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Abstract—Visual place recognition (VPR) enables autonomous
systems to localize themselves within an environment using image
information. While VPR techniques built upon a Convolutional
Neural Network (CNN) backbone dominate state-of-the-art VPR
performance, their high computational requirements make them
unsuitable for platforms equipped with low-end hardware. Re-
cently, a lightweight VPR system based on multiple bio-inspired
classifiers, dubbed DrosoNets, has been proposed, achieving great
computational efficiency at the cost of reduced absolute place
retrieval performance. In this work, we propose a novel multi-
DrosoNet localization system, dubbed RegionDrosoNet, with
significantly improved VPR performance, while preserving a
low-computational profile. Our approach relies on specializing
distinct groups of DrosoNets on differently sliced partitions of the
original images, increasing model differentiation. Furthermore,
we introduce a novel voting module to combine the outputs of all
DrosoNets into the final place prediction which considers multiple
top reference candidates from each DrosoNet. RegionDrosoNet
outperforms other lightweight VPR techniques when dealing with
both appearance changes and viewpoint variations. Moreover,
it competes with computationally expensive methods on some
benchmark datasets at a small fraction of their online inference
time.

Index Terms—Vision-Based Navigation, Localization, Bioin-
spired Robot Learning

I. INTRODUCTION

V ISUAL place recognition (VPR) is an essential com-
ponent of mobile robotics, as it allows the system to

localize itself in the runtime environment using only image
data [1]. The affordability and variety of camera sensors
makes VPR localization particularly attractive for hardware
restricted robotic platforms, which are common in mobile
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Fig. 1: The query image is divided into multiple heterogeneous
regions. Each region is then fed as input into a specialized
DrosoNet group which was trained only on that particular
region from the training set images. Finally, the output of each
group is aggregated in the voting module and a reference place
is retrieved.

robotics [2]. Nevertheless, VPR is a complicated task and
proposed solutions must deal with several visual challenges.
The same place can appear vastly different when visited under
different illumination [3], seasonal weather conditions [4],
viewpoints [5] and dynamic elements entering and leaving
the scene [6]. As alluded, mobile robotic platforms often
operate under low-end hardware, often due to physical size or
monetary budget, making computational cost an added impor-
tant consideration when designing VPR techniques [7]. VPR
methods based on Convolutional Neural Networks (CNNs)
architectures have become increasingly popular due to their
impressive performance. Indeed, visual features extracted from
CNN layers achieve strong resilience against several of the
visual challenges intrinsic to VPR [8]. However, as these
networks grow deeper and more complex to achieve higher
quality VPR, they also become less suitable for robotic setups
equipped with heavily constricted hardware. Moreover, even
if the hardware is able to support the use of an expensive
CNN model in realtime, a lower computational demand is
still valuable in saving power, allowing a mobile platform to
operate for longer.

Recently, the authors proposed a lightweight VPR systemFor the purpose of Open Access, the authors have applied a CC BY public 
copyright licence to any Author Accepted Manuscript (AAM) version arising 
from this submission.
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[9] based on multiple bio-inspired voting units. Each unit,
dubbed DrosoNet, is a compact neural network model inspired
by the odour processing abilities of Drosophila Melanogaster
(the common fruit fly) [10]. The approach relies on the
inherent randomness of DrosoNet’s initialization and training
process, allowing for moderate unit differentiation, and its
extremely low computational profile, allowing for a multi-
DrosoNet system which is brought together with a voting
mechanism attuned to VPR. Despite strong VPR performance
relative to its computational efficiency, the absolute VPR
quality of the system makes it unreliable in many of the tested
environments, particularly when dealing with strong viewpoint
variations.

In this work, we propose a novel multi-DrosoNet local-
ization pipeline which achieves increased VPR performance
across various visual challenges, while maintaining a low
computational profile. The core of the approach, dubbed
RegionDrosoNet, relies on introducing additional model differ-
entiation by training specialized DrosoNet groups on different
regions of the training images. At inference time, as can be
observed in Fig. 1, each partition of the query image is served
as input to its respective group and each DrosoNet produces
its reference place confidences. The training and inference
process is tailored to DrosoNet, taking full advantage of its
peculiarities: it’s extremely fast and compact, allowing for
the use of multiple units; it’s a neural network classifier,
not requiring storage of an image descriptor for every map
location as a reference for image matching; DrosoNet groups
trained on different image regions benefit from additional
model differentiation induced by different training data, while
units within each group continue benefiting from DrosoNet’s
inherent differentiation.

