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ABSTRACT Information fusion is frequently employed to integrate diverse inputs, including sensory data,
features, or decisions, in order to leverage the advantageous relationships among various features and
classifiers. This paper presents a novel approach for video classification using deep learning architectures,
including ConvLSTMand vision transformer based fusion architectures, which incorporates the combination
of spatial and temporal features, along with the utilisation of decision fusion at multiple levels. The
proposed vision transformer based method uses a 3D CNN to extract spatio-temporal information and
different attention mechanisms to pay attention to essential features for action recognition and thus learns
spatio-temporal dependencies effectively. The effectiveness of themethods proposed in this paper is validated
through empirical evaluations conducted on two well-known video classification datasets, namely UCF-
101 and KTH. The experimental findings indicate that the utilisation of both spatial and temporal features
is essential, with the superior performance gained by using temporal features as the primary source of
features in conjunction with two types of distinct spatial features when compared to other configurations. The
multi-level decision fusion approach proposed in this study produces results comparable to those of feature
fusion methods while offering the advantage of reduced memory requirements and computational costs. The
fusion of RGB, HOG, and optical flow representations has demonstrated the best performance compared
to other fusion methods examined in this study. It has also been demonstrated that the vision transformer
based approaches significantly outperformed the ConvLSTM based approaches. Furthermore, an ablation
study was conducted to compare the performances of vision transformer based feature fusion approaches for
enhancing the performance of video classification.

INDEX TERMS Computer vision, data fusion, deep neural networks, human action recognition, spatio-
temporal features.

I. INTRODUCTION
Recently video classification has been remarkably advanced
through deep learning, with a variety of applications
including action recognition, gesture recognition, anomaly
detection, and surveillance. Accurately classifying video data
is of great importance for these applications, which is the
foundation of automated systems that interpret complex
dynamic visual information [1]. Video classification presents
several challenges, including various lighting and viewpoint
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in video scenes, and the existence of motion information in
large-volume video data.

Researchers have proposed various approaches for video
classification to address these problems. Extracting spatial
and temporal features from videos is a popular method.
Temporal features capture the motion and dynamics of
objects across frames, whereas spatial features capture the
appearance of objects and scenes in each frame.

Many studies have attempted to gather the seman-
tics of videos by leveraging Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs), due
to the emergence and availability of deep learning models
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and large labelled video datasets, in which one of the
main concerns is the integration of appearance and motion
data within deep learning architectures. For this purpose,
information fusion techniques have been commonly applied
to effectively combine multiple data sources in video classifi-
cation architectures, which encompasses various levels such
as image [2], [3], [4], [5], feature [6], [7], [8], and decision [9].

Feature-level fusion integrates and models feature repre-
sentations from various sources before the final classification
step. In the video classification framework, feature-level
fusion incorporates both spatial and temporal features from
video frames to produce a more complete and discriminative
video representation. Common methods for feature-level
fusion include concatenation, element-wise summation,
weighted averaging, and multi-modal attention mecha-
nisms. The combined features are subsequently fed into
a classifier in order to improve classification performance
[10], [11], [12].

On the contrary, decision-level fusion combines the predic-
tions of multiple classifiers and models to classify a video.
In the context of video action classification scenarios, it is
common to train multiple models with different architectures,
input data, or hyperparameters. The individual models
function autonomously to generate separate predictions for
identical video sequences. These distinct outputs generated
by the individual models are then consolidated using var-
ious methodologies, including voting, averaging, weighted
averaging, or more advanced ensemble techniques. The main
goal of decision-level fusion is to exploit the diversity
and complementary capabilities of individual classifiers,
enabling them to compensate for each other’s limitations
and produce action predictions that are more robust and
accurate.

Video classification poses challenges for traditional CNN
methods, particularly in capturing long-range dependencies
and temporal changes inherent in video data. Researchers
have turned to transformers, initially developed for Natural
Language Processing (NLP) tasks, to address these chal-
lenges [13], [14], [15]. Transformers efficiently integrate
spatial and temporal features from video frames, allowing
for the modelling of extended temporal dynamics and the
identification of complex motion patterns, essential for
accurate action recognition.

Notable research gaps include the need for the devel-
opment of efficient fusion techniques, memory-efficient
multi-level fusion approaches, and comparative studies of
hybrid fusion techniques in video classification. Key research
questions revolve around the impact of integrating spatial
and temporal features, the effectiveness of multi-level fusion
techniques, and the potential of vision transformer based
approaches in video classification compared to ConvLSTM-
based approaches. This study aims to investigate how
feature fusion and decision fusion affect the final video
prediction performance without applying complex deep
learning architectures or large labelled datasets. Multiple
single andmulti-stream neural networks have been developed

and compared in terms of the classification accuracy across
different fusion levels. Additionally, a novel methodology
employing transformers for feature fusion is proposed, and
various attention mechanisms are compared for video classi-
fication performance. The proposed method effectively cap-
tures and incorporates spatio-temporal relationships within
video frames, resulting in more robust and context-aware
action recognition.

This paper makes significant contributions by conducting a
comprehensive analysis of the effects of feature and decision
fusion methods on video classification performance across
different levels and proposing a novel method using vision
transformers to combine features, highlighting their effec-
tiveness in capturing and integrating spatial and temporal
relationships in video frames. Moreover, this study com-
pares different attention strategies for vision transformers,
providing insights into their impact on the accuracy of video
classification.

This paper is organised as follows: relatedwork is reviewed
in Section II, the key components of the proposedmethods are
explained in Section III, experimental results are presented
and discussed in Section IV, and finally Section V concludes
the paper.

II. RELATED WORK
Video classification has been a challenging research topic
owing to the complex and dynamic structure of video data.
This section provides an overview of the existing research
on video classification, focusing on how the current studies
tackle temporal information and the way of combining spatial
and temporal features.

