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Abstract—Connected vehicles (CV) and automated vehicles
(AV) are promising technologies for reducing road accidents
and improving road efficiency. Significant advances have been
achieved for AV and CV technologies, but they both have inherent
shortcomings such line of sight sensing for AV. Connected
autonomous vehicles (CAV) has been proposed to address the
problems through sharing sensing and cooperative driving. While
the focus of the research on CAV has been on the vehicles so far,
cooperative and connected smart road infrastructure can play a
critical role to enhance CAV and safe driving. In this paper we
present an investigation of connected smart road infrastructure
and AVs (CRAV). We discuss the potentials and challenges of
CRAV, then propose a scalable simulation framework for the
CRAV to facilitate fast, economic and quantitative study of CRAV.
A case study of CRAV on smart road side unit (RSU) assisted
vulnerable road users (VRU) collision warning is conducted,
where the identification of VRU such as pedestrians on the road
by the AVs is compared with and without RSU assistance. The
impact of the location of RSUs on avoiding potential collisions
is evaluated for vehicles with different sensor configurations.
Preliminary simulation results show that with the support of
smart RSUs, the CAVs could be notified of the existence of the
VRUs on the road by the RSUs much earlier than they can
detect with their own onboard sensors, and collisions with VRUs
can be reduced. This study demonstrates the effectiveness of the
proposed CRAV simulation framework and the great potentials
of CRAV.

Index Terms—Connected vehicles, autonomous vehicles, con-
nected intelligent vehicles, CAV, cooperative road safety

I. INTRODUCTION

Road transport systems are facing increasing challenges
due to the road accidents, congestion and pollution. It was
reported by WHO that more than 1.3 million people died
on the roads a year [1]. And more than 25,000 people lost
their lives on EU roads in 2018 [2]. In the EU Road Safety
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Policy Framework 2021-2030 [2], a long-term goal of “Vision
Zero” is set by EU to move close to zero deaths by 2050.
In addition, traffic congestion costs approximately 90 billion
lost hours per year and increases pollution. Connected vehicles
(CV) and automated vehicles (AV) are promising technologies
to reduce road accidents and improve road efficiency [3]–
[6]. However, both AV and CV technologies have inherent
shortcomings [3], [4], [7]. For example, AV sensors are limited
to line of sight sensing and do not perform very well under in
poor lighting, weather or road conditions. On the other hand,
CV technology depends on message exchange to build mutual
awareness, therefore a high penetration of CVs on the road is
required to have a noticeable impact.

In view of the limitations of CV and AV, there are in-
creasing research and development interests on connected and
autonomous vehicles (CAV) technology. The sensor and com-
puting resources of CAV vehicles are expected to be shared
to build comprehensive perception of driving environments
and cooperate on driving. 3GCPP is also developing enhanced
cellular vehicle to everything (V2X) standards to support
advanced driving uses, such as cooperative sensing, vehicle
platooning, remote driving and cooperative driving. It is noted
that the research reported on CAV so far is mainly focused on
the vehicles so far, e.g., how to share and exploit the sensing
among vehicles and how to cooperate on driving.

While cooperation on connected vehicles can help au-
tonomous driving and reduce road accidents, there are still
many cases where the safe and autonomous driving problems
could not be solved by the vehicles alone. For example,
detection of traffic lights and their states is widely known
difficult for the AVs; detection of pedestrians behind vehicles
parking on the road side at night is also very challenging. As
pointed out in [2], there are four themes to tackle the road
safety challenges and achieve the Vision zero goal, which
are infrastructure, vehicles safety, safe road use (including
speeding, alcohol and drugs), and emergency response, respec-
tively. It is believed that cooperative and connected smart road978-1-6654-4131-5/21/$31.00 ©2021 IEEE
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infrastructure will be an important piece of the puzzle for the
ultimate safe and green intelligent transport systems. We need
not only intelligent and connected vehicles, but also smart and
connected roads and infrastructure to support the CAVs. The
smart roads can be configured adaptively to respond to traffic
and weather conditions, such as changing the lanes to be used
only by vehicle platoons and setting traffic lights. An example
of the smart roads is the smart highway implemented in the
UK, where a part of the highway hard shoulders are adaptively
used for normal vehicles. For the smart infrastructure, the
RSUs, transport control centers and telecommunication base
stations all could play more important roles and make smarter
decisions than disseminating traffic information. For example,
the RSUs can use advanced sensors and computing resources
to provide reliable sensing and edge intelligence to the fast
moving CAVs, to avoid road accidents and support efficient
driving.