The outputs of all DrosoNets are then aggregated using a
novel voting module which considers multiple top place can-
didates from each DrosoNet, allowing the system to converge
on the most generally agreed upon reference place, mitigating
the individual DrosoNets failing to realize a correct match.

We present a general setup for our proposed system which
outperforms other lightweight VPR techniques across several
benchmark datasets, while taking less time to retrieve a
match. Furthermore, we also compare our results against high-
performing but computationally expensive VPR methods to
better situate this work in the literature.

The rest of this paper is organized as follows. Section
II provides an overview of VPR literature with a focus on
lightweight methods. Section III details our methodology,
starting from a short DrosoNet overview, followed by the
image partitioning module, training and inference processes,
and finishing with the voting aggregation method. Section IV
explains our experimental setup, providing insight into the
benchmark datasets, evaluation metrics and model settings.
Results are presented and discussed in Section V. We conclude
in Section VI by summarizing our findings, highlighting key
system limitations and possible future work.

II. RELATED WORK

As the appearance of a place can vary substantially due to
a wide variety of environmental and navigation factors, com-

Fig. 2: DrosoNet model diagram.

puting an image representation resilient against such changes
becomes foundational for autonomous long-term navigation.
Nevertheless, the computation, storage, and search of place
representations should remain computationally efficient when
the target robotic platform cannot afford to carry high-end
hardware.

The first image descriptors used for VPR were based on
handcrafted methods such as Histogram-of-oriented gradients
(HOG) [11], which has been successfully used as a global
image descriptor for VPR [12]. Moreover, when combined
with image region-of-interest detectors such as [13], [14],
HOG acted as a local feature descriptor for VPR.

Machine learning techniques have became increasingly pop-
ular in the computer vision community over recent years, and
CNN-based methods have crept into VPR applications, achiev-
ing high performance when dealing with both appearance
changes [15] and viewpoint variations [16]. The image de-
scriptors produced by the inner layers of CNNs, even when the
model was trained for a different task, are effective in matching
place images [17]. When trained specifically for the VPR
problem [18], such as HybridNet and AMOSNet [19], these
CNN-based descriptors achieve even higher VPR performance.
With the continuous focus on absolute VPR reliability, these
techniques have become increasingly complex. NetVLAD
[20] separates the processes of CNN feature extraction and
aggregation into two stages. Patch-NetVLAD [21] introduces
yet another stage during descriptor matching. While these
algorithmic variations and additions do result in increased
VPR reliability, the computational cost of such methods pro-
hibits their use with mobile robotics equipped with resource-
constrained hardware. Several computationally efficient VPR
methods have been proposed to address the shortcomings of
CNNs. CoHOG [22] was proposed as an efficient and trainless
algorithm for VPR. It finds regions-of-interest within an image
and computes a HOG descriptor for each found region. CNN
adaptations have been proposed to lower their computationally
requirements. CALC [23] is a lightweight CNN-based VPR
method which presents lower computational requirements.
MobileNets [24] introduces depth-wise convolutions to lower
overall computational requirements. Quantization of neural
networks [25] into lower bit precisions has also been shown
to improve computational profiles. These concepts have been
bridged to VPR, with binary neural networks combined with
depthwise convolutions [26] showing great computationally
efficiency when paired with specialized hardware.

Efficient bio-inspired VPR methods are designed to mimic
the neural activity of small animals, which exhibit incredible
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navigation capabilities relatively to the size of their brains
[27], [28]. RatSLAM [29] takes inspiration from the neural
activations of rats to perform navigation. FlyNet [30] takes
inspiration from the brain of the fruit fly [31] and its odour
processing to perform highly efficient VPR by creating a small,
binary image representation. Similarly, [32] also produces a
binary image representation by applying a random projection
and binarization step to the input image, a process inspired
by the human neocortex. In the authors’ previous work, a new
algorithm also inspired by the fruit fly was introduced, dubbed
DrosoNet [9], using multiple of these small models as voting
units to perform highly lightweight VPR. [33] also proposes a
multi-model approach for performing lightweight VPR, where
individual units are small, region-specialized spiking neural
networks.