The conventional approaches extract user-defined features,
including Histograms of Optical Flows (HOF) [16] and
Histogram of Oriented Gradients (HOG) [17], which are used
as inputs to classifiers such as neural networks for video
classification. These pre-computed, feature-based classifica-
tion approaches are typically constructed as multiple streams
to encode spatial and temporal features [18], [19], [20],
[21]. The commonly used motion features that have been
pre-computed include motion history/energy images [22],
[23], [24], dynamic images [25], [26], and joint trajectory
maps [27], [28], [29] in multi-stream neural networks. How-
ever, a significant challenge is the effective communication
between streams to exchange information for the acquisition
of multi-modal spatio-temporal representations. Although
multi-stream networks use information fusion techniques
to effectively combine information from different modali-
ties [30], [31], [32], these techniques may not be sufficient to
model long-term dependencies [19], [22], [33]. This makes it
challenging to get accurate temporal information at the video
level.

A typical machine learning approach uses 3D filters to
learn spatio-temporal features from videos using 3D CNNs
for video classification. 3D CNNs are the extended version
of 2D CNNs with the addition of a temporal dimension
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to the convolutional filters, where the temporal dynamics
of actions are extracted [34]. The third dimension of the
CNN is employed to extract motion information between
consecutive frames by allowing still images to be ordered
systematically [20]. Tran et al. [34] trained deep 3D CNNs
on large-scale action datasets and they demonstrated that
3D CNNs are more effective in action recognition for
spatio-temporal feature extraction than 2D CNN architec-
tures. Moreover, the effects of different spatio-temporal
convolutions have been investigated and 3D CNNs outper-
formed 2DCNNs in the concept of residual learning [35]. The
use of 3D filters in combination with other techniques, such
as motion-based features and transformers, has improved
the accuracy and efficiency of action recognition [36],
[37], [38], [39], [40]. 3D CNNs have the ability to extract
distinctive features in spatial and temporal dimensions,
requiring simultaneous processing of both types of features.
However, there are a larger number of parameters in 3D
CNNs, and their computational complexity is much higher
than that of 2D CNNs. This increased model complexity
results in increased demands for memory resources and thus
reduces the available hardware resources for training and
developing 3D CNNs.

Another machine learning approach involves the inte-
gration of features extracted by CNNs from individual
frames with temporal sequence architectures, most com-
monly known as RNNs. RNNs are purposefully engineered
to handle sequential data by leveraging past information
within the sequence to produce the classification output [41],
[42], [43]. Nevertheless, one prominent concern associated
with RNNs pertains to their vulnerability to the short-term
memory problem, which is a consequence of the vanishing
and exploding gradients problems [44], [45], [46]. The
RNN exhibits an increased susceptibility to the issue of
vanishing gradients as the number of steps in a sequence
that it processes increases, in contrast to alternative neural
network architectures. In order to overcome this constraint,
researchers have developed specialised variations of RNNs,
known as Gated Recurrent Units (GRUs) [47] and Long
Short-Term Memory (LSTM) [44] networks. LSTM and
GRU architectures are designed to effectively retain infor-
mation from prior data over extended sequences. This
is accomplished by employing gating mechanisms, which
enable the memory cells to store and retrieve relevant
information. The function of these gates is to regulate the
transmission of information within the network, allowing
them to acquire knowledge about the importance of inputs
in a given sequence and efficiently retain or transmit their
information across long sequences. In action recognition,
CNN and LSTM are used for extracting spatial and temporal
patterns in video sequences [48], [49], [50]. Additionally,
ConvLSTM [51], [52], [53] and bidirectional LSTM [54]
have been investigated in video classification to access
long-distance dependencies over video inputs.

Another method for video classification is based on
attention mechanisms and transformers. Transformer models

have been introduced in recent years for NLP, including
BERT [13], GPT [14], RoBERTa [15], and T5 [55], which
have demonstrated promising results in classification and
translation tasks. Consequently, transformers have been
integrated into computer vision, a field that has relied heavily
on deep ConvNets and RNNs. Popular transformer-based
models for computer vision tasks include ViT [56] and
DeiT [57] for image classification, and VisTR [58] for video
instance segmentation. Action recognition, with its sequential
nature of video data, aligns well with the capabilities of
transformers for modelling temporal variations. Despite
being relatively new in the field of action recognition,
transformers have spurred a significant amount of research
in recent years [59], [60], [61]. Utilising attention-based
mechanisms without the need for RNN backbones, trans-
formers showcase their capacity compared to RNNs in
combination with attention. Some approaches solely rely on
transformers and self-attention mechanisms for extracting
spatio-temporal features, whereas others combine CNN
features with transformers, capitalising on the strengths of
both architectures [62], [63], [64].

Hybrid techniques in video analysis encompass the combi-
nation of various approaches to effectively capture the spatial
and temporal dynamics. Illustrative instances encompass the
integration of motion-based characteristics with 3D filters or
the utilisation of a hybrid approach involving LSTMnetworks
and 3D CNN models. The use of 3D CNN is commonly
adopted in hybrid methods, while the incorporation of
transformers is a more recent and less extensively studied
approach. Researchers seek to take the advantage of distinc-
tive benefits of various temporal modelling techniques by
employing them on video sequences. In the motion-based and
3D CNN approach, the utilisation of motion-based features
offers a direct method to comprehend the overall motion
and the transitions that occur between consecutive frames.
The acquisition of these transitions can subsequently appear
through the gradual acquisition of 3D filters, facilitating the
hierarchical acquisition of motion through separate method-
ologies. Although hybrid techniques have the potential to
offer various advantages, there remains a lack of research
investigating their complete capabilities. Furthermore, there
is a lack of extensive exploration regarding the most effective
methods for integrating these approaches, highlighting the
necessity for additional investigation and experimentation in
this domain [40].

