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General Article

Recent years have witnessed increased sophistication in 
the formulation and testing of hypotheses in psychology 
and its allied disciplines (Cumming, 2013). As part of 
improvements to research practices, psychologists pushed 
further the enrichment of hypotheses with approximate 
effect sizes. Doing so allows for a priori estimations of a 
required sample size (Cooper & Findley, 1982), helps to 
preemptively separate associations considered trivial  
in size from more substantial ones (Fritz et  al., 2012),  
and in Bayesian analysis, helps to define one’s priors 
(Wagenmakers et al., 2018). Unsurprisingly, there is much 
debate about the question of what effect sizes are reason-
able to expect. For example, it may be difficult to approxi-
mate an effect size associated with a novel hypothesis, and 
it may be challenging to state a priori whether the size of 
an effect in one context (e.g., in lab settings) will be the 
same elsewhere (e.g., in field settings; Giner-Sorolla et al., 
2023; Greenwald et al., 2015). Simultaneously, methods of 
obtaining more accurate estimations of population-level 

effects, such as meta-analysis and meta-analytical structural 
equation modeling, have witnessed an increase in sophis-
tication and popularity ( Jak & Cheung, 2020; Johnson, 
2021).

Much of the existing discussion about appropriateness 
of hypothesized effect sizes revolves around the theoreti-
cal basis for such claims or what empirical precedent 
exists. For example, a small effect size that affects human-
ity at large may be considered equally or more important 
than a large effect size that occurs among a specific sub-
population only. Furthermore, the typical magnitudes of 
effect sizes may vary across subdisciplines and paradigms, 
and size category labels may need to take such contingen-
cies into account (Cohen, 1988; Funder & Ozer, 2019). 
We propose that there is another and more fundamental 
issue, underappreciated in quantitative psychology, that 
should be considered within this ongoing discourse: 
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Abstract
Psychological science is moving toward further specification of effect sizes when formulating hypotheses, performing 
power analyses, and considering the relevance of findings. This development has sparked an appreciation for the wider 
context in which such effect sizes are found because the importance assigned to specific sizes may vary from situation 
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mathematical limits to the magnitudes that population effect sizes can take within the common multivariate context in 
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some hypothesized or preregistered effect sizes may be impossible. At the same time, these restrictions offer a way of 
statistically triangulating the plausible range of unknown effect sizes. We explain the reason for the existence of these 
limits, illustrate how to identify them, and offer recommendations and tools for improving hypothesized effect sizes by 
exploiting the broader multivariate context in which they occur.
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There are mathematical limits to the effect sizes that may 
exist in a population (and corresponding samples), and 
these may be surprisingly restrictive.

Understanding these limits helps appreciate the 
importance of considering the size of a hypothesized 
effect in light of what reality permits, which may require 
an appreciation of smaller effect sizes. Furthermore, 
these limits render some hypotheses entirely impossible. 
We demonstrate the mathematical basis for such limits, 
offer guidance for evaluating whether a hypothesis is 
impossible, and then illustrate how effect-size limits may 
be determined. Note that this article is written with the 
aim to be accessible to quantitative psychologists at 
large—inclusive of psychologists who possess but lim-
ited knowledge of statistics—and we accordingly fore-
warn the expert reader of our leisurely pace through the 
various arguments, equations, and examples. Practical 
recommendations and links to online tools are located 
in the latter half of this article.

Hypotheses as Statements About 
Correlation Matrices

A helpful way to think about hypotheses in quantitative 
psychology is to treat them as statements about pre-
sumed correlation matrices that describe a population 
in question. This is perhaps easiest to see for hypotheses 
that postulate simple associations between continuous 
variables, such as “Higher levels of social inclusion come 
with lower levels of anxiety,” for which one would 
accordingly expect a nonzero correlation—here a nega-
tive one in particular—between the two measured vari-
ables. A similar situation applies to hypotheses about 
group differences, such as “First-year students experi-
ence more anxiety than second-year students,” which 
essentially means that some level of covariance, and 
hence correlation, is expected to occur between anxiety 
and the dichotomous “student year” variable. Subsequent 
empirical studies, in turn, serve to test these predicted 
population-level correlations.

The above hypotheses are ordinal; that is to say, they 
postulate the sign of correlation but not its magnitude. 
There has been a disciplinary move away from such 
ordinal hypotheses toward more precise ones. For 
example, a researcher may hypothesize not merely that 
higher levels of social inclusion come with lower levels 
of anxiety but also that this association is “weak,” “mod-
erate,” or “strong,” for example, corresponding to abso-
lute correlations of around r = .1, r = .3, and r = .5 (Cohen, 
1988), respectively. Likewise, rather than merely hypoth-
esizing that first-year students experience more anxiety 
than second-year students, a researcher may propose that 
the corresponding difference is “small,” “medium,” or 
“large,” corresponding to mean differences of 0.2 SD, 0.5 

SD, and 0.8 SD (i.e., Cohen’s d; Cohen, 2013; Sawilowsky, 
2009). These effect sizes may be explicitly mentioned as 
part of the hypotheses, or they may be postulated in the 
power analyses of corresponding studies.

To represent the above effect sizes into a correlation 
matrix, it is helpful to first define various concepts. For 
starters, the (population) “covariance” between Variables 
A and B is defined as

 cov A B
N

A A B B
i

N

i i, .( ) = −( ) −( )
=
∑1

1

 (1)

The covariance of a variable “with itself” (e.g., 
exchanging B Bi −  for A Ai − ) is that variable’s variance, 
denoted as var A( ) or var B( ). These covariances can 
then be transformed into correlations, r , by expressing 
covariance between two variables as a “proportion” of 
their variances:

 r
cov A B

var A var B
AB =

( )
( ) ⋅ ( )

,
. (2)

A corresponding correlation—or normalized covari-
ance—matrix M  for two or more variables, labeled X1

 
through Xk , where k is the number of variables, is then 
given by

 M rij
k k= ∈ ×  (3)

 diag M( ) = 1 (4)

 M M= T (5)

 r i jij ≤ ∀( )1 , . (6)

Specifically, this correlation matrix M  is square with 
k rows and k columns. The diagonal contains the cor-
relations of a variable with itself, which equals 1; its 
off-diagonal entries contain real numbers that represent 
the strength and direction of correlation. The correlation 
matrix is diagonally symmetric because any covariance 
between Xi  and X j  is the same as the covariance between 
X j  and Xi . These correlations must lie between −1 and 
1, representing perfect negative and positive correspon-
dence, respectively.