Connected smart road infrastructure and AVs (CRAV) is
receiving increasing attention and there are large pilots re-
ported to have started. CRAV can bring in some important
benefits to support CAVs, for example, enhanced sensing from
sensors with better views, better detection and tracking of
VRUs, coordination of CAV communication and driving, and
gradual deployment of networks. Infrastructure assisted CAV
has been investigated in a number of projects, such as [11]
[12] [13]. While CRAV holds great potentials, research on
CRAV is still at a very early stage. Research and investigation
on CAV has been known very complex and challenging, due
to cross disciplines of the technology, which includes auto-
motive, driving planning and control, vehicle communications,
computer vision and artificial intelligence. The introduction of
smart road and infrastructure makes the research of CAV more
challenging. While real test systems could produce reliable
results, these real systems are extremely expensive and time
consuming to build, and they are not scalable and flexible
to do pressure testing and get deep insights for difficult and
challenging scenarios.

In this paper we will present an early investigation of the
CRAV. We first propose a scalable simulation framework for
the CRAV to facilitate fast, economic and quantitative study
of CRAV. It is noted that this framework is general and
also applicable to CAV. A case study of CRAV on smart
RSU assisted VRU collision warning is conducted, where
the identification of vulnerable road users (VRU) such as
pedestrians on the road by the AVs is compared under the
contexts of with and without RSU assistance. The impact
of the location of RSU on avoiding potential collisions is
evaluated for vehicles with different sensor configurations.
Preliminary simulation results show that with the support of
smart RSUs, the CAVs could be notified of the existence of
the VRUs on the road by the RSUs much earlier than they
can detect with their own onboard sensors, and collisions with
VRUs can be significantly reduced. This study demonstrates
the effectiveness of the proposed CRAV simulation framework
and the great potentials of CRAV.

The paper is organized as follows. Section 2 presents the

related work. Section 3 presents a simulation framework for
the investigation of CRAV. In Section 4 we investigate the case
study of CRAV on RSU assisted collision warning. Simulation
results and discussions are presented. Section 5 concludes the
paper.

II. THE STATE OF THE ARTS

In the literature, the traditional approaches for improving
RSE performances include adoption and enforcement of good
driving laws and expansion of road network capacity. Recently
there are modern approaches to reduce road accidents, mitigate
accident impacts and improve road efficiency, which include
ADAS and AV [3], CV [4] [5] [6], platooning [10], and
accident detection and mitigation (ADM) [14]. In this section
these relevant technologies are briefly introduced.

A. CV and V2X

CV uses vehicle to everything (V2X) communication tech-
nology to communicate with other road users and networks,
including V2V, V2P and V2I. CV can transmit context aware
messages (CAM) between vehicles to exchange host vehi-
cle’s speed, heading and brake status via dedicated short
range communications (DSRC) [4], [7]. They can help warn
drivers of impending crashes and hazards. Recently there are
increasing research and standardization efforts in 3GPP to
provide cellular V2X with low latency and high data rate
communications [5], [6]. Direct vehicle communication based
cellular V2X was specified in the latest 3GPP LTE releases.
There is still a wide debate on deploying either DSRC or
cellular V2X technologies. However, existing DSRC safety
channel and cellular based V2V are prone to safety message
congestion. Their communication reliability drops significantly
with a high vehicle density. Unreliable and delayed message
delivery can generate adverse safety consequence. In addition,
the capacity of current V2V networks in terms of supported
vehicles and the data rate of exchange messages is still limited,
which is not sufficient for advanced RSE applications such as
cooperative ADAS and platooning [10].