III. METHODS
This section describes the design and evaluation of the
methods proposed for video classification in this study,
including the deep learning architectures, evaluation method-
ologies, different information fusion mechanisms, and vision
transformer based approach to feature fusion. The focus of
the proposed methods is on improving video classification
performance through strategic feature and decision fusion
techniques.
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Our methodology is centred around the exploration of
novel techniques for optimising video classification per-
formance. The proposed method for fusing features and
decisions across multiple levels can strategically capture
extensive temporal dependencies between video frames. This
paper also proposes to use vision transformers for effective
feature fusion, aiming to capture intricate spatio-temporal
relationships within video frames. This novel method is
designed to enhance context awareness by integrating spatial
and temporal information effectively. Integrating this vision
transformer based approach alongside existing deep learning
architectures and fusion mechanisms leads to a promising
framework for video classification.

A. NETWORK ARCHITECTURES
Multiple CNN-based networks integrating single-stream and
multi-stream CNNs are developed in this study. The rationale
behind the selection of these architectures lies in their
adaptability to capture both spatial and temporal features
from diverse data sources, enhancing the model’s ability to
comprehend complex dynamic video data.

For the single-stream design, inspired by the ConvLSTM
architecture used in our earlier research, the incorporation
of RGB frames (RGB), HOF features (HOF), and HOG
features (HOG) aims to leverage specific feature sets for
comprehensive information extraction.

Regarding the CNN-based architectures, the utilisation of
ConvLSTM as the cornerstone for establishing a baseline
video classification framework was motivated by its pro-
ficiency in encapsulating spatio-temporal dynamics within
time series data. As shown in Fig. 1, a ConvLSTM layer
is included onto the spatial feature maps derived from
VGG-16 pre-trained network, and the resulting hidden states
are utilised for the purpose of classification. In order to
conduct the experiments for ConvLSTM-based architectures,
ConvLSTM layer contains 64 hidden states, 7×7 kernels,
0.2 dropout, and a convolution stride of 2×2. The number of
units in the output space was set to 1024 and ReLU was used
as the activation function. A 0.6 dropout was also applied
before the final dense layer.

In this study, information fusion has been applied at
two levels. At the feature level, several sets of features
are extracted from each video, including motion features
and appearance features. These features are then merged
using a feature-level fusion technique to create a single
feature vector for each video. Moreover, at the decision
level, multiple classifiers are used, each trained on a different
feature set. The outputs of the classifiers are then combined
using a decision-level fusion technique to produce the final
classification result.

To investigate the impact of various information fusion
levels on video classification performance, several deep
multi-stream neural networks were implemented. Similarly
for this purpose, a multi-level fusion approach was proposed
by merging both feature and decision fusions in multi-stream
neural networks. Furthermore, for the feature fusion, a novel

vision transformer based multi-stream neural network archi-
tecture was proposed and an ablation study was conducted
to evaluate the effect of various attention mechanisms in the
transformer encoder.

B. DECISION FUSION
Two types of classification architectures are developed in
this study: single-level and multi-level. Different features
are fed into the classifiers in each stream of the single-
level architecture, as shown in Figs. 2 and 3. The classifiers
are trained independently and the ultimate decision is made
depending on the average prediction scores from those
classifiers. As shown in Fig. 2, two-stream architectures have
two distinct inputs: (1) RGB frames and HOF representations
(RGB-HOF), (2) RGB and HOG features (RGB-HOG),
or (3) HOG features and HOF representations (HOG-HOF).
As can be seen from Fig. 3, a three-stream neural network
was implemented to assess classification performance using
all three input formats (RGB-HOG-HOF). Furthermore,
as demonstrated in Fig. 4, a novel multi-level decision
approach has been applied for the final decision to be made
progressively based on the scores achieved from each pair
of inputs. The network designs used in this study are listed
in Table 1, where both spatial and temporal representations
are combined in the proposed single-level and multi-level
classifiers.

The softmax activation function is used in the output layer
of the proposed neural networks to observe the categorical
distribution of a given set of labels and to compute the
probability that each input component corresponds to a
specific class. The softmax function S : RK

→ RK is defined
by the following equations:

Si(x) =
exp(xi)

6K
j exp(xj)

(1)

where i = 1, . . . ,K and x = [x1, . . . , xK ] is the output of
the final dense layer of the neural network. In this study, the
softmax scores from the network streams are averaged to give
a better representation than any single stream could provide.

TABLE 1. Decision fusion based architectures used in the experiments.

C. FEATURE FUSION
Similar to the decision-level fusion approach, single-level
and multi-level architectures are designed in this study
for feature fusion. In single-level feature fusion, low-level
feature frames are individually inputted into pre-trained
VGG-16 neural networks. The acquired high-level features
from VGG-16 are then concatenated as the input vector of
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FIGURE 1. The ConvLSTM video classification architecture employed in the experiments.

FIGURE 2. Illustration of the two-stream ConvLSTM architecture
employed in the experiments involving RGB frames and optical flows.
Additionally, single-level fusion architectures incorporating alternative
feature combinations were designed, as detailed in Table 1.

FIGURE 3. Illustration of the single-level decision fusion architecture
employed in the experiments utilising RGB frames, optical flows, and
HOG features.

FIGURE 4. Illustration of the multi-level decision fusion architecture
employed in the experiments involving RGB frames, optical flows, and
HOG features. Additionally, multi-level fusion architectures incorporating
alternative feature combinations were designed, as detailed in Table 1.

the ConvLSTM final classifier, as depicted in Fig. 5. The
experiments have investigated multiple single-level feature
fusion architectures incorporating different combinations of
feature types, as listed in Table 2.
In the experiments, the effect of fusing features and deci-

sions in multi-stream neural networks for video classification

TABLE 2. Feature fusion based architectures used in the experiments.