Despite the efforts in developing lightweight VPR tech-
niques, the absolute VPR performance of such methods re-
mains unreliable. In this work, we propose a new approach to a
multi-DrosoNet localization system, dubbed RegionDrosoNet,
which aims to substantially improve absolute VPR reliability
while remaining computationally efficient.

III. METHODOLOGY

In the interest of self-containment, this section starts by
providing a technical background into the DrosoNet model.
Following, we detail the proposed image partitioning module,
which produces several heterogeneous image regions. The
DrosoNet training and inference processes are then described.
Finally, the voting module, responsible for aggregating the
outputs of all DrosoNets into a final place prediction, is
detailed.

A. DrosoNet

DrosoNet is a compact and fast neural network image
classifier where each of the environment’s total N places is
a different class. We use the same configuration as in [9],
which can be seen in Fig. 2. An 64×32 grayscale image is first
flattened into a one-dimensional vector, denoted as î, followed
by a matrix multiplication with H , producing vector F . H is a
binary, sparse, and randomly initialized matrix, where 10% of
each column’s elements are initialized to 1 and the remaining
to 0. Matrix H is untrained, and thus the random initial values
are fixed from its construction. F is then binarized by the
function th, where the top 50% of values are set to 1 and the
bottom 50% are set to 0, resulting in the binary vector O. W
is a fully connected layer which learns to map O to one of
the N classes, i.e. reference places. The final output vector s
stores the score distribution for each reference place, and the
DrosoNet’s prediction is the index of the largest score in s.

While DrosoNet is a fast algorithm, its standalone VPR per-
formance is too unreliable. Moreover, due to the randomness
of its H matrix initialization and supervised training, different
DrosoNets exhibit high variance in their VPR performance.
Combining multiple DrosoNets was hence proposed as an
avenue to improve overall VPR performance, relying only the
native stochastic behaviour of the models for differentiation
[9].

TextN places Training
Set

Training
Subset 1

Training
Subset 3

Training
Subset 4

Training
Subset 2

Fig. 3: A training subset is produced for each grid position.
In this example, the grids [(2× 1), (1× 3)] are used, with the
blue regions highlighting the 2×1 grid and the yellow regions
the 1×3 grid (the last column was omitted for visibility). The
total number of regions is 5.

This work increases DrosoNet differentiation by training
distinct models on different partitions of the original images,
producing region specialized DrosoNets. Moreover, by training
multiple DrosoNets on each image region, we continue taking
advantage of the randomness associated with the initialization
and training processes.

B. Image Partitioning

The image partitioning module receives as inputs an image
i and grid dimensions (r, c), where r represents the number
of rows and c the number of columns, outputting rc image
regions. As detailed, DrosoNet operates with grayscale images
with a resolution of 64 × 32, thus the produced regions are
converted to grayscale and resized to the correct dimensions.
In Section IV-D, we show how different grid setups can sig-

nificantly impact the VPR performance of the overall system.
Since it is not possible to predict which grid layout is best for
the deployment environment without access to ground-truth
information, we propose the use of multiple, heterogeneous
image regions. In this arrangement, the partitioning process is
simply repeated for G different grid settings. The total number
of image partitions P can thus be computed as follows:

P =
G∑

g=1

rgcg (1)

where rg and cg represent the number of rows and columns
associated with grid setup g, respectively.

C. Training and Inference

Each dataset contains N image, one per place, in their
training traversal. Before the training process, we construct
P training subsets, each corresponding to one of the desired
regions (Fig. 3). Each subset therefore also contains N image
partitions.