B. ADAS and AV

ADAS can support driving and reduce accidents. They are
moving forward fast globally. Equipped with different sensors
and advanced data processing algorithms, ADAS can warn
drivers of impending danger so that the drivers can take
corrective action, or even intervene on the drivers’ behalf [3]. It
can provide many enhanced safety features such as blind spot
detection and forward collision warning (FCW). The ADAS
is evolving towards self-driving vehicle, which has the highest
automation level of AVs. Many global car makers and IT
companies are racing to make self-driving vehicles. However,
local sensing systems have line of sight sensing limitation and
limited sensing range. According to the latest KITTI vision
benchmark results, the accuracy of detecting pedestrians and
cyclists is still low [8], [9]. Moreover, high definition maps
are not robust to road changes and the driving systems are
not intelligent enough to handle unexpected and challenging
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road situations. Therefore some car makers such as Tesla are
developing self-driving cars with vision cameras sensor based
solutions, which will more likely to encounter camera sensor
related sensing problems.

C. Road safety and efficiency applications

ADM is critical for road safety and efficiency: once ac-
cidents happen, the control center and approaching drivers
should be notified to control the accident scenes and prevent
subsequent secondary accidents [14]. However, existing ADM
systems are still mainly relying on local sensing and com-
puting resources [14], which may not be able to provide fast
response. Platooning has large potentials of increasing traffic
capacity and fuel efficiency by employing a short headway
[10]. The main control of a platoon aims to ensure the vehicles
in a platoon move at a consistent speed and maintain a desired
spacing. A key task in platooning is determining vehicle
space. In the earlier studies radar based sensing systems are
used to determine the spacing to the front vehicle. Recent
V2V communication was applied to determine and control
vehicle spacing, for example, V2V based space control was
successfully test on the Helm project with DAF trucks 1

But the existing V2V communications could not satisfy the
very high communication requirements from platooning ap-
plications. More advanced driving applications such as remote
driving and cooperative driving are expected to be supported
by 3GPP 5G V2X standards.

D. Simulation and Real Pilot Test of CRAV Systems

As we discussed beforehand, implementation and evaluation
of the CAV and CRAV systems are very challenging. While
there are simulation based study of the subsystems for CAV
system, to the best of knowledge, there is no reported complete
simulation of the CAV system (including V2X communication,
sensing with computer vision and autonomous driving appli-
cations). For the simulation of V2X communications, there
are widely used environments, such as NS-2, NS-3, OMnet,
OPNet. For the sensing with sensors in both CAVs and RSUs,
the widely used deep learning engines include Pytorch from
Facebook, Tensorflow from Google and deep learning toolbox
from Matlab. Many deep learning models have been proposed
for object detection and segmentation. For the autonomous
driving, widely used software tools include CARLA and
CarSim. There are some pilot systems reported over the world
to verify the concept of CRAV and its performance. But
the real system testing approach is not scalable, slow and
difficult to test rare and dangerous cases. Therefore alternative
approaches should be proposed for the implementation and
systematic evaluation of CRAV system.

III. COOPERATIVE CRAV RESEARCH AND SIMULATION
FRAMEWORK

According to the aforementioned discussion, it is clear that
there are still many research challenges faced by CAV and
CRAV, for example, poor object detection at poor lighting

1https://www.helmuk.co.uk/

and object occlusion conditions. Cooperation among the CAVs
and among CAVs and smart RSUs is critical to improving the
perception of driving environments and reduce road accidents.
However, there are also new barriers introduced by the cooper-
ation of CAVs and RSUs. For example, to enable cooperative
sensing among the CAVs and RSUs, several research issues
need to be tackled, which are discussed below.

• The deep learning models developed for object detection
(such as Faster-RCNN and YOLO3) and tracking are well
known data driven and operate in a black-box manner.
The object detection results are not fully reliable. It will
be very difficult for the CAVs to trust and accept the
sensing results from neighboring CAVs with local ones.

• In the mobile CAV networks, the network topology is
dynamic and the CAVs usually have short connection
period with each other. It can be difficult to trust other
CAVs and cooperate with each other.

• Accurate localization of the detected objects locally is
also important and challenging for cooperation of CAVs
and CRAVs.

• For fusion of sensing data from other CAVs or RSUs, the
coordination systems at the other CAVs or RSUs needs
to be converted to the local coordinate system.

Apart from the above research issues for cooperative sens-
ing, there are also further research issues on the design of
reliable and effective cooperative driving and road safety ap-
plications, evaluation and validation of the cooperative driving
and safety applications for the CAV and CRAV systems. In this
paper, we will focus on the simulation of CRAV systems for
fast and scalable evaluation of CRAV road safety applications,
which is important to understand the benefits and limits of
the cooperative CRAV systems, support decision making, and
facilitate design and planning of CRAV systems.