FIGURE 5. Illustration of the single-level feature fusion architecture
employed in the experiments involving RGB frames, optical flows, and
HOG features. Additionally, single-level fusion architectures incorporating
two input channels were designed, as detailed in Table 2.

FIGURE 6. Illustration of the multi-stream fusion architecture employed
in the experiments combining multi-level feature and decision fusion.
Additionally, multi-level feature and decision fusion architectures
incorporating alternative combinations were designed, as detailed in
Table 2.

was also investigated. Spatial and temporal features are
combined by using feature fusion and then the softmax scores
are fused based on the average rule as shown in Fig. 6.
Three different architectures for combining feature fusion and
decision fusion were implemented and tested, FD1, FD2, and
FD3, as listed in Table 2.

D. VISION TRANSFORMER BASED FUSION
A novel vision transformer based fusion architecture is
proposed in this study to classify videos by effectively
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combining spatial and temporal information. As shown in
Fig. 7, the input of the model comprises the integration
of RGB frames, HOF and HOG features, which capture
appearance, motion, and spatial representations, respectively.
The proposed architecture based on vision transformers
is implemented to process the multi-modal input in order
to make predictions regarding the corresponding action
category.

The encoder-decoder structure, similar to that in
VIVIT [62] is adopted in our vision transformer based fusion
architecture. The encoder is responsible for receiving the
sequence of input, whereas the decoder is responsible for
generating the output sequence.

The input sequence in the transformer is divided into
three distinct components, namely queries, keys, and
values, which are fed to the transformer encoder. The
encoder is compromised of a series of identical layers,
where each layer is composed of multiple sub-modules.
These sub-modules include normalisation layers, multi-head
attention mechanisms, and Feed-Forward Neural Networks
(FFNNs), as depicted in Fig. 7. The encoder receives a series
of tokens as its input, which are then processed subject to
the attention mechanism. This attention mechanism allows
the encoder to focus on relevant data from various positions
within the sequence. The architectural design in the VIVIT
involves self-attention mechanisms in order to effectively
capture contextual information present in both the input and
output sequences.

In this paper, RGB, HOF, and HOG features are fused
first for mapping a video to a sequence of tokens as
input of the proposed transformer-based fusion architecture.
Following that, positional tubelet embeddings are adopted,
as described in [62], in order to acquire non-overlapping
spatio-temporal input patches for the transformers. The
embedding approach involves the extraction of tokens
from the temporal, height, and width dimensions. This
method also incorporates spatio-temporal information during
tokenization, in an intuitive manner.

This study also investigates the efficacy of the transformer-
based fusion approach by employing different attention
mechanisms, including Bahdanau’s Dot-Product Attention
[65], Luong’s Additive Attention [66], and Multi-head Self
Attention [67].
Bahdanau’s Dot-Product Attention mechanism calculates

the significance of each position in the input sequence in
relation to the existing decoding process. It employs a train-
able alignment model, FFNN, to produce attention weights
between the queries, which are subsequently employed
to calculate the context vector by performing a weighted
summation of the encoder’s output [65], as in Eq. (2):

ct =

Tx∑
i=1

at,ihi (2)

where each hidden state hi is weighted by at,i. The weight
for each hidden state is also aligned by the softmax function

defined in Eq. (1). The attention score is calculated as in
Eq. (3):

score(st , hi) = vTa tanh(Wa[st ; hi]) (3)

where va and Wa are weight matrices learned by alignment
model when h and s are hidden states of the encoder and
decoder, respectively.
Luong’s Additive Attention mechanism calculates the

correspondence between the hidden state of the decoder
at a given time step and the output of the encoder, like
the Bahdanau’s attention. Nevertheless, it applies additive
operations for computing attention weights, which are more
simple and straightforward than Bahdanau’s attention where
a neural network is used for it [66]. The attention score in
Luong-sytle attention mechanism is calculated as follows:

score(st , hi) = sTt hi (4)

Bahdanau’s and Luong’s attention mechanisms are global
approaches as all the input tokens and all hidden states are
considered in the context vector. Although they can remember
the sequential input, this process is complex, computationally
expensive, and improper for long sequences. Moreover,
in these single-head attention methods, the computation
of a set of key-value pairs is performed on an input
sequence, given a query. The determination of the attention
weight between the query and each key is accomplished by
employing compatibility functions (like Eqs. (2) and (3)).
The weights assigned to each position in the input sequence
indicate the level of relevance or significance in relation to the
provided single query, thus one representation can be learnt.

The Multi-Head Attention mechanism plays an important
role in the transformer architecture, as it aims to effectively
capture contextual information and long-range dependencies
within sequences [67]. In this mechanism, prior to calculating
the attention weights, the input sequence goes through a
process of converting it into query (Q), key (K ), and value
(V ) representations through learnable linear transformations.
This attention method enables the model to simultaneously
focus on different parts of the input sequence, utilising
multiple attention heads. Each attention head is regarded
as an independent attention mechanism that possesses its
own set of query, key, and value transformations that
can be learned. This enables the model to simultaneously
focus on various elements of the input sequence, thereby
improving its capacity to comprehend a wide range of
patterns and connections. After the computation of attention
weights for each head, the outputs of the multiple heads are
concatenated and subjected to a linear transformation using
an additional trainable linear layer. The final output of the
Multi-Head Attentionmechanism is generated by aggregating
the information from all the heads as follows:

Attention(Q,K ,V ) = concat(head1, . . . , headh)WO (5)

where headi = Attention(QWQ
i ,K WK

i ,V WV
i ).

