < F(w),Vw. Based on thd.-smooth of F/(w),  [14]

Fw*) < F(w - %VF(w))
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By rearranging the above inequality, the global loss fuarcti [17)
F(w) with L-smooth satisfies
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Let F(wy41) andF(w;) in (51) subtrac# (w*
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By telescoping the above inequality, the proof is completed
[22]
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