One of the benefits of using the correlation matrix is 
that the effect size can be directly incorporated in it. For 
example, Table 1 represents the hypothesis that level of 
social inclusion has a moderately strong negative asso-
ciation with level of anxiety (i.e., r = −.30).

The same can be done for the example hypothesis 
that postulated between-groups differences in anxiety 
for first- and second-year students after transforming 
Cohen’s d to Pearson r  (assuming equal group sizes, 
normality, and variance homogeneity; Cohen, 2013):

       r
d

d
=

+2 4
. (7)
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This can be extended to situations that involve more 
than two variables, such as in the two near-identical 
hypotheses, Hypotheses 1 and 2, in Table 2. For example, 
a researcher of nostalgia—a sentimental longing or wistful 
affection for the past (Sedikides et al., 2008) that is char-
acterized by mixed or “bittersweet” feelings—may hypoth-
esize that trait nostalgia (variable X1) is associated with 
higher positive (variable X2) and negative (variable X3) 
affect, whereas positive and negative affect are themselves 
inversely correlated. This hypothesis seems reasonable: 
Recent work emphasizes that nostalgia mixes positive and 
negative affect (Wildschut & Sedikides, 2020). Further-
more, a recent meta-analysis showed that negative and 
positive affect are inversely related to each other, with a 
disattenuated coefficient of r = −.59 (Busseri, 2018).

The only difference between the two versions of this 
hypothesis is that Hypothesis 1 proposes slightly larger 
correlations for nostalgia with positive and negative 
affect (r = .50) than Hypothesis 2 (r = .44). Yet it turns 
out that only Hypothesis 2 is viable; there cannot be a 
population (or sample for that matter) that could support 
Hypothesis 1. Hypothesis 1 is an impossible hypothesis. 
Furthermore, although Hypothesis 2 is possible when 
considering its three variables in isolation, it nonetheless 
turns out to be impossible if one considers the role of 
other variables in the population.

Why is Hypothesis 1 outright impossible? And why 
does Hypothesis 2 turn out to be impossible as soon as 
it is considered in a broader variable context? The 

correlations that nostalgia has are probably unrealistically 
strong. What determines such limits? And more generally, 
how might this temper the anticipation of effect sizes? 
We address these questions next.

Impossible Hypotheses

The issue regarding Hypothesis 1 can be formulated in 
a more general form: The presence of a correlation 
between two variables sets limits to how these variables 
might relate to another one. The explanation for this, 
and corresponding guidance on how to evaluate the 
impossibility or implausibility of hypotheses, requires a 
few steps. We start off by illustrating the issue for the 
case of the 3 × 3 correlation matrices mentioned above 
before moving to the general case for correlation matri-
ces of any dimension.

Specific case: Our impossible 
hypothesis has an impossible geometry

An intuitively helpful feature of correlation coefficients 
is that one can think of them as representing the cosines 
of the angle between two variables’ axes (Gniazdowski, 
2013). For example, two variables with a correlation of 
r = .00 can be thought of as a set of perpendicular axes 
( . )cos 90 0 00 = , whereas a correlation of r = ±1 00.  implies 
a coaxial arrangement ( . , . )cos cos 0 1 00 180 1 00 = + = − . 
The r = −.50 correlations from Hypothesis 1 correspond 
to an angle between the axis of variables X1 and X2 of 
120 (cos 120 0 50 = − . ). Thus, the larger a correlation coef-
ficient gets, the smaller the angle becomes between the 
corresponding variable axis, which follows from the fact 
that the inverse cosine is a strictly decreasing function.

Before we apply this reasoning to Hypotheses 1 and 
2, first consider a case of three uncorrelated variables 

Table 1. A Simple Hypothesis

Inclusion Anxiety

Inclusion 1 −.30
Anxiety −.30 1

Table 2. Example Hypotheses 1 and 2

Hypothesis 1 X1 X2 X3

 (Nostalgia) (PA) (NA)

X1 (Nostalgia) 1 .50 .50
X2 (PA) .50 1 −.59
X3 (NA) .50 −.59 1

Hypothesis 2 X1 X2 X3

 (Nostalgia) (PA) (NA)

X1 (Nostalgia) 1 .44 .44
X2 (PA) .44 1 −.59
X3 (NA) .44 −.59 1

Note: PA = positive affect; NA = negative affect.
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for X1 and X2. If we do so sufficiently, then we can 
reduce the original 90 angles to ones of 70 (see Fig. 
1b). We can go further on this path: We can increase the 
correlation that X3 has with the other two variables to, 
say, r = .50, corresponding to 60 angles, or all the way 
up to r ∼∼ . ,71  where the axis of X3  lies in the plane 
spanned by X1 and X2, at an angle of 45 to each axis 
(see Fig. 1c). Enthusiastic as we are about our little game, 
let us try for correlation coefficients between X3 with X1 
and X2

 of r = .80, corresponding to angles of just 37 
between X3 and X1 and between X3 and X2

. Alas, this is 
where our fun ends; there is no possible way to rotate 
the X3  axis any closer to the X1 axis and the X2 axis 
simultaneously. With an angle of 90 between the X1 and 
X2

 axis, the smallest equal angles that the X3 axis can 
have with them is 45 to each. Accordingly, the largest 
positive correlation that can exist between X3 with both 
X1 and X2, assuming that X1 and X2 are themselves 
uncorrelated, is r = = ≈cos 45 1 2 2 71 / . .

However, this is only half of the story. In addition to 
positive correlation limits, there are also limits to nega-
tive ones, which can be found by trying to rotate the X3 
axis such that it creates the largest possible angles with 
the other two. In this case, we can achieve that by rotat-
ing the X3 axis in the opposite direction—away from the 
X X1 2 plane (see Fig. 2a). The largest angle that the X3 
axis can make with the other two ones occurs when it 
is turned, again, into the X X1 2 plane, but this time in the 
opposite direction. This creates two angles of 135, cor-
responding to a most negative correlation coefficient of 
r ≈ −.71, as shown in Figure 2b. For a formal discussion 
of these limits, see the Supplemental Material available 
online. Note that for other cases, the most positive and 
negative correlations may differ in both sign and 
magnitude.