In transformer-based fusion experiments, the input data
is structured as a tensor with dimensions of 60×7×7×512,
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FIGURE 7. Illustration of the multi-stream vision transformer based fusion network architecture employed in the experiments combining RGB frames,
HOF, and HOG features.

obtained by combining RGB, HOG and HOF features.
The size of the tubelet embedding path is 7×7×7. The
Transformer model used in our study consists of a total of
8 layers. In multi-head attention, we use 20 heads and the
key dimension in the multi-head attention is determined by
dividing the embedding size by the number of heads. In the
transformer model, two densely connected layers with GELU
activation functions are employed, with 2048 units in the
first layer and 512 units in the second layer. Just before
the final softmax layer, global average pooling is applied to
extract essential global information from the feature maps.
This comprehensive architecture ensures the model’s ability
to effectively capture and classify video data across various
spatio-temporal features and frames.

To comprehensively assess the impact of each attention
mechanism, an ablation study was conducted. This study
systematically evaluates the model’s performance using
different combinations of attention mechanisms. The primary
goal of this investigation is to identify the most optimal
information fusion approach that can yield high accuracy in
video classification tasks.

E. DATASETS AND EXPERIMENTAL SETUP
In this work, the KTH and UCF-101 datasets, which are
widely recognised benchmark datasets for human action
detection from videos, are used for performance evaluation.
The KTH dataset consists of six activity categories: walking,
jogging, running, boxing, hand waving, and hand clapping.
TheUCF-101 dataset includes videos of individuals engaging
in a variety of activities, such as playing instruments,
engaging in sports, and interacting with objects. The KTH
dataset was selected for initial experiments because it is
considered as a small-sized dataset and the experiments were
repeated on the UCF-101 dataset, which gives the largest
diversity in human actionswith its 101 action categories. Both
datasets have gained popularity within the computer vision

community due to their ability to provide a complex problem
for action recognition algorithms.

In the KTH dataset [68], the videos are recorded in con-
trolled environments and staged several times by 25 different
actors with different clothes in four outdoor scenarios. The
video clips were captured over static backgrounds with a
consistent frame rate of 25 frames per second (FPS) at a size
of 160×120 pixels. The number of classes is very low in
comparison to the extensive range of human actions in real
life. The number of classes plays an important role in the
assessment of an action recognition method [4, 9]. Therefore,
we conducted tests using the UCF-101 dataset to further
investigate this matter.

The UCF-101 dataset [69] comprises web videos that are
captured in uncontrolled settings, often exhibiting camera
movement, diverse lighting conditions, partial obstruction,
and low-quality frames. The videos were obtained from
the online platform YouTube, and any samples considered
redundant were manually eliminated. Each video clip has a
dynamic background and a fixed frame rate of 25 FPS with a
resolution of 320×240 pixels.

Several data preprocessing and transformation procedures
were executed on both datasets in order to facilitate video
classification. These steps are crucial to ensure that the data is
in a suitable format for training and evaluating deep learning
models. Initially, the original datasets were partitioned into
training and test subsets based on their officially designated
benchmarking partitions. Additionally, a validation subset
was set aside for the purpose of tuning hyperparameters
during the model development process. The video clips
were converted into individual frames and the frames were
resized to a consistent size (224×224 pixels) to maintain
uniformity across all samples. During this stage, we extracted
and stored VGG-16 features, HOG and optical flows in
separate directories. In order to effectively manage the large
volumes of input data for deep models, the utilisation of data
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batches was employed. Additionally, a data batch generator
was implemented to facilitate the efficient loading and
preprocessing of the data, hence enabling parallel processing.
In the process of label encoding, the textual representation of
each class was transformed into a numerical format.

In order to conduct a comprehensive evaluation of the
implemented classification architectures on the datasets,
many experimental iterations have been carried out, each
incorporating a distinct combination as outlined in previous
sections. The results obtained from the validation set are used
for the purpose of tuning the hyperparameters.

For the hyperparameter tuning, a manual search approach
is adopted, guided by insights from prior research endeav-
ours. In this approach, various sets of hyperparameters were
established using subjective evaluations or prior knowledge.
The deep architectures have subsequently been trained
using these sets, their performance has been assessed, the
training process iteratively refined until a desirable level
of accuracy was attained, and ultimately the optimal set
of hyperparameters that yielded the highest accuracy was
identified. The initial learning rate was set to 0.003. This rate
was chosen based on preliminary experiments and empirical
observations to ensure stable training. A batch size of 32 was
employed during the training of the model. The choice
of batch size was made in order to strike a compromise
between computing efficiency and model convergence for
both datasets.

The validation of models is an essential component of our
training approach, especially when dealing with extensive
datasets that necessitate the loading and processing of data
in batches. To ensure the effectiveness of model validation,
validation was performed on the entire validation dataset at
the end of each epoch. The utilisation of this methodology
facilitated the execution of a comprehensive assessment of
the model’s performance.

To prevent overfitting and optimise model performance,
early stopping was implemented during the training process.
Early stopping was determined based on the validation loss,
monitoring the loss on the validation dataset at the end of
each epoch. The patience value was set to 10, meaning that
if the validation loss did not improve for 10 consecutive
epochs, training was terminated to prevent overfitting. Data
shuffling was applied to prevent the model from overfitting
to specific patterns in each epoch, thereby improving
generalisation. Dropout layers were also incorporated in both
the transformers-based and ConvLSTM-based models. The
final selected models are evaluated on the test set in order to
mitigate any potential biases arising from overfitting.

F. PERFORMANCE EVALUATION
The accuracy score was employed as a main performance
indicator in our video classification tests to evaluate the
efficacy of our fusion approaches and benchmark mod-
els. Accuracy is a crucial parameter in the context of
video classification since it quantifies the ratio of accu-
rately categorised video samples to the overall number of

samples. Furthermore, the confusion matrix was employed
in our experiments, serving as a tabular representation
that offers a comprehensive breakdown of true positives,
true negatives, false positives, and false negatives. This
visual representation allows for an assessment of the
model’s performance across various classes, facilitating
the identification of specific areas in need of develop-
ment. The evaluation of model confusion was conducted
throughout the process of model development and model
selection.

