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Abstract 

The goal of this thesis was to examine how visual features are prioritised during goal-orientated 

processing in working memory. It was examined whether attention is required for the maintenance 

of features in visual working memory (Chapters 2 and 3), and whether there are differences 

between the prioritisation of location and non-location features during goal-orientated processing 

(Chapter 4). Additionally, it was examined whether during the prioritisation of updated 

information, outdated information is temporarily (i.e., outdated information is still present and 

accessible) or permanently (i.e., outdated information is no longer present or accessible) removed 

(Chapters 5 and 6).  Chapters 2 and 3 observed that manipulating attention did not affect the 

likelihood of binding errors occurring (i.e., the probability of a feature becoming misbound). 

However, it was observed that the likelihood of a target feature being in memory (target memory) 

was affected by manipulating attention. In Chapter 4 it was observed that there are no distinct 

differences between the prioritisation of location and non-location features during goal-oriented 

processing. Similarly to Experiment 2 of Chapter 2, it was observed that guiding attention improved 

target memory. Chapters 5 and 6 investigated whether the prioritisation of outdated information 

relies on the temporary or permanent removal of outdated information, by altering the to-be-

updated feature type. In both Chapters 5 and 6, it was observed that the model simulating temporary 

removal best fit the data. Thus, prioritising updated information relies on temporary removal, 

irrespective of the feature type. Therefore, the findings of this thesis suggest that the processing of 

visual information occurs in an object-based manner, but additional resources aid the prioritisation 

of goal-relevant feature bindings. 

  



  4 

 

Contents 

Chapter 1 .......................................................................................................................................... 8 

How do we keep visual information active in our immediate memory? ......................................... 8 

What is meant by “working memory” and why is it important? .......................................... 8 

Domain-specific perspectives of WM .................................................................................. 9 

Domain-general perspectives of WM ................................................................................ 13 

Visual working memory ..................................................................................................... 16 

Feature binding ................................................................................................................... 17 

Paradigms in visual WM .................................................................................................... 20 

Does attention aid the processing and prioritisation of visual information? ...................... 23 

What happens to outdated (irrelevant) information during the prioritisation of goal-

relevant information? ......................................................................................................... 26 

Summary and Overview of Experiments ........................................................................... 29 

Chapter 2 ........................................................................................................................................ 33 

Examining the role of attention during feature binding in visuospatial working memory ............ 33 

Experiment 1 ...................................................................................................................... 39 

Method ............................................................................................................................... 39 

Results and Discussion ....................................................................................................... 45 

Experiment 2 ...................................................................................................................... 49 

Method ............................................................................................................................... 49 

Results and Discussion ....................................................................................................... 50 

Exploratory Analyses ......................................................................................................... 52 

General Discussion ............................................................................................................. 56 

Chapter 3 ........................................................................................................................................ 59 

Reducing set size did not reveal distinctions between central and peripheral disruption. ............. 59 

Rationale ............................................................................................................................. 59 



  5 

 

Method ............................................................................................................................... 61 

Results ................................................................................................................................ 62 

Exploratory Analyses ......................................................................................................... 65 

Discussion .......................................................................................................................... 67 

Chapter 4 ........................................................................................................................................ 69 

Guiding attention via retro-cues improves target memory and guessing but does not impact 

binding errors. ................................................................................................................................ 69 

Rationale ............................................................................................................................. 69 

Method ............................................................................................................................... 74 

Results ................................................................................................................................ 78 

Discussion .......................................................................................................................... 81 

Chapter 5 ........................................................................................................................................ 85 

Temporary removal underlies local working memory updating. ................................................... 85 

Rationale ............................................................................................................................. 85 

Method ............................................................................................................................... 88 

Results ................................................................................................................................ 92 

Discussion ........................................................................................................................ 100 

Chapter 6 ...................................................................................................................................... 104 

Locally updating shapes is more difficult than locally updating colours. .................................... 104 

Rationale ........................................................................................................................... 104 

Method ............................................................................................................................. 104 

Results .............................................................................................................................. 105 

Exploratory Analyses ....................................................................................................... 112 

Discussion ........................................................................................................................ 115 

Chapter 7 ...................................................................................................................................... 118 



  6 

 

General Discussion ....................................................................................................................... 118 

Summary of findings ........................................................................................................ 118 

Are attentional resources required for the processing of feature information? ................ 120 

Processing dissimilar feature dimensions ........................................................................ 124 

Processing new features during WM updating ................................................................ 126 

Processing and prioritising item representations in visual WM ....................................... 128 

Limitations of current work .............................................................................................. 135 

Future directions ............................................................................................................... 137 

Conclusion ........................................................................................................................ 138 

References .................................................................................................................................... 149 

 

List of Figures 

Figure 1. Example Trial Sequence from Experiment 1 .................................................................. 44 

Figure 2. Posterior Parameter Estimates (Experiment 1) ............................................................... 46 

Figure 3. Exmaple Trial Sequence from Experiment 2  ................................................................. 50 

Figure 4. Postrior Parameter Estimates (Experiment 2)  ................................................................ 52 

Figure 5. Posterior Parameter Estimates (Experiment 2) ............................................................... 54 

Figure 6. Posterior Parameter Estimates (Chapter 3) ..................................................................... 65 

Figure 7. Distribution of Recall Errors (Chapter 3) ....................................................................... 66 

Figure 8. Example Trial Sequence from Chapter 4  ....................................................................... 77 

Figure 9. Posterior Parameter Estimates (Chapter 4) ..................................................................... 81 

Figure 10. Example of Task Procedure (Chapter 5) ....................................................................... 90 

Figure 11. Posterior Parameter Estimates of Model 1 (Chapter 5) ................................................ 97 

Figure 12. Posterior Parameter Estimates of Model 2 (Chapter 5) ................................................ 99 

Figure 13. Posterior Parameter Estimates of Model 1 (Chapter 6) .............................................. 110 

Figure 14. Posterior Parameter Estimates of Model 2 (Chapter 6) .............................................. 112 

Figure 15. Distribution of Recall Errors (Chapter 6) ................................................................... 113 

 



  7 

 

List of Tables 

Table 1. Hypotheses and Predictions for Each Feature Binding Type (Chapter 2) ....................... 39 

Table 2. Sample Details and Exclusions (Chapter 2) ..................................................................... 40 

Table 3. Summary of Mean Differences (Chapter 2) ..................................................................... 47 

Table 4. Summary of Mean Differences (Chapter 2: Exploratory Analyses) ................................ 55 

Table 5. Summary of Mean Differences (Chapter 3) ..................................................................... 64 

Table 6. Bayesian T-Test Comparing Recall Error (Chapter 3) .................................................... 66 

Table 7. Summary of Mean Differences (Chapter 4) ..................................................................... 80 

Table 8. Summary of Mean Differences (Chapter 4) ..................................................................... 80 

Table 9. Summary (and Standard Deviations) of Recall Error (Chapter 5) ................................... 93 

Table 10. WAIC Values for Each Updating Condition (Chapter 5) .............................................. 94 

Table 11. Model 1 Summary of Mean Differences (Chapter 5) .................................................... 96 

Table 12. Model 2 Summary of Mean Differences (Chapter 5) .................................................... 98 

Table 13. Means (and Standard Deviations) of Recall Error (Chapter 6) .................................... 106 

Table 14. WAIC Values for Each Updating Condition (Chapter 6) ............................................ 107 

Table 15. Model 1 Summary of Mean Differences (Chapter 6) .................................................. 109 

Table 16. Model 2 Summary of Mean Differences (Chapter 6) .................................................. 111 

Table 17. Bayes Factors from the Bayesian T-Tests Comparing Recall Error (Chapter 6) ......... 114 

 

Appendices 

Appendix A .................................................................................................................................. 140 

Mixture modelling ............................................................................................................ 140 

Hierarchical Bayesian three-parameter mixture model .................................................... 141 

Appendix B .................................................................................................................................. 146 

  



  8 

 

Chapter 1 

How do we keep visual information active in our immediate memory? 

 

What is meant by “working memory” and why is it important? 

Research concerned with how human memory operates has been a great interest over the 

last century, particularly, one’s ability to actively hold onto information to achieve a goal (i.e., 

goal-orientated processing). Early research concerned with how information is kept active 

suggested that human memory comprises a short-term memory store (where information is 

temporarily held active) and a long-term store (i.e., relevant information is stored for future use; 

Atkinson & Shiffrin, 1968). Atkinson and Shiffrin (1968) posited that initially, after information is 

registered sensorily, it is then encoded into a temporary short-term store or a long-term store for 

future recall. Arguably Atkinson and Shiffrin’s (1968) explanation of human memory was a 

fundamental steppingstone for understanding the processing of information. However, their 

explanation of short-term memory was too passive to capture how temporarily stored information 

may be held active to allow for it to be manipulated to achieve one’s goal. 

In contrast to short-term memory, working memory (WM) is thought to be a more dynamic 

limited capacity system that allows for the temporary maintenance and manipulation of information 

for goal-orientated processing Cowan et al., 2020). Understanding how WM is conceptualised and 

how it operates is important, especially because it is applied to other aspects of human behaviour. 

For example, WM capacity (that is, the number of items one can hold active in one’s WM) is 

strongly related to general intelligence (Colom et al., 2005). Furthermore, research has 

demonstrated that applying WM training strategies in an educational setting improves the 

processing of verbal information in young children (St Clair‐Thompson et al., 2010). This therefore 
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demonstrates the diversity of WM research is not only relevant to memory researchers but is also 

applicable to the greater understanding of human cognition. Nevertheless, there is an ongoing 

debate in WM research on a variety of issues, such as whether WM is domain-specific (i.e., 

information is processed in separate, specific, stores) or domain-general (i.e., information is 

processed by a holistic memory system rather than in separate stores), and how we process 

information in WM.   

 

Domain-specific perspectives of WM 

Domain-specific perspectives of WM suggest that WM may be organised such that 

information is processed in specific stores (i.e., visual information is processed in a visual store, 

and verbal information in a verbal store). According to the most influential domain-specific 

perspective, Baddeley and Hitch’s (1974) multi-component model, information in WM is 

separately stored and maintained in domain-specific modules: language-based information is 

stored and maintained in the phonological loop, and visual-spatial information is stored and 

maintained in the visual-spatial sketchpad. Furthermore, the researchers posited that the processing 

of verbal and visual information is governed by the central executive (also see Baddeley, 1996). In 

a discussion of the role of the central executive, Baddeley (1996) argued that the central executive 

may be responsible for limiting the number of items that can be retained in WM. Baddeley (1996) 

argued that the central executive is responsible for one’s ability to concurrently carry out two tasks 

(such as in a dual-task paradigm). In this case, it was argued that the central executive acts as a 

general information processing system that selectively attends to goal-relevant information and 

discards non-relevant information. This therefore suggests that the central executive may govern 

the limited capacity of WM by attending to only goal-relevant information during processing. 
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Moreover, he posited that the central executive acts as a direct link between long-term memory 

(LTM) and WM. This suggests that WM and LTM are separate stores in the multi-component 

model. In comparison to Atkinson and Shiffrin’s (1968) model, the multi-component model offers 

a wider understanding of how information is processed in human memory, with domain-specific 

stores and a governing component that directs information processing. For example, early research 

investigating the multi-component model primarily focused on verbal processing in the 

phonological loop (e.g., Baddeley et al., 1984). In a series of verbal WM experiments, Baddeley 

and colleagues (1984) demonstrated that the phonological similarity effect (i.e., poorer immediate 

memory for phonologically similar words) was unaffected by articulatory suppression (i.e., 

repeating distinct words or phrases out loud). The researchers suggested that verbal information is 

processed in WM despite the suppression of a verbal store through articulatory suppression. This 

suggests that the processing of verbal information in the phonological loop may not be limited by 

distractors of the same domain-type. Baddeley and colleagues suggested that access to the 

phonological loop is strengthened through auditory presentation of verbal information. Thus it may 

be the case that the articulatory suppression allowed for goal-relevant verbal information to be 

stored correctly rather than disrupting its storage. 

   Further work concerning the visuospatial sketchpad proposed that visual and spatial 

information is processed in their respective domain-specific sub-systems of the visuo-spatial 

sketchpad known as the visual cache and the inner scribe (Logie, 1995, 2003; Logie & Pearson, 

1997). It was argued that non-location information (i.e., colour or shape) are processed in the 

(passive) visual cache, whereas location information is processed in the inner scribe (Logie, 1995). 

Moreover, it has been argued that processing location information through the inner scribe may 

rely on attention (Logie, 2003). A case study investigating two patients who were unable to 

mentally represent items were in fact able to mentally rotate a series of real-world objects (i.e., a 
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vase, coffee pot, ashtray, and a bottle) without requiring spatial processing from LTM. This 

suggested that the processing of visual information may require attentional resources to rotate 

mentally rotate the objects, but the deficit of keeping information active may be due to a faulty 

visual cache (Beschin et al., 2005).  I will return to this point regarding whether attentional 

resources are required for processing visual information, particularly location-based information, 

in later sections.   

One way in which advocates of the multi-component model have investigated whether 

information is processed in separate, domain-specific stores is through dual-task paradigms. In a 

dual-task paradigm, a participant is required to complete a visual or verbal memory task alongside 

a second visual or verbal task (usually before recalling an aspect of the first memory task). The 

participant may be tested on the first task alone, the second task alone, or both tasks (Cowan & 

Morey, 2007). For example, Logie and Marchetti (1991) observed that during a visual and spatial 

memory task, disrupting the retention of the to-be-retained visual and spatial information, by means 

of a secondary visual and spatial task, respectively, specifically increased incorrect mean memory 

recognition for visual and spatial information. Moreover, the researchers observed that disrupting 

the to-be-retained visual and spatial information by means of the opposite secondary tasks did not 

increase incorrect mean memory recognition as the latter. The researchers therefore argued that 

this indicates that visual information is stored in a visual-specific store and spatial information is 

stored in a spatial-specific store. This is therefore aligned with Logie’s (1995) view that visual and 

spatial information is stored and maintained in domain-specific stores.  

Further evidence from dual-task paradigms has suggested that a participant’s ability to 

concurrently retain visual and verbal information indicates that visual and verbal information is 

stored in domain-specific stores (Cocchini et al., 2002). For example, in Experiment 1 of Cocchini 

and colleagues (2002), participants were either presented with a series of digits in a sequential order 
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followed by a visual pattern, or a series of digits and a spatial tracking task. The order of the tasks 

was randomised, in that, participants may be presented with the verbal task first, or the visual task 

first. The researchers observed that recalling the digit sequence first was impacted by concurrently 

storing visual information. Similarly, the researchers observed that recalling the pattern first was 

impacted by concurrently storing digits. This suggests that visual and verbal information is stored 

in domain-specific stores but retaining visual and verbal information simultaneously comes at a 

cost during the retrieval of domain-specific information.         

Extending the multi-component model, Baddeley (2000) proposed that a new fourth 

component (known as the episodic buffer) that is modality-general and can temporarily hold 

information active for further processing and storage within the respective domain-specific stores. 

Baddeley (2000) posited that in line with the visuo-spatial sketchpad and the phonological loop, 

the episodic buffer is governed by the central executive. However, unlike the visuo-spatial 

sketchpad and the phonological loop, Baddeley (2000) argued that the episodic buffer is not a 

domain-specific component, rather it is acts as the ‘middleman’ between the processing of visual 

and verbal information. For example, research has argued that the episodic buffer is able to bind 

visual and verbal information together across their respective domain-specific stores (Allen et al., 

2015; also see Darling et al., 2017).  Moreover, it has been argued that the episodic buffer holds 

goal-relevant verbal and visual information active by its multidimensional coding (see Baddeley, 

2012 for a review of the multi-component model). Baddeley and colleagues (2010) further 

demonstrated that the episodic buffer does not require effortful cognition to engage its ability to 

keep information active in WM. Moreover, the researchers posited that the episodic buffer may 

temporarily store information from LTM. In a recent review of the multi-component model, 

Baddeley and colleagues (2021) argued that the episodic buffer may be an attentional system that 

is able to selectively maintain goal-relevant information from its respective stores. This suggests 
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that the episodic buffer maintains information irrespective of its modality. As I will discuss in the 

next section, this draws parallels with domain-general models of WM. 

 In summary, domain-specific models such as the multi-component model propose that the 

processing and storage of information depends on the type of information that is to-be-retained 

(i.e., verbal, or visual). However, a primary challenge for domain-specific views is the great deal 

of work suggesting that WM is more domain-general than domain-specific in its functioning, as I 

will explain further in the next section.    

              

Domain-general perspectives of WM 

Although the multi-component model was among the first models to discuss the inner 

workings of active information processing, storage and maintenance, alternative models have 

hypothesised different approaches towards WM. A second view of WM suggests that WM may be 

conceptualised as domain-general, wherein information is processed across a flexible resource 

rather than information being processed in a domain-specific manner. One domain-general 

framework is the embedded processes model (Cowan, 1999; Cowan et al., 2020). Unlike the multi-

component model, the embedded processes model suggests that WM is a subset of LTM, referred 

to as activated LTM (Cowan, 1999, 2016; Cowan et al., 2020). Additionally, the embedded 

processes model proposes that attention can be internally or externally focused towards goal-

relevant information in a capacity-limited focus of attention (Cowan, 1993, 1998, 1999). 

Oberauer’s (2002, 2009, 2019) concentric model similarly emphasises a domain-general 

perspective, with the main structural difference between the embedded-processes and concentric 

models being that the focus of attention holds only one rather than up to four items. 
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As alluded in the previous section, there is a great deal of evidence for the domain-general 

perspective that contradicts the domain-specific conceptualisation of WM. For example, as 

discussed above, advocates of the domain-specific account of WM have suggested that dual-task 

paradigms evidence that visual and verbal information is stored in separate domain-specific stores 

(Cocchini et al., 2002). However, advocates of the domain-general view have argued that dual-task 

paradigms do not indicate that visual and verbal information are stored in domain-specific stores. 

For example, in a dual-task paradigm in which participants were required to retain either one set 

of visual or verbal information, or two sets, Cowan and Morey (2007) observed that recall 

performance was affected when retaining two sets of information that were of the same domain-

type (i.e., visual or verbal). Furthermore, the researchers observed that recall performance was 

affected when retaining two sets of both visual and verbal information. The researchers argued that 

these findings may be due to storing more than one set of information, irrespective of the domain’s 

nature. This therefore suggests that a limited attentional resource may be required to keep visual 

and verbal information active in WM and attention is not domain specific. Arguably, this is similar 

to the multi-component model’s episodic buffer. However, unlike the episodic buffer, the domain-

general account suggests that external information is temporarily held active in a subset of LTM 

without necessary storage in domain-specific stores. This therefore suggests that in a domain-

general framework, external information is stored in LTM regardless of its domain and attentional 

resources, such as the focus of attention, selectively coding goal-relevant information for future 

processing.  

Further evidence in favour of a domain-general conceptualisation of WM has shown that 

against Logie’s (1995) suggestion that WM stores visual information in domain-specific (i.e., 

within the visual cache and spatial-loop), visual information is stored concurrently (Vergauwe et 

al., 2009). Across two Experiments, Vergauwe and colleagues (2009) observed that increasing the 
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number of to-be-retained visual and spatial information reduced recall performance, irrespective 

of whether the increase of to-be-retained items was in the visual or spatial domain. The researchers 

argued that increasing the number of to-be-retained items reduced the maintenance of in-memory 

items, and thus attention was divided between encoding and maintenance. Thus suggesting that 

attentional resources are required to maintain information in WM irrespective of its domain. 

Advocates of the multi-component model would argue that the divide in attention may demonstrate 

the distinct central executive and episodic buffer systems, wherein during encoding, the central 

executive acts as a general processor (through general attention) and during maintenance, the 

episodic buffer selectively attends to goal-relevant information. However unlike the multi-

component model, advocates of the domain-general frameworks would argue that general attention 

(i.e., focus of attention) would hold information active in activated LTM and selectively attend to 

goal-relevant information without the requirement of separate attentionally-based systems. Thus it 

could be argued that parallels can be drawn between the domain-specific and domain-general 

frameworks of WM, but the storage of information differs between the frameworks. 

 Moreover, this finding disagrees with Logie’s (1995) suggestion that visual information is 

stored in a passive manner, but spatial information is reliant on a rehearsal mechanism. 

Furthermore, these findings are aligned with the multi-component model’s conceptualisation of the 

visuospatial sketechpad, in that visual and spatial information are cohesively stored and maintained 

within it, and the episodic buffer selectively keeps information active.  Taking this evidence 

together, it can be argued that WM may be reliant on additional resources such as attention to 

maintain information and selectively prioritise goal-relevant information. I will discuss this further 

in the following sections. 
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Visual working memory 

Visual WM pertains to temporarily stored visual information for goal-orientated processing 

(Luck & Vogel, 2013). As explained previously, Baddeley and Hitch’s (1974) multi-component 

model was one of the first to provide a framework for understanding visual information processing. 

In the previous sections, I discussed whether WM may be thought of as domain-specific or domain-

general, however in this section I will focus on some of the broader problems within the WM 

literature concerned with the processing of visual information.  

Many of the research questions stem from broader problems in the WM literature, such as 

how representations are maintained in WM. Seminal research focusing on the field of visual WM 

has argued that visual information is processed as whole item representations (Luck & Vogel, 1997; 

Vogel et al., 2001) rather than individual features of an object as had been previously theorised 

(Treisman, 1999; Treisman & Gelade, 1980; Wheeler & Treisman, 2002). This work from the 

“slots model” proposed that there is an upper-fixed limit of about three or four visual item 

representations that can be held “online”, in line with Cowan’s (2001) hypothesis that WM is 

limited by the number of items that can be held active within the focus of attention. For example, 

Vogel and colleagues (2001) used a sequential comparison paradigm, presenting multiple-coloured 

objects that the participants were required to remember when cued with an object feature. The trials 

presented between 1-12 coloured objects to understand whether a fixed-item limit would be 

reached.  Experiments 1-10 showed that the participants’ memory performance decreased after four 

or more objects were presented. Vogel and colleagues posited that this is due to individuals storing 

whole representations of an object rather than aspects of an object, thus implying that visual WM 

is limited by a fixed item capacity of about four items. Experiments 11-16 supported their 

observations, such that task performance decreased when items with multiple features (i.e., an 

item’s colour, shape, and spatial location) were presented. The researchers posited that the object 
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representations in visual WM adhere to the fixed item capacity limit. This further implies that the 

features of an item are automatically encoded and bound in visual WM.  In the next section, I will 

explain the research concerning how item features are bound together.  

Following on from this work supporting the “discrete slots” view of visual WM storage, 

Zhang and Luck (2008) proposed that representations of items can be stored in a fixed number of 

discrete slots and a resource moderates the processing of the representations within the slots (i.e., 

slots + resource). Moreover, the researchers proposed that feature representations of a single item 

may be stored across the discrete slots to allow for a high-quality representation of an item and 

high precision during item recall (i.e., slots + averaging). In a series of experiments presenting 

various coloured squares, participants were required to recall the colour of a probed location using 

a colour response wheel. The researchers observed that when the number of to-be-retained items 

(i.e., set size) was below 3, the probability that the target was in memory (Pm) was high, but 

increasing the set size to 6 items reduced Pm. Zhang and Luck (2008) argued that individuals were 

able to retain high-quality feature representations across the discrete slots using the slots + 

averaging approach when the set size was low. Conversely, low Pm with the increased set size 

suggested that the fixed-item capacity of the discrete slots had been reached, and only a limited 

number of whole item representations were stored, using the slots + resource approach. This may 

suggest that additional resources are unnecessary until WM capacity is reached, the implications 

of which I will discuss in the next sections. 

 

Feature binding 

Feature binding refers to the integration of aspects of a piece of information, such as the 

colour, shape, orientation, and location of an object (see Schneegans & Bays, 2019 for a review). 
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A central question in the feature binding literature concerns whether feature binding is relatively 

automatic or requires attentional resources. 

 Some work suggests that additional resources are not required to process feature bindings 

(Allen et al., 2006; Luck & Vogel, 1997; Vogel et al., 2001). For example, Allen and colleagues 

(2006) investigated whether individuals could discriminate between different types of objects’ 

features once they are no longer perceptually available in visual WM. The participants undertook 

four conditions: shape-only, colour-only, shape or colour presentation, and finally coloured shapes.  

In each condition, four items were presented, and participants were asked to indicate whether an 

object or colour had changed during the retrieval phase. In Experiment 1, the researchers found 

that individuals retrieved colour information more accurately than shape information. In addition, 

the combination of colour and shape condition revealed that there were little statistical differences 

between the two presented features. The researchers posited that the lack of differentiation in 

retrieval of the colour and shape objects could suggest that feature binding is an automatic process 

which does not require great effort. When participants were asked to count backwards during the 

visual WM conditions in Experiment 2, the results showed that counting backwards during the 

trials negative affected item retrieval, however, again there was no significant difference between 

the retrieval of item features.  Experiments 3 and 4 replicated the findings of Experiment 2, 

suggesting that feature binding may be an automatic process. In Experiment 5, the researchers 

presented the visuospatial features sequentially rather than simultaneously, which hindered item 

retrieval, particularly in the combination condition. The researchers postulated that presenting 

additional to-be-remembered items may weaken the already “online” representations. The findings 

of Allen and colleagues (2006) suggested that visual information may be processed as bound object 

representations rather than as independent features, thus agreeing with prior seminal visual WM 

research (Luck & Vogel, 1997; Vogel et al., 2001). Moreover, contrary to Zhang and Luck’s (2008) 
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hypothesis of discrete slots + resource, the findings of Allen and colleagues (2006) suggest that the 

allocation of additional resources is not required for the processing, storage, and maintenance of 

visual information.  

Other research suggests that successful feature binding requires attentional resources. For 

example, fundamental research in the perception of features of objects proposed that features of an 

item are processed in their respective feature dimensions, for example, colour features are 

processed in a colour-store, and shapes are processed in a shape-store (Treisman & Gelade, 1980). 