We first apply the same reasoning to Hypothesis 2. The 
correlation between positive affect and negative affect 
r = −.59 corresponds to an angle of 126. The angle 
between the nostalgia axis and the positive-affect axis is 
64 r =( ).44 , and the same is true for the angle between 
the nostalgia axis and the negative-affect axis. The axis 
that characterizes nostalgia thus nearly falls on the  
positive-affect and negative-affect plane (see Fig. 2c). In 
fact, rotated a little further, it would neatly split it at 63 
angles with the positive-affect and negative-affect axes. This 
would correspond to maximum correlations of r = .45, just 
above the correlations postulated under Hypothesis 2—
which so far appears possible—but below that of Hypoth-
esis 1—which is thus outright impossible.

Specific case: Our impossible hypothesis 
violates limits to multiple correlation

Aside from interpreting correlations geometrically, read-
ers with a psychology background are probably familiar 

Fig. 1. Geometrical illustration of a positive correlation limit.

(i.e., r = .00). The angles between each pair of these 
variables is 90, which can easily be represented in a 
three-dimensional space with three perpendicular axes, 
as shown in Figure 1a. To make things more interesting, 
we change the correlation that X3 has with the other two 
into r ∼∼ .35, corresponding to an angle of 70 with both 
the X1

 axis and the X2 axis. (Note that we leave the null 
correlation between X1 and X2 unaltered.) This is still 
easily represented geometrically. All we have to do is 
rotate the X3 axis toward the plane captured by the axis 
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with interpreting these correlations as the square roots 
of the proportion of variance that two variables have in 
common. Indeed, the limits of −1 and +1 that correlations 
have correspond to a maximum proportion of shared 
variance equal to 1 (or 100%). At first glance, it may seem 
that neither Hypothesis 1 nor Hypothesis 2 violates this 
limit; after all, each individual correlation coefficient lies 
between −1 and +1.

Yet a closer inspection reveals that Hypothesis 1 does 
prove problematic in this regard. Although neither the 
correlation between X2 and X1 nor that between X3 and 
X1 represent more than 100% of variance accounted for 
individually, they nonetheless do so jointly. For the case 
of three variables, proportion of variance accounted for 
in one variable by the other two jointly is represented 
by the square of the multiple correlation coefficient 
(Neter et al., 1996), specifically:

 R
r r r r r

r1
2 12

2
13
2

12 13 23

23
2

2

1
=

+ −
−

. (8)

When we calculate the squared multiple correlation 
for each of the three variables in Hypothesis 1, we find 
that this value is 122% for nostalgia and 119% for both 
positive affect and negative affect. This is clearly impos-
sible. For Hypothesis 2, on the other hand, we find 
values of 94%, 96%, and 96%, respectively—very high 
indeed but technically not impossible.

We can helpfully use Equation 8 to figure out what 
the minimum and maximum values are that a correlation 
coefficient can have by requiring Ri

2

 ≤
 1 and then solving 

for the coefficient of interest; Equation 9a illustrates this 
for the limits of a three-variable system:

 r r r r r12 13 23 13
2

23
21 1≤ ± −( ) −( ) (9a)

 r r r r r13 12 23 12
2

23
21 1≤ ± −( ) −( ) (9b)

 r r r r r23 12 13 12
2

13
21 1≤ ± −( ) −( ) . (9c)

For example, assuming r13 50= .  and r23 59= −. , as per 
Hypothesis 1, we find − ≤ ≤. .99 4012r ; the value that r12 
can take must lie within these bounds. Indeed, Hypoth-
esis 1 exceeds these limits. Applying the same to r12 in 
Hypothesis 2, thus assuming r13 44= .  and r23 59= −. , 
returns − ≤ ≤. .98 4712r , which just includes the predicted 
value of r12 44= . . Thus, Hypothesis 2 appears to be 
possible.

One way to visualize the mathematical bounds dic-
tated by Equation 8 is to realize that this equation defines 
the elliptical boundary of the pairs of r12 and r13 that 
satisfy R2 ≤ 1 for any given r23 (see the Suppelemental 
Material). Figure 3 illustrates what upper and lower val-
ues bound a correlation between two variables within 
any three-variable context.

General case: impossible hypotheses 
considering three or more variables

Examining whether hypotheses are impossible using 
squared multiple correlation may not have the intuitive 
appeal of the geometric interpretation explained earlier, 

Fig. 2. Geometrical illustration of a negative correlation limit and the 
case of Hypothesis 2.
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but it has another desirable quality: It scales easily for 
any number of variables. In fact, Equation 8 that we used 
earlier to examine squared multiple correlations among 
three variables is a special case of (Neter et al., 1996)

       R c M c2 1= − T . (10)

In Equation 10, 


c  represents a column vector contain-
ing correlations that a variable of interest has with the 
others, and M  represents the correlation matrix of  
these other variables with each other. We can apply 

Equation 10 to Hypotheses 1 and 2 and calculate mul-
tiple Ri

2 for each of their three variables.
The same can be done for correlation matrices with 

a larger number of variables. Consider the following 
example, loosely set to a social-identity context (Tajfel, 
2010): A researcher studies social identification among 
English football fans with their various teams. Each par-
ticipant will be asked to indicate their identification with 
three English teams: Manchester United, Liverpool, and 
Arsenal. The first two of these teams are allegedly fierce 
rivals, and one might accordingly expect a substantial 
negative correlation between identification with either 
team, say r = −.50. Less rivalry possibly exists between 
Arsenal and the other two teams, and one might accord-
ingly expect social identification with Arsenal to corre-
late at a modest r = −.20 with social identification for 
each of the other two teams. Our imaginary researcher 
knows of the power that common in-groups can have 
in bringing people together (Gaertner et al., 1993). In 
this case, the common in-group might be the English 
national team. Specifically, with the national team likely 
featuring some players from Manchester United, Liver-
pool, and Arsenal, our researcher anticipates that par-
ticipants socially identifying strongly with their local 
team will also identify more with the national team, 
implying a positive correlation. We display this set of 
predictions in Table 3, in which Hypothesis 3 proposes 
a slightly higher set of correlations for identification with 
the national team (each r = .40) than Hypothesis 4 (each 
r = .20).

Hypothesis 3 is impossible, and Hypothesis 4 appears 
to be possible. When we apply Equation 12 to these 
matrices, we find that the squared multiple correlations 
for Hypothesis 3 are impossibly large (R1

2 128= %, 
R2

2 128= %, R3
2 160= %, R4

2 126= %). For Hypothesis 4, they 

Fig. 3. Ellipses that enclose allowed values of r12 and r13, shown for 
three values of r23: .0 (black), .7 (blue), –.9 (red). The dotted lines 
indicate 45. In orange, we show the permissible values for r13 when 
r23 9= −.  and r12 6= . ; for these values − ≤ ≤ −. .89 1913r .