A group of Z DrosoNets is assigned for each of the P
training subsets, with each group being trained only on their
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Fig. 4: The voting module receives all score vectors produced by each DrosoNet, with the largest K values being considered
(in this case K = 3) and all remaining N −K values being discarded.

respective grid position. The total number of DrosoNets in the
system T is therefore given as:

T = PZ (2)

At inference time, the query image is partitioned following
the same G grids, and each DrosoNet is fed the corresponding
region of its group, resulting in T score vectors for the query
image. All these vectors are aggregated into a final prediction
using the proposed voting module.

D. Voting Module

The voting scheme combines all the output score vectors
into a final score vector from which the reference place can be
identified. Fig. 4 illustrates the matching process for a single
query image.

For each of the T score vectors s, the voting vector ŝ is
constructed by setting each of the N elements ŝn as:

ŝn =

{
sn if sn ≥ topK(s)

0 else
(3)

where topK(S) represents the value of the Kth largest score in
s, with K being an hyperparameter. Fig. 4 shows an example
of this operation with K = 3, where only the highest 3 scores
per DrosoNet are considered and the remaining N − K are
set to 0. All the voting vectors are then summed element wise
into the final score vector V :

v =
T∑

t=1

ŝt (4)

and the retrieved reference place m is the most voted for index:
m = argmax(v).

IV. EXPERIMENTAL SETUP

This Section details our experimental setup, starting with
a presentation of the benchmark datasets, followed by evalu-
ation metrics, comparison VPR methods and implementation
settings of our proposed method.

A. Datasets

1) Nordland Fall & Winter: The Nordland dataset [34]
consists of four train traversals with varying seasonal weather
conditions. We use the Summer traversal as reference for
training, testing on the Fall traversal to assess resilience against
moderate appearance changes and on the Winter traversal to
assess performance with extreme appearance changes. We use
1000 images per traversal, allowing for a margin for error of
1 frame around the ground-truth location.

2) Gardens Point Day-Right: The Gardens Point dataset
[35] consists of three traversals around the Queensland Uni-
versity of Technology. We use the traversal filmed from a left
viewpoint during the day as training and the right viewpoint
daily traversal as testing, assessing resilience against moderate
lateral shifts. The entire 200 images per traversal are utilized,
with an error allowance of 2 frames.

3) St. Lucia: St. Lucia [36] contains a number of car
recorded sequences in St. Lucia, Bribane at different day
times. The dataset exhibits moderate appearance changes and
dynamic elements. We use the morning traversal recorded
at 8:45AM (190809 0845) as reference and the afternoon
traversal recorded at 2:10PM (190809 1410) as query, with
1150 images per traversal and an error margin of 2 frames
around the ground-truth location.

4) Berlin: The Berlin dataset [37] contains traversals over
three locations in Berlin: Halense Strasse, Kudamm and A100.
The dataset is characterized by moderate to strong point of
view variations and significant dynamic elements such as cars
and pedestrians. Due to the small number of frames in each
traversal, we combine the three locations into a single dataset,
utilizing the traverses halensestrasse-2, kudamm-1 and A100-
1 as references and halensestrasse-1, kudamm-2 and A100-2
as queries, resulting in a total of 250 images. We allow for an
error margin of 1 frame.

5) Corvin 30 Degrees: Corvin [38] is a synthetic dataset
recorded using flight simulation around the Corvin Castle,
focusing on strong viewpoint and scale variations. We use
1000 images per traversal, with the one filmed at a 0 degree
angle for training and the 30 degree traversal for testing,
allowing for a ground-truth error margin of 20 frames. Corvin
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(a) (b) (c)

Fig. 5: AUC impact of the region grid (5a), the top K voted places (5b) and the number of DrosoNets per region Z (5c).

is a challenging dataset and a large error allowance is required
to make results for all techniques conclusive [9].

B. Evaluations Metrics

1) Area Under The Precision-Recall Curve (AUC): AUC is
a widely used metric for assessing VPR performance [39]. In
our experiments, we compute Precision-Recall pairs by vary-
ing the confidence threshold for which a technique considers
a match correct [40]. There is usually an inverse relationship
between Precision and Recall, and thus the area under the
plotted curve is a strong indicative of VPR performance [41].
A high AUC value is most useful for applications where
retrieving enough possible correct matches is more important
than assuring every retrieved match is absolutely correct [42].