Our study includes two different evaluation processes on
the gathered test accuracy scores: (1) evaluating single and
multi-stream neural network architectures in terms of feature
and decision fusion in single and multi-levels, (2) evaluating
vision transformer based feature fusion approaches based on
different attention mechanisms.

For the first evaluation, using theKolmogorov-Smirnov [70]
test, the observed cumulative distribution was compared to
the cumulative distribution that would be expected if the
data were normally distributed. According to the Levene
statistic [71], group variances are homogeneous based on the
mean and median. The ANOVA test was also used to compare
variance differences and determine the significance of the
results. The Tukey’s HSD test was used to determine whether
the group means are distinct.

For the second evaluation process, the classification
performances were compared using the Independent T-test
to figure out whether the difference between a pair of
attention mechanisms is significant. This analysis helps
identify whether any attention mechanism exhibits superior
performance compared to the others.

Through the use of these extensive evaluation methods,
this study not only evaluates the performance of the proposed
methods for video classification but also establishes a
direct link between quantitative evaluation indicators and
their practical implications in real-world situations. The
objective of this approach is to enhance the applicability and
comprehension of our findings beyond conventional metrics.

IV. RESULTS AND DISCUSSION
This section presents the comprehensive results obtained
from the experiments. The objective of this study is to assess
and compare the performance of different ConvLSTM-based
single and multi-level architectures for decision and
feature fusion, along with feature fusion using vision
transformer based classification architectures. Furthermore,
an ablation study was undertaken to evaluate different
attention mechanisms employed in the transformer-based
architectures.

A. COMPARATIVE ANALYSIS OF ARCHITECTURAL
PERFORMANCE
In this part of the study, a total of 17 ConvLTSM-based
decision and feature fusion architectures were investigated.
On the KTH dataset, 12 separate experiments were exe-
cuted for each architecture (a total of 204 runs), whereas
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15 experiments were run on the UCF-101 dataset (a total
of 255 trials). Accuracy scores for training, validation, and
testing were recorded after each run, and the results were then
analysed and discussed.

Table 3 shows the average accuracy scores obtained by
single-stream neural networks, with RGB, HOG, or HOF
as input respectively. The HOF architecture scored the
highest for test accuracy, 81.44% and 73.66% on the
KTH and UCF-101, respectively. The crucial importance of
motion information in video classification is demonstrated
by the temporal network, HOF, which performed noticeably
better than the spatial networks, RGB and HOG. On the
KTH dataset, the HOG architecture outperformed the RGB
architecture by about 4%, whereas on the UCF dataset, its
performance was relatively close to the performance of the
RGB architecture. This discrepancy may be caused by spatial
differences in the two datasets, including those in the number
of colour channels, the intricacy of the actions, the intensity of
the colours, and other dynamics associated with appearance.

TABLE 3. Accuracy scores obtained by single-stream networks on the
KTH and UCF-101 datasets during training, validation, and testing.

Table 4 provides a summary of the multi-stream neural
network architectures’ performances. Single-level feature
fusion based architectures generally outperformed decision
fusion based approaches. The architectures fed with optical
flows and HOG features, D-HOG-HOF, D2, F-HOG-HOF,
outperformed those with other feature pairings in both
designs. However, combining RGB, HOG, and HOF data
at the feature level produced the best classification results,
84.10% on the KTH and 77.98% on the UCF-101. Fusion
architecture D2 is the second best when both RGB and HOG
features are predominately integrated with HOF features.
These findings support the notion that temporal information
is crucial for video classification.

TABLE 4. Test accuracy scores obtained by multi-stream networks on the
KTH and UCF-101 datasets.

The test accuracy scores achieved by different fusion
architectures on the KTH and UCF-101 datasets were
statistically different at the p < 0.05 level, as shown in

TABLE 5. One-way between-groups ANOVA of classification
performances of different fusion architectures on the KTH and UCF-101
datasets, where df , SS, MS and F refer to degrees of freedom, sum of
squares, mean sum of squares, and F score, respectively.

Table 5: F (16, 187) = 85.239; p = 0.001 and F (16, 238) =

209.524; p = 0.001, respectively. Tukey’s HSD test was used
to make additional comparisons. The findings showed that
across the majority of the fusion architectures, there were
significant differences in classification performance.

Tables 6 and 7 list the architectural groups whose average
test accuracy scores on the KTH and UCF-101 datasets were
significantly different. The homogeneous subset findings
from the post hoc test are provided with the groups in
increasing order of average accuracy scores, where the
architectures in each group are not statistically different from
each other. For instance, in Group 1, F-RGB-HOG and RGB,
achieved the lowest average accuracy, whereas in Group 8,
D-HOG-HOF, D2, and F-RGB-HOG-HOF, achieved the
highest average accuracy on the KTH dataset, as shown in
Table 6. The fusion architectures were divided into 10 groups
in terms of statistically significant performance difference
on the UCF-101 dataset, compared to 8 groups on the KTH
dataset. Due to the fact that F-RGB-HOG-HOF does not
occur in a subset with any of the other groups on the
two datasets, this feature fusion architecture is significantly
different from all other groups and architectures.

The proposedmulti-level decision and feature fusionmeth-
ods, D2 and FD3, have yielded results that are comparable
to those of the F-RGB-HOG-HOF method and have the
advantage of requiring lower memory and computational
cost, which implies that higher-dimensional feature vectors
are advantageous but computationally expensive. Thus apply-
ing dimensionality reduction techniques can be effective
for this method. By optimising the fusion algorithm by
employing other weighting or fusion strategies, the accuracy
scores obtained by the proposed methods can also be further
improved. However, conducting further experiments requires
a substantial amount of resources.

Multi-level architectures FD1, FD2, and FD3, which
integrate decision and feature fusion, achieved results compa-
rable to those from feature fusion or decision fusion. On the
KTH dataset, no significant difference was observed among
these approaches. However, on the UCF-101 dataset, there is
a significant difference between all possible combinations.