Table 3. Example Hypotheses 3 and 4

Hypothesis 3 X1 X2 X3 X4

 (Manchester United) (Liverpool) (Arsenal) (England)

X1 (Manchester United) 1 −.50 −.20 .40
X2 (Liverpool) −.50 1 −.20 .40
X3 (Arsenal) −.20 −.20 1 .40
X4 (England) .40 .40 .40 1

Hypothesis 4 X1 X2 X3 X4

 (Manchester United) (Liverpool) (Arsenal) (England)

X1 (Manchester United) 1 −.50 −.20 .20
X2 (Liverpool) −.50 1 −.20 .20
X3 (Arsenal) −.20 −.20 1 .20
X4 (England) .20 .20 .20 1
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To illustrate, reconsider Hypothesis 2. A closer look 
at the literature suggests that among other things, dis-
positional nostalgia tends to have a positive correlation 
with another form of affect: loneliness. Specifically, 
research suggests that people turn to nostalgic reverie 
to soothe psychological and physical discomfort (Van 
Tilburg et al., 2018; Wildschut & Sedikides, 2020; Zhou 
et al., 2012), and the correlation between nostalgia and 
loneliness has been estimated at r = .14 (Abeyta et al., 
2020; Zhou et al., 2008). On the basis of prior work, we 
can also see that loneliness can be expected to correlate 
to positive affect and negative affect at r = −.56 and 
r = .47 , respectively (Neto, 2014). We add this new 
knowledge to our existing Hypothesis 2, which now 
contains three focal variables of interest (nostalgia, posi-
tive affect, negative affect) and one that that we merely 
add for context (loneliness; Table 4). We label our 
expanded version “Hypothesis 2*.”

Calculating the squared multiple correlations for our 
variables now reveals that they exceed their limits 
(R1

2 103= %, R2
2 102= %, R3

2 103= %, R4
2 135= %). Knowing 

how nostalgia, positive affect, and negative affect are 
related to loneliness (provided we are confident about 
those correlations) tells us that we will never find our 
prediction that nostalgia correlates .44 to positive and 
negative affect confirmed.

The same reasoning applies to Hypothesis 4. Again, 
the squared multiple correlations quickly exceed their 
limits if another population variable is added regardless 
of whether we plan to sample it. Consider, for example, 
what happens if we consider an additional local football 
team: Tottenham Hotspur, an alleged fierce rival of Arse-
nal. We might reasonably expect individuals socially 
identifying with Arsenal to identify less with Tottenham 
Hotspur, much in the same way as was the case for Man-
chester United and Liverpool (Table 5). This renders our 
adjusted Hypothesis 4* impossible as a result (R1

2 128= %,  
R2

2 128= %, R3
2 128= %, R4

2 128= %, R5
2 160= %). Thus, fur-

ther integrating our prediction within a broader context 
in which these teams operate gives us a helpful but 
perhaps sobering vision of the actual feasibility of what 
we predicted. Clearly, one or more of the correlations in 
Hypotheses 4* and 2* must be unrealistic.

Table 4. Extended Example Hypothesis 2*

Hypothesis 2* X1 X2 X3 X4

 (Nostalgia) (PA) (NA) (Loneliness)

X1 (Nostalgia) 1 .44 .44 .14
X2 (PA) .44 1 −.59 −.56
X3 (NA) .44 −.59 1 .47
X4 (Loneliness) .14 −.56 .47 1

Note: PA = positive affect; NA = negative affect.

are fairly high but not impossible (R1
2 50= % , R2

2 50= % , 
R3

2 31= % , R4
2 31= %). If our researcher proposes that 

identification with local teams coincides with higher 
identification with the national team, then, within such 
a rivalrous context, the researcher can expect the cor-
responding effect sizes to be rather small.

Impossible Hypotheses in Light  
of Their Multivariate Populations

As the above section progressed, we discussed hypoth-
eses with increasingly more variables. Many hypotheses 
in psychology feature only two or three key variables. 
Does that mean that only two or three need to be con-
sidered when evaluating the impossibility of a hypoth-
esis? Unfortunately not. Note that hypotheses are 
statements about the relationship between one or more 
variables in a population and that this population is 
likely to be characterized by many more variables than 
just the ones that feature in the hypothesis. Although 
researchers may collect a sample that features only the 
key variables from their hypothesis, the variables’ rela-
tionships in this sample will represent those in the (mul-
tivariate) population from which the sample is drawn 
(albeit imperfectly, e.g., because of measurement error). 
The notion that hypotheses, although tested with sam-
ples, refer to populations has an important implication: 
Whether a hypothesized effect size turns out to be 
impossible will depend on both how it is related to the 
other key hypothesis variable(s) and how these key vari-
ables relate to others in the same population.

Earlier, in passing, we mentioned that although 
Hypothesis 2 seemed possible, it most likely is not. Like-
wise, Hypothesis 4, although seemingly possible, can 
probably not describe a real situation. Why is that the 
case? As alluded to above, the issue for both Hypotheses 
2 and 4 is that their viability hinges on the magnitude 
of correlations with other variables in the population—
whether measured or not. With each of the hypothesis 
variables featuring substantial maximum squared mul-
tiple correlations, the existence of correlations with other 
variables in the same population could quickly reveal 
them as impossible.
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Using the above squared multiple correlation method 
to detect impossible correlations expresses the issue of 
impossible hypotheses in terms of the familiar concept 
of explained variances. Alternatively, researchers may 
have encountered situations in which they found that a 
correlation matrix failed to be positive definite, that the 
matrix thus produced negative eigenvalues, that the 
determinant of a matrix proved zero or negative, or that 
the matrix was singular (Marcus & Minc, 1988). These 
are symptoms of the same underlying problem: The cor-
relation matrix in question is impossible (Lorenzo-Seva 
& Ferrando, 2021).