Fig. 1. Illustration of the offline communication framework for CRAV
simulation.

A. Integrated CRAV Simulation Framework

Compared to the real CRAV test systems, CRAV simula-
tion is a much cheaper and more flexible for performance
evaluation and system validation. With the support of the
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available tools and libraries for simulation, design of and
setting up the CRAV systems for simulation could take much
less time compared to these for real test systems. An easy
and intuitive framework for simulation of CRAV systems is to
integrate simulation of all the subsystems. For one simulation
of CRAV safety application under the integrated simulation
framework, the V2X communication system is simulated at
the packet levels following the communication protocols, the
local sensing will be simulated at frame levels with application
of pre-trained deep learning models, and the movement of
the CAVs will be simulated with predefined trajectory. The
fusion of local and shared detected objects and/or tracks is
then performed according to the simulation outcomes from the
communication and local sensing, which is further used for the
simulation of the cooperative driving and safety applications.

B. Decoupled CRAV Simulation Framework

Running simulations under the integrated framework could
be very slow to obtain credible performance results. It is
therefore important to design alternative scalable and fast so-
lutions. In this paper we propose a fast and scalable simulation
framework, which is called decoupled simulation framework.
Under this framework, the V2X communications is simulated
separately from the CAV driving simulations, therefore it can
enable fast simulation of the CRAV systems. Optionally the
object detection and tracking subsystem can also be evaluated
separately offline.

The overall decoupled CRAV system simulation framework
is presented in Fig. 1. Next we will briefly introduce the
functionality of the subsystems presented in this simulation
framework.

1) Simulation of V2X Communication: Before the simula-
tions for the CRAV systems are conducted, the V2X systems
are simulated first. Either DSRC or cellular V2X commu-
nication technologies can be simulated with various road
layouts, CAV densities, message side, allocated bandwidth
and vehicle speeds, etc. Different channel models should be
used according to the driving scenarios (such as highway and
urban driving). The simulations will be run at packet level and
follow the V2X communication algorithms. The simulations of
the V2X communication technologies is expected to produce
the statistic performance of packet successful ratio and delay
against communication distance. The statistic performance of
the V2X communication will be used to create communication
profiles (e.g., performance curves against distance) and stored
for further use.

2) Object Detection and Tracking Test: Sensing plays a
critical role for intelligent vehicles. There are several widely
accepted sensors for CAVs, including cameras, radars and
Lidars. They can be installed at both CAVs and RSUs. The
simulations of the object detection and tracking can be done
separately. The object detection is simulated at frame levels
with the application of deep learning models for inference.
The accuracy and confidential score of object detection will
be evaluated against object distance, lighting and weather
conditions, object categories, object occlusion and sizes. The

statistic object detection performance is also used to create
object detection profiles (e.g. performance curves against
distance and occlusion) and stored for further use in CRAV
simulations.

3) Core CRAV Simulations: The main CRAV simulations
will be run by the CRAV simulation core. In the separate
simulation framework, the simulation core will accept V2X
communication profiles and object detection profiles as input.
The CRAV simulation scenarios and sensors will be configured
in advance, including the road layout, vehicles on the road
and RSUs, road users and VRUs, trajectories of the CRAVs,
sensors installed at the CAVs and RSUs. In addition, different
road safety and driving applications can be specified.

After the configuration of the CRAV simulations, the core
CRAV simulations can start with regular updating of the
actors (CAVs, RSUs and VRUs) positions and status. At each
simulation step, the object detection and tracking will be
performed for the actors with local sensors by referring to
the object detection profiles (instead of applying deep learning
models for each frame). Then depending on the configuration
of cooperation modes for the cooperative driving and road
safety applications, the local sensing results could be made
available for sharing through V2X with neighbor actors. The
successful reception of the shared sensing results will depend
on the outcome of communication among the interested actors,
which will be simulated in a simplified approach by looking
up the V2X communication profiles. Whether a transmitted
message is successful or not is determined by the packet
successful ratio derived from the offline V2X communication
simulations. If a message with shared sensing data is received
from neighbor actors, the shared object detection and/or tracks
can be accepted and fused with the local detection or tracking.
Depending on the cooperative sensing, actions for cooperative
driving and/or road safety applications will be taken.