The above experimental findings clearly show that,
across all evaluation metrics, feature-level fusion consistently
outperformed decision-level fusion. By utilising both spatial
and temporal information, the feature fusion strategy showed
superior discriminative capabilities, which improved classi-
fication accuracy. Therefore, feature fusion methods were
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TABLE 6. One-way between-groups ANOVA of classification performances obtained by different fusion architectures on the KTH dataset.

TABLE 7. One-way between-groups ANOVA of classification performance obtained by different fusion architectures on the UCF-101 dataset.

further investigated in the remaining experiments, especially
focusing on the vision transformer based feature fusion
method.

B. ABLATION STUDY ON ATTENTION MECHANISMS
Recently, vision transformer based classification architec-
tures have made significant contributions in the context of
integrating features for classification tasks. Their advantages
stem from their intrinsic capacity to capture dependencies
over long distances, model temporal relationships over time,
and acquire intricate patterns that exist in video data. In the
remaining experiments, spatio-temporal transformer based
architectures were used on top of the pre-extracted features to
test their effect on classification performance improvement.
In particular, the effect of different attentionmechanisms used
in spatio-temporal transformers were investigated.

The performance of transformer-based fusion archi-
tectures was assessed by comparing them against the
best ConvLSTM-based feature fusion architecture, i.e.,

F-RGB-HOG-HOF, through a comparative analysis. Table 8
shows that transformer-based architectures significantly out-
performed the ConvLSTM-based feature fusion architectures
on both KTH and UCF-101 datasets.

According to Tables 9 and 10, which show the T-test
results, the video classification performance was signifi-
cantly improved by all transformer-based architectures over
F-RGB-HOG-HOF. On both KTH and UCF-101 datasets
and across different evaluationmetrics, the transformer-based
classification architectures achieved superior performance.
The p-values are provided for comparison, serving as an
indication of the statistical significance of the observed
variations in accuracy. All calculated p-values are found to
be lower than the predetermined threshold of 0.05, indicating
statistically significant differences in performance among
the tested pair of fusion methods. The results confirm the
consistency and reliability of the observed enhancements in
the classification performance achieved by the classification
architecture based on transformers in comparison to the
feature fusion based on ConvLSTM. This finding highlights
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the capacity of transformer models to proficiently capture
intricate patterns and relationships within the data, a critical
aspect for attaining higher accuracy in classification tasks.

In order to obtain a more comprehensive understanding
of the performance differences observed across various
fusion techniques, an ablation study was also conducted,
which employed a systematic approach to deactivate a
specific attention mechanism inside the transformer encoder
of the fusion methods, with the subsequent evaluation
of their respective effects on classification accuracy. The
findings from the conducted ablation study demonstrate
that Luong’s Additive Attention mechanism consistently
exhibited the highest level of accuracy on both datasets
when compared to the other attention mechanisms that
were examined in this study (KTH:88% and UCF-101:81%).
Bahdanau’s Dot-Product Attention exhibited the next highest
level of accuracy (KTH: 87% and UCF-101: 81%), only
slightly worse than Luong’s attention. Multi-head attention
achieved the lowest accuracy scores when compared to other
attention mechanisms that were evaluated (KTH:86% and
UCF-101:80%). Although multi-head attention achieved sig-
nificant performance improvement over ConvLSTM-based
feature fusion, it seemed to be less proficient in capturing
complex relationships within the data when compared to
other attention mechanisms.

TABLE 8. Classification accuracy achieved by feature fusion networks.

C. DISCUSSION
In this study, the interaction between the selection of neural
network architecture and the classification performance was
investigated for video classification. Different types of neural
networks have been developed, where various feature and
decision fusion techniques are applied at different levels.
Therefore, our study focused on examining the effects
of multi-level decision and feature fusion and different
attention mechanisms in transformer-based fusion, including
self-attention, additive attention, and dot-product attention,
on improving classification ability. In this section, we discuss
the results of the proposed methods and compare them
with the state-of-the-art, considering their advantages and
disadvantages in two groups: multi-level feature and decision
fusion and transformer-based fusion.

1) MULTI-LEVEL FEATURE AND DECISION FUSION
According to the reported results, on RGB input settings,
compared with CNN-based approaches, our RGB and
HOG architectures outperform deep networks [18] and
spatial stream networks [18]. Our proposed architectures
achieved around%80 classification accuracy on the UCF-101
dataset, which is comparable to well-known two-stream

temporal stream networks [19], [48], [49]. One of the
best-performing methods on the UCF-101 dataset was
proposed by Feichtenhofer et al. [72], which uses ResNet-50
models on RGB and HOF streams and achieved 94.6%
when combined with the dense trajectories model. Although
the use of dense trajectories can increase the classification
performance, calculating dense trajectories involves tracking
features in multiple scales and orientations, leading to a high
computational cost, and this canmake the method impractical
for real-time or large-scale video analysis applications.

Indeed, the utilisation of extensive, labelled datasets
for pre-training significantly contributes to the enhanced
prediction performance of deep networks, i.e., Kinetics and
Sports 1M pre-trained networks in action recognition [34],
[73], [74]. Notably, the current state-of-the-art performance
in this field has been demonstrated by Gowda et al. [74].
The methodology employed in their study involves the
integration of many methodologies, such as the SMART
frame selectionmethod in conjunction withWang’s Temporal
Segment Network [75]. The combination presented in their
study incorporates data from many modalities, including
RGB, HOF, and warped flow, which have been pre-trained
using the Kinetics dataset.

The aim of our study is to utilise spatial-temporal
information in fundamental neural network architectures
without the need for complex structures or extra training
data, while also ensuring efficient use of resources. The
findings obtained from this study indicate that the multi-level
fusion technique did not yield the best performance, but the
proposed fusion approach demands fewer computational and
memory resources. It can be argued that our method can
achieve competitive performance under similar training and
testing conditions.