Identifying Effect-Size Limits

The above sections reveal that the limits to effect sizes 
within a multivariate context may be more restrictive 
than typically assumed. Psychology examines exten-
sively, perhaps even entirely, variables from multivariate 
populations. An obvious question following from the 
above sections is what effect sizes, then, are more rea-
sonable to expect. Existing empirical work can then help 
in figuring out whether a specific proposed effect is 
realistic or not by piecing together a population correla-
tion matrix that contains the variables of main interest 
alongside other ones. Specifically, as shown above, 
knowing how a focal pair of variables relates to other 
variables in the population, for example based on exist-
ing research, may help to then approximate the strength 
of association between this focal pair even if there is no 

prior evidence of the association between the focal pair 
of variables themselves yet. How can one use this prior 
information to identify possible limits to effect sizes?

Size limits for a single hypothesized 
effect

The simplest form of hypothesis formulation is probably 
when a single effect size is proposed. For example, a 
researcher may seek to hypothesize a specific correlation 
for the tentative association between nostalgia and posi-
tive affect. As we have shown above, one can use knowl-
edge about the wider multivariate context to get a better 
idea of what effect size is possible. For example, our 
hypothetical researcher might be aware that nostalgia 
and loneliness may correlate at around r = .14 (Abeyta 
et al., 2020; Zhou et al., 2008), may expect that negative 
affect and nostalgia may correlate at around r = .40 and 
that loneliness and negative affect may correlate at 
around r = .47 (Neto, 2014). Likewise, our researcher 
may have read that positive affect and negative affect 
can be expected to correlate at r = −.59 (Busseri, 2018) 
and that positive affect and loneliness may correlate at 
r = −.56 (Neto, 2014). Essentially, reading the existing 
literature gives our researcher some insight into how the 
key variables, nostalgia and positive affect, may relate to 
other variables in the population. The only thing the 
researcher does not know (conveniently so for our exam-
ple) is how strong the correlation between nostalgia and 
positive affect might be (Table 6).

Table 5. Extended Example Hypothesis 4*

Hypothesis 4* X1 X2 X3 X4 X5

 (Manchester United) (Liverpool) (Arsenal) (Manchester United) (England)

X1
(Manchester United) 1 −.50 −.20 −.20 .20

X2 (Liverpool) −.50 1 −.20 −.20 .20
X3 (Arsenal) −.20 −.20 1 −.50 .20
X4 (Manchester United) −.20 −.20 −.50 1 .20

X5 (England)    .20    .20    .20    .20 1

Table 6. Estimating a Single Unknown Effect Size

X1 X2 X3 X4

 (Nostalgia) (PA) (NA) (Loneliness)

X1 (Nostalgia) 1 r12 .40 .14
X2 (PA) r12 1 −.59 −.56
X3 (NA) .40 −.59 1 .47
X4 (Loneliness) .14 −.56 .47 1

Note: PA = positive affect; NA = negative affect.
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Armed with knowledge about these other correla-
tions, it is now possible for our researcher to narrow 
down the range in which the unknown effect size may 
fall. After all, its correlation value must not cause any of 
the squared multiple correlations to exceed 100%. Accord-
ingly, we can solve Equation (10) for R12

2

 ≤
 1, where the 

a single correlation between nostalgia and positive affect 
is assumed unknown:
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Thus, if we can assume that the correlations obtained 
in prior studies give us an accurate impression of the 
population at large, then we know that the correlation 
between positive affect and nostalgia must lie between 
r ≈ −.90 and r ~~.46. Effect sizes within this range will not 
cause the hypothesis to be impossible, to the extent that 
we have accurately and exhaustively considered other 
variables in the population. If our researcher suspects a 
positive association between nostalgia and positive affect, 
consistent with theorizing, then the researcher is thus 
wise to propose one in the range .0 ≤ r ≤ .46.

Size limits for two hypothesized effects

It is far from uncommon for psychologists to formulate 
hypotheses about two associations rather just one. In 
our original nostalgia example, for instance, we pre-
dicted effect sizes for nostalgia’s association with both 
positive and negative affect. Can we estimate effect-size 
limits assuming that both are unknown? The answer is 
yes. Specifically, we need to solve

r r
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We can then plot the resultant inequality with two 
unknowns for ease of interpretation. Figure 4 displays 
the corresponding ellipse that encloses the possible val-
ues that these two correlations may take. This figure 
reveals that there exists a trade-off between the effect 
sizes one may hypothesize for r12 and r13—as one effect 
size becomes more extreme, the limits to the second 
effect size become more narrow. The ellipse itself identi-
fies pairs of effect sizes that result in squared multiple 
correlations of 1.0.

Of course, a similar approach can be adopted for 
cases in which three or more effect sizes need to be 

hypothesized. The downside is that clear visual guides 
such as Figure 4 are impossible to produce with a num-
ber of unknown variables greater than three.

Size limits for hypothesized group 
differences

The previous sections covered the existence of impos-
sible hypotheses in the form of correlation matrices. 
These sections showed that effect-size limits may often 
be more restrictive than the typically assumed limits of 
r = −1 00.  and r = 1 00.  for any individual correlation coef-
ficient. We appreciate, however, that many researchers 
test hypotheses that seem different in form or context. 
Indeed, a large portion of psychological science is espe-
cially interested in comparing specific groups of indi-
viduals (e.g., participants who are randomly assigned to 
one of various experimental conditions), comparing 
clinical and nonclinical persons, and contrasting differ-
ent demographic groups against each other. The mag-
nitude of the tentative differences between such groups 
is typically expressed as the number of standard devia-
tions that they differ from one another—Cohen’s d. As 
mentioned in our opening sections, Cohen’s d can be 
easily transformed into a correlation using Equation 7. 
The same tests of hypothesis impossibility and limits can 
then be employed to evaluate proposed effect sizes, as 
we did before for matrices that originally contained cor-
relations already.

Consider, for example, a study in which a psychologist 
wishes to test if a gratitude intervention can help reduce 
state boredom. As part of this intervention, people list, 

Fig. 4. Ellipse that encloses possible values for r12 and r13, given 
r23 14= . . See equation 12.
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on a daily basis, things they are grateful about for a 
period of several days (Emmonse & Mccullough, 2003; 
Sztachańska et al., 2019). This intervention is then com-
pared against a condition in which participants listed 
memorable events instead. What is the possible range 
that the effect size can take? Published work on the 
impact of a gratitude intervention on boredom is absent 
at the time of this writing. However, both these variables 
have been independently examined in context of self-
reported gratitude and well-being. Specifically, a meta-
analysis showed that such gratitude interventions increase 
self-reported gratitude with a size of d = 0 46.  and well-
being by d = 0 17.  (Davis et al., 2016). Furthermore, recent 
work suggests that state boredom and self-reported grati-
tude correlate at r = −.25 (O’Dea et al., 2023) and that 
state boredom correlates at r = −.45 with subjective well-
being (operationalized as life satisfaction; Fahlman et al., 
2013). Self-reported gratitude and well-being (again, 
operationalized as life satisfaction) can be expected to 
correlate at approximately r = .49 (Kong et al., 2015).