While Treisman and Gelade’s (1980) framework of visual information processing is thought to be 

an explanation of the immediate processing of visual information, Treisman and Gelade’s 

framework has largely influenced our current understanding and interpretation of the goal-

orientated processing of visual information (see Wolfe, 2020 for a review). Therefore, Treisman 

and Gelade’s (1980) framework must be taken into consideration while examining the processing 

of visual information in WM and the role of attention.  Earlier work by Wheeler and Treisman 

(2002) suggested that features of an item are encoded, stored, and maintained as individual 

representations in visual WM, allowing an individual to access the features during active goal-

orientated processing. Through a series of experiments, the researchers found that individual 

features presented did not adhere to a fixed-item WM capacity limit but rather the features were 

stored in their own specific dimensions.  The researchers proposed that a visual WM capacity limit, 

as proposed in prior research (Vogel et al., 2001), may reflect a single feature dimension’s capacity 

(Wheeler & Treisman, 2002, Experiments 1 and 2) rather than a visual WM capacity limit per se. 

In line with this feature-based account of information processing, recent hypotheses surrounding 

the processing of visual information suggest that the quality of maintained single features may 

depend on the allocation of a shared resource (Bays et al., 2009, 2011; Bays & Husain, 2008). 

According to this resource view of WM capacity limits, the allocation of a shared resource allows 
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for a visual WM to maintain multiple features by distributing the shared resource towards to-be-

prioritised information.  

More recently, Li and colleagues (2022) demonstrated that multiple single features and 

feature bindings may be processed in WM. Specifically, the researchers found that both units of 

visual WM are stored, but single feature representations are maintained at a higher resolution than 

feature bindings. This agrees with prior work that suggests that the processing of visual information 

may depend on the allocation of a shared resource (Bays et al., 2009, 2011; Bays & Husain, 2008), 

such that storing single feature representations at a higher resolution than feature bindings may rely 

on attentional resources to keep relevant feature information active in WM. This suggests that 

attentional resources may be critical to keeping feature representations active in WM. Therefore, it 

is critical to develop experimental paradigms and powerful analytic tools to investigate whether 

visual information is processed in an object-based or feature-based manner and what are the 

underlying components that allow for visual information to be retained in WM.  

 

Paradigms in visual WM 

Early feature binding research primarily used change detection paradigms wherein 

participants try to determine whether the tested array or probe is the same or different to what was 

presented during encoding (e.g. Vogel et al., 2001). However, it can be argued that change 

detection paradigms may offer a limited understanding of recall performance because they do not 

indicate the underlying processes involved with the processing of visual information. As discussed 

previously, the slots account suggests that visual information is stored in capacity limited slots. In 

a change detection paradigm, Donkin and colleagues (2014) investigated whether, given the limited 

capacity of slots (Zhang & Luck, 2008), participants are able to detect whether a change in colour-
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location binding has occurred. Donkin and colleagues (2014) manipulated the number of colour-

location bindings that were required to-be-retained, and during test, participants responded on 

whether they detected a change. The researchers measured recall through hits (i.e., correct change 

detection), and false alarms (i.e., a change has occurred, but it was not detected). Donkin and 

colleagues observed that false alarms increased with the increase in number of items to remember. 

While this suggests that visual WM may be limited by the number of items it can hold active, it 

also suggests that change detection paradigms may be less sensitive in determining the cause for 

false alarms to occur. This suggests that it may be beneficial to understand the underlying 

components of memory retrieval through alternative paradigms that are able to allow researchers 

to investigate specific parameters (e.g., guessing).       

An alternative method of examining the processes involved in feature bindings is through 

continuous-report paradigms.  During a continuous report paradigm (e.g., Bays et al., 2009; Zhang 

& Luck, 2008), a participant is presented with an array of objects (usually coloured objects or 

orientated bars presented around an invisible circle), and following a retention interval, the 

participant is presented with a response wheel and a probe. The response wheel may be the feature 

dimension that is being tested, such as a colour wheel and a location-probe to test colour-location 

bindings (a probe in the location of the to-be-tested item; Bays et al., 2009; Wilken & Ma, 2004; 

Zhang & Luck, 2008). Participants would then use their mouse to move along the colour wheel and 

select the most accurate representation of the colour in the probed location. Continuous report 

paradigms are arguably more advantageous than change detection paradigms because it is possible 

to extract parameters assumed to underlie retrieval responses. For example, fitting a three-

parameter mixture model to recall error allows estimates of recall precision, the probability that the 

target item was in memory, the probability that the response made was due to a binding error, and 

the probability that the response made was a guess (Bays et al., 2009; Oberauer et al., 2017). This 
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provides for a critical tool in determining how feature bindings are maintained by providing for a 

greater understanding than simply the response accuracy from a change detection task (see 

Appendix A for a further discussion of mixture models).   

In particular, the probability of whether the response is a binding error is of interest to 

understanding the maintenance of feature bindings in visual working memory. Binding errors or 

‘swap errors’ refer to mistakenly recalling the feature of a presented but non-tested item (Bays et 

al., 2009; Schneegans & Bays, 2019). For example, Emrich and Ferber (2012) found that binding 

errors increase if the spatial-locations of the to-be-remembered colours are close together. Further 

work has supported this finding, such that individuals are more likely to make binding errors if 

there is a similarity between the spatial-locations of the to-be-remembered items (Bays, 2016). 

Moreover, in a continuous-report paradigm, Rajsic and Wilson (2014, Experiment 1) demonstrated 

that binding errors occur more often while recalling a location feature compared to a colour feature. 

Rajsic and Wilson (2014) argued that location and nonlocation features (i.e., colour) are coded in 

conjunction in visual maps, such that the code of a colour feature may be mapped on to its 

respective spatial location. Furthermore, the researchers argued that tuning a visual map while 

recalling a location feature may result in tuning multiple visual maps at the same time, thus binding 

errors occur between to-be-recalled locations. On the other hand, the researchers argued that fewer 

codes are available for nonlocation feature storage in visual maps; therefore, fewer binding errors 

may occur during the retrieval of a colour feature. This hints that there may be differences between 

the processing of location and non-location features, in line with prior research in perception 

(Treisman, 1977; Treisman & Gelade, 1980; Treisman & Zhang, 2006; Wheeler & Treisman, 

2002), and with more recent research in visual WM that argued that location features may be 

prioritised over non-location features (Schneegans & Bays, 2017).  Thus, it can be argued that 
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using continuous-report paradigms may be a more ideal way to investigate feature binding than 

change detection paradigms.      

In summary, visual WM feature binding is heavily researched and there is an ongoing 

debate as to how visual information is processed in WM. There appears to be a divide in the current 

literature. One view argues that visual information is processed in a feature-based manner (Rajsic 

& Wilson, 2014; Schneegans & Bays, 2017; also see Swan & Wyble, 2014; Treisman, 1977, 1999; 

Treisman & Gelade, 1980; Wheeler & Treisman, 2002). An alternative view suggests that visual 

information is processed in an object-based manner (Allen et al., 2006, 2012; Luck & Vogel, 1997; 

Vogel et al., 2001). While earlier research has primarily examined visual WM through change 

detection paradigms (e.g., Luck & Vogel, 1997; Vogel et al., 2001), more recent research has used 

continuous-report paradigms to allow for mixture models to be applied to the recall responses (e.g., 

Adam et al., 2017; Bays et al., 2009; Zhang & Luck, 2008). In the next sections, I consider the 

research concerning the prioritisation of goal-relevant information in visual WM.  

  

Does attention aid the processing and prioritisation of visual information?  

A great deal of research suggests that attention is important to the encoding and 

maintenance of information in WM (Astle et al., 2012; Camos & Barrouillet, 2014; Griffin & 

Nobre, 2003; Gunseli et al., 2015; Hajonides et al., 2020; Li & Saiki, 2015). From a multi-

component perspective, Hitch and colleagues (2020) proposed that the processing of visual features 

initially relies on the allocation of external attention (i.e., attention can be directed towards 

incoming information), followed by the formation of object files in the visuo-spatial sketchpad. 

The researchers suggested that the object files are then processed by the episodic buffer by means 

of internal attention (i.e., attention that is directed towards in-memory representations). Hitch and 
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colleagues (2020) argued that the processing of object files (and their respective features) is 

governed by the central executive allocating attentional resources towards to-be-refreshed 

information. This allows for recent visual information to be kept active.  

This acknowledgement of the role of attention in the multi-component model of WM is 

consistent with WM research from the last five decades that has argued that attention is an 

important factor in keeping information active in memory (see Oberauer, 2019 for a review). As 

previously discussed, the domain-general account of WM (such as the embedded-processes and 

concentric models; Cowan, 1999; Cowan et al., 2021; Oberauer 2001) argues that general attention 

(i.e., the focus of attention) is critical for keeping information active. Thus it may be argued that 

the processing of visual information may be reliant on attentional resources. Seminal research in 

the perception of visual features posited that the binding of visual features requires attentional 

resources (Treisman, 1977, 1999; Treisman & Gelade, 1980). Moreover, it has been posited that 

the attentional resources required for the binding of visual features may selectively prioritise 

location-based features over non-location features (Treisman & Zhang, 2006; Wheeler & 

Treisman, 2002). Further fundamental research investigating  attention towards visual features in 

WM has used location-based prospective cues (pre-cues; i.e., the target is presented before the 

array of to-be-remembered items) and retrospective cues (retro-cues; i.e., the target feature is 

presented after the array of to-be-remembered items, and after a brief interval) that guide attention 

towards to-be-prioritized information (Griffin & Nobre, 2003). Griffin and Nobre (2003) 

demonstrated that guiding attention via pre-cues and retro-cues improved recall accuracy compared 

to neutral (no-cue, baseline) conditions. Moreover, the researchers’ results suggested that the valid 

cue-types improved recall accuracy compared to invalid cue-types. Griffin and Nobre's (2003) 

results thus suggest that guiding attention via a location-based pre-cue and retro-cue, in comparison 

to a neutral cue, allows for spatial-based attentional resources to selectively prioritise goal-relevant 
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information. Arguably this suggests that location-based features may be critical in allowing 

attention to be orientated towards goal-relevant information regardless of whether the feature is 

pre- or retro-cued. Retro-cues however have since become a productive way of understanding the 

role of attention in visual WM (see Souza & Oberauer, 2016, for a review). 

Importantly, Griffin and Nobre’s findings have raised multiple research questions, such as 

whether the nature of the retro-cue important in its effectiveness to prioritise feature information. 

Recent research has demonstrated that the nature of the retro-cue does not impede on recall 

performance.  In a series of experiments, Arnicane and Souza (2021) demonstrated that a retro-cue 

benefit occurs in target memory (i.e., the likelihood that the to-be-retained feature is in-memory 

during recall), regardless of the nature of the retro-cue (e.g., orientation-cue, colour-cue, or shape-

cue). Moreover, in a series of experiments manipulating the presentation of pre- and retro-cues, Li 

and Saiki (2015) found that colour pre-cues were more effective in modulating attention than colour 

retro-cues, relative to a no-cue baseline condition. However, location retro-cues were more 

effective in guiding attention than location pre-cues, relative to a no-cue baseline condition. Taken 

together with the findings of Arnicane and Souza (2021), it can be argued that guiding attention 

via pre-cues and retro-cues strengthen memory traces for recall, with some potential differences in 

the efficacy between pre-cues and retro-cues. In the next section, I will address further research 

regarding whether outdated (irrelevant) information is still accessible in visual WM while 

prioritising goal-relevant information. 

            



  26 

 

What happens to outdated (irrelevant) information during the prioritisation of goal-

relevant information? 

Although it is critical to understand the underlying mechanisms involved with prioritising 

goal-relevant information in visual WM (by means of attention), it is also critical to understand 

what happens to outdated (irrelevant) information while we prioritise goal-relevant information. 

One way to examine if outdated (irrelevant) information is kept active in WM is by investigating 

a core function of WM known as WM updating. WM updating refers to the ability to manipulate 

and alter goal-relevant information (Lewis-Peacock et al., 2018). Arguably, WM updating is a core 

function of WM as we need to manipulate and alter processed information to achieve our goals.  

For example, while shopping for a new t-shirt, one may store features of a t-shirt such as its colour 

and pattern. One may continue browsing for other t-shirts and find a similar item with the same 

pattern as the in-memory t-shirt, but the new item has a different colour. One actively prioritises 

the new (updated) information and the outdated colour information is now irrelevant. This example 

demonstrates that during WM updating, new features are prioritised and outdated features are no 

longer required. However, is outdated information still accessible in WM, and does outdated 

information impact the prioritisation of relevant information? Thus, it is of interest to examine 

whether outdated feature information is still accessible in WM while one prioritises new features, 

or whether the outdated features are removed and now longer accessible.     

Initial WM updating research posited that irrelevant information may be suppressed while 

new goal-relevant information is prioritised (Palladino et al., 2001). Across five experiments, 

Palladino and colleagues (2001) investigated whether there are differences between one’s ability 

to comprehend language (poor or good comprehends), and one’s ability to prioritise updated 

information. In their set of experiments, the researchers orally presented various lists of words and 

the participants were required to prioritise the task-relevant information. In Experiments 2 and 3, 
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the researchers manipulated whether participants were presented with concrete (animals) and 

abstract nouns. The participants were instructed to prioritise the concrete words and to ignore the 

abstract words; this was followed by a memory recall task, wherein the participants recalled all the 

presented items. Across their set of experiments, Palladino and colleagues found that the ability to 

update WM depended on the participants’ language comprehension. Furthermore, the researchers 

posited that prioritising goal-relevant verbal information required the suppression of irrelevant 

information; this was particularly evident in Experiments 2 and 3. Arguably, this suggests that 

while prioritising new goal-relevant information, outdated information is still accessible, but its 

memory traces are not as potent as the prioritised new information.  

Oberauer (2002) posited that outdated (irrelevant) information may still be accessible in 

WM, despite the focus of attention prioritising task-relevant information. This work suggests that 

prioritising new information during WM updating may rely on the removal of outdated information 

from WM, rather than its suppression. In a recent review, Lewis-Peacock and colleagues (2018) 

proposed that the removal of outdated information may occur temporarily (i.e., outdated 

information is no longer required in WM, but it is accessible for future processing) or permanently 

(i.e., outdated information is removed from WM, and it is inaccessible). The researchers argued 

that the removal of outdated information occurs through the removal of an item’s content, context, 

or content-context binding. Earlier work demonstrated that during WM updating, outdated 

information is removed by the transfer of old item-position bindings to allow for new item-position 

bindings to occur (Ecker, Oberauer, et al., 2014). Across three experiments, Ecker and colleagues 

(2014) presented participants with three rectangular frames in a row that remained displayed 

throughout the experiments. In each frame, a consonant letter was presented for 2000 ms. 

Following this, participants were briefly presented the blank frames, and after a short interval, one 

of the frames was highlighted to indicate that the consonant in that frame is to-be-updated. The to-



  28 

 

be-updated consonant was then presented in the highlighted frame for 5000 ms. The participants 

were required to update the letter in their WM and to remove the outdated information. Participants 

were instructed to press the spacebar on the keyboard once the information has been updated. The 

presentation of the blank frames followed by the highlighted frame and the updated letter varied 

between 1 and 21 times. During the retrieval phase, the participants were required to recall and 

type each new (updated) letter in the randomly probed positions of the rectangular frames.  

In Experiment 1, the researchers manipulated the presentation time of the blank, highlighted 

to-be-updated frames and the presentation time of the new (updated) letters. In Experiment 2, the 

researchers presented numbers rather than letters and manipulated whether the numbers were 

proximally close or distant (e.g., proximally close: 11 & 13, proximally distant: 11 & 45). In 

Experiment 3, the researchers examined whether WM capacity predicted WM updating capabilities 

by including a battery of WM capacity tasks in their experiment. Across the three experiments, the 

researchers observed that actively updating WM required removal of the item-position bindings of 

outdated information by prioritising new (updated) information at high speeds. Arguably, contrary 

to Palladino and colleagues’ (2001) suggestion that outdated information is suppressed in WM, 

Ecker and colleagues’ (2014) work suggests that actively removing outdated information in a 

bound representation is not effortful and only new bindings are prioritised in WM.   

Similarly to Ecker and colleagues’ (2014) suggestion that outdated information is removed 

by the removal of item-position bindings, an earlier WM updating account posited that prioritising 

new information and removing outdated information can occur locally (only the outdated 

information is removed from a binding, and the remaining contents of WM are not updated; i.e., 

outdated features within a binding are removed and replaced by updated features), and globally 

(the entire contents of WM are updated, i.e., all features and bindings are removed and replaced 

with updated features and bindings; Kessler & Meiran, 2008). Kessler and Meiran (2008) proposed 
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that WM updating initially occurs through local updating mechanisms, but in turn global updating 

occurs to form a new cohesive representation of to-be-retained information.  This suggests that 

local and global WM updating may reflect the core process of prioritising task-relevant 

information. An investigation into whether visual WM is locally or globally updated showed that 

partially-updating colour-location bindings (i.e., updating some, but not all of the visually 

presented items) requires local WM updating (Kessler et al., 2015). By manipulating whether a 

repeated item-location (the location of a colour that has not updated) or an updated item-location 

(the location of a colour that has updated) was probed, the researchers found that recall accuracy 

was best when probed with a repeated-item location relative to an updated-item location. This 

suggests that during local updating, outdated information may still be accessible, and it has not 

been permanently removed. However, it is unclear whether the availability of outdated information 

in WM limits the prioritisation of new information. Therefore, it can be argued that a closer 

examination of the prioritisation of new information and the removal of outdated information is 

required. Moreover, it is of interest to examine WM updating of visual information as this may 

provide a clearer indication of the removal of outdated information, due to the dissimilarities 

between feature dimensions (i.e., colour, shape, or location feature-types).  

  

Summary and Overview of Experiments 

There is a great debate surrounding the processing of visual information in our immediate 

memory. A domain-specific perspective suggests that visual information may be processed in its 

domain-specific store (e.g., visual-spatial sketchpad; Baddeley and Hitch, 1974; also see Baddeley, 

2012).  In contrast, a domain-general perspective suggests that information of any domain is 

processed by focusing one’s attentional resources towards to-be-remembered information, and thus 
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initiating activated LTM (Cowan, 1993, 1998, 1999; Cowan et al., 2020; Oberauer, 2002).  

Furthermore, there is still some uncertainty as to whether visual information is processed as whole-

item representations, or whether visual information may be processed as single features and feature 

bindings (see Schneegans & Bays, 2019). This raises the question: How is goal-relevant feature 

information processed and prioritised in visual WM? One aim of this thesis is to examine the role 

of attention during the prioritisation of visual information in WM. Secondly, this thesis examines 

whether non-prioritised (outdated, or irrelevant) visual information is accessible during WM 

updating. It has been argued during WM updating, new (updated) information is prioritised but 

outdated information is no longer required (Ecker, Oberauer, et al., 2014; Lewis-Peacock et al., 

2018). To do this, this thesis aims to address how single features and feature bindings are processed 

in WM to allow for the prioritisation of goal-relevant information. I briefly summarise the findings 

of my chapters below. 

In Chapter 2, across two experiments, it was investigated what the role of attention is during 

feature binding. In Experiment 1, two types of attention were disrupted: peripheral- and central-

attention. In Experiment 2, attention was guided via retrospective (retro-cues). In Experiment 1, it 

was observed that disrupting attention did not increase binding errors, irrespective of the 

disruption-type or the target feature.  In Experiment 2, it was observed that guiding attention did 

not reduce binding errors, irrespective of the nature of the retro-cue or the target type.  However, 

it was observed that disrupting attention decreased target memory if the target feature was location-

based.  It was also observed that guiding attention improved target memory irrespective of the 

nature of the retro-cue or the nature of the target feature. 

Chapter 3 followed-up on Experiment 1 of Chapter 2 by reducing the number of to-be-

remembered items from six to four.  It was observed that disrupting peripheral- and central-

attention did not increase binding errors, relative to a no-disruption baseline.  Against the findings 
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of Experiment 1 in Chapter 2, disrupting peripheral- and central-attention did not reduce target 

memory whilst the number of to-be-remembered items were reduced. However, further analyses 

of the recall errors of Chapter 3 in comparison to the recall errors of Experiment 1 of Chapter 2 

indicated that task performance improved while the number of to-be-retained items was reduced. 

In Chapter 4, it was investigated whether location-based features are privileged in visual 

working memory, in comparison to non-location features (such as colour).  An adapted paradigm 

from Experiment 2 in Chapter 2 was used to answer our research question. Chapter 4 compared the 

baseline conditions (uncued retention interval) and the retro-cue conditions relative to the baseline 

condition, respectively. It was observed that there were no credible effects between the probe-target 

types (colour-location, location-colour) in the baseline conditions.  Guiding attention via colour 

and location retro-cues did not reduce binding errors, relative to the baseline condition. However 

guiding attention via colour and location retro-cues increased target memory irrespective of the 

nature of the target, and in addition, guessing was reduced. Thus suggesting that there are no 

differences between the processing and attentional prioritisation of location and non-location 

feature dimensions.  

Chapter 5 investigated whether local working memory updating relies on temporary 

removal of irrelevant information (i.e., irrelevant information is momentarily withdrawn from 

working memory, but it is still accessible) or whether irrelevant information is permanently 

removed (i.e., it is no longer active in working memory and no longer accessible).  Chapter 5 

adapted a prior change detection paradigm, to measure recall on a continuous scale, using a delayed 

estimation paradigm. Two hierarchical Bayesian three-parameter mixture models simulating 

temporary (Model 1) and permanent removal (Model 2) were applied to the data. Model 1 indicated 

that binding errors increase while more than one item is to-be-updated, relative to the baseline 

condition. But in Model 2, it was observed that binding errors were similar irrespective of the 
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number of items that were required to be updated. Further analyses indicated that the model 

simulating temporary removal best fit the data.  

Chapter 6 followed-up on Chapter 5 by changing the feature type that was to-be-updated 

from a colour feature to a shape feature. Chapter 6 applied the same statistical analyses to the 

responses. In both models fitted, it was observed that binding errors were similar irrespective of 

the update condition, or the probe location. Comparing model fit, it was observed that the model 

simulating temporary removal best fit the data. Moreover, by comparing the recall errors of Chapter 

5, relative to the recall errors of Chapter 6, it was observed that recall performance declined while 

shape features were required to-be-updated in comparison to updating colour features. Thus 

suggesting that it is more difficult to locally update shape features compared to colour features in 

working memory. 
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Chapter 2 

Examining the role of attention during feature binding in visuospatial working 

memory 

 

This chapter is a registered report that was published with Nicholas R. Cooper and Vanessa 

M. Loaiza at Attention, Perception & Psychophysics: Goldenhaus-Manning, D., T., Cooper, N., R., 

& Loaiza, V., M. (2023). Examining the role of attention during feature binding in visuospatial 

working memory. Attention, Perception, & Psychophysics, 1–12. https://doi.org/10.3758/s13414-

023-02655-y. I contributed to this article by generating the project research question and 

hypotheses, writing the initial drafts of the registered report for submission (stage 1 review), 

formatting the stimuli used within the task, aiding with the programming of the experiments, data 

collection, aiding with data analysis, and disseminating the findings in the form of a registered 

report which was submitted for stage 2 review.  

 

Fundamental questions of human memory concern how individuals are able to focus their 

attention and hold in mind no-longer perceptually available items and how features of that item 

(e.g., colour, shape, orientation and relationship to other items in mind) are integrated together into 

a cohesive representation. Working memory (WM) has been an instrumental concept for 

understanding these questions given its ascribed role in maintaining and manipulating information 

in service to goal-related cognition. For example, in a typical visuospatial WM study, participants 

are often asked to briefly maintain an array of multi-feature objects (e.g., red circle, green triangle, 

blue square) to be immediately retrieved thereafter (e.g., via change detection, determining whether 

https://doi.org/10.3758/s13414-023-02655-y
https://doi.org/10.3758/s13414-023-02655-y
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the probe of a red triangle was presented). A prominent yet still unresolved question in the literature 

concerns whether integrating the features of these objects, or feature binding, relies on attention or 

is relatively automatic (Allen et al., 2006; Baddeley et al., 2011; Elsley & Parmentier, 2009; Hitch 

et al., 2020; Vogel et al., 2001; Wheeler & Treisman, 2002). In the current study, we investigated 

this issue through two predominant methods of manipulating attention in the WM literature: 

disrupting attention and guiding attention. 

Disrupting Attention and Feature Binding 

A great deal of prior research has followed the logic that if feature binding requires 

attention, then an attention-demanding task should more strongly disrupt the maintenance and 

recall of bindings (e.g., remembering a red circle) compared to individual features (e.g., 

remembering red and circle individually). Much of this research has demonstrated that 

attentionally-demanding tasks (e.g., judging tones, counting backwards) similarly impair the recall 

of individual features and their bindings, thus suggesting that feature binding may not require 

additional attentional resources (Allen et al., 2006, 2012; Langerock et al., 2014; Morey & Bieler, 

2013; Vergauwe et al., 2014). However, other research has reported contradictory findings. For 

example, some work has suggested that attention-demanding tasks do indeed impair feature 

binding disproportionately compared to individual features, thus suggesting that feature binding in 

WM requires additional attentional resources (Brown & Brockmole, 2010; Elsley & Parmentier, 

2009; Zokaei et al., 2014). What may cause such a discrepancy? 