2) Extended Precision (EP): The Recall at 100% Precision
(RP100) metric [43] computes how many correct matches are
retrieved before an incorrect one is introduced. It is useful
for applications where a single incorrect match would result
in catastrophic failure but does not consider the lower perfor-
mance bound of the technique. EP [44] combines RP100 with
the Precision at Minimal Recall, providing a more balanced
performance view for such applications.

3) Inference Time (IT): We measure IT as the time elapsed
from the technique receiving a query image to a match being
computed. This includes the time required for any runtime
image pre-processing, descriptor computation and descriptor
matching. We compute IT on the St. Lucia dataset, taking the
average of 1100 inferences. We compute these results on an
Intel 12900k processor, running Ubuntu 20.03. The tests are
purposely ran without a GPU, as many lower performance
robots do not carry an on board dedicated GPU.

C. Comparison VPR Techniques

We compare RegionDrosoNet to several VPR techniques
which claim computational efficiency as one of their main
strengths: CALC [23], CoHOG [22], and Voting [9]. Moreover,
to better situate our work, we additionally include comparison
against the computationally expensive VPR algorithms Hy-
bridNet [19] and Patch-NetVLAd [21]. We use the implemen-
tations in [40] for CALC, CoHOG and HybridNet, and [42] for
Patch-NetVLAD. For Voting, we test both the implementation

given in [9] with 32 DrosoNets and an additional setup with
82 to match the same number of DrosoNets as our proposed
setup.

D. Ablation Studies & Implementation Details

RegionDrosoNet has three main hyperparameters: the grid
setups used to construct image regions, the number of
DrosoNets per region Z, and the number of topK voted places
per DrosoNet. We conduct ablation studies to find optimal
settings with the aim of providing a general setup that performs
strongly across all datasets, rather than fine-tuning the system
for each scenario. The results of these studies can be seen in
Fig. 5.

As can be seen in Fig. 5a, different grid settings significantly
impact VPR performance, and the optimal individual grid
setting varies from dataset to dataset. As such, we use a
combination of all tested partitioning grids:

[(1, 1), (1, 4), (4, 1), (2, 4), (4, 2), (4, 4)] (5)

resulting in a total of 41 partitions, following the example
scheme in Fig. 3.

The choice for K also has a substantial impact on VPR
performance, as can be seen in Fig. 5b. We set K = 20 as it
presents the best overall AUC performance across all datasets.

Finally, the number of DrosoNets per region Z has a
significant impact on both AUC performance and inference
time, observable in Fig. 5c. We set the system to Z = 2,
as there are heavily diminishing AUC returns with higher Z
values, even lowering VPR performance on Corvin and Berlin.
With the choice of grids described above, the total number of
DrosoNets in the system becomes 82.

Each DrosoNet is trained for 200 epochs using the Adam
optimizer [45] and with a learning rate of 0.001.

V. RESULTS

This section presents and discusses our results, firstly with a
comparison of RegionDrosoNet versus other computationally
efficient VPR techniques, followed by a comparison against
expensive methods and finalizing with a per-region perfor-
mance analysis.
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Fig. 6: Precision-recall curves and respective AUC

A. VPR Performance VS Lightweight Methods

In Fig. 6 we observe the VPR performance in terms of AUC
for all tested techniques. RegionDrosoNet outperforms every
other lightweight algorithm on all appearance-based datasets
(Winter, Fall and St. Lucia). The performance advantage on
the Winter dataset over other efficient methods is the most
notable, with RegionDrosoNet more than doubling the AUC
of the second best efficient technique (Voting-82). Viewpoint
performance on the Corvin dataset is also commendable, with
RegionDrosoNet achieving the highest EP result (Fig. 7) and
matching CoHOG in AUC. While all lightweight techniques
perform poorly on the Berlin dataset, our method achieves the
highest EP amongst them and ties with CALC for the highest
AUC. The VPR performance of Voting-32 and Voting-82 is
functionally indistinguishable, showing that simply increasing
the number of DrosoNets does not contribute significantly
to place matching. Conversely, the use of 82 units in the
proposed pipeline provides significant improvements in VPR,
as demonstrated by the performance gap between Region-
DrosoNet and Voting-82. Table I shows the inference times
at runtime for every tested technique. RegionDrosoNet is the
third-fastest method, second only to Voting-32 and Voting-82,
the latter due to the extra image pre-processing required by
RegionDrosoNet. Nevertheless, it achieves substantially higher
VPR reliability on both viewpoint and appearance-based visual
challenges while remaining 18 times faster than CALC and
over two orders of magnitude faster than CoHOG.