After transforming the Cohen’s d values into correla-
tion coefficients following Equation 7, we can complete 
most of the correlation matrix that approximates the 
effect sizes among the (e.g., dummy-coded) gratitude 
intervention, state boredom, self-reported gratitude, and 
well-being (Table 7).

We can now use Equation 10 to compute the limits 
of r12 by solving for R2 ≤ 1, which gives − ≤ ≤. .92 8212r . 
Transforming this back into Cohen’s d, we can expect 
that the effect of the gratitude intervention of boredom 
must lie between − ≤ ≤4 57 2 88. .d , assuming equal group 
sizes. Although this range is still rather large, it is more 
restrictive than the Cohen’s d values corresponding to 
the “uncorrected” − ≤ ≤1 1r  range, which range from −∞  
to +∞ . Including correlations with additional population 
variables, if estimates are known, may further narrow 
down this range.

Practical Recommendations  
and Online Tools

Our article adds a tool to researchers’ statistical arsenal 
with two procedures. The first is a way to to tell research-
ers whether a hypothesis is possible on the basis of the 

squared multiple correlations of the included population 
variables. The second serves as advisory tool that  
tells researchers the range in which an effect size can 
be expected to fall after specifying an incomplete 
hypothesis—a population correlation matrix with at least 
one unknown. Both uses operate through Equation 10; 
Equation 8 serves the specific case of three variables. 
An interactive and easy-to-use web application featuring 
these tools is available at https://wapvantilburg.shin 
yapps.io/Hypothesis_Evaluation_Tool/.1 There are vari-
ous scenarios in which our evaluative and advisory 
procedures may aid researchers, discussed below. Note 
that we also highlight more specific extensions of our 
work in the Supplemental Material, including the link 
between the current work and “Voodoo” correlations 
(Fiedler, 2011; Vul et al., 2009), conventions on effect-
size labels and categories, and experimental-design 
applications.

Use 1: testing whether a fully formed 
hypothesis is possible

The first use of our tool is a rather obvious one: Before 
finalizing power analysis, preregistering a study, and 
then conducting it, we recommend that researchers test 
whether their hypothesis is in fact possible. Doing so 
can prevent conducting a study that, from its onset, will 
inevitably cause the hypothesis to be empirically unsup-
ported when it is statistically impossible. The abovemen-
tioned web application allows researchers to do this, as 
does Equation 10.

Use 2: examining how close hypothesized 
effect sizes are to their limits

This scenario may apply in at least two cases. First, 
researchers who have discovered that their hypothesis 
proved impossible may wish to scrutinize the specified 
correlations further. Any of the correlations specified in 
a hypothesis might in principle cause it to be impossible. 
Nonetheless, it may be helpful to see just by how much 
individual correlations require adjustment for the hypoth-
esis to become possible. To examine this, a researcher 
could estimate ranges for each of the correlations in turn, 

Table 7. Estimating a Single Unknown Effect Size for a Group Comparison

X1 X2 X3 X4

 (Intervention) (Boredom) (Gratitude) (Well-Being)

X1 (Intervention) 1 r12 .22 (d = 0 46. ) .08 (d = 0 17. )
X2 (Boredom) r12 1 −.25 −.45
X3 (Gratitude) .22 (d = 0 46. ) −.25 1 .47
X4 (Well-being) .08 (d = 0 17. ) −.45 .47 1

https://wapvantilburg.shinyapps.io/Hypothesis_Evaluation_Tool/
https://wapvantilburg.shinyapps.io/Hypothesis_Evaluation_Tool/
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each time treating it as unknown while retaining the 
others as originally specified. Doing so results in a matrix 
of possible correlation ranges against which the original 
correlations can then be compared. As an example, we 
performed this procedure on the impossible Hypothesis 
1, which gave the ranges in Table 8.

With this information at hand and, of course, mindful 
of existing theory and prior findings, the researcher can 
then set out to develop a more realistic hypothesis.

Alternatively, cautious researchers may want to check 
how close the correlations of a hypothesis are to their 
range limits even if the hypothesis itself is technically 
possible. After all, given that there may well be (unknown) 
other variables in the population that might further limit 
ranges of effect sizes, it is probably safer to avoid close 
proximity to those limits. (Although whether an effect 
size is judged too close to its limit will remain up to the 
researcher.) The same procedure can be used as high-
lighted above, where individual correlation limits are 
calculated and then compared with those featuring in the 
hypothesis. Our web application returns these individual 
correlation ranges simultaneously with the overall evalu-
ation of whether the hypothesis is possible.

Use 3: obtaining guidance on the 
possible range of an effect size

There are likely many situations in which it is difficult to 
form an expectation of what size an effect may take—for 
example, because of a lack of prior literature or when 
prior findings employed very different populations or 
methods. By estimating the possible range of such an 
unknown effect size, the researcher will gain a better 
understanding of where approximately this effect must 
lie. Although the obtained range will not give a conclusive 
indication of what effect size should be hypothesized, it 
may nonetheless help steer a researcher away from unre-
alistic sizes and toward more reasonable ones instead.

Use 4: guidance on effect sizes  
for power analysis

An a priori power analysis estimates the sample size 
required to detect a “minimum meaningful effect size” 

(MMES) after specifying required statistical power, Type 
I error rate, and statistical test features. Although deter-
mining what value this MMES should have will of course 
depend on the research context (Giner-Sorolla et  al., 
2023; Greenwald et al., 2015), it may prove helpful to 
make this decision while keeping in mind the possible 
range that the hypothesized effect size can take (e.g., 
using our web application).