 First, the nature of the to-be-bound features may be an important factor in whether feature 

binding requires attention. A great deal of the prior work supporting the notion that feature binding 

is automatic has used colour-shape bindings. According to Ecker and colleagues (2013), such 

intrinsic feature bindings (i.e., information belonging to an object) can be distinguished from 
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extrinsic feature bindings (i.e., relational, contextual information of an object, such as its spatial 

location). This distinction between intrinsic and extrinsic feature binding has also been referred to 

as conjunctive versus relational binding, respectively (Kirmsse et al., 2018; van Geldorp et al., 

2015). Ecker and colleagues suggested that binding of intrinsic features (e.g., colour, shape, 

orientation) may be automatic in WM, whereas binding of extrinsic features (e.g., spatial/temporal 

context) may require additional, effortful attentional resources. Consistent with this assertion, some 

prior work has indeed shown a role of attention for extrinsic bindings (Ecker et al., 2013; Elsley & 

Parmentier, 2009), whereas attentionally-demanding tasks have no differential impact on intrinsic 

feature binding (e.g., colour-shape bindings) compared to retaining the individual features, as 

explained previously (e.g., Allen et al., 2006, 2012). Conversely, other work has suggested that 

visual interference can impact visual WM (Teng & Kravitz, 2019), especially intrinsic feature 

bindings (Ueno et al., 2011). Thus, it may be the case that disrupting central attention specifically 

impairs extrinsic binding but not intrinsic binding, whereas disrupting peripheral, visual attention 

impairs intrinsic binding for visuospatial features. This distinction may occur if extrinsic features 

are prioritized and provide the foundation for intrinsic information to be automatically encoded. 

For example, Schneegans and Bays (2017) demonstrated that intrinsic features may rely on spatial-

temporal context in order to become feature-bound representations in WM (see also Pertzov & 

Husain, 2014). 

A second potential source of discrepancy concerns the measurement of feature binding. 

Much of the cited previous research has used change detection, wherein participants are presented 

with a test probe that may be the same as what had been presented or a lure, such as a recombination 

of features. A potential problem with this approach is that using observed performance may only 

offer a coarse measure of feature binding that is conflated with extraneous processes like guessing. 
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For example, a participant may correctly identify a red circle had been presented, but it is unclear 

whether this indicates correct intrinsic binding or other processes, such as guessing. Instead, 

measuring recall using a continuous scale (e.g., recalling the precise colour or location of a probe) 

allows decomposition of the participants’ observed recall error (e.g., the deviation of the recalled 

colour from the true target colour) according to a mixture of underlying components. Most 

relevantly, Bays and colleagues’ (2009) model assumes three sources of error: memory for the 

target item with a certain precision, memory for one of the presented but unprobed items 

(henceforth, binding errors), or random guessing when no memory is available. Previous work 

applying this mixture model to recall has indicated that binding errors may be more common when 

recalling extrinsic versus intrinsic features (Schneegans & Bays, 2017) or when attentional 

demands are high (Zokaei et al., 2014). For example, Zokaei and colleagues (2014) showed that 

varying the demand of an unrelated visual search task during the retention interval of a visuospatial 

WM task primarily impacted binding errors, whereas precision and random guessing were largely 

unaffected. Thus, the parameter estimate representing binding errors when applying a mixture 

model may be more sensitive than observed performance in determining the role of attention in 

feature binding. 

Guiding Attention and Feature Binding 

Alongside the substantial number of studies that have explored the role of attention in 

feature binding via disrupting attention, another approach is to manipulate attention through 

instructions to prioritize some memoranda. For example, presenting retro-cues during the retention 

interval to indicate the to-be-tested item of the previously presented stimulus array provides a 

means of understanding how no-longer perceptually presented information is brought into the focus 

of attention (see Souza & Oberauer, 2016 for review). Retro-cue studies often show a retro-cue 
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benefit, such that retro-cues improve visuospatial WM performance compared to a no-cue or 

neutral-cue baseline, thereby demonstrating the benefits of attention in WM. Furthermore, the 

retro-cue benefit seems specific to reducing binding errors (Souza, 2016), thus evidencing the 

importance of attention to facilitate binding in WM. There is some evidence that the retro-cue 

benefit is weaker for intrinsic (e.g., shape) compared to extrinsic (e.g., spatial-location) retro-cues 

(Arnicane & Souza, 2021; but see Heuer & Schubö, 2016). This may indicate that intrinsic retro-

cues are less effective overall than extrinsic retro-cues or perhaps are just less effective for extrinsic 

bindings compared to intrinsic bindings, but this has not yet been explicitly tested. Coupled with 

the aforementioned research pointing to a potential distinction between the effects of disrupting 

central versus peripheral attention on extrinsic and intrinsic binding, respectively, these findings 

suggest a dissociation in how guiding attention may impact different types of feature binding in 

WM. Explicitly investigating this dissociation would provide novel insight into the long-standing 

theoretical puzzle regarding how representations are established in WM.   

Current Study 

The current study clarifies the role of attention in feature binding in WM by investigating 

whether manipulating attention via disruption (Experiment 1) and retro-cues (Experiment 2) 

differently impacts the maintenance of intrinsic and extrinsic feature bindings (Table 1). Both 

experiments required participants to maintain a set of multi-feature objects (i.e., different-coloured 

shapes) presented in random locations around an invisible circle, followed by probed recall of one 

of the items. Participants were prompted to recall one of the features based on one of the two 

remaining features (e.g., a shape probe may prompt recall of colour, with the probe displayed at 

the centre of the screen [i.e., without spatial information]). Experiment 1 disrupted different types 

of attention (central versus perceptual) whereas Experiment 2 manipulated focused attention via 
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different types of retro-cues (intrinsic [colour, shape], extrinsic [spatial]). Experiment 1 closely 

followed the experimental procedure of Souza and Oberauer (2017, Experiment 1A), and 

Experiment 2 closely followed the experimental procedure of Souza (2016). Both experiments had 

a no-disruption/no-cue baseline condition. Recall error was fit with a hierarchical Bayesian three-

parameter mixture model (Bays et al., 2009; Oberauer et al., 2017) to estimate latent cognitive 

parameters underlying observed memory performance, most relevantly, the parameter reflecting 

binding errors.  

We hypothesized that if extrinsic and intrinsic feature binding are distinguishable, then a 

central-attention demanding task should increase binding errors when recalling extrinsic features, 

but not intrinsic features, whereas a peripheral-attention demanding task should increase binding 

errors when recalling intrinsic features, but not extrinsic features (Experiment 1). Furthermore, 

extrinsic retro-cues should reduce binding errors compared to a no-cue baseline, whereas there 

should be no impact of intrinsic retro-cues on binding errors when recalling extrinsic features 

(Experiment 2). However, if there is no distinction between extrinsic and intrinsic binding and both 

are automatic, then binding errors should be similar regardless of the nature of the attentional 

demand (Experiment 1) or retro-cue (Experiment 2). 
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Table 1 

Hypotheses and Predictions for Each Feature Binding Type. 

Feature binding type Hypotheses Experiment (E) Predictions 

Extrinsic Central attention may be required to 

selectively maintain extrinsic bindings 

(a) Disrupting central attention should 

selectively increase extrinsic binding errors 

but not intrinsic binding errors relative to a 

no-disruption baseline (E1). 
 

Benefits of guiding attention may be 

specific to extrinsic binding. 

(b) Guiding attention via extrinsic retro-cues 

should reduce extrinsic binding errors but not 

intrinsic binding errors relative to a no-cue 

baseline (E2). 

Intrinsic Domain-specific, peripheral attention may 

be required to selectively maintain intrinsic 

features. 

(c) Disrupting peripheral attention should 

selectively increase intrinsic binding errors 

but not extrinsic binding errors relative to a 

no-disruption baseline (E1). 

  If intrinsic binding errors are reduced 

during the presentation of an intrinsic 

retro-cue, then attention is required for 

intrinsic feature binding. 

(d) Guiding attention via an intrinsic retro-

cue should reduce intrinsic binding errors 

relative to a no-cue baseline (E2). 

 

Experiment 1 

Method 

Participants. We recruited 24 unique participants per experiment from Prolific in exchange 

for UK£7.50 per hour of participation. Participants in both experiments were British, aged 18-35, 

and had normal or corrected-to-normal hearing and vision and normal colour vision. Participants 

in both experiments were required to pass an initial colour blindness test; those who did not pass it 

were not allowed to proceed further in the experiment.1 Participants provided informed consent 

and were fully debriefed in both experiments. All experiments in this thesis were approved by the 

 
1  Note that we did not define what we meant by “pass” at stage 1. The Ishihara colour blindness test (e.g., 

http://www.colourvisiontesting.com/ishihara) that we used typically requires 100% pass rate (e.g., Loaiza & Souza, 

2019) and thus we used this criterion for participants to proceed further with the experiment. 

http://www.colorvisiontesting.com/ishihara
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University of Essex ethics committee and are in accordance with the Helsinki ethical guidelines 

(World Medical Association, 2013). Table 2 shows the final sample details, with details of the 

exclusions explained further on in the next sections. The anonymized raw data of all the participants 

are available on the Open Science Framework (OSF; https://osf.io/jr3eh/). 

 

Table 2 

Sample Details and Exclusions 

 
Exp. 1 Exp. 2 

Total N attempted 61 52 

N exclusions: 37 28 

 
1. Failed to pass the first colour blindness/visual/auditory screening phase* 30 10 

 
2. Restarted in the middle of the experiment* 0 4 

 
3. Assigned to a counterbalance order that was already complete* 1 10 

  4. Incomplete data (e.g., from leaving the experiment)* 6 8 

Final N for analysis after exclusions 24 24 

* Note that these may not sum to the total N excluded given that participants could fall under more 

than one category for exclusion. 
  

 

We determined the sample size and the number of trials per condition by simulating 150 

experiments based on the parameter estimates derived from fitting a hierarchical Bayesian three-

parameter mixture model to the raw data of Souza and Oberauer (2017, Experiment 1A) and Souza 

(2016), whose designs we closely follow in Experiments 1 and 2, respectively. For the sake of 

brevity, the rationale, analysis scripts, and results of the simulations for both Experiments 1 and 2 

can be found on the OSF. 
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Materials and Procedure. The stimuli and the open-source scripts for all the experiments 

are available on the OSF, and a short example can be tried at this link: 

https://tinyurl.com/RegReportAPP. Both experiments were conducted online through lab.js 

(Henninger et al., 2021) hosted on the JATOS server Mindprobe (https://jatos.mindprobe.eu; Lange 

et al., 2015).  After a brief demographic questionnaire, participants took part in two practice phases 

of the visual and auditory tasks, respectively, that served as the later attention disruption in the 

critical task. Participants who did not pass either practice phase were not allowed to proceed further 

as it suggested that they did not have sufficient visual or auditory abilities to complete the 

experiment.2 Thereafter, participants completed three blocks of a visuospatial WM task, with four 

practice trials preceding each block and 150 critical trials presented per block (50 of each probe-

target type, randomly intermixed)3. Each trial began with a fixation cross presented for 500ms 

followed by an array of six coloured shapes simultaneously presented in random locations around 

an invisible circle for 1000ms. The colour, shape, and location features of each item were randomly 

sampled from 360ᵒ of continuous values, with a minimum of 15ᵒ of separation in each feature 

domain from the other memoranda in the array: The colours were sampled along a circle in the 

CIELAB colour space (with L = 70, a = 20, b = 38, and radius = 60), the shapes were drawn 

randomly from a shape wheel (Li et al., 2020), and the locations were drawn randomly along an 

invisible circle (radius = 1504). 

 
2 Note that we did not define what we meant by “pass” at stage 1, and thus we decided that at least 80% correct was 

required given that this is a typical exclusion criteria in dual-task WM experiments (e.g., Ricker & Vergauwe, 2022).  
3 Note that due to a server upload error, there were several participants for whom some trials were missing at random 

(N = 1 and 3 in Experiments 1 and 2, respectively). We decided to include participants who had at least 80% of trials 

per cell of the design. 
4 Note that we had written radius = 40 here at stage 1, but this was a typo. A radius of 150 is typical (e.g., Loaiza & 

Souza, 2019) and allowed better spacing of the memoranda in the array. 

https://tinyurl.com/RegReportAPP
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Following Souza and Oberauer (2017, Experiment 1), the nature of the retention interval 

(2500ms in total) varied according to the attention disruption manipulation: During the no-

disruption block, the retention interval remained blank with the fixation cross at the center of the 

screen. During the peripheral-attention disruption block, the fixation cross altered its shade from 

white to light grey for 100ms during 50% of the trials at least 500ms after the offset of the memory 

array and 900ms before the onset of the retrieval phase; participants were instructed to detect 

whether the fixation cross changed its shade by pressing the spacebar (Figure 1). During the central-

attention disruption block, participants were asked to indicate whether two successively presented 

tones (75ms each) were of a lower (600 Hz) or higher (6755 Hz) pitch by pressing the left- and 

right-arrow keys, respectively. The first tone was presented 500 ms after the offset of the memory 

array, with participants allowed 925ms to respond before the second tone was presented with a 

925ms response period.  

During the retrieval phase, participants were probed with one feature from one item of the 

memory array to prompt recall of one of the item’s two remaining features. For each probe-target 

type, retrieval occurred along a continuous colour, shape, or location wheel (depending on the to-

be-recalled target feature), wherein participants used a mouse to click along the corresponding 

wheel6. For the intrinsic-intrinsic probe-target condition, the participants were probed with either 

the colour (presented as a circular dot) or shape (presented in dark grey) at the centre of the screen 

in order to recall the item’s corresponding shape or colour, respectively. For the extrinsic-intrinsic 

 
5 Note that we had written 610 Hz in the revised stage 1. However, all the participants failed the first screening phase, 

suggesting that it was impossible to distinguish tones presented at 600 and 610 Hz. We conducted an additional pilot 

experiment (see OSF and Online Supplementary Materials (OSM)) to determine that 600 and 675 Hz, with additional 

opportunities for feedback and practice during the screening phase, would make the task challenging albeit still possible 

for participants. 
6 Recall error was slightly underestimated by about 3° in Experiment 2 due to a programming error. Given that this 

error was unsystematic, the general pattern of results from Experiment 2 is unlikely to be affected. 
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probe-target condition, participants recalled the colour or shape feature when probed with the 

location of the corresponding item (i.e., a dark-grey circular disk appearing in the location of the 

probed item). Finally, for the intrinsic-extrinsic probe-target condition, participants recalled the 

location of the probed item with either the colour (presented as a circular dot) or shape (presented 

in dark grey) at the centre of the screen. The recall attempt was unspeeded, and the instructions 

emphasized that participants should prioritize accuracy over speed in their responses. After the 

practice trials and every 10 test trials, participants received feedback about their average recall 

accuracy (expressed as a percentage of their mean reproduction error, i.e., 100 – 100 * mean 

error/180)7 and, depending on the block, their average accuracy on the disruption task. There was 

an inter-trial interval of 1000ms followed by a screen that said “Ready?” to which participants 

pressed the spacebar to proceed to the next trial. Participants were offered a break twice during 

each block, after every 50 trials.  

 

  

 
7 For several participants in Experiment 2, the recorded recall error of the shape target was systematically off by 90°. 

This was corrected during analysis and did not affect the experiment except that these participants’ feedback was 

slightly incorrect.  
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Figure 1 

Example Trial Sequence from Experiment 1 that Varied Attention Disruption (None, Peripheral, 

Central) and Probe-Target Type (Intrinsic-Intrinsic, Extrinsic-Intrinsic, Intrinsic-Intrinsic). 

 

Design. The experiment followed a 3 (attention disruption: none, peripheral, central) x 3 

(probe-target type: intrinsic-intrinsic [colour-shape, shape-colour], extrinsic-intrinsic [location-

colour, location-shape], intrinsic-extrinsic [colour-location, shape-location]) within-subjects 

design. The attention disruption manipulation was blocked and counterbalanced 8  across 

participants, with the nature of the probe-target type varying randomly within each block.  

 
8 Note that there were instances in both experiments where participants were inadvertently assigned to a counterbalance 

order that had already been completed (e.g., in Experiment 1, six counterbalance orders required four participants each 

to equal 24 total participants, but one additional participant was assigned to one of the orders). In these instances, these 

additional participants were excluded from analysis in both experiments (see Table 2). 
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Data Analysis. The analysis scripts to reproduce the results for all the experiments are 

available on the OSF. For each experiment, observed recall error data collected was fit with a three-

parameter hierarchical Bayesian mixture model (Loaiza & Souza, 2019; Oberauer et al., 2017). 

The model assumes that the distribution of observed responses reflects the contributions of (1) the 

probability that the tested feature is held within WM with a (2) specific precision, and (3) the 

probability of misbinding or (4) guessing when the participant has not stored the information in 

WM. Our hypotheses pertained to binding errors, or the probability of recalling non-target but 

presented features from the array. The model was fit using rjags (Plummer, 2016) via Markov 

Chain Monte Carlo sampling. We verified good convergence and conducted posterior predictive 

checks to ensure appropriate model fit. We report posterior estimates of each parameter in Figures 

2, 4, and 5, and the posterior differences between the conditions for each parameter (and their 95% 

HDIs) in Tables 3 and 4.  

Results and Discussion 

Table 3 and Figure 2 summarize our results. When recalling the extrinsic feature (i.e., the 

intrinsic-extrinsic condition), binding errors were lower in the central (estimated difference = -0.32 

[-0.51, -0.13]) and peripheral (estimated difference = -0.22 [-0.43, -0.01]) conditions compared to 

the no-disruption baseline. Closer inspection of Figure 2C reveals that this result may reflect an 

artifact of particularly high binding errors at baseline in the intrinsic-extrinsic condition. 

Furthermore, there was no credible effect of disrupting central attention when probed with the 

extrinsic feature (i.e., the extrinsic-intrinsic condition; estimated difference = 0.00 [-0.26, 0.28]). 

These results thus conflict with our first hypothesis, instead showing that disrupting central 

attention did not have any specific detrimental effect on binding errors of extrinsic features.  
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Figure 2 

Posterior Parameter Estimates of the Bayesian Hierarchical Mixture Model for the Probability 

of Target Memory (A), Memory Precision (B), Probability of a Binding Error (C) and Probability 

of Guessing (D) in Experiment 1. Larger Dark Circles Indicate Group Means, Smaller Faded 

Circles Indicate Individual Means, and the Error Bars Show the 95% HDIs of the Posterior. 
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Table 3 

Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter Across Experiments. 

Exp. Probe-target type Baseline/None vs. P(Target) P(Binding error) P(Guessing) Precision 

1 Intrinsic-intrinsic Central -0.09 [-0.24, 0.06] -0.09 [-0.48, 0.32] 0.17 [-0.32, 0.70] 0.73 [-7.46, 10.47] 

  Peripheral -0.03 [-0.16, 0.11] -0.09 [-0.44, 0.24] 0.12 [-0.31, 0.56] 1.75 [-6.37, 11.29] 

 Extrinsic-intrinsic Central -0.02 [-0.16, 0.10] 0.00 [-0.26, 0.28] 0.02 [-0.34, 0.36] -0.44 [-6.38, 5.43] 

  Peripheral 0.04 [-0.13, 0.23] 0.01 [-0.30, 0.34] -0.05 [-0.50, 0.38] -0.55 [-7.33, 6.49] 

 Intrinsic-extrinsic Central -0.15 [-0.24, -0.07] -0.32 [-0.51, -0.13] 0.47 [0.23, 0.71] 9.77 [-2.82, 23.46] 

  Peripheral 0.02 [-0.08, 0.12] -0.22 [-0.43, -0.01] 0.20 [-0.07, 0.47] -0.30 [-8.59, 8.74] 

2 Intrinsic-intrinsic Colour cue 0.42 [0.30, 0.53] -0.01 [-0.20, 0.15] -0.41 [-0.63, -0.14] 4.55 [-4.79, 12.63] 

  Shape cue 0.41 [0.29, 0.53] 0.00 [-0.21, 0.17] -0.41 [-0.65, -0.14] 2.79 [-6.90, 11.13] 

  Location cue 0.46 [0.31, 0.59] 0.00 [-0.22, 0.23] -0.46 [-0.71, -0.18] -4.36 [-13.12, 2.93] 

 Extrinsic-intrinsic Colour cue 0.28 [0.15, 0.41] -0.13 [-0.36, 0.06] -0.15 [-0.42, 0.14] 5.68 [-0.06, 10.74] 

  Shape cue 0.30 [0.17, 0.42] -0.08 [-0.33, 0.12] -0.22 [-0.50, 0.08] 5.85 [-0.17, 11.59] 

  Location cue 0.26 [0.11, 0.42] -0.05 [-0.32, 0.20] -0.21 [-0.53, 0.14] 0.76 [-5.51, 6.28] 

 Intrinsic-extrinsic Colour cue 0.22 [0.10, 0.35] -0.16 [-0.40, 0.06] -0.06 [-0.35, 0.25] 1.53 [-1.46, 4.50] 

  Shape cue 0.08 [-0.03, 0.20] 0.10 [-0.14, 0.34] -0.19 [-0.48, 0.12] 1.48 [-1.46, 4.22] 

  Location cue 0.57 [0.47, 0.65] -0.26 [-0.47, -0.08] -0.30 [-0.54, -0.03] 5.06 [1.98, 7.98] 

Note. Effects in boldface font indicate credible effects.   
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Furthermore, there were no credible effects of either central (estimated difference = -0.09 

[-0.48, 0.32]) or peripheral (estimated difference = -0.09 [-0.44, 0.24]) disruption on binding errors 

when only the intrinsic features were relevant (i.e., the intrinsic-intrinsic condition). However, 

given the prior results that central attention disruption had no impact on extrinsic features, we do 

not interpret these intrinsic feature results too strongly. Overall, we failed to observe support for 

our hypotheses that disrupting central versus peripheral attention would differently impact binding 

errors of intrinsic and extrinsic features. 

Although our hypotheses focused on binding errors, we also report on target memory 

(Figure 2A), memory precision (Figure 2B), and guessing (Figure 2D). Disrupting central attention 

impaired target memory (estimated difference = -0.15 [-0.24, -0.07]) and increased guessing 

(estimated difference = 0.47 [0.23, 0.71]) relative to a no-disruption baseline in the intrinsic-

extrinsic condition. There were no other credible effects of disruption. Thus, the effects of 

disrupting central attention for recalling an extrinsic feature (i.e., location) appeared to be specific 

to target memory and guessing rather than binding errors as we had initially predicted. 

To be certain that participants did not simply give up during the task, we verified that 

proportion accuracy on the peripheral (M = 0.95, SD = 0.10) and the central (M = 0.92, SD = 0.05) 

attention disruption tasks was very high. Coupled with the forthcoming results of Experiment 2, it 

is thus more likely that randomizing shape and location as additional encoded features alongside 

colour, as well as intermixing the different probe-target conditions, likely yielded a more 

challenging task overall for participants. We return to the theoretical implications of this in the 

General Discussion. Notwithstanding, the current results suggest that disrupting central versus 

peripheral attention did not impact binding errors as we had predicted, but disrupting central 

attention may specifically impact target memory and guessing when recalling extrinsic features.  
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Experiment 2 

Method 

Materials and Procedure. The materials, procedure, and analysis for Experiment 2 were 

similar to Experiment 1, except that retro-cues were manipulated during the retention interval 

(Figure 3). Depending on the block, the retention interval (1250ms) entailed one of four retro-cue  

conditions. Either the retention interval remained blank with the fixation cross presented at the 

center of the screen (no-cue condition), or a retro-cue was displayed at the center of the screen for 

250ms following the offset of the memory array (500ms) and preceding the onset of the retrieval 

phase (500ms). The retro-cue indicated with 100% validity which of the items from the memory 

array would be tested. Specifically, either a circular coloured-dot (colour retro-cue), a dark-grey 

shape (shape retro-cue), or an arrow pointing to the location of the to-be-tested item (location retro-

cue) was presented, depending on the block. There were 50 trials of each retro-cue/probe-target 

condition.  

Design and Data Analysis. The experiment followed a 4 (retro-cue type: none, colour, 

shape, location) x 3 (probe-target type: intrinsic-intrinsic [colour-shape, shape-colour], extrinsic-

intrinsic [location-colour, location-shape], intrinsic-extrinsic [colour-location, shape-location]) 

within-subjects design. The retro-cue manipulation was blocked and counterbalanced across 

participants, with the nature of the probe-target type varying randomly within each block. The 

analytic approach was the same as Experiment 1. 
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Figure 3 

Example Trial Sequence from Experiment 2 that Varied Retro-Cues (None, Colour, Shape, 

Location) and Probe-Target Type (Intrinsic-Intrinsic, Extrinsic-Intrinsic, Intrinsic-Intrinsic). 

  

 

Results and Discussion 

Table 3 and Figure 4 summarize our results. We found that extrinsic (i.e., location) retro-

cues reduced binding errors in the intrinsic-extrinsic condition compared to the no-cue baseline 

(estimated difference = -0.26 [-0.47, -0.08]). Although consistent with our hypothesis, in hindsight, 

we cannot interpret this result given that, in this condition, the retro-cue perfectly matched the 

target for recall, as was the case in several other conditions (i.e., colour retro-cues probing recall 
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of colour and shape retro-cues probing recall of shape). We return to this issue in the exploratory 

analyses section. There were no further credible retro-cue effects in binding errors.   

Although our hypotheses focused on binding errors, we once again report on target memory 

(Figure 4A), memory precision (Figure 4B), and guessing (Figure 4D). Overall, we observed 

credible retro-cue benefits to nearly all target memory parameters except for shape cues in the 

intrinsic-extrinsic condition (estimated difference = 0.08 [-0.03, 0.20]). Furthermore, all the retro-

cues reduced guessing in the intrinsic-intrinsic condition, but Figure 4D shows that guessing was 

particularly high in this condition’s no-cue baseline. Overall, the benefits of retro-cues were most 

specific to target memory, and most importantly, their efficacy generally did not discriminate 

between the nature of the retro-cue (whether intrinsic [colour, shape] or extrinsic [location]) nor 

the nature of the recalled features (intrinsic or extrinsic).  
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Figure 4 

Posterior Parameter Estimates of the Bayesian Hierarchical Mixture Model for the Probability 

of Target Memory (A), Memory Precision (B), Probability of a Binding Error (C) and 

Probability of Guessing (D) in Experiment 2. Larger Dark Circles Indicate Group Means, 

Smaller Faded Circles Indicate Individual Means, and the Error Bars Show the 95% HDIs of the 

Posterior. 