Failing to achieve the best performance by the multi-level
fusion approach can be attributed to several factors that
require further investigation. In the conducted experiments,
all features were treated equally, and the fusion process relied
only on concatenation and averaging techniques. This basic
methodology employed may not have effectively encom-
passed the complex nature and details of the underlying
dataset. The validity of the assumption that all features
have an equal impact on the ultimate outcome may not
be universally applicable. It is conceivable that certain
features possess greater informativeness or relevance than
others, and their equitable treatment may have diminished
their impact. For example, the findings of our study show
that using optical flows in both streams on multi-stream
networks can contribute to reaching higher classification
performance.

Moreover, it has been observed that the utilisation of
confusion matrices has demonstrated the efficacy of optical
flow features in mitigating the ambiguity that arises from
the similarity between different action categories in spatial
feature based methodologies. On the KTH dataset, it was
observed that action pairs with similar spatial features, such
as hand waving and hand clapping, running and jogging,
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TABLE 9. T-test analysis of classification performance obtained by different feature fusion architectures on the KTH dataset.

TABLE 10. T-test analysis of classification performance obtained by different feature fusion architectures on the UCF-101 dataset.

and running and walking, demonstrated reduced confusion
when optical flow features were utilised. The use of temporal
changes helped to differentiate action pairs through the
extraction of optical flow. Therefore, giving higher weight
to the optical flow features would improve the performance
further.

Additionally, it is possible that the selection of fusion
techniques, such as concatenation and averaging, was not
optimal in relation to the characteristics of the datasets or
the problem under investigation. Various data types and their
respective characteristics may necessitate the utilisation of
more advanced fusion techniques that take into account the
complex relationships between features and decisions.

Another aspect to take into account is the potential
interaction between various features and decisions. Some
methods failed to leverage potential synergies between
specific features or decisions may be because of the equal
treatment of all features and uniform combination of all
decisions. Certain combinations of features and decisions
may exhibit greater complementarity, resulting in enhanced
performance, whereas other combinations may introduce
undesirable noise or redundancy.

2) VISION TRANSFORMER BASED FUSION
In the context of video classification problems, the integration
of features using transformers holds great potential for

enhancing classification performance. Experimental results
have shown that multi-stream transformer fusion, particularly
through the additive attention mechanism, outperformed the
other proposed fusion architectures examined in this study.

Transformer-based networks, widely recognised for their
achievements in various tasks related to natural lan-
guage processing and computer vision, utilise self-attention
mechanisms. These techniques play a crucial role in
capturing interdependence among features across tempo-
ral sequences, allowing the model to selectively extract
important information and construct meaningful associations.

On the other hand, the advantage of self-attention is
its ability to effectively capture and represent temporal
dependencies within a single modality. It is also effective in
capturing extensive temporal connections across various time
steps. However, there is a potential limitation in its ability
to effectively capture complex interactions among diverse
modalities, similar to the dot-product attention mechanism.

In our experimental findings, it was shown that both
the additive and dot-product attention mechanisms exhib-
ited superior performance compared to the multi-head
self-attention mechanism. This observation highlights an
important factor: although self-attention is effective in most
scenarios, the selection of the attention mechanism should be
tailored to the specific task.

Additive attention mechanisms can capture context-
specific interactions between modalities and demonstrate a
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high level of effectiveness in integrating various features
by strategically emphasising pertinent components within
a given sequence. The utilisation of additive attention
for selective and context-aware feature fusion can offer
significant advantages over the self-attention mechanism,
especially when consolidating data from various modalities
or feature sources.

Given these limitations, it is crucial to acknowledge that
the effectiveness of the integrated feature and decision fusion
methods should not be attributed solely to the underlying
concept, but rather to the particular implementation and
experimental decisions made. Considering the success of
vision transformer-based feature fusion methods and the
lower computational cost of the proposed methods, hybrid
methods can be further investigated. Nevertheless, the
available techniques for implementing hybrid approaches
are currently limited, and the optimal integration of these
approaches remains insufficiently investigated.

Another benefit of employing exclusively transformer-
based neural networks is their rapid learning speed
and absence of sequential operations, in contrast to
ConvLSTM. Despite the promising results achieved by
feature fusion-based video architectures, those architectures
suffer severely from significant memory and computational
costs.

The selection of an attention mechanism plays a crucial
role in determining the ability of a model to effectively iden-
tify and highlight important information in the time-based
sequences of video data.

V. CONCLUSION
This paper proposes novel approaches for feature and deci-
sion fusion at both single and multiple levels for video clas-
sification. The proposed multi-stream fusion architectures,
combining spatial and temporal inputs, have demonstrated
promising effectiveness across conducted experiments.

Feature-level fusion has outperformed decision-level
fusion where all features through feature fusion resulted in
the highest accuracy. Utilising additive attentionwithin vision
transformer based architectures has significantly improved
video classification performance. The proposed multi-stream
decision fusion method has achieved comparable results with
reduced resource demands, emphasising its efficiency.

While the CNN network architecture employed in this
study was not the state-of-the-art, the focus on fusion
methods shows potential impact of the advanced designs on
effectiveness. Future research should explore the scalability
and resilience using larger datasets to ensure robustness.

In conclusion, the proposed fusion strategies, the vision
transformer based approach in particular, have demonstrated
great potential in effectively tackling the complex nature
of video classification. Through the combination of feature
fusion and decision fusion, our approach effectively enhances
accuracy and offers practical implications for applications
such as action identification, surveillance, among others.
Further research endeavours will be focused on developing

more powerful and practical deep learning architectures for
video classification based on our findings in this study.
Practical implementation of video classification methods
in real-world circumstances remains a direction for future
research.
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