Calculating the possible range of the hypothesized 
effect will result in one of two outcomes. First, this 
range may exclude zero (e.g., − ≤ ≤ −. .70 20r ). If so, then 
we suggest using an MMES that is equal to or of greater 
magnitude than the least extreme positive or negative 
limit (i.e., r ≤ −.20). Doing so assures that the entire 
range of effect sizes can be detected with at least the 
specified power. Second, it is possible that the effect-
size range includes zero (e.g., − ≤ ≤. .30 50r ). If so, then 
we recommend using an MMES that is smaller than the 
limit of the acquired range that corresponds to the 
direction of the effect. Specifically, the MMES for a 
hypothesized positive effect should be less positive than 
the upper limit of the effect-size range (here, r < .50). 
The MMES for a hypothesized negative effect should be 
less negative than the lower limit of the effect-size range 
(here, r > −.30). A priori analyses specifying an MMES 
beyond the limits of the effect-size range will in that 
case prove impossible. Note that our recommendations 
here do not consider whether the selected MMES is also 
“meaningful” in terms of its practical importance, and 
it should not be interpreted as such. The question of 
what effect is practically important enough will prove 
context dependent and benefits from other, dedicated 
guidelines (e.g., Fritz et al., 2012).

Some researchers use a sensitivity power analysis 
instead. This type of power analysis estimates the effect 
size that a study can detect after specifying required 
statistical power, Type I error rate, and sample size. For 
cases in which sensitivity analysis is performed, we rec-
ommend comparing the sensitivity power analysis esti-
mate with the possible range of the hypothesized effect. 
If the sensitivity analysis returns a value of greater mag-
nitude than that of the range’s largest limit, then the 
study will not be sensitive enough to detect the actual 
effects.

Table 8. Effect-Size Ranges for Hypotheses 1

X1 X2 X3

Hypothesis 1 (Nostalgia) (PA) (NA)

X1 (Nostalgia) 1 .99 to .40 −.99 to .40
X2 (PA) −.99 to .40 1 −.50 to 1.00
X3 (NA) −.99 to .40 −.50 to 1.00 1

Note: PA = positive affect; NA = negative affect.
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Causes of impossible hypotheses and 
inaccurate population estimates

There are a number of reasons why a hypothesis, char-
acterized as a predicted population correlation matrix, 
may prove impossible. Perhaps the most obvious rea-
son is that a researcher may assign a size to an unknown 
effect based on typical size categories (e.g., postulating 
a “large” correlation between positive affect and nos-
talgia in Table 6, equivalent to r12 50= . ; Cohen, 1988, 
2013) without regard to its actual limits (in this case, 
− ≤. ... . ...897 45912r ).

Another reason for having an impossible hypothesis 
can be linear dependency or very high correlations 
between variables (Lorenzo-Seva & Ferrando, 2021), in 
which some included variables are essentially redundant 
with one another. This may occur, for example, when 
one includes a separate dummy for each level of a cat-
egorical variable or when both a composite variable and 
its components are included (e.g., total score and its 
subscores). Although not necessarily causing hypotheses 
to be impossible, the presence of latent variables with 
which multiple variables in the hypothesis correlate can 
cause those variables in the hypothesis to be very highly 
correlated.

In addition to the above, there are several reasons 
why an effect size obtained on the basis of prior litera-
ture may be inaccurate. Recall that a key assumption is 
that one can rely on the known relationships among 
population variables to spot impossible hypotheses and 
to identify limits to effect sizes. Estimating effects that 
exist in the population is itself a challenging endeavor. 
Whether a particular study or sample offers an accurate 
estimate for one’s population depends on issues such as 
population representativeness, methodological and mea-
surement characteristics, and sample size. Accordingly, 
if one were to derive correlations for a hypothesis from 
prior studies, then it is important to be aware of the 

various sources of inaccuracy that may be present in 
these estimates. For starters, there will be inaccuracy in 
the empirical data themselves because they provide only 
an approximation of the population effect. Issues such 
as poor reliability and validity, large standard errors, and 
small sample sizes can each undermine the accuracy of 
the produced effects. Further inaccuracy may stem from 
methodological differences between studies. The “inac-
curacy” in such cases need not be due to empirical 
imperfections but can stem from incorrectly assuming 
equivalence in effect sizes across methods. For example, 
the effect size observed for a dependent variable will 
likely be greater in a study that used a heavy-handed 
experimental induction compared with one that featured 
a subtle one. Another potential source of impossible 
hypotheses present in the literature is questionable 
research practices or possibly even misconduct, leading 
effect sizes to become “too good to be true” (Francis & 
Thunell, 2022). Although questionable research practices 
or misconduct may produce impossible effect sizes, the 
occurrence of an impossible effect size does not need 
to indicate that questionable research practices or mis-
conduct occurred—there are several reasons, as reviewed 
here, that can lead an effect size in the literature to be 
impossible. In addition, it is also possible that effect sizes 
differ between populations, and assuming an effect size 
found in a study on one population may prove inac-
curate for another. To illustrate, consider the following 
two imaginary population-level correlations for nostal-
gia, each coming from a different population (e.g., dif-
ferent cultures, different [non]clinical groups) in Table 
9. Each correlation matrix is itself possible. Yet if 
researchers were to form their own hypothesis using the 
correlations between positive affect and negative affect 
from Population 2 and the remaining correlations from 
Population 1, then the resultant correlation matrix (i.e., 
Hypothesis 1) is an inaccurate description of either one 
and in this case, even impossible.2

Table 9. Correlations in Different Populations

Population 1 X1 X2 X3

 (Nostalgia) (PA) (NA)

X1 (Nostalgia) 1 .50 .50

X2
(PA) .50 1 −.44

X3 (NA) .50 −.44 1

Population 2 X1 X2 X3

 (Nostalgia) (PA) (NA)

X1 (Nostalgia) 1 .44 .44
X2 (PA) .44 1 −.59
X3 (NA) .44 −.59 1

Note: PA = positive affect; NA = negative affect.
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Obtaining good population estimates

Identifying accurate estimates of population-level correla-
tions is, as evident from the above, a challenging 
endeavor. What are promising ways to do so? One poten-
tial source of effect sizes to be included in a proposed 
population correlation matrix is a meta-analysis. This 
analysis considers multiple studies simultaneously when 
estimating the size of an effect, which ought to improve 
the accuracy of the corresponding estimate. For example, 
the effect size assigned earlier to the impact of the grati-
tude intervention on well-being d =( )0 17.  is likely to be 
far more accurate than the effect size assigned to the 
correlation between boredom and gratitude (r = −.25) in 
the same section. After all, the former was derived from 
a large meta-analysis (Davis et  al., 2016), whereas the 
latter was based on a single study (O’Dea et al., 2022).