 

 

Exploratory Analyses 

Given our fully-crossed design, there were trials in which the presented retro-cue matched 

the to-be-recalled target-feature (e.g., presenting a colour retro-cue and thereafter recalling colour). 

To understand whether this affected the just-reported confirmatory analysis results, we conducted 

an additional exploratory analysis that excluded any cue-target matches (i.e., colour-cue/colour-

target, shape-cue/shape-target, location-cue/location-target) and then refit the model for each 

specific probe-target combination (Figure 5 and Table 4).  
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We observed that location retro-cues were the most consistently beneficial to target 

memory, except in the location-colour condition (estimated difference = 0.28 [-0.02, 0.59]). 

Conversely, colour and shape retro-cue benefits were specific to the shape-location condition 

(estimated differences = 0.35 [0.19, 0.50] and 0.15 [0.01, 0.28], respectively). Thus, location retro-

cues were effective largely regardless of whether the probe-target features are intrinsic or extrinsic, 

whereas intrinsic retro-cues (i.e., shape and colour) only benefitted recalling extrinsic (i.e., 

location) features. There were few other retro-cue effects observed in the other memory 

parameters. 

These exploratory results clarify those of the confirmatory analyses by suggesting that what 

at first appear to be largely consistent retro-cue benefits to target memory, regardless of the type 

of cue or probe-target condition, are in fact largely driven by location retro-cues when recalling 

colours and shapes, as well as colour and shape retro-cues when recalling a location given a shape 

probe. This is in line with recent prior work suggesting that intrinsic feature cues, like shape and 

colour, tend to be less effective overall compared to location retro-cues (Arnicane & Souza, 2021). 

Thus, although there may be something particularly efficacious about location as an extrinsic 

feature when guiding attention, our results indicate that this efficacy is largely consistent regardless 

of whether intrinsic or extrinsic features are relevant to recall. 
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Figure 5 

Posterior Parameter Estimates of the Probability of Target Memory (A), Memory Precision (B), Probability of a Binding Error (C) 

and Probability of Guessing (D) for each probe-target in Experiment 2. Larger Dark Circles Indicate Group Means, Smaller Faded 

Circles Indicate Individual Means, and the Error Bars Show the 95% HDIs of the Posterior. 
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Table 4 

Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter for the Exploratory Analyses of Experiment 2. 

Probe-Target Baseline/None vs. P(Target) P(Binding error) P(Guessing) Precision 

Intrinsic-intrinsic Shape-Colour Shape 0.07 [-0.05, 0.19] -0.06 [-0.38, 0.24]  -0.01 [-0.40, 0.39] 1.58 [-14.02, 15.68] 

  
Location 0.51 [0.36, 0.67]  -0.09 [-0.38, 0.17]  -0.42 [-0.72, -0.09]  -8.22 [-21.23, 2.42] 

 
Colour-Shape Colour 0.03 [-0.29, 0.33]  -0.05 [-0.48, 0.30] 0.01 [-0.48, 0.65] 0.29 [-7.64, 6.85] 

  
Location 0.34 [0.02, 0.62]  -0.05 [-0.43, 0.26]  -0.29 [-0.74, 0.25]  -1.63 [-8.77, 3.38] 

Extrinsic-intrinsic Location-Colour Shape  -0.03 [-0.33, 0.28] 0.05 [-0.37, 0.42] -0.02 [-0.56, 0.52] 3.07 [-8.97, 13.80] 

  
Location 0.28 [-0.02, 0.59] 0.01 [-0.32, 0.30]  -0.29 [-0.76, 0.15] 4.47 [-5.33, 12.92] 

 
Location-Shape Colour -0.02 [-0.26, 0.21]  -0.05 [-0.39, 0.28] 0.07 [-0.40, 0.54] 0.56 [-5.76, 6.93] 

  
Location 0.32 [0.06, 0.55]  -0.01 [-0.35, 0.30]  -0.31 [-0.72, 0.13]  -2.52 [-7.60, 2.01] 

Intrinsic-extrinsic Shape-Location Colour 0.35 [0.19, 0.50]  -0.17 [-0.48, 0.12]  -0.18 [-0.55, 0.22] 2.14 [-1.95, 6.40] 

  
Shape 0.15 [0.01, 0.28] 0.16 [-0.15, 0.45] -0.30 [-0.66, 0.07] 2.32 [-1.57, 6.02] 

 
Colour-Location Colour 0.12 [-0.04, 0.27]  -0.11 [-0.37, 0.16]  -0.01 [-0.36, 0.31] 0.69 [-3.09, 4.32] 

    Shape 0.01 [-0.14, 0.18] 0.06 [-0.26, 0.38]  -0.08 [-0.48, 0.33] 0.97 [-3.35, 5.06] 

Note. Effects in boldface font indicate credible effects. 
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General Discussion 

Overall, the results of the current experiments suggest that attention does not 

discriminate between different types of feature bindings in visual WM as we had predicted. In 

Experiment 1, we showed that disrupting central and peripheral attention did not respectively 

increase extrinsic (i.e., location) and intrinsic (i.e., colour, shape) binding errors relative to a 

no-disruption baseline. Instead, disrupting central attention only reduced target memory and 

increased guessing when recalling the extrinsic feature. Further against the predicted 

dissociation of extrinsic and intrinsic binding errors, Experiment 2 showed that extrinsic retro-

cues were the most effective to increase target memory, regardless of whether the probe-target 

features were intrinsic or extrinsic. These results thus suggest that manipulating attention 

impacts target recall in visual WM, with no consistent distinction between intrinsic and 

extrinsic features in the continuous reproduction paradigm used here.  

Before any strong interpretation of the results, it is prudent to compare them first to that 

of previous similar work, such as Souza and Oberauer (2017), whose Experiments 1A and 1B 

inspired the design of Experiment 1 and Souza (2016) which inspired the design of Experiment 

2. The results of those experiments showed much greater target memory in the no-disruption 

baseline conditions (Experiment 1A: estimate = 0.54 [0.47, 0.61]; Experiment 1B: estimate = 

0.48 [0.39, 0.56]; see OSF for details) compared to the same relative extrinsic-intrinsic 

condition of our Experiment 1 (estimate = 0.19 [0.11, 0.28]). Target memory was also much 

lower overall in our Experiment 2 (no-cue location-colour estimate = 0.38 [0.09, 0.64]; retro-

cue location-colour estimate = 0.66 [0.53, 0.79]) compared to the same relative conditions of 

Souza (2016; no-cue location-colour estimate = 0.63 [0.54, 0.72]; retro-cue location-colour 

estimate = 0.87[0.78, 0.95]). It may be that the novelty of the current design, which randomized 

three different features of colour, shape, and location within the same memory array while 

randomly intermixing different probe-target conditions increased the overall difficulty of the 
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task relative to similar prior work. This may not be a mere methodological difference given 

earlier seminal work showing that increasing the number of features to encode and maintain 

does not impair change detection (e.g., Luck & Vogel, 1997). The current paradigm of 

continuous reproduction of randomly probed features will thus be useful to future work in that 

it may better reveal the increased demand of additional features in visual WM. Furthermore, 

adapting the paradigm so that its overall difficulty does not overwhelm participants will be 

important, for example, by calibrating the presented set size of the arrays to each individual 

participant’s ability level (e.g., Loaiza & Souza, 2019). 

A further caveat to the pattern of results is that binding errors were relatively low across 

conditions of both experiments. Furthermore, binding errors tended to occur more frequently 

in the intrinsic-extrinsic baseline condition than the other baseline conditions in both 

experiments. This may suggest that locations as targets yield more binding errors than shape 

and colour in baseline conditions, which will require further investigation. It is important to 

note that this pattern does not impact the current analyses or conclusions given that the critical 

comparisons for the research questions were conducted by comparing the effect of disrupting 

or guiding attention to the relevant baseline within each probe-target combination. 

Furthermore, the general low rate of binding errors makes it difficult to determine whether 

there were no true effects of our conditions on binding errors or simply a reduced opportunity 

to observe any effects, such that binding errors may have been too low overall to be sensitive 

to disruption or retro-cue effects. 

Notwithstanding, the pattern of results for target memory makes it unlikely that 

recalling intrinsic versus extrinsic features varies depending on attentional disruption or retro-

cues as we had predicted. Although disrupting central attention hampered target recall of the 

extrinsic feature in Experiment 1, we observed retro-cue effects in Experiment 2 that did not 

consistently distinguish between extrinsic and intrinsic features. Extrinsic retro-cues most 
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effectively enhanced target memory compared to other cues, consistent with recent work 

(Arnicane & Souza, 2021), but in one case intrinsic retro-cues also enhanced target memory of 

extrinsic features. Thus, we interpret these results to suggest that manipulating attention does 

not differently impact intrinsic and extrinsic feature binding, calling into question whether a 

distinction should be made between them. However, further work is required to replicate this 

pattern of results in other paradigms to determine whether there truly are no distinctions 

between intrinsic and extrinsic feature binding. 
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Chapter 3 

Reducing set size did not reveal distinctions between central and peripheral 

disruption. 

 

Rationale 

Prior research has suggested that visual features of an item can be classified as intrinsic 

or extrinsic (see Chapter 2; also see Ecker et al., 2013). The results of Experiment 1 in Chapter 

2 showed that there was no detrimental impact of attention disruption on binding errors, 

regardless of the type of disruption (central or peripheral) or type of feature (intrinsic or 

extrinsic). However, the central attention disruption reduced target recall and increased 

guessing relative to a no-disruption baseline. The question that is addressed in this chapter is 

whether a relatively high number of items to remember (i.e., a set size of 6) limited the 

opportunity to observe more substantial impacts of the attention disruption manipulation. 

Throughout the WM literature it has been argued that WM capacity (i.e., one’s ability 

to keep multiple items active for a short period of time) may be limited by a fixed number of 

items (e.g., Cowan, 2001; see Luck & Vogel, 2013 for a review).  For example, across a series 

of experiments, Luck and Vogel (1997) demonstrated that processing and retaining visual 

information occurs in an object-based manner, such that representations of an item are retained 

as feature bindings rather than as individual features. In their experiments, the researchers 

manipulated the set size of to-be-retained items (ranging from 1-12 items) and the feature type 

(i.e., colour, orientation, or both) relevant for change detection. They found that performance 

systematically declined after 4 items were tested. Luck and Vogel (1997) argued that visual 

WM retains a limited number of integrated item representations that can each comprise many 

individual features. Thus, the quantity of individual features that can be retained is limited by 
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the number of object representations that are retained. In agreement, Vogel and colleagues 

(2001) argued that visual WM is limited by the number of items that are to-be-retained rather 

than the number of features that make up an item representation. Thus, the number of to-be-

remembered items may limit WM maintenance, regardless of the number of features that can 

be retained.  

One account of visual information storage in WM has argued that item representations 

may be stored in limited capacity slots and require additional resources to determine which 

item representations are goal relevant (i.e., slots + resource hypothesis; Zhang & Luck, 2008). 

Moreover, Zhang and Luck (2008) argued that high-quality representations of a single item 

occur by distributing individual features across the limited capacity slots (i.e., slots + averaging 

hypothesis). This suggests that although WM is limited by the number of items that can be 

retained, one can improve the quality of a to-be-retained goal-relevant item by selectively 

maintaining the features of that item. More recent research has demonstrated that this may be 

the case. For example, Oberauer and Eichenberger (2013) demonstrated reduced change 

detection accuracy while retaining items with multiple features compared to a single-featured 

items. This highlights that WM capacity may not only be limited by the number of objects that 

can be retained as Luck and Vogel (1997) suggested, but it may also be limited by the number 

of features that can be retained. Thus, it is important to understand whether the results of 

Experiment 1 in Chapter 2 may be attributed to exceeding participants’ WM capacity while 

retaining 6 multi-feature items (composed of: 6 colour features + 6 shape features + 6 location 

features). If this is the case, then reducing the number of to-be-retained items should allow for 

a greater understanding of the initial hypotheses in Experiment 1 of Chapter 2. 

Current Study 

The current study therefore aimed to replicate Experiment 1 of Chapter 2 but reducing 

the number of to-be-remembered items from 6 to 4. The set size was reduced to 4, rather than 
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1 or 2 items, due to prior work suggesting that WM can hold up-to 4 items active at once 

(Cowan, 2001; Luck & Vogel, 1997; Zhang & Luck, 2008). Thus, the reduced set size should 

offer greater task performance in the current study, compared to the greater set size of 6 in 

Experiment 1 of Chapter 2. The hypotheses were the same as before (see Table 1 for full 

summary): If domain-specific peripheral attention is required to selectively maintain intrinsic 

features, then disrupting peripheral attention should selectively increase intrinsic binding errors 

but not extrinsic binding errors, relative to a no-disruption baseline. If central attention 

selectively maintains extrinsic bindings, then disrupting central attention should selectively 

increase extrinsic binding errors but not intrinsic binding errors relative to a no-disruption 

baseline. Reducing the set size from 6 items to 4 items should allow for a greater understanding 

of disrupting attention on intrinsic and extrinsic binding errors as the reduced set size is within 

the WM capacity. Therefore it can be argued that with the reduced set size in the current study, 

and while peripheral and central attention are disrupted, the intrinsic and extrinsic binding 

errors should be reflective of the disruption-type, rather than due to exceeding WM capacity 

(i.e., the higher set size of Experiment 1 of Chapter 2), or possible noise.    

 

Method 

Participants. As in Experiment 1 of Chapter 2, 24 complete and valid responses were 

collected from participants aged 18-35 through the University of Essex subject pool and 

Prolific, by voluntary and paid participation. Participants were awarded either partial course 

credit, or monetary compensation (UK £7.50 per hour). All participants reported normal or 

corrected-to-normal vision, colour vision and hearing. Prior to starting the experiment, 

participants undertook a colour blindness task to ensure their colour vision would not hinder 

their performance. Forty-one participants were excluded from the current study due to not 

passing phase 1 (i.e., achieving 100% on a colour blindness test, and 80% on a visual and an 
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auditory task). In line with Experiment 1 of Chapter 2, participants were offered multiple 

opportunities to practice the tasks before completing the test that determined whether they 

passed. 

Design, Materials, Procedure, and Analysis. The design, materials, procedure, and 

analysis were identical to Chapter 2 Experiment 1, with the only exception being that the set 

size was reduced from six to four coloured shapes to remember.9 Further Bayesian analyses 

were conducted to understand whether reducing the set size in the current chapter impacted 

recall performance. A Bayesian approach allows for a comparison between two models based 

on the Bayes Factor (BF) statistic, which conveys the ratio between the likelihoods of the data 

under the two compared models. For example, to determine the evidence for a main effect of 

set size, one would compare the likelihood of a model assuming an effect (M1) relative to the 

null model (M0; BF10). BFs are interpreted continuously, such that, a BF between 1 and 3 (or 

0.01 to 0.03) is interpreted as ambiguous, and BFs greater than 3 and 10 (0.03 and 0.10) are 

substantial and strong evidence for/against the model in the numerator relative to the model in 

the denominator. The anonymised data files, analysis scripts and experiment materials are 

available on the open science framework (OSF; https://tinyurl.com/2ukk6anx). 

 

Results 

Against my predictions, there were no credible effects of the attention-disruption task 

in the binding error parameter estimates, irrespective of the probe-target type (see Table 5). 

Thus, these results suggest that disrupting central and peripheral attention does not increase 

intrinsic and extrinsic binding errors relative to the baseline condition, regardless of the change 

in set size between experiments. Upon closer inspection (and as can be seen in Figure 6C), it 

 
9 I observed an unknown error wherein 100 recorded responses (i.e., 0.47% of the data) were greater 

than 360 degrees (i.e., the maximum possible response). These responses were omitted from analysis.   

https://tinyurl.com/2ukk6anx
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is likely that the overall low binding errors may have constrained the opportunity to observe 

any effect, as in Chapter 2. Contrary to Experiment 1 of Chapter 2, no credible effects of 

attention disruption were observed in target memory or guessing, irrespective of the nature of 

the probe (see Table 5). This suggests that the credible differences in these parameters in the 

intrinsic-extrinsic condition of Experiment 1 of Chapter 2 may be attributed to set sizes greater 

than 4. Therefore, central attention may be required to accurately recall extrinsic (location) 

features, particularly when more than 4 items are to-be-retained.  

An alternative explanation for the observed effects in Experiment 1 of Chapter 2 may 

be that rather than relying on central attention to accurately recall extrinsic features while WM 

capacity has exceeded, WM performance is reduced and therefore the effects observed in 

Experiment 1 of Chapter 2 may be attributed to noise rather than disruption effects. Upon closer 

inspection of Figure 6A, despite the peripheral and central attention disruption conditions, 

target memory is moderate and high. Thus suggesting that accurately recalling intrinsic and 

extrinsic bindings may rely on one’s WM capacity. Therefore, further exploratory analyses of 

task performance (i.e., recall error) between the current study and Experiment 1 of Chapter 2 

is required to indicate whether task performance improved with the reduced set size of 4 items 

in the current study, in comparison to the higher set size of 6 items in Experiment 1 in Chapter 

2. 
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Table 5 

Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter. 

 

 

 

Probe-target type Baseline/None vs. P(Target) P(Binding Error) P(Guessing) Precision 

Intrinsic-Intrinsic Central 0.38 [-0.02, 0.75] -0.02 [-0.18, 0.11] -0.36 [-0.78, 0.10] -4.81 [-11.43, 2.66] 

 Peripheral 0.20 [-0.21, 0.58] 0.05 [-0.12, 0.26] -0.25 [-0.67, 0.23] -1.94 [-9.20, 5.69] 

Extrinsic-Intrinsic Central 0.13 [-0.24, 0.46] -0.01 [-0.09, 0.07] -0.13 [-0.48, 0.27] -4.07 [-10.32, 2.71] 

 Peripheral 0.11 [-0.04, 0.27] 0.11 [-0.04, 0.27] -0.22 [-0.50, 0.07] -0.46 [-6.75, 6.35] 

Intrinsic-Extrinsic Central -0.07 [-0.33, 0.18] 0.01 [-0.21, 0.23] 0.06 [-0.25, 0.44] -1.82 [-5.36, 1.72] 

 Peripheral -0.05 [-0.24, 0.15] -0.05 [-0.24, 0.15] 0.10 [-0.15, 0.34] -0.07 [-2.44, 2.32] 
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Figure 6 

Posterior Parameter Estimates for the Probability of Target Memory (A), Memory Precision 

(B), Binding Errors (C) and Probability of Guessing. Larger Dark Circles Indicate Group 

Means, Smaller Faded Circles Indicate Individual Means, and The Error Bars Show the 95% 

HDIs of the Posterior. 

 

 

Exploratory Analyses 

To determine whether reducing the number of to-be-retained items improved overall 

task performance in the current study, in comparison to the higher set size in Experiment 1 of 

Chapter 2 (see Figure 7 for the plotted distribution of recall errors), a 3 (intrinsic-intrinsic, 

extrinsic-intrinsic, intrinsic-extrinsic) x 3 (none, peripheral, central) x 2 (4, 6) mixed BANOVA 

was conducted using the R package BayesFactor (Morey et al., 2022). The model including all 

three main effects was the best model, BF10 = 1.34 x1031. The model including all three main 

effects was ambiguously preferred over the next-best model including the interaction of set size 
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and binding-type, and binding-type and disruption-type (BF = 2.73). Table 6 shows paired 

Bayesian t-tests comparing the recall error of set size 4 (current chapter) and 6 (Experiment 2 

of Chapter 2) for each of the binding types in their respective disruption-type, against the set 

sizes. These tests indicated very strong evidence that reducing the set size in the current chapter 

improved recall performance, irrespective of binding- or disruption-type. Taken together, these 

findings suggest that reducing the set size in the current study improved overall recall 

performance. 

 

Figure 7 

Distribution of Recall Errors per Disruption-Type and Set Size for Intrinsic-Intrinsic, 

Extrinsic-Intrinsic, and Intrinsic-Extrinsic Probe-Target Types. 

 

Table 6 

Bayesian T-Test Comparing Recall Error Between Set Sizes 4 and 6 of Each Binding Type 

and Disruption Condition. 

 

 

 

 

 

 Disruption Condition 

Binding Type None Peripheral Central 

Intrinsic-Intrinsic 457.87 489.17 821.82 

Extrinsic-Intrinsic 7636.74 157918 172.82 

Intrinsic-Extrinsic 9503945 230300 46271.62 
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Discussion 

To understand whether the findings of Chapter 2, Experiment 1 were due to exceeding 

WM capacity, the paradigm was conducted again, except the number of to-be-remembered 

items was reduced from 6 to 4. The findings suggested that reducing the number to-be-

remembered items did not change the null effect of attention disruption on binding errors. 

Furthermore, no credible effects were observed in the remaining model parameters (target 

memory, precision, and guessing) irrespective of the nature of the probe-target combination. 

Moreover, additional analyses comparing recall error between Experiment 1 in Chapter 2 and 

the current study revealed very strong evidence in favour of task performance improving with 

the reduced set size. Thus, as has been observed many times in the literature, WM capacity is 

limited, such that memory performance improves when fewer items are to be kept active in 

WM (Cowan, 2001; Cowan et al., 2013; Zhang & Luck, 2008).  

Given the design of these experiments, one may ask whether the improved performance 

occurred due to reducing the number of objects (from 6 to 4) or the number of to-be-

remembered features (from 18 to 12). It is not possible to know this in the current work given 

that both the number of objects and features were reduced simultaneously. Further research is 

required to determine this question. For example, one may investigate whether features or 

objects contribute to the capacity limit by adapting the current paradigm calibrate the number 

of features presented on each trial (i.e., increasing or decreasing the number of features 

presented) based on mean recall performance on the last n trials. Alternatively, calibrating the 

number of objects that are presented on each trial (using the same aforementioned approach, 

but the number of features per object remain constant on each trial) could also determine 

whether one’s WM capacity depends on one’s ability to maintain multiple objects, features, or 

both. For example, if adapting the number of features per object impacts recall performance 

more strongly than the number of objects, then this would be evidence for a capacity limit of 
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features rather than objects. Thus, this approach may offer a novel insight into the current 

debate as to whether items are represented and stored as bound representations or as individual 

features (see Luck & Vogel, 2013; also see Schneegans & Bays, 2019 for a review), as one 

would be able to determine whether recall performance is hindered by the increasing number 

of presented feature types.     

To summarize, the study of this chapter examined whether reducing the set size would 

determine whether disrupting two different attentional resources would increase intrinsic and 

extrinsic binding errors.  While I did not find that disrupting peripheral and central attention 

increased intrinsic and extrinsic binding errors respectively, my findings suggest that task 

performance was improved with the reduced set size in the current study. As I explained 

previously, the paradigm may be useful for distinguishing whether the number of objects versus 

their individual features may contribute to set size effects commonly observed in the WM 

literature.
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Chapter 4 

Guiding attention via retro-cues improves target memory and guessing but does not 

impact binding errors. 

 

Rationale 

A longstanding theoretical debate in visual working memory (WM) is whether visual 

objects are encoded, stored, and maintained in an object-based manner (i.e., features of an object 

are bound together and the bound representations are maintained), or in a feature-based manner 

(i.e., features of an item are encoded, stored, and maintained independently; for a review, see Luck 

& Vogel, 2013; also see Schneegans & Bays, 2019). One way in which this has been investigated 

is by considering the role of attention in visual WM. Congruent with the object-based view, Allen 

and colleagues (2006) suggested that attention is not required for feature binding, rather, bound 

representations are processed automatically. Incongruent with the object-based view, Treisman 

and Gelade (1980) argued that the processing of multi-feature objects (i.e., objects composed of 

multiple features such as colour, shape, and spatial-location) relies on features of an item being 

registered early in the visual field, but attention binds relevant features together into a cohesive 

representation. The researchers argued that feature binding is driven by spatial-location features, 

and as such non-location features (i.e., colour, or shape) are bound to their respective location. 

This suggests that features of an item may be maintained independently. Further work has argued 

that location features may be privileged in visual WM, relative to non-location features (Rajsic & 

Wilson, 2014; Schneegans & Bays, 2017). This raises the question as to whether locations are 

privileged in visual WM, and whether attention selectively prioritises locations compared to non-
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location features. As such, are objects represented in an object-based manner without the 

requirement of attention, or are objects represented in a feature-based manner in visual WM? 

Seminal research investigating visual WM capacity limits has suggested that objects are 

represented as bound representations (Luck & Vogel, 1997). Luck and Vogel (1997) demonstrated 

that in a visual WM task in which participants were required to maintain individual features of an 

item (i.e., colour, orientation, size, and gap) alongside the bound representation (i.e., the whole 

object), participants were as accurate at reporting on the bound representation at test as they were 

at reporting individual features. The similarity in accuracy led the researchers to suggest that 

objects are maintained as bound representations rather than as individual features, despite whole 

objects being composed of multiple individual features. Further work has demonstrated that visual 

WM is limited by the number of bound representations it can maintain (Vogel et al., 2001). Across 

16 Experiments, Vogel and colleagues (2001) argued that visual WM is constrained by the number 

of bound representations it can hold active, rather than the number of individual features it can 

maintain. Moreover, the researchers argued that the maintenance of bound representations does 

not rely on attention. Consistent with the view that attention is not required for the maintenance of 

bound representations, in a series of experiments Allen and colleagues (2006) observed that 

disrupting attention by means of a secondary task (such as counting backwards) did not reduce 

recall accuracy of bound representations to a greater extent than the individual features themselves. 

Thus, the object-based view suggests that attentional resources are not required during visual WM 

maintenance of multi-feature objects that are represented in an object-based manner, with no 

limitation on the number of features that are bound within the representation. Alternative research 

has argued that visual information may not be represented in an object-based manner, rather 

features of an item are represented cohesively in visual WM (Foungie et al., 2013). By 
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manipulating whether participants were required to retain 5 coloured and orientated triangles, or 

10 separate features (i.e., 5 colours and 5 orientations) simultaneously, Foungie and colleagues 

(2013) observed that participants were able to correctly recall item features when fewer items were 

to-be-retained. Foungie and colleagues argued that the higher recall performance in the 5-object 

condition may be due to there being fewer opportunities for participants to guess during retrieval 

due to being able to bind the colour and orientations into cohesive object files. Arguably, this 

suggests that an object-based limit as proposed by earlier work (e.g., Luck & Vogel, 1997; Vogel 

et al., 2001) may reflect one’s ability to process and bind features into a cohesive representation. 