The above processing for the core simulations will repeat
until a preconfigured number of simulation steps. Then the
results for the cooperative driving and road safety applications
will be collected and visualized.

IV. A CASE STUDY OF CONNECTED SMART ROAD AND
AVS

The proposed separate simulation framework is general and
can be applied to study a wide range of driving and safety
applications. In this paper we investigate a case study of
CRAV on smart RSU assisted VRU collision warning. In
this case study when the vulnerable road users (VRU) such
as pedestrians on the road can be identified by the CAVs
is investigated under the contexts of with and without RSU
assistance. The impact of the location of RSU on avoiding
potential collisions is evaluated for vehicles with different
sensor configurations.

A. Simulation Settings

For this case study we create a scenario as shown in Fig. 2.
In this scenario, we consider a RSU, two CAVs with LTE V2X
radios and camera sensors, a parked bus which may block the
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views of the CAVs approaching from the front. A passenger
attempts to cross the road. There are also a number of vehicles
without V2X radios and sensors for road perception. The road
is 8 meters wide with two lanes. The RSU is located at (95,
-10). It has two cameras pointing towards to the road with
different directions. The two CAVs moving with a speed of
v meters/second. The initial location of CAV1 and CAV2 is
(-20, 3) and (-10, 3), respectively. The parked bus is located at
(d, 3) where d is configurable variable with range of [5, 80].
It has a length of 8.5 meters, width of 2.5 meters and height
of 3.5 meters. The pedestrian is located at [d+10, 3.8].

The RSU monitors the VRUs (the pedestrian in this use
case) on the road, and share the tracks of the CAVs and VRUs
to the other CAVs. The CAVs will monitor the VRUs as well
with only the local onboard cameras if non-cooperation mode
is configured. If cooperation model is configured, the tracks
from the RSUs are fused with the local tracks. Depending
on the tracking outcomes, a warning of VRUs on the road
and potential hazards will be generated for the driving and
necessary actions can be taken if needed.

The communication settings follow the configuration used
in [6], with a 10 MHz bandwidth for LTE V2X. The com-
munication curve is approximated by function: y = p(x) = 1 -
0.3*(d/x).

Fig. 2. Illustration of cooperative CRAV scenario.

B. Simulation Results

With the above system configurations, simulations were run
in Matlab with autonomous driving toolbox to collect results
[23]. The CAV speed v is configurable, which is set to 12
m/s in this study. Two set of results are presented in Fig. 3.
The first set of results shown in dashed lines refer to the
allowed response distance of CAV1 and CAV2 with detections
by only local cameras. The second set of results refer to the
allowed response with fused tracks from the RSU. The allowed
response distance (ARD) is defined as the distance of the
CAVs to the pedestrian in the X axis direction at the first
time the CAVs are aware of the pedestrian on the road, before
the CAVs pass the pedestrian.

It can be observed that without the assistance of the RSU,
the CAVs can’t see the pedestrian behind the parked bus until
they are very close to the pedestrian. The ARD of the two
CAVs is very close (around 13 meters) and does not change
with the location of the parked bus, which is not sufficiently
large for the driving to stop before a potential collision with

Fig. 3. Simulation results on the response distance with and without RSU
assistance on cooperative sensing.

the pedestrian. On the other hand, with the cooperation of the
RSU and CAVs, the CAVs can receive the shared tracks from
the RSU and be aware of the crossing pedestrian much earlier.
And the ARD with the RSU assistance increases linearly with
the d.

V. CONCLUSIONS

In this paper we presented a separate framework for scalable
and fast simulation framework for cooperative connected road
and autonomous vehicles (CRAV). We analyzed the technical
and non-technical challenges faced by cooperative CRAV.
Preliminary simulation results show that with the support of
smart RSUs, the CAVs could be notified of the existence of
the VRUs on the road by the RSUs much earlier than they
can detect with their own onboard sensors, and collisions with
VRUs can be significantly reduced. This study demonstrates
the effectiveness of the proposed CRAV simulation framework
and the great potentials of CRAV. In the future we will
investigate more cooperative CRAV related research problems,
implement cooperative RSE applications and demonstrate their
potentials.
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