Although “regular” meta-analyses can be a more accu-
rate source of population effect-size estimations than 
single-study results, another promising and ambitious 
source of population effect-size estimates is meta- 
analytic structural equation modeling (MASEM; Becker, 
1992, 1995; Cheung, 2013), which is an extension of 
multivariate meta-analysis (Becker, 2000). MAESM differs 
from regular meta-analysis in its capacity to perform 
meta-analyses on entire correlation matrices. Note that 
the individual studies that contribute to MASEM do not 
have to feature all variables in the correlation matrix in 
question but may contribute a part (Bergh et al., 2016). 
This is particularly useful for application in the detection 
of impossible hypotheses or effect-size limits for newly 
researched effects because studies that comprise the full 
set of relevant variables are unlikely to exist. In addition, 
MASEM allows researchers to include more specific rela-
tions between variables, such as mediation. The recent 
development of one-stage MASEM furthermore supports 
estimations of and corrections for heterogeneity across 
studies and allows the inclusion of categorical and con-
tinuous moderators to account for this ( Jak & Cheung, 
2020). To make this promising method more accessible 
for researchers, Jak et al. (2021) and Cheung (2015) 
developed practical guidance, an interactive web appli-
cation, and a dedicated R package.

Note, however, that even meta-analyses are subject to 
sources of inaccuracy. Issues such as heterogeneity across 
studies, questionable research practices, publication bias, 
and selective reporting can all bias meta-analytic results 
(Ioannidis, 2008; Ones et  al., 2017). In the attempt to 
gauge the accuracy of effect sizes obtained through meta-
analysis in particular, researchers may turn to tools such 
as sensitivity analysis, the p-curve and p-uniform methods 
(Carter et al., 2019), and correcting for range restrictions 
in the data (Hunter et al., 2006). In a sensitivity analysis, 
the meta-analytic effect is compared across study sub-
groups (e.g., based on methodological differences or 

sample differences; Impellizzeri & Bizzini, 2012), and this 
can expose heterogeneity in study estimates. The p-curve 
and p-uniform methods can help find publication bias 
and, in the latter case, provide a bias-corrected effect-size 
estimate (Simonsohn et al., 2014; Van Aert et al., 2016). 
Range restrictions, in which variance is underestimated 
because of, for example, censored observations (Ree 
et al., 1994), can be remedied using procedures devel-
oped by Hunter et al. (2006) and validated by Le and 
Schmidt (2006).

Fortunately, current recommendations for meta-anal-
ysis in psychology tend to feature recommendations for 
the inclusion of such bias-detection measures (e.g., 
Carter et al., 2019; Johnson, 2021), making it easier for 
researchers to evaluate their accuracy. Nevertheless, 
when population estimates, derived from meta-analysis 
or otherwise, are rather uncertain, one may treat cor-
responding effect-size limits more as rough guide rather 
than an exact estimation.

Caveats

Psychological hypotheses are increasingly enriched with 
specific effect sizes. We called for and demonstrated 
above the importance of considering mathematical limits 
to effect sizes and whether their corresponding hypoth-
eses might prove impossible. Within the predominantly 
multivariate populations that psychology considers, the 
maximum and minimum sizes that effects can take may 
be more restrictive then researchers might assume. This 
notion adds further nuance to the existing debate about 
what effect sizes are reasonable to expect. It aids 
researchers in interpreting measured effect sizes and 
enables them to predict limits on the possible correla-
tions within populations. We wish to preempt a number 
of tentative misunderstandings about the work presented 
above, listed below.

First, it is important to underscore that the effect-size 
limits as computed in the current article refer to popula-
tions and not merely to specific samples. One of the 
implications of this is that whether or not a particular 
variable is part of one’s empirical sample is irrelevant to 
the limits of the size that an effect may take; what mat-
ters is if this variable features in the population. Thus, 
even if studies deal with a small number of focal vari-
ables, one may consider other variables in the popula-
tion in estimating realistic effect sizes.

Second, our treatise of hypotheses and effect sizes 
has been applied only to cases of linear models with 
multivariate normal distributions. We suspect that the 
vast majority of psychological models are indeed linear 
and assume multivariate normality. However, our find-
ings may not generalize readily to nonlinear models or 
variables that feature different distributions. Future work 
may look into these other settings.
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A third word of caution is warranted about the role 
of null correlations. It may seem intuitively appealing to 
assume that a correlation between two variables of r = .0 
does not provide any restrictions on the correlations that 
these variables may have with others. After all, a null 
correlation implies that the two variables behave inde-
pendently. However, as evident in Figure 3, in the con-
text of three variables, a null correlation between two 
variables can prove impossible if these two variables 
each correlate strongly with others.

Fourth, we emphasize that our approach deals with 
whether or not hypotheses, in the form of correlation 
matrices, are possible and within what range an effect 
can be expected to fall. Our approach does not tell the 
researcher whether a hypothesis or effect-size range is 
also theoretically or practically important. The theoreti-
cal or practical importance of effect sizes is something 
that will depend, instead, on context (Busseri, 2018; Fritz 
et al., 2012; Giner-Sorolla et al., 2023).

Conclusion

It has become increasingly common in psychological 
science to accompany hypotheses with statements about 
the size that an effect may take, explicitly in the hypoth-
eses themselves or in associated power analyses. Estimat-
ing such effect sizes a priori can be a challenge because 
they may vary across contexts, methodologies, and popu-
lations. Different from much recent work on this topic, 
we examined how one can be more accurate in hypoth-
esizing effect sizes based on their statistical qualities. 
Effect sizes that pertain to variables within multivariate 
populations—as is common in psychology—may require 
a more restrictive size range than often assumed. Accord-
ingly, it is important to consider the wider multivariate 
population context in which a hypothesis is made. By 
examining how other variables in the population (likely) 
relate to those that feature in the hypothesis, one can 
narrow down the limits between which the hypothesized 
effect may fall. This statistical triangulation process even 
works, and is perhaps particularly useful, if prior evi-
dence for a hypothesised effect size is lacking—a typical 
scenario for novel hypotheses. Accordingly, estimating 
limits to effect sizes in the context of the broader multi-
variate population may help to prevent proposing impos-
sible hypotheses and can give researchers a better idea 
of the size range in which their effects will reside.
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Notes

1. Alternatively, R code to test whether a correlation matrix 
of up to 10 variables is possible is available at https://osf.io/
adqyh/?view_only=cb423e9451394d8f8a81d708eb2bbced and can 
be easily modified to handle large numbers of variables.
2. When studies show different correlations depending on the 
population in question, a researcher could in principle even 
attempt to introduce this moderation into the hypothesis.
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