A fundamental framework from perception research, the feature integration theory (FIT; Treisman 

& Gelade, 1980) proposed that features of an item are registered in the visual field independently, 

but maintaining individual features relies on internal attention toward their shared location, thus 

enabling interdependent binding between non-location and relevant location features. While FIT 

is considered a framework in the immediate perception and processing of visual information, it 

has been noted that FIT is an integral hypothesis for the way in which visual features are bound 

together into object files in WM (Wolfe, 2020). Following on Vogel and colleagues’ (2001) 

experiments, Wheeler and Treisman (2002) observed that visual WM is not limited by the number 

of bound representations, but rather, it is limited by the number of individual features it can hold 

active that are composed of the same feature type (i.e., holding multiple colours active). 

Furthermore, the researchers proposed that individual features are stored in their respective feature 

dimensions (i.e., colours are stored in a colour-specific store, and locations are stored in a location-

specific store). This therefore suggests that visual WM may hold a limited number of features 

active in their respective feature dimension store.     
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If features are indeed maintained individually but linked to a shared location, then this 

implies that factors such as attention may impact some features (i.e., location) and not others. 

Rajsic and Wilson (2014; Experiment 1) addressed this question using a continuous report 

paradigm to distinguish between to-be-recalled features (colour or location). The researchers found 

that participants were more likely to correctly recall a location feature while probed with its 

associated colour, in contrast to recalling a colour feature while probed with a location feature. 

Moreover, the researchers found that swap errors (i.e., recalling presented non-targets) occurred 

more often when recalling locations than colours.  These findings suggest that there may be 

differences between the processing of non-location and location-based features, such that non-

location features may be “mapped” onto (or coded in conjunction with) their respective location 

features (see Johnson & Pashler, 1990). Rajsic and Wilson’s (2014) findings suggests that features 

are maintained in an interdependent fashion wherein location features are privileged. In a similar 

vein, Schneegans and Bays (2017) further suggested that spatial attention plays a critical role in 

the binding of location and non-location features. In a continuous-report paradigm, in which 

participants’ attention was guided via a retro-cue during the retention interval (see Souza & 

Oberauer, 2016 for a review of retro-cue paradigms in visual WM), participants were required to 

recreate the associated feature (Schneegans & Bays, 2017). In Experiment 1, Schneegans and Bays 

(2017) observed that while a colour cue was presented, participants were more prone to location 

swap errors than when a location cue was presented. In Experiment 2, the researchers guided 

attention via non-location retro-cues (colour and orientation) and participants were required to 

report the corresponding orientation and location, or colour and location features sequentially 

using their respective feature wheels. Feature retrieval was balanced across blocks, in that the order 

of feature retrieval (i.e., colour first, location second, versus location first, colour second) varied. 
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Schneegans and Bays observed that the error standard deviations were lower during location 

retrieval, compared to the error standard deviations of the non-location features. Moreover, the 

researchers did not observe a significant effect of the retrieval order. Taking these findings 

together, this therefore suggests that guiding attention towards an in-memory location by means 

of a retro-cue improves the quality of a non-location representation. Furthermore, guiding attention 

via a non-location retro-cue has little impact on location response errors, but retrieving a 

colour/orientation feature when cued with an orientation/colour increases response errors. This 

highlights that location features may be privileged in visual WM and attention may be selectively 

orientated towards locations. Therefore, the goal of the current study was to further investigate 

whether locations are indeed privileged during WM maintenance and whether guiding attention 

towards in-memory features selectively benefits location. 

Current Study 

The current study adapted Experiment 2 in Chapter 2’s paradigm to investigate whether 

location features are privileged compared to non-location features (in this case, colour), such that 

guiding attention towards an in-memory location feature (via a retro-cue) particularly benefits the 

prioritisation of an associated feature. In addition, to understand whether location features are 

privileged in WM while attention is not guided via a retro-cue, the current study compared colour 

and location retrieval during the baseline (no-cue) condition. The current study adapted 

Experiment 2 of Chapter 2 by only including the baseline, colour, and location retro-cues during 

the retention interval. The current study disentangled feature binding types by manipulating the 

probe-target combination during retrieval (i.e. probe-target combinations of colour-location or 

location-colour) to examine whether there are differences between the maintenance of colour and 

location features. In comparison to Experiment 2 of Chapter 2, rather than intermixing the probe-
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target types during retrieval in the retro-cue conditions, in the current study the probe-target type 

was matched to the retro-cue condition. For example, while a colour retro-cue was presented, 

participants were always required to retrieve the corresponding location feature (see Materials and 

Procedure for further details). Multi-feature objects were presented during encoding, given prior 

work suggesting that the number of features an item comprises does not impact visual WM 

capacity (Luck & Vogel, 1997; Luria & Vogel, 2011; Vogel et al., 2001). A hierarchical Bayesian 

three-parameter mixture model was applied to observed recall error (Oberauer et al., 2017), with 

particular interest in binding errors given Rajsic and Wilson’s (2014; Experiment 1) finding that 

swap errors were higher while recalling location compared to colour, consistent with work 

suggesting that location features may be privileged in WM (e.g., Johnson & Pashler, 1990; 

Schneegans & Bays, 2017; Treisman & Gelade, 1980). Firstly, it was hypothesised that if location 

features are privileged without the requirement of selective attentional resources, then binding 

errors should be lower when recalling a location compared to recalling colour in the no-

cue/baseline condition. Secondly, if attention impacts the binding of location and non-location 

features, then guiding attention via a location-based retro-cue should reduce colour binding errors 

relative to a no-cue/baseline condition. Conversely, guiding attention via a colour retro-cue should 

not reduce binding errors when recalling a location feature relative to a no-cue baseline condition.  

Finally, if non-location features are not bound to their respective locations and attentional 

resources do not selectively maintain location features, then binding errors should be similar, 

irrespective of the cue condition (i.e., none, colour-cue, and location-cue).  

Method 

Participants. In line with Experiment 2 in Chapter 2, 24 complete and valid datasets were 

collected from participants aged 18-35 through Prolific (Male = 11, Female = 13; Mage = 25.16).  
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Participants received monetary compensation (UK £7.50 per hour) for their participation. All 

participants reported normal or corrected-to-normal vision and colour vision and did not 

participate in the experiments of the previous chapter. Furthermore, eight participants were 

excluded for not passing a colour blindness task, and a further 8 participants were excluded due to 

not completing the whole study. 

Materials and Procedure. The experiment was conducted online through lab.js 

(Henninger et al., 2022) hosted on the JATOS server Mindprobe (Lange et al., 2015). After a brief 

demographic questionnaire and colour blindness task, participants completed three blocks (100 

trials each) of a visual WM task, with 6 practice trials proceeding each block. Each trial began 

with a fixation cross presented for 500 ms followed by an array of six coloured shapes 

simultaneously presented in random locations around an invisible circle for 1000 ms.  The colour, 

shape, and location features of each item were randomly sampled from 360ᵒ of continuous values, 

with a minimum distance of 60ᵒ of separation in each feature dimension from the other memoranda 

in the array: The colours were sampled along a circle in the CIELAB colour space (with L = 70, a 

= 20, b = 38 , and radius = 60), the shapes were randomly drawn from a shape wheel (Li et al., 

2020), and the locations were randomly drawn along an invisible circle (radius = 150ᵒ). Depending 

on the block, the retention interval (1250 ms) entailed one of three retro-cue conditions (see Figure 

8). The retro-cue conditions (none, colour, location) were blocked and counterbalanced, and 

followed a within-subjects design. Following the offset of the memory array (500 ms), the 

retention interval either remained blank with the fixation cross presented at the centre of the screen 

(none), or a retro-cue was displayed at the centre of the screen for 250 ms following the offset of 

the memory array (500 ms) and preceding the onset of the retrieval phase (500 ms). The retro-cue 

indicated with 100% validity which of the items from the memory array would be tested. 
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Specifically, either a circular coloured-dot (colour retro-cue), or an arrow pointing to the location 

of the to-be-tested item (location retro-cue) was presented, depending on the block.  

During the retrieval phase, participants were probed with either the colour or location of 

one item of the memory array to prompt recall of item’s location or colour, respectively.  The 

nature of the probe-type (colour or location) depended on the block: During the no-cue block, there 

was a random mix of colour and location probes presented at the centre of the screen. During the 

colour-cue block, participants always received a colour-probe (presented at the centre of the 

screen) to recall the item’s location, whereas during the location-cue block, participants always 

received a location-probe to recall the item’s colour. For each probe-target-type, retrieval occurred 

along a continuous location or colour wheel (depending on the to-be-recalled target feature), 

wherein participants used a mouse to click along the corresponding wheel.  The recall attempt was 

unspeeded, and participants were instructed to prioritize accuracy over speed in their responses. 

There was an inter-trial interval of 1000 ms followed by a screen that said “Ready?” – to which 

participants pressed the spacebar to proceed to the next trial. After the practice trials and every 10 

test trials, participants received feedback about their average recall accuracy (expressed as a 

percentage of their mean reproduction error, i.e., 100 – 100 * mean error/180). Participants were 

offered a break after every 50 trials.   
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Figure 8 

Example Trial Sequence that Varied Retro-Cues (Baseline/None, Colour, Location) and Probe-

Target Types (Colour-Location or Location-Colour, Colour-Location, Location-Colour).  

Data Analysis. Analysis scripts to reproduce the results for the experiment are available 

on the open science framework (OSF; https://tinyurl.com/yc8j5jnn). Observed recall error data 

collected was fit with a hierarchical Bayesian three-parameter mixture model (Oberauer et al., 

2017). The model assumes that the distribution of observed responses reflects the contributions of 

(i) the probability that the tested feature is held within WM with a (ii) specific precision, and (iii) 

the probability of misbinding or (iv) guessing when the participant has not stored the information 

in WM. My hypotheses pertained to binding errors (i.e., the probability of recalling non-target but 

presented features from the array). The model was fit using rjags (Plummer, 2016) via Markov 

https://tinyurl.com/yc8j5jnn
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Chain Monte Carlo sampling. I verified good convergence and conducted posterior predictive 

checks to ensure appropriate model fit. 

Results 

In the current study, the aim was to investigate whether location features are privileged in 

visual WM, such that guiding attention to location features yields stronger benefits over non-

location features during recall from visual WM. Against my first hypothesis, there was no credible 

difference in binding errors when recalling location compared to colour in the baseline condition 

(estimated difference = 0.07 [-0.06, 0.19]). This result could be due to the overall low binding 

errors in the baseline conditions (see Figure 9C). Additionally, I did not observe credible effects 

in the target memory, precision or guessing parameters (see Table 7 for a full summary). Thus, my 

first result suggests that there are no differences between retrieving location and colour features. 

This suggests that while attention is not guided, colour and location features are retrieved similarly 

and without a bias towards the nature of the to-be-retrieved feature. Therefore it can be argued that 

location features are not privileged. 

Against my second hypothesis, I did not find credible effects in binding errors (see Table 

8 for a full summary) irrespective of the nature of the retro-cue (colour or location) or the probe-

target type (colour-location or location-colour). This is congruent with the findings of Experiment 

2 of Chapter 2. There were, however, credible effects of guiding attention via colour and location 

retro-cues to target memory and guessing, consistent with Experiment 2 in Chapter 2.  Overall, 

guiding attention via colour and location retro-cues improved target memory and reduced 

guessing, irrespective of the nature of the retro-cue or the target feature, but had no impact on 

binding errors.   
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Congruent with my third hypothesis, I found that binding errors were similar, irrespective 

of the retro-cue condition (none, colour, and location). This suggests that non-location features are 

not bound to their respective location features. Further, this suggests that attentional resources are 

not biased towards location or non-location features.



 
 

Table 7  

Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter of the Colour-Location vs. Location-Colour Baseline/None 

Retro-Cue Types. 

Probe-target type Cue-Type P(Target) P(Binding Error) P(Guessing) Precision 

Colour-Location 

vs. Location-Colour 

Baseline/None 0.00 [-0.09, 0.10] 0.07 [-0.06, 0.19] -0.07 [-0.23, 0.09] -0.45 [-3.78, 2.79] 

 

Table 8 

Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter for Baseline/None vs. Colour and Location Retro-Cue 

Types. 

Probe-target type Baseline/None vs. P(Target) P(Binding Error) P(Guessing) Precision 

Colour-Location Colour 0.19 [-0.09, 0.29] 0.08 [-0.07, 0.21] -0.27 [-0.44, -0.09] 1.55 [-1.26, 4.24] 

Location-Colour Location 0.29 [-0.15, 0.44] 0.04 [-0.13, 0.19] -0.34 [-0.55, -0.10] 3.49 [-0.60, 7.48] 

Note: Effects in boldface font indicate credible effects 
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Figure 9  

Posterior Parameter Estimates for the Probability of Target Memory (A), Memory Precision (B), 

Binding Errors (C), and Probability of Guessing (D). Larger Dark Circles Indicate Group Means, 

Smaller Faded Circles Indicate Individual Means, and The Error Bars Show the 95% HDIs of the 

Posterior. 

 

Discussion 

Despite prior evidence supporting the notion that location features may be privileged in 

visual WM (Johnson & Pashler, 1990; Li & Saiki, 2015; Rajsic & Wilson, 2014; Schneegans & 
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Bays, 2017; Shepherdson et al., 2022), the current findings suggest that there are no observable 

differences in binding errors between retrieving a location and non-location feature in the no-

cue/baseline condition. First, binding errors were not lower when retrieving location versus colour 

in the no-cue condition, nor were there any differences in target memory, precision, or guessing. 

These findings therefore may suggest that location features are not privileged compared to colour 

features. With that being said, the binding errors in the no-cue conditions were low overall, which 

may have obscured potential differences between colour-location and location-colour binding 

errors.  

 In line with this first result, there were no credible retro-cue effects in binding errors for 

either colour or location, thus, suggesting that guiding attention does not impact binding errors, 

irrespective of the nature of the retro-cue or the tested feature dimension. However, credible retro-

effects in the target memory and guessing parameters were observed regardless of the retro-cue 

and probe-target type. These findings are aligned with prior work that has shown that retro-cues 

improve target recall regardless of the nature of the retro-cue (Arnicane & Souza, 2021; 

Experiment 2 in Chapter 2). Therefore, my findings suggest that guiding attention towards an in-

memory feature improves the quality of the in-memory features regardless of whether the to-be-

retrieved feature is location or colour. This suggests that visual WM maintenance of location and 

non-location features benefits from internal attentional resources without a bias towards a single 

feature dimension. This is inconsistent with FIT (Treisman & Gelade, 1980; Wheeler & Treisman, 

2002), as FIT argues that attention is selectively oriented towards location features during visual 

WM maintenance. If this were the case, while attention was guided via a location retro-cue in the 

current paradigm should have greatly improved colour target memory compared to location target 

memory. However, my findings did not suggest that the nature of the retro-cue improved target 
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memory for its associated feature dimension. Therefore it can be argued that during visual WM 

maintenance, the role of attention is global rather than local, in that, attention is not selective 

towards individual feature dimensions but rather WM maintenance is benefited from attention by 

keeping goal-relevant information active. Moreover, it can be argued that while FIT (Treisman & 

Gelade, 1980) is an influential model in visual perception, and it offers a conceptual framework 

for the role of attention during feature processing, it may not be the best explanation for feature 

binding in WM. Further research is required to determine the goal-orientated processing of visual 

features in WM.   

The question remains as to whether visual information is processed as in a feature-based 

or object-based manner. In line with my final hypothesis, my findings suggest that the lack of 

observable differences in binding errors between location and non-location features may indicate 

that visual information may be processed as bound representations (thus agreeing with the object-

based view). This suggests that multi-feature objects are represented in a bound state in visual 

WM. Arguably, this suggests that guiding attention via retro-cues strengthens the maintenance of 

in-memory bindings, thereby improving target memory. The current findings are also aligned with 

prior research that has demonstrated that attentional resources can be selectively guided towards a 

target feature to aid the maintenance of visual features within WM and improve recall performance 

(Hajonides et al., 2020; Astle et al., 2012; Li & Saiki, 2015; see Souza & Oberauer, 2016 for a 

review). In the current work, it was observed that retro-cues improved target memory and reduced 

guessing, irrespective of the nature of the target. It can therefore be argued that while the 

processing of visual information may be object-based and without a definitive bias towards 

location-based features, selectively guiding internal attentional resources towards an in-memory 

features strengthens their maintenance.     
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In summary, I investigated whether the processing of location features is privileged in 

visual WM over non-location features by manipulating the probe-target combination during 

retrieval and by guiding attention via feature-specific retro-cues. Against the findings of Rajsic 

and Wilson’s (2014; Experiment 1), I did not find any evidence to suggest that there are differences 

in binding errors between non-location (colour) and location features in visual WM. Moreover, I 

did not observe that guiding attention via location and colour retro-cues reduced colour and 

location binding errors, respectively, I did observe a benefit to target memory and a reduction in 

guessing while attentional resources were guided via both colour and location retro-cues. Taken 

together, my findings suggest that visual information may be processed in an object-based manner, 

with no differences between the to-be-retrieved feature type, but the representations can be 

strengthened by guiding attention via retro-cues.  
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Chapter 5 

Temporary removal underlies local working memory updating.  
 

Rationale 

Working memory (WM) updating is a core ability that allows one to replace outdated 

(irrelevant) information with new (relevant) information to be kept active during goal-orientated 

processing (Ecker, Oberauer, et al., 2014). For example, when shopping for a white pair of trainers, 

you may notice a red pair that are similar in style to the white pair and fixate on them to plan a 

new outfit. This simple example demonstrates how we can update our WM in a real-life situation, 

wherein outdated information is removed to prioritize updated information (see Lewis-Peacock et 

al., 2018). This raises the question of whether individual elements of information are updated in 

WM (e.g., just the colour of the sneaker) or whether the entire contents of WM are updated (the 

whole representation of the sneaker). Moreover, how may outdated information continue to 

influence WM after it has been updated?  

Prior research has suggested two parameters involved in WM updating: local updating and 

global updating (Kessler & Meiran, 2008). Local updating occurs when specific items can be 

independently maintained and updated irrespective of other information in WM. Conversely, 

global updating occurs when all the retained items are updated even if only one of them needs 

modifying (Kessler et al., 2015; Kessler & Meiran, 2008). Kessler and colleagues (2015) 

investigated whether local or global updating processes occur during partially or fully updating the 

contents of visual WM during a change detection task. During the task, participants were presented 

with a set of coloured squares, followed by one of several intervals: a fixation cross (baseline); the 

same set of coloured squares for a second time (repeated); a set of coloured squares where one or 
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more colours had updated (partial-update, i.e., 1/6, 2/6, or 4/6 squares updated in colour); or a new 

set of coloured squares (full-update, i.e., 6/6 squares updated in colour). The participants then 

determined whether a probe was the same or different in colour as in the last-presented array, 

which could have been the location of a repeated-item or an updated-item depending on the update 

condition. The findings suggested that visual WM updating may be local given the greater recall 

accuracy during the repeated-location probes compared to the updated-location probes, regardless 

of the number of items to update. If global updating had occurred instead, then all the items 

presented in the partial-update and full-update conditions should have been encoded as new, in 

which case there would be no observable recall benefit to probing repeated over updated locations. 

Thus, visual WM updating may predominantly rely on local rather than global updating, such that 

information is independently updated regardless of other information in WM. 

Although Kessler and colleagues’ research highlighted that visual WM updating may rely 

on local updating, it is unclear as to what happens to outdated information during updating. In a 

recent review, Lewis-Peacock and colleagues (2018) proposed that the removal of outdated 

information from WM could be either temporary or permanent. The authors posited that temporary 

removal momentarily withdraws outdated information, allowing goal-relevant information to be 

prioritized, but the outdated information may still be accessible if required for future processing. 

Conversely, permanent removal of outdated information relies on its withdrawal from WM when 

it is no longer goal relevant. The authors postulated that the removal of information from WM can 

occur through the removal of its content, context, or the content-context bindings. Supporting 

Lewis-Peacock and colleagues’ removal hypotheses, prior research has suggested that the removal 

of outdated information may occur through the unbinding of item-position associations (Ecker, 

Lewandowsky, et al., 2014). Further research has demonstrated that temporarily removing 
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outdated information (by means of suppression) during WM updating hinders the prioritization of 

goal-relevant information (Palladino et al., 2001) and reduces its recall accuracy (Carriedo et al., 

2016). Additionally, neuroscientific research has shown that the neural signatures for task-

irrelevant information decrease to baseline while outdated information is no longer prioritized in 

the focus of attention, but are decodable once again after the temporarily removed information 

returns to the focus of attention (Lewis-Peacock et al., 2012; Lewis-Peacock & Postle, 2012). 

Furthermore, neural patterns for outdated information decrease during its active removal from WM 

(Kim et al., 2020). While this evidence demonstrates that outdated information may be temporarily 

or permanently removed, prior work did not investigate which form of removal occurs during local 

WM updating. Therefore, given Kessler and colleagues’ (2015) suggestion that WM updating is 

local, it is of interest to understand whether outdated information is temporarily or permanently 

removed during local WM updating.  

Current Study 

I adapted Kessler and colleagues’ (2015) paradigm to address whether local updating 

requires the temporary or permanent removal of outdated information by using a continuous-report 

measure during the retrieval phase. Using a continuous-report paradigm builds on the prior work 

of Kessler and colleagues by revealing how removal impacts the mixture of components 

underlying observed recall error (i.e., the distance between the target colour and the participant’s 

response). Accordingly, we fit two hierarchical Bayesian three-parameter mixture models to recall 

error to estimate parameters of target recall, precision, binding errors, and guessing (e.g., Loaiza 

& Souza, 2019; Oberauer et al., 2017). Model 1 simulated the temporary removal of outdated 

information (via suppression) by including the irrelevant (outdated) and relevant (new) features 

during model fitting. Model 2 simulated the permanent removal of irrelevant information by 
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including only the relevant (new) features during model fitting. I applied a widely applicable 

information criterion (WAIC; Oberauer et al., 2017; Watanabe, 2021) to compare which model fit 

the data best.  

I hypothesized that if local WM updating requires the temporary removal of irrelevant 

information, then Model 1 will best fit the partial-updating conditions, and binding errors should 

occur most often during the partial-update conditions compared to the baseline, repeated and full-

update conditions. This should be particularly evident when probed with an updated item versus a 

repeated item. Conversely, if local WM updating relies on permanent removal, then Model 2 will 

best fit the full-update condition and binding errors should be similar across the partial- and full-

update conditions. These hypotheses pertain to binding errors, specifically given Lewis-Peacock 

and colleagues’ (2018) suggestion that temporary removal may involve unbinding item-position 

associations, in which case the irrelevant content may still be accessible and interfere with recall. 

 

Method 

Participants. In line with Kessler and colleagues’ (2015) paradigm, 30 complete and valid 

datasets were collected from participants aged 18-35 through Prolific who were compensated with 

UK £7.50/hour. All participants reported normal or corrected-to-normal vision and colour vision, 

and the latter was verified with a colour blindness task.  An additional 18 participants were 

excluded. 15 excluded participants did not meet the minimum colour vision requirements. One 

excluded participant did not continue with the current study after the completion of the colour 

blindness task. Two excluded participants did not complete the current study.  

Materials and Procedure. The experiment was conducted online through lab.js 

(Henninger et al., 2022) and was hosted on the JATOS server, Mindprobe 
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(https://jatos.mindprobe.eu; Lange et al., 2015). The experiment was conducted in two phases: 

Participants who successfully completed Phase 1 (demographic questionnaire and colour blindness 

test) were redirected to Phase 2 (main task), whereas those who did not meet the inclusion criteria 

were debriefed and compensated for their time up to that point. During Phase 2, the 400 total trials 

of the visual WM updating task followed a similar format (see Figure 10): After a fixation cross 

was presented for 600 ms, six coloured dots (of radius = 25°, arranged equidistantly around an 

invisible circle with a radius of 150°) were presented for 100 ms and followed by a 600 ms 

retention interval. The colours were sampled without replacement from 360 possible CIE*L*a*b 

colours (L = 70, a= 20, b = 38). Thereafter, in half (200) of the trials, participants were immediately 

directed to the retrieval phase (baseline condition), whereas the remaining trials presented a second 

array of coloured dots for 100 ms (update conditions: repeated, partial-update, or full-update). The 

trials of the baseline/update conditions were randomly intermixed. In the repeated condition, 

participants were presented with the original array of coloured dots for a second time. In the partial-

update conditions (1/6, 2/6, 4/6), some of the colours from the first array were updated in the 

second array (e.g., in the 1/6 partial-update condition, only one of the colours was updated and the 

remaining five were repeated). During the full-update (6/6) condition, all six colours of the second 

array were updated.  

During retrieval, participants were probed with a grey dot in the location of a prior 

presented dot and were required to recreate the colour of the probed location by moving their 

mouse along a colour wheel (radius = 250°). The probe was, by necessity, a repeated item in the 

baseline and repeated conditions, an updated item in the full-update condition, and a repeated or 

updated item with equal probability in the partial-update conditions. In the repeated, partial- and 

full-update conditions, participants were instructed to respond to the most recently presented array 
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of coloured dots (i.e., the repeated or updated dots). Participants completed 10 blocks of trials, 

with a break offered after 40 trials. After every 10 trials, participants received feedback about their 

average recall accuracy (expressed as a percentage of their mean reproduction error, i.e., 100 – 

100 * mean error/180). Before completing the 400 test trials, participants completed 6 practice 

trials and were provided with feedback about their average recall accuracy. 