Despite these efficiency advantages, it is worth noting that
different methods can offer various benefits over each other.
CoHOG, while requiring the reference traversal images for the

Fig. 7: Extended precision (EP) comparison.

reference map computation, is a trainless technique. CALC,
while trained and also requiring the reference place images
for the descriptor database, does not require environment
specific training. RegionDrosoNet, while achieving better VPR
performance and efficiency, does require environment specific
training due to its dependency on DrosoNet. The choice of a
VPR technique is highly application dependant and all factors
such as data availability, hardware, deployment environment
and risk of failure should be taken into account.
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TABLE I: Inference Time (IT) & Frames Per Second (FPS)

Model IT (ms) FPS

CoHOG 671 1.49
CALC 166 6.02

Voting-32 3 333.33
Voting-82 8 125.00
HybridNet 3318 0.30

Patch-NetVLAD 2892 0.35
RegionDrosoNet 9 111.11

B. VPR Performance VS Expensive Methods
As can be seen in Table I, HybridNet and Patch-NetVLAD

are significantly slower than the lightweight methods.
Despite its substantially lower computational requirements,

RegionDrosoNet is able to compete with these expensive
methods, even outperforming them on some datasets. On the
Corvin dataset, RegionDrosoNet achieves higher EP (Fig. 7).
In the challenging Winter dataset, it outperforms HybridNet
in both EP and AUC. The highest performance drop from
RegionDrosoNet is in Berlin, where it loses substantially in
both AUC and EP to the costly techniques.

C. Per-Region Insights
In Fig. 8 we show RegionDrosoNet’s AUC per region on

the Corvin (8a) and St. Lucia (5b) datasets. As per Eq. 1 and
Eq. 5, our setup has a total of 41 regions, each represented
by a bar, where the colour code shows the corresponding
grid arrangement from which it originated from. It is clear
that some regions perform substantially better than others,
and region performance is dataset dependant. Furthermore, the
region corresponding to the whole query image (region 0, in
blue) is not the best performing one.

Looking at Fig. 9, we find visual insights for the large
performance discrepancy. On Corvin, region 13 does not have
enough visual detail for DrosoNet to specialize on, while 21
contains strong features. Region 13 also performs better than
the whole query image, as the former has less non-detailed
visual zones and less compression resulting from the image
scaling pre-processing. Finally, St. Lucia follows the same
pattern with its respective best and worst performing regions.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose RegionDrosoNet: a novel multi-
DrosoNet localization system which significantly improves
upon the VPR performance of current lightweight methods
while remaining computational efficient. The approach relies
on increasing the differentiation of different DrosoNets by
training specialized groups on several image partitions. More-
over, the introduce a novel voting method which considers
multiple top place candidates from each DrosoNet, allowing a
correct consensus to be reached even if individual DrosoNets
place an incorrect highest scoring match.

DrosoNet is a neural network classifier which requires
training on the reference set of the target environment. While
training time is low compared to expensive models, it remains
a limitation of this work. Future research could focus on
adapting DrosoNet into a descriptor-based method which does
not require environment specific training.

(a) Corvin

(b) St. Lucia

Fig. 8: AUC per region, with colour highlighting the associated
grid dimensions. Within each grid, regions are placed from
left-to-right, top-to-bottom. E.g., for grid (4, 4), its first bar
represents row1, column1, the second bar row1, column2,
the fifth bar row2, column1, etc.
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Fig. 9: Query regions: whole image in blue, best performing
region in green, and worse performing region in red.
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