 

Figure 10 

Example of the Task Procedure. From Top to Bottom, Baseline Condition, Update 0/6 (Repeated) 

Condition, Update 1/6, 2/6, or 4/6 Condition (Repeated-Item Location Probe, Updated-Item 

Location Probe), Update 6/6 Condition (Updated-Item Location Probe). 

 

Design and Data Analysis. The main independent variable of update conditions (baseline, 

0/6, 1/6, 2/6, 4/6, and 6/6 updates) was manipulated within-subjects, and the probe location 

(repeated or update) necessarily nested within each update condition (baseline and 0/6: repeated 
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only; partial updates: repeated and updated; full 6/6 update: updated only). Although the 

hypotheses did not pertain to the task performance between the update conditions, we followed 

Kessler and colleagues’ (2015, Experiment 1) analyses to determine whether the update conditions 

and probe locations impacted recall error by conducting a Bayesian analysis of variance 

(BANOVA) using the R package BayesFactor (Morey et al., 2022). Using a Bayesian approach 

allows for a comparison between two models based on the Bayes Factor (BF) statistic, which 

conveys the ratio between the likelihoods of the data under the two compared models. For example, 

to determine the evidence for a main effect of update condition, one would compare the likelihood 

of a model assuming an effect (M1) relative to the null model (M0; BF10). BFs are interpreted 

continuously, such that, a BF between 1 to 3 (or 0.1 to 0.3) is interpreted as ambiguous, and BFs 

greater than 3 and 10 (0.30 and 0.10) are substantial and strong evidence for/against the model in 

the numerator relative to the model in the denominator.    

To examine the hypotheses, observed recall error was fit with two different versions of a 

hierarchical Bayesian three-parameter mixture model (Oberauer et al., 2017). This model assumes 

that the distribution of observed responses reflects a mixture of different contributions: (i) the 

probability that the tested feature is held within working memory, (ii) with a specific precision, 

and the probability of (iii) binding errors or (iv) guessing. Model 1 simulated temporary removal 

(via suppression) of outdated feature information by including outdated and new, updated, colour 

information during model fitting. Model 2 simulated permanent removal by only including the 

updated colour information during model fitting. The two models were fit using rjags (Plummer 

et al., 2022) via Markov Chain Monte Carlo sampling. I verified good convergence by visually 

inspecting the plotted chains, and I conducted posterior predictive checks to ensure appropriate 

model fit by verifying that the R-hat (Ȓ) statistic in each model fit was lower than 1.06. The Ȓ 



  92 

 

statistic in both models fit were lower than 1.06, thus indicating that the models fit could 

adequately discriminate the data that was fit to each model.  Posterior estimates of each parameter 

are reported in Figures 2 and 3, and the posterior differences between the conditions for each 

parameter (and their 95% HDIs) in Table 2. The anonymized raw data and analysis scripts are 

openly accessible on the Open Science Framework (OSF; https://tinyurl.com/yuzey69).   

Results 

Following Kessler and colleagues’ (2015) analyses, I conducted two BANOVAs on recall 

error (see Table 9) given that the independent variables were not fully crossed. First, I investigated 

whether the presentation of a second memory array affected recall error in a one-way within-

subjects BANOVA comparing the baseline, 0/6, and 6/6 update conditions. Consistent with 

Kessler and colleagues, I observed strong evidence that the update condition impacted recall error, 

BFUpdate/Null = 105.96. Follow-up tests showed ambiguous evidence against a difference between 

the baseline and 6/6 conditions, BF10 = 0.53. However, inconsistent with Kessler and colleagues, 

repeating the array twice in the 0/6 condition did not substantially impact recall error compared to 

the baseline (BF10 = 0.52) and 6/6 (BF10 = 2.12) conditions. Next, a 3 (partial-updates: 1/6, 2/6, 

4/6) x 2 (probe-location: repeated, updated) within-subjects BANOVA on recall error showed 

evidence against an effect of partial-update conditions, BF = 0.21, and the interaction, BF = 0.20, 

similar to Kessler and colleagues’ findings. However, incongruent with their results, I did not 

observe that repeated probe locations yielded lower recall error than updated locations, BF =0.12. 

Overall, the evidence for any effects of update condition or probe location on recall error were 

weak compared to Kessler and colleagues’ original findings, and thus the hypothesized modelling 

of the processes underlying local WM will be helpful.     

  

https://tinyurl.com/yuzey69
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Table 9 

Means (and Standard Deviations) of Recall Error as a Function of Update Condition. 

  Update condition 

Probe location Baseline 0/6 1/6 2/6 4/6 6/6 

Repeated 67.31 (12.09) 62.42 (16.99) 66.72 (22.96) 70.37 (18.61) 67.85 (19.12) - 

Updated - - 66.77 (16.20) 70.88 (17.07) 70.77 (17.69) 72.08 (16.18) 

 

To examine the hypotheses, I considered two models in our analysis: Model 1 simulated 

the temporary removal of irrelevant colour features by including the irrelevant (outdated) colours 

and the relevant (new) colours during model fitting, whereas Model 2 simulated the permanent 

removal of irrelevant colours by only including the relevant (new) colours during model fitting. I 

compared the model fits through applying a widely applicable information criterion (WAIC; 

Gelman et al., 2014; Oberauer et al., 2017; Watanabe, 2021), which indicated that Model 1 best fit 

both the partial-updating and full-update conditions (see Table 10). These results support the 

hypothesis that temporary removal of outdated (irrelevant) best fits the observed responses during 

the partial-update conditions, as well as the full-update condition. Thus, local WM updating may 

rely on the temporary removal of irrelevant information regardless of the number of updates.    
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Table 10 

WAIC Values for Each Updating Condition (Partial and Full), Per Model Simulating Temporary 

and Permanent Removal. 

Model Simulating Updating Condition WAIC 

1 Temporary Removal 1/6 partial update 2.14 

  2/6 partial update 1.42 

  4/6 partial update 22697.74 

  6/6 full update -9195.96 

2 Permanent Removal 1/6 partial update 33674.80 

  2/6 partial update 31061.11 

  4/6 partial update 36826.78 

  6/6 full update -4944.28 

Note. Lower WAIC values indicate better model fit. 

 

The posterior parameter estimates of Model 1 are presented in Figure 11, and the 

differences of the partial-update conditions relative to the baseline, repeated (0/6) and full-update 

(6/6) conditions are presented in Table 11.  The results showed credibly greater binding errors in 

the 2/6 and 4/6 partial-update conditions relative to the baseline condition for both repeat and 

update probe locations. There were also credibly greater binding errors in the full-update (6/6) 

condition relative to the 1/6 partial-update condition as well as compared to the baseline (latter not 

presented in Table 4; estimate = 0.29 [0.13, 0.44]). This suggests that binding errors became more 

prevalent with an increased number of items to update. There were also a couple of credible 

differences in the probabilities of guessing and recalling the target for repeat probes that were not 

as systematic, and so I refrain from any strong interpretation. The remaining comparisons were 

not credible.   

Although Model 1 fit the data best, for the sake of comparison and completeness, I also 

report on the parameter estimates and differences of Model 2 in Figure 12 and Table 12. The 

striking difference is that there were no longer any credible differences in binding errors between 



  95 

 

the baseline and partial-update conditions in Model 2 as was the case in Model 1. This reinforces 

the notion that the better fit of Model 1 that simulates temporary removal likely results from the 

residual traces of the updated memory items that lead to binding errors, which is not captured in 

Model 2 that simulates permanent removal.  
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Table 11 

Model 1 Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter of Partial-Update Conditions versus the 

Baseline, Repeated and Full-Update Conditions. 

Note. Effects in boldface font indicate credible effects. 

Comparison Partial-Update 

Condition 

Probe 

Location 

P(Target) P(Binding Error) P(Guessing) Precision 

Baseline vs. 1/6 Repeat 0.03 [-0.10, 0.16] 0.08 [-0.07, 0.23] -0.11 [-0.28, 0.06] 1.12 [-2.46, 4.88] 

  Update 0.04 [-0.08, 0.15] 0.13 [-0.01, 0.27]  -0.17 [-0.35, 0.01] 2.54 [-2.34, 8.01] 

 2/6 Repeat -0.01 [-0.12, 0.11] 0.21 [0.06, 0.35] -0.20 [-0.37, -0.04] -0.32 [-4.13, 3.85] 

  Update -0.03 [-0.14, 0.07] 0.18 [0.03, 0.34] -0.15 [-0.33, 0.04] 1.91 [-3.11, 7.51] 

 4/6 Repeat 0.01 [-0.11, 0.11] 0.21 [0.07, 0.36] -0.22 [-0.40, -0.06] 3.27 [-2.31, 9.45] 

  Update -0.06 [-0.17, 0.05] 0.18 [0.00, 0.37] -0.13 [-0.36, 0.09] 0.52 [-3.72, 5.19] 

Repeated (0/6) vs. 1/6 Repeat -0.03 [-0.16, 0.12] -0.01 [-0.16, 0.17] 0.03 [-0.17, 0.20] 1.58 [-2.34, 5.38] 

  Update -0.03 [0.15, 0.10] 0.06 [-0.15, 0.10] -0.03 [-0.22, 0.18] 2.99 [-2.25, 8.42] 

 2/6 Repeat -0.07 [-0.19, 0.06] 0.13 [-0.03, 0.30] -0.07 [-0.25, 0.12] 0.14 [-3.72, 4.54] 

  Update -0.09 [-0.21, 0.04] 0.11 [-0.06, 0.28] -0.01 [-0.20, 0.20] 2.86 [-2.23, 8.72] 

 4/6 Repeat -0.05 [-0.17, 0.06] 0.14 [-0.03, 0.30] -0.08 [-0.26, 0.10]  3.73 [-1.95, 10.37] 

  Update -0.12 [-0.23, -0.01] 0.11 [-0.09, 0.31] 0.01 [-0.23, 0.24] 0.98 [-3.63, 5.93] 

Full Update (6/6) 

vs. 

1/6 Repeat 0.08 [-0.06, 0.22] -0.21 [-0.39, -0.01] 0.13 [-0.10, 0.33] 0.85 [-3.97, 5.31] 

 Update 0.09 [-0.04, 0.21]  -0.16 [-0.35, 0.03] 0.07 [-0.18, 0.29] 2.29 [-3.43, 8.37] 

2/6 Repeat 0.05 [-0.07, 0.17] -0.08 [-0.28, 0.11] 0.03 [-0.19, 0.24] -0.59 [-5.03, 4.62] 

 Update 0.02 [-0.10, 0.14] -0.11 [0.30, 0.08] 0.09 [-0.14, 0.31] 2.13 [-3.57, 8.50] 

4/6 Repeat 0.06 [-0.06, -0.17] -0.08 [-0.27, 0.11] 0.02 [-0.19, 0.23] 3.00 [-3.28, 9.69] 

 Update 0.00 [-0.12, 0.12] -0.11 [-0.34, 0.10] 0.11 [-0.15, 0.36] 0.25 [-4.80, 5.74] 
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Figure 11 

Posterior Parameter Estimates of Model 1 for the Probability of Target Memory (A), Memory 

Precision (B), Binding Errors (C) and Probability of Guessing (D). Larger Dark Circles Indicate 

Group Means, Smaller Faded Circles Indicate Individual Means, and the Error Bars Show the 

95% HDIs of the Posterior. 
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Table 12 

Model 2 Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter of Partial-Update Conditions versus the Full-

Update (6/6) Condition. 

Comparison Partial-Update 

Condition 

Probe-

Location 

P(Target) P(Binding Error) P(Guessing) Precision 

Baseline vs. 1/6 Repeated 0.03 [-0.10, 0.16] 0.04 [-0.11, 0.19] -0.07 [-0.25, 0.10] 0.91 [-3.06, 5.12] 

  Update 0.04 [-0.07, 0.15] 0.06 [-0.08, 0.20] -0.10 [-0.28, 0.07] 3.14 [-2.19, 9.00] 

 2/6 Repeated 0.00 [-0.12, 0.12] 0.08 [-0.05, 0.21] -0.08 [-0.24, 0.10] 0.72 [-3.68, 6.02] 

  Update -0.03 [-0.15, 0.09] 0.08 [-0.07, 0.24] -0.05 [-0.25, 0.16] 2.47 [-3.12, 8.83] 

 4/6 Repeated -0.02 [-0.14, 0.11] -0.02 [-0.16, 0.12] 0.03 [-0.17, 0.24] 4.65 [-1.98, 12.53] 

  Update -0.04 [-0.16, 0.07] 0.06 [-0.09, 0.22] -0.02 [-0.23, 0.19] -0.38 [-4.61, 4.36] 

Repeated (0/6) vs. 1/6 Repeated -0.03 [-0.17, 0.11] -0.04 [-0.19, 0.14] 0.06 [-0.12, 0.26] 1.40 [-2.65, 5.85] 

  Update -0.02 [-0.15, 0.10] -0.01 [-0.17, 0.14] 0.04 [-0.16, 0.24] 3.63 [-2.02, 9.56] 

 2/6 Repeated -0.06 [-0.19, 0.06] 0.00 [-0.14, 0.15] 0.06 [-0.11, 0.25] 1.21 [-3.65, 6.25] 

  Update -0.09 [-0.22, 0.03] 0.01 [-0.17, 0.17] 0.09 [-0.13, 0.29] 2.96 [-2.72, 9.30] 

 4/6 Repeated -0.08 [0.21, 0.06] -0.09 [-0.25, 0.07] 0.17 [-0.05, 0.40] 5.14 [-1.97, 12.69] 

  Update -0.10 [-0.24, 0.02] -0.01 [-0.18, 0.16] 0.11 [-0.12, 0.33] 0.11 [-4.10, 5.24] 

Full Update (6/6) 

vs. 

1/6 Repeated 0.10 [-0.04, 0.22] 0.03 [-0.15, 0.20] -0.13 [-0.32, 0.08] 1.33 [-3.22, 6.18] 

 Update 0.10 [-0.02, 0.22] 0.06 [-0.11, 0.21] -0.16 [-0.37, 0.06] 3.56 [-2.41, 9.83] 

2/6 Repeated 0.06 [-0.06, 0.18] 0.07 [-0.08, 0.22] -0.13 [-0.32, 0.05]  1.15 [-4.15, 6.70] 

 Update 0.03 [-0.09, 0.15] 0.08 [-0.11, 0.25] -0.11 [-0.33, 0.13] 2.89 [-3.33, 9.76] 

4/6 Repeated 0.05 [-0.08, 0.18] -0.02 [-0.19, 0.14] -0.02 [-0.25, 0.21] 5.07 [-1.86, 13.28] 

 Update 0.02 [-0.09, 0.14] 0.06 [-0.10, 0.23] -0.08 [-0.31, 0.13] 0.04 [-4.71, 5.37] 
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Figure 12 

Posterior Parameter Estimates of Model 2 for the Probability of Target Memory (A), Memory 

Precision (B), Binding Errors (C) and Probability of Guessing (D). Larger Dark Circles Indicate 

Group Means, Smaller Faded Circles Indicate Individual Means, and the Error Bars Show the 

95% HDIs of the Posterior. 
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Discussion 

In the current study, I investigated whether local WM updating relies on the temporary or 

permanent removal of outdated (irrelevant) information. To reiterate, Lewis-Peacock and 

colleagues (2018) proposed that during temporary removal, outdated information is momentarily 

withdrawn from WM, but it is still accessible if the outdated information is required for future 

goal-orientated processing. On the other hand, during permanent removal, outdated information is 

no longer active within WM, and it cannot be accessed for future processing. I investigated whether 

temporary or permanent removal underlies local WM updating by adapting a visual WM updating 

task (Kessler et al., 2015) and comparing the fit of the data to two versions of a three-parameter 

mixture model (Bays et al., 2009; Oberauer et al., 2017) that simulated temporary or permanent 

removal. The findings suggested that the model simulating temporary removal of outdated 

information best explained local WM updating, as evidenced by lower WAIC values in both the 

partial- and full-updating conditions compared to the WAIC values of the model simulating 

permanent removal. The parameter estimates of Model 1 further reinforced the notion that outdated 

information still impacted observed recall error given that binding errors were credibly higher 

during the partial-update conditions compared to the baseline, whereas this was not the case for 

Model 2.    

These findings suggest that opportunities for binding errors increase when outdated 

information is still accessible in WM. Specifically, binding errors were more frequent during the 

2/6 and 4/6 partial-update conditions, as well as the 6/6 full-update condition, relative to the 

baseline. This suggests that there are greater opportunities for new feature information to become 

misbound as the outdated information remaining in WM increases. This pattern was not observable 

with recall error alone. Indeed, contrary to Kessler and colleagues’ (2015) findings, I did not 
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observe that repeating an array (0/6 vs. baseline and 6/6) nor repeated probes (vs. updated probes) 

impacted task performance.  One explanation of this may be that participants failed to update WM 

during the current study: If this were the case, recall error (Table 9) would have been much higher 

than I have observed. This highlights that a modelling approach allows for a closer examination 

of underlying WM updating processes underlying task performance. That is, although I did not 

observe evidence for local updating in recall performance, applying a mixture model revealed that 

temporary removal most strongly impacts binding errors. Overall, the current findings indicate that 

visual information can be locally updated in WM, however this comes with a cost when outdated 

information is temporarily removed, as evidenced by the increase in binding errors while more 

than one item is to be updated. Therefore, this highlights that participants were indeed able to 

update the contents of their WM, but more powerful statistical measures are required to understand 

the underlying processes (such as the models fit in the current study). 

Furthermore, I did not find credible differences in binding errors while comparing the 

partial-update conditions to the repeated condition, and I only observed a credible difference in 

binding errors in the 1/6 partial-update condition relative to the full-update condition. Thus, the 

differences between and within the partial-update and full-update conditions were less evident than 

when comparing those conditions to a baseline, where no new information was presented. These 

findings suggest that the presence of outdated information may interfere with the binding of new 

(updated) information to its associated feature, thus causing more opportunities for binding errors 

to occur and irrespective of whether the binding is partially or fully updated. Conversely, I found 

that binding errors were similar in Model 2 (simulating permanent removal), irrespective of the 

number of items that were to be updated. This suggests that the pattern of binding errors of Model 

1 was specific to the outdated items, which yielded a better fit to the data compared to Model 2. 
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Thus, these results collectively suggest that local WM updating relies on the temporary removal 

of outdated information. 

One could argue that during temporary removal, while outdated information is still 

accessible in WM, the prioritization of new (updated) bindings is fickle and outdated information 

may interfere with one’s ability to bind new information together. This concurs with prior research 

that has argued that irrelevant information interferes with the binding of new information during 

WM updating. For example, Szmalec and colleagues (2011) argued that during WM updating, to-

be-retained bindings may be influenced by proactive interference from irrelevant information (i.e., 

the phenomena in which prior information interferes with new learning). The current findings from 

the model simulating temporary removal are consistent with these accounts, such that while 

outdated information is temporarily removed (but still accessible), binding new information to in-

memory information comes at a cost: The presence of outdated information harms the maintenance 

of correct updated-retained bindings (e.g., a new colour is bound to its associated location). In the 

case of temporary removal, not only are updated-retained bindings present in WM, but arguably 

outdated-retained bindings (e.g., an outdated colour and its associated location) are also accessible 

(although outdated-retained bindings may be suppressed or inhibited). Therefore, prioritizing the 

new-retained binding while the outdated-retained binding is still accessible leads to source 

confusion during recall, in turn, the new-retained binding is confused with the outdated-retained 

binding during prioritization and thus, opportunities for binding errors occur. Future research may 

consider applying Oberauer and colleagues’ (2017) Bayesian hierarchical interference mixture 

model to understand whether interference of outdated-retained bindings truly impacts new-

retained bindings.   
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On the contrary, in the model simulating permanent removal, we observed that binding 

errors were similar irrespective of the update condition and the probe location. Lewis-Peacock and 

colleagues (2018) proposed that during permanent removal, outdated information is unbound from 

its context (i.e., content-context binding). The findings of the model simulating permanent removal 

suggests that this may be the case: While outdated-retained content-context bindings are not 

present in WM, then only the updated-retained content-context bindings are prioritized. Prior work 

has also argued that outdated information is removed through the unbinding item-position bindings 

(Ecker, Lewandowsky, et al., 2014), and location-based features (such as an item’s position) are 

contextual (Ecker et al., 2013). Thus, it can be argued that during permanent removal, prioritizing 

updated-retained bindings relies on the prioritization of contextual information. This suggests that 

during permanent removal, retained contextual information is favoured over the updated content. 

Through this prioritization, updated information may be directly bound to its respective context 

and without outdated-retained bindings hindering the direct binding. Thus, the direct binding 

between updated and contextual information may explain why fewer binding errors occur during 

permanent removal.  

In summary, the current chapter demonstrates that the temporary removal of outdated 

information may best explain local WM updating. My findings show that while outdated 

information is still accessible in WM, binding errors increase with the increased number of items 

that are updated. I interpret this to suggest that the binding of updated and retained information is 

fickle and outdated-retained bindings may interfere with this. Conversely, the model simulating 

permanent removal indicated that binding errors are similar, irrespective of the number of items 

that are to be updated. This may be explained by the prioritization of an item’s contextual features 

during permanent removal and one’s ability to bind updated information to its respective context.  
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Chapter 6 

Locally updating shapes is more difficult than locally updating colours. 
 

Rationale 

Following the findings of Chapter 5, I examined whether updating an alternative feature 

dimension (i.e., the shape of an item) would produce the same pattern of results as that of Chapter 

5. If shape features are processed in the same manner as colour features (Chapter 5), then the 

findings of the previous chapter should be replicated when using recalling shapes. This finding 

would be aligned with my findings from the previous chapters (Chapter 2-4), wherein I observed 

that the processing and maintenance of visual information in WM is similar, irrespective of the 

features’ nature. Moreover, this would indicate that temporary removal of outdated information 

occurs during local WM updating, irrespective of the nature of the to-be-updated feature 

dimension. The hypotheses remained the same as that of Chapter 5: If local WM updating requires 

the temporary removal of irrelevant information, then Model 1 will best fit the partial-updating 

conditions, and binding errors should occur most often during the partial-update conditions 

compared to the baseline, repeated and full-update conditions. This should be particularly evident 

when probed with an updated item versus a repeated item. Conversely, if local WM updating relies 

on permanent removal, then Model 2 will best fit the full-update condition. If local WM updating 

relies on the permanent removal of irrelevant features, then binding errors should be similar across 

the partial- and full-update conditions. 

 

Method 

Participants. In line with Chapter 5, 30 complete and valid datasets were collected from 

participants aged 18-35 through Prolific who were compensated with UK £7.50/hour. All 
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participants reported normal or corrected-to-normal vision and colour vision, and the latter was 

verified with a colour blindness task before starting the experiment.  Seventeen participants were 

excluded from the current study due to not meeting the minimum colour vision requirement. 

Materials, Procedure, and Analysis. The materials, procedure and analysis were identical 

to Chapter 5 with the following exceptions: The current study manipulated whether shapes 

presented in grey were required to-be-updated in the update conditions rather than coloured dots 

(see Chapter 5). The six shapes were randomly sampled from 360 shapes (Li et al., 2020) with a 

minimum distance of 60° between them to reduce the similarity between them. During the retrieval 

phase, a shape wheel was presented rather than a colour wheel. Depending on the update condition, 

participants were probed on a repeated-item location or an updated-item location and were required 

to retrieve the corresponding shape by moving their mouse along the shape wheel. The anonymised 

raw data, analysis scripts and experiment materials are available on the open science framework 

(OSF; https://tinyurl.com/yc275d9s).  

 

Results 

In line with Chapter 5 and Kessler and colleagues (Experiment 1, 2015), I conducted a two 

BANOVAs on recall error (Table 13). First, a one-way within-subjects BANOVA comparing the 

baseline, 0/6, and 6/6 update conditions was conducted to investigate whether the presentation of 

a second memory array affected recall error. Inconsistent with Chapter 5 and Kessler and 

colleagues (Experiment 1, 2015), substantial evidence against update condition impacting recall 

error was observed, BFUpdate/Null = 0.13. Further follow-up tests showed evidence against a 

difference between the baseline and 6/6 condition, BF10 = 0.32. Consistent with Chapter 5, 

repeating the array twice in the 0/6 condition did not substantially impact recall error compared to 

https://tinyurl.com/yc275d9s
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the baseline (BF10 = 0.27), and 6/6 condition (BF10 = 0.29). Next, a 3 (partial-updates: 1/6, 2/6, 

4/6) x 2 (probe location: repeated, updated) within-subjects BANOVA on recall error showed 

evidence against an effect of partial-update conditions, BF10 = 0.29, and the interaction, BF10 = 

0.16, similar to the findings of Chapter 5 and Kessler and colleagues’ findings. Consistent with the 

findings of Chapter 5, repeated probe locations did not yield lower recall error than updated 

locations, BF = 0.14. In line with the initial findings of Chapter 5, overall, the evidence for any 

effects of update condition or probe location on recall error were weak compared to Kessler and 

colleagues’ original findings. 

 

Table 13 

Means (and Standard Deviations) of Recall Error as a Function of Update Condition. 

  Update condition 

Probe location Baseline 0/6 1/6 2/6 4/6 6/6 

Repeated 83.00 (4.78) 82.69(9.14) 79.49(14.19) 83.49(12.51) 84.90 (12.93) - 

Updated - - 81.85 (11.69) 82.11 (14.38) 84.62 (11.32) 81.49 (10.65) 

 

Following the analyses of Chapter 5, the models simulating temporary and permanent 

removal were compared by applying a widely applicable information criterion (WAIC; Gelman et 

al., 2014; Oberauer et al., 2017; Watanabe, 2021). The result of the model comparison was mixed 

(see Table 14). Model 1 best fit the 2/6 partial update and 6/6 full update conditions, whereas 

Model 2 best fit the 1/6 partial update and the 4/6 partial update condition. This may suggest that 

the models fitted do not adequately explain temporary and permanent removal of shape features 

in visual WM. Furthermore, this may indicate that updating shapes is more difficult than colour 

features. Further comparison between the recall error of Chapter 5 and the current chapter may be 

needed to understand whether this is the case.  
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Table 14 

WAIC Values for Each Updating Condition (Partial and Full), Per Model Simulating Temporary 

and Permanent Removal.  

Model Simulating Updating Condition WAIC 

1 Temporary Removal 1/6 Partial Update 33674.80 

  2/6 Partial Update 31061.11 

  4/6 Partial Update 36826.78 

  6/6 Full Update -4944.26 

2 Permanent Removal 1/6 Partial Update 28296.88 

  2/6 Partial Update 32885 

  4/6 Partial Update 30029.27 

  6/6 Full Update -4252.35 

Note. Lower WAIC values indicate better model fit. 

 

The posterior parameter estimates of Model 1 are presented in Figure 13, and the 

differences of the partial-update conditions relative to the baseline, repeated (0/6) and full-update 

(6/6) conditions are presented in Table 15. Despite the findings of Chapter 5, it was observed that 

binding errors were similar in the model simulating temporary removal, with only a credible 

difference in the 1/6 condition (with an updated probe location): difference = 0.28 [0.04, 0.52]. 

While not credible (except for the 1/6 partial-update condition), the similarity suggests that binding 

errors occur regardless of the number of updates that are required and the probe location. Alongside 

the credible difference in the 1/6 partial-update condition, a credible difference in guessing in the 

1/6 update condition (update probe location) was observed: difference = -0.35 [-0.61, -0.06]. No 

credible differences were observed in target memory or precision while comparing the partial-

update conditions to the baseline condition, repeated, and full-update conditions.  

Table 16 and Figure 14 show the results of Model 2. Similarly to Model 1, comparing the 

baseline to the partial-update conditions, credible effects of updating were observed in binding 
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errors while 1/6 items were to-be-updated, and the probe location was update in nature (rather than 

repeat). Further credible effects were observed while comparing the 6/6 update condition to the 

partial-update conditions, but once again only while 1/6 items were updated. Credible effects were 

also observed in guessing while 1/6 items were updated. Given the similarity of the findings of 

Model 1 and Model 2, locally updating shape features may be more difficult than locally updating 

colour features. Further analyses would be required to determine whether this is the case.  
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Table 15 

Model 1 Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter of Partial-Update Conditions versus the 

Baseline, Repeated and Full-Update Conditions. 

Note. Effects in boldface font indicate credible effects. 

  

Comparison Partial-Update 

Condition 

Probe 

Location 

P(Target) P(Binding Error) P(Guessing) Precision 

Baseline vs. 1/6 Repeat 0.06 [-0.03, 0.15] -0.01 [-0.19, 0.16] -0.05 [-0.27, 0.17] -0.94 [-4.85, 3.15] 

  Update 0.07 [-0.04, 0.17] 0.28 [0.04, 0.52]  -0.35 [-0.61, -0.06] 1.16 [-4.30, 8.75] 

 2/6 Repeat 0.01 [-0.08, 0.10] 0.13 [-0.11, 0.43] -0.14 [-0.49, 0.16] -0.76 [-4.93, 3.78] 

  Update 0.03 [-0.05, 0.11] 0.08 [-0.11, 0.28] -0.12 [-0.34, 0.13] 2.14 [-4.06, 9.52] 

 4/6 Repeat -0.01 [-0.09, 0.07] 0.14 [-0.08, 0.38] -0.14 [-0.41, 0.11] 2.06 [-3.92, 10.11] 

  Update -0.03 [-0.10, 0.05] 0.14 [-0.07, 0.37] -0.11 [-0.38, 0.14] 2.59 [-3.28, 9.07] 

Repeated (0/6) vs. 1/6 Repeat 0.04 [-0.06, 0.15] -0.05 [-0.25, 0.14] 0.01 [-0.24, 0.27] -3.89 [-10.32, 1.92] 

  Update 0.05 [-0.07, 0.17] 0.24 [-0.04, 0.50] -0.29 [-0.61, 0.02] -1.79 [-9.67, 7.27] 

 2/6 Repeat -0.01 [-0.11, 0.09] 0.09 [-0.16, 0.38] -0.08 [-0.42, 0.21] -3.72 [-9.68, 2.04] 

  Update 0.01 [-0.08, 0.11] 0.04 [-0.17, 0.30] -0.06 [-0.35, 0.22] -0.81 [-8.96, 7.79] 

 4/6 Repeat -0.03 [-0.12, 0.06] 0.10 [-0.16, 0.35] -0.08 [-0.37, 0.22]  -0.90 [-8.77, 9.14] 

  Update -0.04 [-0.13, 0.05] 0.10 [-0.15, 0.32] -0.06 [-0.33, 0.23] -0.37 [-7.90, 7.35] 

Full-Update (6/6) vs. 1/6 Repeat 0.04 [-0.07, 0.15] -0.04 [-0.25, -0.17] 0.00 [-0.27, 0.24] -4.37 [-11.72, 2.44] 

  Update 0.05 [-0.07, 0.16]  -0.26 [-0.03, 0.52] -0.30 [-0.61, 0.02] -2.27 [-11.34, 7.20] 

 2/6 Repeat -0.01 [-0.11, 0.10] -0.11 [-0.20, 0.43] -0.10 [-0.48, 0.26] -4.49 [-12.17, 2.93] 

  Update 0.01 [-0.09, 0.10] 0.06 [-0.17, 0.29] -0.07 [-0.34, 0.20] -1.29 [-11.85, 7.75] 

 4/6 Repeat -0.03 [-0.12, 0.06] 0.12 [-0.13, 0.36] -0.09 [-0.36, 0.19] -1.37 [-10.29, 8.39] 

  Update -0.05 [-0.14, 0.04] 0.12 [-0.13, 0.35] -0.07 [-0.36, 0.21] -0.84 [-9.93, 7.52] 
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Figure 13 

Posterior Parameter Estimates of Model 1 for the Probability of Target Memory (A), Memory 

Precision (B), Binding Errors (C) and Probability of Guessing (D). Larger Dark Circles Indicate 

Group Means, Smaller Faded Circles Indicate Individual Means, and the Error Bars Show the 

95% HDIs of the Posterior. 
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Table 16 

Model 2 Summary of Mean Differences [and 95% HDIs] in Each Memory Parameter of Partial-Update Conditions versus the Full-

Update (6/6) Condition. 

Note. Effects in boldface font indicate credible effects. 

 

 

Comparison Partial-Update 

Condition 

Probe 

Location 

P(Target) P(Binding Error) P(Guessing) Precision 

Baseline vs. 1/6 Repeat 0.06 [-0.03, 0.16] 0.00 [-0.17, 0.20] -0.06 [-0.31, 0.16] -0.93 [-5.12, 3.29] 

  Update 0.07 [-0.03, 0.17] 0.27 [0.04, 0.50] -0.34 [-0.59, -0.08] 1.52 [-4.86, 9.00] 

 2/6 Repeat 0.00 [-0.07, 0.07] 0.02 [-0.15, 0.20] -0.02 [-0.23, 0.18] 0.21 [-4.23, 5.78] 

  Update 0.05 [-0.04, 0.14] 0.08 [-0.11, 0.27] -0.12 [-0.35, 0.11] 1.28 [-4.26, 8.03] 

 4/6 Repeat -0.01 [-0.09, 0.07] 0.08 [-0.14, 0.30] -0.06 [-0.34, 0.18] 0.34 [-4.68, 6.29] 

  Update -0.02 [-0.09, 0.05] 0.09 [-0.07, 0.25] -0.07 [-0.27, 0.11] 0.34 [-3.62, 5.07] 

Repeated (0/6) vs. 1/6 Repeat 0.04 [-0.06, 0.16] -0.04 [-0.25, 0.17] 0.00 [-0.28, 0.27] -4.08 [10.36, 2.56] 

  Update 0.06 [-0.05, 0.18] 0.23 [-0.02, 0.48] -0.29 [-0.58, -0.01] -1.63 [-9.13, 7.44] 

 2/6 Repeat -0.02 [-0.11, 0.07] -0.02 [-0.23, 0.17] 0.04 [-0.21, 0.29] -2.95 [-10.27, 3.59] 

  Update 0.03 [-0.06, 0.14] 0.04 [-0.17, 0.25] -0.07 [-0.32, 0.19] -1.88 [-9.33, 6.21] 

 4/6 Repeat -0.03 [-0.12, 0.07] 0.04 [-0.19, 0.29] -0.01 [-0.31, 0.27] -2.82 [-9.86, 5.66] 

  Update -0.03 [-0.12, 0.05] 0.05 [-0.14, 0.25] -0.01 [-0.25, 0.22] -2.81 [-9.37, 3.11] 

Full Update (6/6) 

vs. 

1/6 Repeat 0.04 [-0.07, 0.16] 0.05 [-0.15, 0.24] -0.09 [-0.35, 0.17] -4.48 [-11.98, 2.85] 

 Update 0.05 [-0.07, 0.16] 0.32 [0.08, 0.56] -0.37 [-0.64, -0.09] -2.03 [-12.06, 7.36] 

2/6 Repeat -0.02 [-0.12, 0.07] 0.07 [-0.12, 0.28] -0.05 [-0.30, 0.21]  -3.34 [-11.47, 3.76] 

 Update 0.03 [-0.08, 0.14] 0.13 [-0.07, 0.34] -0.16 [-0.41, 0.10] -2.27 [-10.55, 6.87] 

4/6 Repeat -0.03 [-0.13, 0.08] 0.13 [-0.10, 0.37] -0.10 [-0.41, 0.19] -3.21 [-11.55, 5.86] 

 Update -0.04 [-0.14, 0.04] 0.14 [-0.04, 0.32] -0.10 [-0.33, 0.12] -3.21 [-10.87, 3.40] 
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Figure 14 

Posterior Parameter Estimates of Model 2 for the Probability of Target Memory (A), Memory 

Precision (B), Binding Errors (C) and Probability of Guessing (D). Larger Dark Circles Indicate 

Group Means, Smaller Faded Circles Indicate Individual Means, and the Error Bars Show the 

95% HDIs of the Posterior. 

 

Exploratory Analyses 

Given that recall error seemed higher overall in the current chapter compared to Chapter 5 

(see Figure 15 for the plotted distribution of recall error), further analyses were conducted to 

understand whether updating shapes may be more difficult than colours overall. To this end, the 

previous analyses on recall error were repeated including experiment feature (colour or shape) as 

a between-subjects factor. First, the 3 (baseline, 0/6, and 6/6 update) x 2 (colour, shape) BANOVA 

showed that the full model including the interaction was the best model, BF10 = 40.24 x109. The 
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model including the interaction was ambiguously preferred over the next-best model including 

only a main effect of feature type (BF = 1.04). Further paired Bayesian t-tests comparing recall 

error between colour and shape for each update condition indicated substantial and strong evidence 

that recall performance was worse for shapes than colours overall (see Table 17).  

 

Figure 15 

Distribution of Recall Error per Update Condition, Probe Location and Feature Type/Chapter 

(Colour/Chapter 5, Shape/Current Chapter). 
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Table 17 

Bayes Factors from the Bayesian T-Tests Comparing Recall Error Between Colour and Shape 

(Current Chapter) for each of Update Condition. 

 

 

 

 

 

 

 

 

Furthermore, the 3 (1/6, 2/6, 4/6) x 2 (repeated, updated) x 2 (colour, shape) BANOVA 

showed that the model including only a main effect of the feature type (colour versus shape) was 

the best model, BF10 = 4.41 x1016, which was substantially preferred over the next-best model 

including the main effect of the partial-update conditions and feature type (BF = 4.98). Further 

tests comparing the recall error between colour and shape for each of the partial-update conditions 

indicated substantial and very strong evidence that feature type impacts recall performance in the 

partial-update conditions, and irrespective of the probe locations (see Table 17). Taking these 

exploratory findings together, it can be argued that varying the feature type from colour to shape 

reduced task performance overall. 

  

 Probe Location 

Update Condition Repeat Update 

Baseline 74216.48 - 

Repeated 4866.96 - 

1/6 3.17 172.64 

2/6 27.90 6.79 

4/6 39.52 129.91 

6/6 - 3.57 
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Discussion 

In the current chapter, I investigated whether altering the to-be-updated feature-type from 

colour to shape would provide further evidence for the temporary removal of outdated information 

during local WM updating. The findings from the model comparison indicated that the model 

simulating temporary removal best fit the posterior distribution, relative to the model simulating 

permanent removal. Incongruent with the findings of Chapter 5, in Model 1, binding errors were 

similar regardless of the number of updates. This pattern of results was also observed while fitting 

Model 2 to the data. In both models fitted, target memory was low (see Tables 14 and 15), 

suggesting that updating shape features through the current paradigm may have proven to be 

difficult. Further between-subjects exploratory analyses revealed that recall error was indeed lower 

overall in the current experiment using shapes compared to Chapter 5 that used colours. This 

suggests that shapes are more difficult to maintain and update compared to colours, which is 

consistent with prior work (e.g., Allen et al., 2006). Nevertheless, that the model simulating 

temporary removal best fit the data compared to a model simulating permanent removal. It can 

therefore be argued that outdated shape information may still be held active in WM and outdated 

shape information is temporarily removed despite participants struggling with the current task.   

One explanation for the overall poor performance in the current study’s paradigm could be 

that not enough time was allowed for individuals to successfully store the shape features. Prior 

work has demonstrated that multiple colour features are stored faster than multiple shape features 

of real-world items (Brady et al., 2016). Brady and colleagues found that individuals can store 

multiple colour features at a low presentation time (less than 1000 ms) but storing multiple shape 

features of real-world objects requires longer presentation times (greater than 1000 ms). It could 

be possible that the fast presentation time of the shape features in the current study may have led 
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to overall poor performance, as individuals were unable to store multiple presented shape features 

in the time given. To understand whether this is the case, further research investigating local WM 

updating of shape features (with presentation times greater than 100 ms) may be required. For 

example longer presentation times of 1000 ms (Chapters 2, 3, and 4) may be sufficient to allow 

for multiple shape features to be stored.  

Moreover, Brady and colleagues suggested that WM storage capacity of multiple non-real-

world items’ shape feature, may be limited by the perceptual complexity of the shape, and its lack 

of conceptual meaning to an individual, which may have been the case here. Thus, further research 

into the removal of outdated shape feature information may be required. For example, it may be 

of interest to understand whether locally updating the shape feature of similar real-world objects 

relies on the temporary or permanent removal of outdated information. In day-to-day life, we 

encounter shape features of items that may be perceptually similar, but the feature belongs to a 

distinct item. For example, trainers vary in style (arguably, the trainer’s shape feature), but the 

style belongs to a distinct pair of trainers. While browsing for a pair of trainers, one must rely on 

locally updating outdated shape features of in-memory trainers with new shape features. 

Additionally, one must also be able to compare outdated information with new information to 

complete one’s goal (such as identifying what trainer style one prefers). Arguably, manipulating 

perceptually similar real-world items as to-be-updated may offer greater participant recall 

performance due to the participants’ familiarity with real-world items. Therefore, it is of interest 

to understand whether one relies on the temporary removal of outdated real-world shape features 

that are perceptually similar, or whether the outdated information is permanently removed from 

WM.      
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In summary, I investigated whether the pattern of results observed in Chapter 5 (pertaining 

to colour) is also observable when shape features are to-be-updated. In line with the findings of 

Chapter 5, the comparison of the models simulating the temporary and permanent removal of 

outdated information suggested that the model simulating temporary removal best fit the data. 

However, overall performance was poor in the current chapter, and this may be due to participants 

not being able to easily store shape features when the presentation time is short. Further research 

is required to understand the removal of outdated shape features during local WM updating. 
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Chapter 7 

General Discussion 
 

The goal of this thesis was to investigate and understand how single features and feature 

bindings are prioritised during goal-oriented processing in visual WM. Firstly, I examined the role 

of attention during feature maintenance (Chapters 2 and 3). Secondly, I examined whether the 

prioritisation of location features is more beneficial than the prioritisation of colour features 

(Chapter 4). Thirdly, I examined whether outdated (irrelevant) features are removed from WM 

while new (updated) features are prioritised (Chapters 5 and 6). In this chapter, I will begin by 

summarising the findings of the current work. Secondly, I will address whether attentional 

resources are required to prioritise feature information during goal-orientated processing. Thirdly, 

I will discuss whether there are differences between the processing of unalike feature dimensions. 

Fourthly, I will discuss the processing of new features during WM updating. Finally, I will discuss 

what the implications of my findings are for how we understand the processing of single features 

and feature bindings in visual WM. 

 

Summary of findings 

In Chapter 2, by disrupting attention (Experiment 1) and guiding attention (Experiment 2), 

I investigated whether the role of attention during feature maintenance depends on the nature of 

the to-be-maintained feature (i.e., intrinsic, or extrinsic; Kessler et al., 2013; also see Chapter 2). 

The findings in Experiment 1 suggested that disrupting attentional resources did not increase 

intrinsic and extrinsic binding errors. However, disrupting central attention reduced target memory 

when the feature was extrinsic. Moreover, guiding attention in Experiment 2 via intrinsic and 
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extrinsic retro-cues did not reduce binding errors relative to a no-cue condition. However, guiding 

attention improved target memory, irrespective of the nature of the retro-cue and tested feature 

type.  

In Chapter 3, I aimed to replicate Experiment 1 of Chapter 2, with the exception that the 

set size of presented items was reduced from six items to four. The hypotheses remained the same 

for Chapter 3 as they were for Experiment 1 of Chapter 2. Despite reducing the number of to-be-

maintained items to four (i.e., 4 items x 3 features (colour, shape, location) = 12 features), 

disrupting attention did not increase binding errors. Conversely to Experiment 1 of Chapter 2, no 

credible effects were observed in target memory, regardless of the disruption-type or the nature of 

the to-be-maintained feature. 

Chapter 4 aimed to investigate whether there are differences between the prioritisation of 

colour and location features by adapting Experiment 2 of Chapter 2’s paradigm. Similar to 

Experiment 2 of Chapter 2, no credible differences in binding errors were observed, regardless of 

the nature of the prioritised feature.  Moreover, no credible differences were observed in binding 

errors between the no-cue conditions either, thus suggesting that there are no differences in 

prioritising location and colour features. However, target memory improved with the presence of 

a retro-cue, irrespective of its nature (colour-cue, or location-cue), thus confirming the findings of 

Experiment 2 in Chapter 2 that guiding internal attention improves target memory, irrespective of 

a feature’s nature. 

In Chapter 5, I examined whether prioritising new (updated) information relies on the 

temporary or permanent removal of outdated (irrelevant) information. I adapted a visual WM 

updating task to investigate whether applying two models simulating temporary and permanent 

removal would explain the processes involved with WM updating. The findings suggested that the 
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model simulating temporary removal (i.e., including outdated and relevant information during 

model fit) best fit the data. Furthermore, binding errors increased as the number of to-be-updated 

items increased relative to the no-update baseline condition, particularly when more than one item 

was to-be-updated. This suggests that while outdated information is still available in WM, more 

opportunities arise for binding errors to occur.  Conversely, the model that simulated permanent 

removal (i.e., only relevant information was included during model fit) provided a worse fit of the 

data, and binding errors were similar between the partial- and full-update conditions.  This suggests 

that binding errors specifically arose from the outdated information.  

In Chapter 6, I aimed to replicate and extend the findings of Chapter 5 by changing the 

feature dimension from coloured dots to unicoloured shapes. Unlike Chapter 5, binding errors were 

similar regardless of the partial- and full-update conditions and irrespective of the model fitted. 

However, the model simulating temporary removal best fit the data, in line with the findings of 

Chapter 5 suggesting that temporary removal may best explain how updating occurs in visual WM. 

The findings of Chapter 6, however, must be taken with a pinch of salt – I observed that overall 

performance was low compared to that of Chapter 5, thus suggesting that prioritising new (updated 

shape) features may be difficult in this experiment’s paradigm.   

 

Are attentional resources required for the processing of feature information? 

Overall, the findings from Chapters 2-4 indicate that binding errors are not sensitive to 

disrupting or guiding attention. One explanation for this may be that binding errors are difficult to 

detect; this may be particularly true in the paradigms used in Chapters 2-4, wherein during recall, 

the probe-target types were randomly intermixed. The randomisation of the probe-target types 

during recall may have been challenging for the participants, and this may have led to guessing 
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behaviours. However, guiding attention with retro-cues consistently improved target memory, 

regardless of the nature of the retro-cue or the target feature. This suggests that attentional 

resources may not aid WM maintenance by reducing the likelihood that binding errors occur 

during recall, but rather the findings suggest that attentional resources aid the likelihood that the 

target is kept active during goal-orientated processing. However, this raises the question of whether 

features are processed and prioritised in a domain-specific visual WM store, or whether the feature 

information is processed and prioritised in an attention-based domain-general framework.      

As discussed in Chapter 1, the two principal perspectives suggest that maintenance in WM 

is either largely domain-specific (e.g., the multi-component model; Baddeley et al., 2020; 

Baddeley, 2000, 2012; Baddeley & Hitch, 1974) or  domain-general (e.g., the embedded-processes 

model; Cowan, 1993, 1998, 1999; Cowan et al., 2020). While domain-specific accounts suggest 

that information is processed in their respective stores (visual information is processed in a visual 

store), the domain-general account suggests that attentional resources are similarly involved in 

maintaining goal-relevant information, regardless of its modality. Arguably, the findings from 

Chapters 2-4 suggest that attention may be required to keep features active in WM, irrespective of 

its nature (i.e., colour, shape, or location). I will now discuss these findings in more depth.  

In Experiment 1 of Chapter 2, I only observed that disrupting attentional resources reduced 

target memory when the target feature was location-based and central attention was disrupted. 

Disrupting peripheral attention did not reduce target memory for colour-, shape-, or location-based 

features. This suggests that the maintenance of location-based features may be reliant on a general 

attentional resource and disrupting this resource, reduces one’s ability to retain the target location 

at a high quality. Conversely, the null peripheral disruption effects in target memory for colour 

and shape target features suggests that maintenance of colour and shape features may not rely on 
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attention, but rather WM maintenance for these features does not require attention. As discussed 

in Chapters 1 and 2, Allen and colleagues (2006, 2012) posited that the binding of visuospatial 

information does not require attention. In line with this, the findings of Experiment 1 in Chapter 2 

showed that individuals were able to retrieve target features while probed with its corresponding 

feature-type (i.e., colour probing location, colour probing shape, location probing colour, etc.) with 

a small likelihood that binding errors occurred. This may suggest that attentional resources are not 

required to bind visual information together. This was consistent even when reducing the set size 

from 6 to 4 in Chapter 3: Despite the reduction in set size and overall greater performance 

compared to Chapter 2, no credible differences in binding errors were observed between the 

disruption conditions and the baseline condition. Against the findings of Experiment 1 in Chapter 

2, no credible differences were observed in target memory, irrespective of the nature of the probe-

target combination and the disruption type.  Given the opposite findings of Experiment 1 of 

Chapter 2 and Chapter 3, this suggests that attention may be necessary to maintain multiple feature 

bindings in visual WM when WM capacity has exceeded. As proposed in Chapter 3, one way to 

investigate whether this is the case is by calibrating the number of items (and features) that are 

presented to the participant. This would allow one to investigate whether disruption effects occur 

when a participant’s WM capacity has exceeded.    

But the findings of Experiment 1 of Chapter 2 and Chapter 3 raises the question: Do we 

observe a similar pattern of results while we guide internal attention, rather than disrupting 

attention? As explained earlier, Experiment 2 in Chapter 2 and Chapter 4 showed that retro-cues 

impacted target memory, and not binding errors, irrespective of the nature of the probe-target type. 

The findings of Experiment 2 in Chapter 2 contradict the findings of Experiment 1 – where I 

observed that attention does benefit the maintenance of to-be-retained information. This suggests 
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that guiding attentional resources may have a stronger impact on keeping features active than the 

negative impacts of disrupting attention. With that said, it could be argued that the effects observed 

in Experiment 2 of Chapter 2 and Chapter 4 could be attributed to visual aftereffects rather than 

attention being guided internally towards the to-be-remembered feature. Arguably however this is 

not the case in the current work. Recent work guiding attention via retro-cues has shown a similar 

pattern of results as observed in Chapter 2 and 4, without the requirement of visual masking during 

the retention interval (e.g., Arnicane & Souza, 2021; Loaiza & Souza, 2019; Loaiza et al., 2023; 

Souza, 2016). Therefore, these findings concur with prior and current literature that suggests that 

attention can be focused on a subset of to-be-retained items, allowing for the memory trace of the 

to-be-retained item to be strengthened (Camos et al., 2018; Griffin & Nobre, 2003; Heuer & 

Schubö, 2016b; Ye et al., 2016).   

The findings of the current work suggest that attentional resources may be an integral part 

of WM (e.g., Oberauer, 2019). However, as discussed in Chapter 1, it is still unclear how goal-

relevant information is encoded and stored in domain-general versus domain-specific frameworks. 

It could however be argued that attentional resources (such as the focus of attention) “zoom-in” 

on the to-be-retained information, irrespective of its domain (i.e., visual, or verbal domain).  This 

in turn activates the subset of LTM relevant to the domain that is to-be-prioritised. Incongruent 

with this conceptualisation of WM, Logie (1995) argued that visual information is stored and 

maintained in separate stores. It was argued that visual information is processed in a passive visual-

cache, and spatial information is processed in a dynamic spatial-loop.  Therefore, if visual 

information were to-be-stored in separate stores (such as the visual cache and spatial-loop), then I 

would have expected that guiding attention improved the target memory of the passively stored 

colour and shape features only. Against Logie’s (1995) hypothesis, the findings of Experiment 2 
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in Chapter 2 reflect an account of WM that is not modal-specific (i.e., the dissociation of visual 

and spatial information), wherein guiding attention towards a to-be-prioritised feature strengthens 

the memory trace for the maintained in-memory items. It was observed that guiding attention 

improved target memory, irrespective of the nature of the retro-cue and the nature of the target 

feature. Therefore this suggests that single features and feature bindings may be stored in a domain-

general manner, with attention strengthening the maintenance of visual information. However, this 

conclusion cannot be interpreted too strongly, as all the work in this thesis investigated the 

processing of a single domain (i.e., visual) rather than both verbal and visual modalities. Further 

work is required to determine whether verbal and visual information processing (and its cross-

domain binding) can be explained by a domain-specific or domain-general perspective of WM. 

Therefore, considering the findings of the current work, it can be argued that processing 

information in the visual domain may be benefitted by attention. 

 

Processing dissimilar feature dimensions 

Prior research has suggested that location features may be privileged in WM and in 

perception, additionally attention aids the binding of non-location features to location features 

(Johnson & Pashler, 1990; Rajsic & Wilson, 2014; Schneegans & Bays, 2017; Treisman & Gelade, 

1980). The findings from Experiment 2 in Chapter 2 suggested that there are no differences 

between the maintenance of feature dimensions, and attention aids the prioritisation of to-be-

maintained features irrespective of their type.  Chapter 4’s paradigm was adapted from Experiment 

2 in Chapter 2 to determine whether there are differences between maintaining non-location and 

location features, and whether there are differences between the prioritisation of non-location and 

location features. As summarised earlier, no credible differences were observed between the 
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baseline conditions of the colour and location feature types (i.e., uncued retention interval).  This 

may suggest that the processing of colour and location features is automatic (Allen et al., 2006, 

2012). This finding disagrees with the feature integration hypothesis of visual perception (FIT; 

Treisman & Gelade, 1980; Wheeler & Treisman, 2002). As discussed in Chapters 1 and 4, FIT 

proposes that single features are stored in their respective feature dimensions and attentional 

resources are required to bind non-location features to their respective location feature. While FIT 

is a hypothesis concerned with the initial processing of visual features in perception, arguably its 

importance must be considered during visual WM due to its overlap with the role of attention 

during goal-orientated processing. It can be argued that similarities can be drawn between FIT 

hypothesis of visual perception and Logie’s (1995) explanation of visual processing in WM (i.e., 

the inner scribe and visual cache). For example, in both hypotheses, location features appear to be 

critical to the processing of non-location features; however, in FIT, attentional resources aid the 

binding and maintenance of non-location features and their respective locations during immediate 

perception. Therefore, it is critical to understand whether in WM, there are differences between 

the processing of non-location and location features during attentional prioritisation. 

To answer this question, Chapter 4 also investigated whether there are differences between 

guiding internal attention towards a to-be-prioritised non-location and location feature. It was 

hypothesised that guiding internal attention via a location retro-cue would reduce colour binding 

errors, relative to a no-cue baseline condition, due to the privileged state of location features during 

the attentional maintenance of visual features in their respective feature dimensions. Furthermore, 

it was hypothesised that guiding internal attention via a colour retro-cue should not reduce location 

binding errors, relative to a no-cue baseline condition. Finally it was hypothesised that if non-

location features are not bound to their respective locations and attentional resources do not 
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selectively maintain location features, then binding errors should be similar, irrespective of the cue 

condition (i.e., none, colour-cue, and location-cue). Chapter 4’s findings suggest that there are no 

credible differences in binding errors irrespective of the target feature, thus confirming the third 

hypothesis. Although there were no credible differences in binding errors, similar to Experiment 

2 in Chapter 2, credible improvements were observed in target memory and guessing irrespective 

of the nature of the retro-cue and the target feature type.  

Against FIT, the findings of Chapter 4 suggest that attention is not selectively oriented 

towards locations during visual WM maintenance. Rather, attention may be thought of as a global 

process that strengthens in-memory representations regardless of their nature (e.g., colour or 

location). This concurs with my previous section: Attention is not selective in nature. Moreover, 

attention is able to “zoom-in” or focus on a feature, and thus, improving the quality of in-memory 

representations. Furthermore, the findings of Chapter 4 highlight that visual WM may rely on the 

maintenance of bound representations. This suggests that the binding of feature information is 

critical to allow for task-relevant information to-be-kept active.  Therefore, it can be suggested that 

WM may encode and store features of an item as bound representations, thus concurring with the 

object-based view of visual WM (i.e., Luck & Vogel, 1997; see Luck & Vogel, 2013 for a review; 

Vogel et al., 2001). However WM may be reliant on attention to maintain the bindings and for 

high quality representations to-be-kept active.       

      

Processing new features during WM updating 

In Chapters 2-4, I examined whether attention is required to prioritise to-be-retained 

information, however, what happens to outdated (irrelevant) information when we are required to 

prioritise new (updated) information? As discussed in Chapters 1 and 5, WM updating is one’s 
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ability to alter and manipulate in-memory information (Lewis-Peacock et al., 2018). Although 

WM updating research has investigated how information may be updated, little is known about 

the processes that underly the prioritisation of the new information, and the removal of the outdated 

information. Therefore, in Chapters 5 and 6, I examined whether local WM updating relies on the 

temporary or permanent removal of outdated information. Temporary and permanent removal 

were simulated and compared by fitting the data to two hierarchical Bayesian three-parameter 

mixture models (Oberauer et al., 2017) that either included both outdated and new information 

(Model 1, temporary removal) or only included new information during model fitting (Model 2, 

permanent removal). The findings in both Chapter 5 and 6 suggested that the model simulating 

temporary removal best fit the data, with binding errors increasing with increased items to update 

relative to a no-update baseline condition in Chapter 5 (but not Chapter 6). This suggests that 

prioritising new (updated) colours during WM updating may be susceptible to binding errors. 

Moreover, binding errors occurred regardless of whether the probe was repeated or updated.  As 

alluded to in the prior section, it may be possible that visual WM stores and processes information 

as bound representations. As discussed in Chapter 5, it was argued that the increase in binding 

errors while updating multiple colours, and while outdated information is still accessible, suggests 

that outdated information may still be bound to the retained information. Therefore during WM 

updating and maintenance, it could be possible that both task-relevant bindings and outdated 

bindings may be kept active. This would suggest that additional resources may be required to 

“hone onto” goal-relevant bindings, and in this way, irrelevant bindings may be inhibited. But the 

inhibited irrelevant bindings interfere with the goal-relevant items, particularly when multiple 

irrelevant bindings are accessible. This is congruent with Palladino and colleagues’ (2001) 

suggestion that during WM updating, outdated information may be suppressed. Arguably, this 
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suggests that the proposed resource is limited and may only hold one binding active at a time 

(similarly to the model proposed by Oberauer, 2002).  

Furthermore, the findings from Chapter 5 concur with the local WM updating hypothesis 

(Kessler et al., 2015; Kessler & Meiran, 2008). The fact that the pattern of binding errors did not 

occur for shapes in Chapter 6 as it did for colours in Chapter 5 suggests that the processing of 

colour and shape features differ during WM updating. However, it may be the case that colours 

can just be processed more quickly and accurately than shapes, and thus the paradigm was not 

optimal for this reason (see Chapter 6). Further research is required to understand whether the 

processing of unrelated features differ during WM updating. 

 

Processing and prioritising item representations in visual WM 

In the above sections, I have made the case that visual WM may maintain visual 

information in the form of bound representations, and that additional resources are crucial for 

keeping goal-relevant information active. Disrupting attention (Experiment 1 of Chapter 2) had no 

effect on binding errors, but disrupting central attention reduced target memory while the target 

feature was location-based. Similarly to Experiment 1 of Chapter 2, disrupting attention (Chapter 

3) had no effect on binding errors, but unlike Experiment 1 of Chapter 2, target memory was 

unaffected by the disruption-types. However, further analyses revealed that reducing the set size 

in Chapter 3 (from 6 items to 4) improved task performance. Guiding attention via retro-cues 

(Experiment 2 of Chapter 2, and Chapter 4) had no effect on binding errors, but retro-cues 

improved target memory, irrespective of its nature or the retro-cue or the target feature. Taken 

together, these results can be interpreted to suggest that the role of attention in visual WM is to 

keep goal-relevant bindings active. Moreover, the findings from Chapter 3 suggest that when the 
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WM capacity limit has not been exceeded (such as the fixed-item capacity proposed by Cowan, 

2001, and Zhang and Luck, 2008), visual WM may be less reliant on drawing on attention to keep 

task-relevant bindings active. Following this logic, this suggests that attention may be a flexible 

resource that is only drawn upon when it is required. Therefore attention may be governed by a 

hypothetical component in WM, such as the central executive in the multi-component model 

(Baddeley and Hitch, 1974; see Baddeley 2012 for a review). Congruent with the domain-general 

conceptualisation of WM (such as, Barrouillet & Camos, 2010; Cowan, 1999; Oberauer, 2002; 

Vergauwe et al., 2009), the findings of Chapters 2 – 4 indicate that features of an item are stored 

in a holistic manner, such that their bindings are held active, rather than in a dichotic manner (i.e., 

visual information such as colour and shape, and spatial-based information, such as location are 

stored separately within a visual WM store; Baddeley, 2012; Logie, 1995). However, unlike the 

domain-general view, attention may be moderated by a hypothetical component, such as the multi-

component’s model central executive (Baddeley & Hitch, 1974).  

Moreover, prior work has argued that item features are stored independently within their 

respective feature dimensions and attention aids the binding of features from within their feature 

dimensions (Treisman & Gelade, 1980; Wheeler & Treisman, 2002). Treisman and Gelade (1980) 

proposed that attention is selectively orientated towards location-based features. The findings from 

Chapters 2–4 suggest that this may not be the case.  

As discussed earlier, while disrupting central attention in Experiment 1 of Chapter 2, it was 

observed that target memory for location features was reduced, but target memory for colour and 

shape features was unaffected. However, I was unable to replicate this finding while reducing the 

set size in Chapter 3. Conversely, it was observed in Experiment 2 of Chapter 2 and Chapter 4 that 

guiding attention improved target memory, irrespective of the nature of the retro-cue and target 
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feature-type. These findings are incongruent with FIT (Treisman & Gelade, 1980; Wheeler & 

Treisman, 2002). While the finding of Experiment 1 of Chapter 2 may agree with FIT, I did not 

observe the same pattern of results in Chapter 3. Arguably, if attention is selectively orientated 

towards location-based features, then in Chapter 3, disrupting central attention should have 

reduced target memory while the target feature was location-based. Similarly, in Experiment 2 of 

Chapter 2 and Experiment 4, I should have observed that target memory would only have improved 

while attention was guided via a location-based retro-cue, rather than target memory improving 

irrespective of the retro-cue’s nature. 

To summarise, it can be argued that the processing of visual information in WM may be 

conceptualised as domain-general and item features are not stored in feature-specific stores, rather 

visual WM may store the bindings of item representations (i.e., colour-shape, colour-location, or 

colour-shape-location bindings). Moreover, attention benefits the likelihood of target bindings 

being kept active in WM without bias towards a feature-type. However, attention is arguably a 

dynamic resource that can be called upon when needed (such as in Chapters 2 and 4, but not in 

Chapter 3). This however suggests that attention may be directed, or governed, by a component 

within WM. It can be posited that rather than attention being governed by a component within 

WM, the flexible nature of attention may allow for it to be “switched on” or “switched off” as 

necessary. Therefore, if attention is not needed to prioritise goal-relevant bindings in WM, then it 

does not need to be active. This view agrees with more recent work that has argued that during 

WM in the human brain, networks associated with attention are recruited when WM is required to 

prioritise goal-relevant information (see Brissenden & Somers, 2019 for a review).  

Arguably, human cognition is a collection of multiple cognitive processes, such as 

memory, attention, decision making, problem solving, comprehension, reasoning, et cetera. It can 
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therefore be hypothesised that when WM does not require attention to keep information active, 

and attention is switched “off”, then attention can be directed towards the other aforementioned 

processes. If this is the case, then this suggests that WM can call upon other processes to aid 

information processing, and other cognitive processes can call upon WM. For example, while 

making a decision about a future goal, one must be able to hold multiple pieces of information 

active to make an informed decision. Therefore, it can be argued that a collection of cognitive 

processes is required to achieve one’s goal, namely: WM (to hold multiple pieces of information 

active for a short period of time), attention (to focus on critical information within WM, and to 

switch between the information), and decision making (to weigh the information held active in 

WM in relation to one’s goal). Taking this into account, it can be posited that cognitive processes 

are flexible, or dynamic.      

While visual information may be represented as feature bindings in WM, and attention may 

be thought of as flexible, do we observe that irrelevant (outdated) bindings are no longer active in 

WM? The model comparison findings of Chapters 5 and 6 suggested that the model that best fit 

the data was the model simulating temporary removal. These findings indicate that during WM 

updating, irrelevant bindings may still be accessible. As discussed earlier, this suggests that not 

only are updated-retained bindings accessible in WM, outdated-retained bindings are also present. 

In Chapter 5, it was observed that binding errors increased with the increased number of items that 

were to-be-updated (2/6, 4/6, and 6/6), and irrespective of the probe location. Arguably, this 

indicates that keeping multiple outdated-retained bindings in WM may interfere with the 

prioritisation of updated-retained bindings. It may be posited that retaining updated-retained 

bindings is reliant on a flexible resource but once the outdated-retained bindings outweigh the 

updated-retained bindings, the flexible resource is “switched off” and more opportunities for errors 
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to occur arises. However, this pattern of results was not observed in Chapter 6. In Chapter 6, it was 

observed that binding errors were similar across updating conditions, and irrespective of the probe 

location. I interpret this to suggest that updating shape features is more difficult than colour 

features. Further analyses comparing the recall error of Chapter 5 and Chapter 6 revealed this to 

be the case. Against my earlier discussion, that the processing of features is not reliant on 

independent storage of features in individual feature stores, this suggests that WM updating of 

item features differs between feature-types.  

One way to investigate whether there are differences between the updating of feature-types 

in WM may be through a whole-report paradigm, in which the paradigm used in Chapters 5 and 6 

is adapted: Coloured shapes are presented during the encoding phase and during the update phase, 

either the colour, shape or both are updated. During retrieval, participants would be required to 

recreate both the colour and the shape feature using two colour and shape wheels, rather than the 

single feature wheels used in Chapters 5 and 6. This paradigm would allow one to investigate 

whether there are differences between the updating of dissimilar (but bound) feature-types. 

Moreover, this paradigm may elude as to whether outdated-retained bindings interfere with 

updated-retained bindings. Additionally this may allow one to investigate whether the proposed 

flexible resource may be gated by a prioritisation capacity, in that, the flexible resource is limited 

by the number of outdated-retained bindings outweighing the number of updated-retained bindings 

and therefore the flexible resource is “switched off”. Therefore, further research is required to 

understand how visual information is prioritised for goal-orientated processing during WM 

updating. 

Considering all the work in this thesis, it can be suggested that visual WM processes 

information in the form of bound representations (feature bindings rather than single features), and 
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additional resources such as a flexible attentional resource benefits the prioritisation and 

maintenance of task-relevant bindings. As such, the findings from the all the work in this thesis 

suggest that prioritising correct bindings is critical for accurate memory retrieval. Furthermore, it 

can be posited that a flexible resource (such as attention) may be “switched on/off”. This 

hypothesised resource however may be subject to interference when the number of irrelevant 

bindings outweigh the number of relevant bindings.   

Therefore it can be argued that the processing (and subsequent prioritisation) of item 

representations may rely on an extended object-based view, in that, items are represented in a 

bound representation, but additional resources improve the quality of prioritised feature bindings. 

This draws parallels with Zhang and Luck’s (2008) slots + resource hypothesis. To reiterate, Zhang 

and Luck (2008) proposed that items are processed and stored as bound representations in fixed-

item capacity “slots”. The slots + resource hypothesis suggests that bound representations are 

stored in fixed-item capacity slots, but an additional resource can be called upon to improve the 

precision of a single binding. Additionally, Zhang and Luck proposed that all of the slots could be 

allocated towards a single binding, and the binding is distributed across the slots (slots + averaging 

hypothesis).  

I interpret the findings from this thesis to suggest that the processing of visual information 

occurs through an extended version of the slots + resource hypothesis. As discussed previously, 

my findings suggest that attention may be flexible. In Experiment 1 of Chapter 2 it was observed 

that disrupting central attention reduced target memory but reducing the set size in Chapter 3 did 

not replicate this result. This suggests that visual WM capacity may be limited by the number of 

items or features that it can keep active, however attention may be required to keep multiple items 

or features active. Therefore, it is posited that attention can be “switched off” when it is not 
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required to hold multiple items active when WM capacity has not been exceeded. Furthermore, 

the findings of Experiment 2 of Chapter 2 and Chapter 4 suggest that WM processes visual 

information as bindings, rather than single features. It was observed that guiding attention via 

retro-cues improved target memory, irrespective of the nature of the retro-cue or the target feature. 

Thus indicating that attention can be “switched on”, and focused onto a single representation, to 

improve the quality of a target feature binding. Moreover, the observed retro-cue benefit in target 

memory in Experiment 2 of Chapter 2 and Chapter 4, irrespective of the nature of the retro-cue 

and target feature-type suggests that attention is not biased towards a single feature. Thus, drawing 

upon attention during WM maintenance improves the quality of the prioritised feature binding. In 

addition, the findings from Chapter 5 indicated that the model that best fit the data was a model 

simulating temporary removal. Furthermore, it was observed in Chapter 5 that binding errors 

increased with the increased number of updates. This suggests that outdated information may 

interfere with relevant information. As such, outdated bindings may limit the prioritisation of new 

(updated) bindings, causing opportunities for errors to occur. Congruent with Chapter 5, Chapter 

6’s model comparison indicated that the model that best fit the data was the model simulating 

temporary removal. Incongruent however, it was observed that binding errors were similar 

irrespective of the update condition, probe location and model fit. Further analyses indicated the 

incongruent findings may be due to updating shape features being more difficult than updating 

colour features. 

Taking these findings together, it can be posited that feature bindings may be stored in a 

similar fashion as Zhang and Luck’s (2008) slots + resource hypothesis. However, unlike Zhang 

and Luck’s (2008) hypothesis, the findings from this thesis indicate that the additional resources 

may be attentional based and do not need to be activated at all times. Furthermore, the findings 
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from this thesis suggest that the attentional resource can selectively prioritise a binding to 

strengthen the quality of the representation. Arguably this is similar to the slots + averaging 

hypothesis (Zhang & Luck, 2008). However, the slots + averaging hypothesis does not account for 

attentional prioritisation. Moreover, the additional resources may be subject to interference when 

the number of outdated bindings outweigh the relevant bindings, thus causing opportunities for 

errors to occur. Therefore, the current findings of this thesis suggest that the processing of visual 

information in WM is object-based, but additional resources (such as attention) can be called upon 

when required.           

 

Limitations of current work 

It can be argued that a limitation of this thesis may have been that online data collection 

was used throughout the current work. At the time of starting the thesis, a global pandemic 

prevented in-person data collection, and most researchers moved to online platforms. One may 

argue that it is difficult to observe psychological phenomena in an online setting.  On the other 

hand, it can be argued that online data collection may provide for a “truer” representation of one’s 

cognition as it is closer to everyday life than inviting participants to complete a high intensity study 

in a laboratory setting. Recent research comparing online, and in-person methodologies has shown 

that similar memory performance can be observed between online and in-person methodologies 

(Elliott et al., 2022). Thus, it can be argued that the performance of online data collection methods 

is just as adequate as the performance of in-person data collection methods.  However, further 

research using my paradigm in a laboratory setting may be required to determine whether 

differences would be observed in the current work.   
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A second limitation of the current work may be that the aims of this thesis were only 

examined by means of continuous-report paradigms. However, as discussed in Chapters 1, 2 and 

5, continuous-report paradigms offer an insight into the underpinnings of WM recall. Arguably, it 

may have been beneficial to the current thesis to also examine my hypotheses using alternative 

paradigms and alternative computational models. For example, the current work could have 

examined the prioritisation of feature information through a 3 alternative forced choice (3-AFC) 

paradigm, and the recall responses could have been fit to a multinomial processing tree (MPT) 

model (for a review, see Erdfelder et al., 2009).  Using these methods would allow the 

determination of whether the findings observed in the current work may also be observed using 

alternative research methods. This would strengthen the case of the current work: Prioritisation of 

feature information during goal-orientated processing relies on the initial processing of an item’s 

features. 

It can be argued that a third limitation of the current work is that it is unclear as to whether 

individuals truly relied on their visual WM during the experiments in the current work. It could be 

argued that individuals may have relied on a mixture of visual and verbal encoding of the visually 

presented information.  For example, in Experiments in Chapters 2-4, the longer presentation times 

of the to-be-retained information (1000 ms) may have enabled participants to verbally encode 

features of the multi-feature items (such as the items’ colour).  If this had been the case, however, 

I would have observed that precision was consistently higher in one feature dimension than in the 

others. This was not the case. Furthermore, the short presentation time of the to-be-retained items 

in Chapters 5 and 6 (100 ms) may not have been enough time to verbally encode all the presented 

feature information, particularly during the updating phase (where one or more than one item was 
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to-be-updated). Therefore, while this thesis may have methodological limitations, it can be argued 

that all the findings of this thesis offer an insight into how items are represented in visual WM. 

Future directions 

As discussed in the previous section, it is unclear in the current works’ experimental 

paradigms whether individuals exclusively encoded the visually presented items using visual WM, 

or whether a mixture of visual and verbal encoding was used. It therefore may be of interest to 

future researchers to adapt the current works’ paradigms to include articulatory suppression 

throughout the encoding phases and retention intervals. This would allow researchers to identify 

whether processing of feature bindings occurs through a mixture of encoding the verbal and visual 

encoding, or whether feature bindings are processed by the visual domain only.    

As discussed previously, it can be argued that the lack of similarity between the findings 

of Chapters 5 and 6 suggest that while outdated information is temporarily removed, colour and 

shape features are processed in a different manner during WM updating. Further research is 

required to explore this possibility. For example, it may be of interest for future researchers to 

investigate whether there are distinct differences between the processing of colour and shape 

features during WM updating by adapting the WM updating paradigm used in Chapters 5 and 6. 

Presentation times could be extended from 100 ms to 500 ms to allow for adequate time for the 

encoding of shape features. Future researchers may also present an array of coloured shapes during 

the encoding phase, rather than an array of coloured dots or unicoloured shapes. This would allow 

additional conditions to be set, in which either the colours of the items, or the shape of the items 

update randomly. Using this approach would allow exploration of whether there are distinct 

differences between WM updating of interdependent feature dimensions.  
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It may also be of interest for future researchers to apply neuroscientific methods towards 

the goal of understanding the prioritisation of single features and feature bindings during goal-

orientated processing. For example, there is a trend emerging in cognitive neuroscience that 

investigates the connectivity between networks during cognition, using mathematical models such 

as graph theory (for a review, see He & Evans, 2010).  It may be of interest to future researchers 

to apply these neuroscientific methods to the paradigms used in the current work (particularly in 

Chapters 2-4) to investigate whether there are differences in network connectivity between feature 

types, or whether the network connectivity pattern reflects that items are represented in a bound 

state. Arguably, the current work may offer a steppingstone for future research that is interested in 

the disentangling the processing of features in visual WM. 

 

Conclusion 

In conclusion, the aim of this thesis was to examine the processing of single features and 

feature bindings.  The current work examined whether attention is required to maintain and 

prioritise goal-relevant features in visual WM. It was demonstrated that guiding attention benefits 

the prioritisation and maintenance of goal-relevant features. Furthermore, this thesis examined 

whether prioritising new features during WM relies on the temporary or permanent removal of 

outdated features. Overall, the current work suggests that outdated information is temporarily 

removed from WM and still accessible. The current work also highlights that updating shape 

features is more difficult than updating colour features in WM. Taking all the findings of this thesis 

into consideration, I argue that the processing of visual information can be thought of as relying 

on slot-like encoding and storage of feature bindings. Additionally, I argue that the maintenance 

of feature bindings is benefitted by a flexible attention-based resource that can be “switched on”, 
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depending on whether it is required. Furthermore, the proposed resource may be subject to 

interference when the number of irrelevant (outdated) bindings outweighs the number of relevant 

bindings. Finally, I argue that the findings of this thesis suggest that items are initially processed 

in an object-based manner in WM (similarly to the slots + resource hypothesis), but additional 

resources improve the prioritisation of goal-relevant feature bindings. Therefore this thesis offers 

an insight into the processing of visual information in WM, but further research is required to 

understand whether the proposed explanation of visual information processing can be generalised.    
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Appendix A 
 

Mixture modelling 

As previously discussed, Zhang and Luck (2008) investigated WM capacity of visual 

items. They investigated whether visual items are stored in “slots” by fitting a two-parameter 

mixture model to the observed responses in a continuous-report paradigm, denoted as: 

(1) 𝑝(^𝜃)  = (1 − 𝛾)𝜙𝜎(^θ − 𝜃) + 𝛾
1

2𝜋
 

Where 𝜃 is the target feature value in radians (e.g., colour), ^𝜃 is the reported feature value, 

and 𝛾 is the ratio of trials on which the participant responds at random. 𝜙𝜎 represents the circular 

Gaussian distribution (von Mises distribution) with a mean of 0 and a standard deviation 𝜎. Zhang 

and Luck (2008) proposed that there are two sources of error on each trial, namely the Gaussian 

variability in target memory (Pm), and a fixed probability of random guessing (Pguess). Thus, the 

precision (k) of a retrieved feature (such as colour) may be due to a mixture of target memory and 

random guessing. While Zhang and Luck’s two parameter mixture model is fundamental in 

understanding the underlying memory parameters during feature retrieval, the model fails to 

address whether binding errors occur during feature retrieval.  

The three-parameter mixture model proposed by Bays and colleagues (2009) adds a third 

component to understand the underlying memory parameters involved with feature retrieval, the 

likelihood of recalling a presented but non-target feature (i.e., a swap/binding error. For example 

it is possible that during visual WM maintenance, the colour of an item in position x is misbound 

with the colour of an item in position y. As such, the colour of the item in position y is retrieved 

rather than the target colour for position x. Bays and colleagues (2009) formalised their model as: 
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(2) 𝑝(^𝜃)  = (1 − 𝛾)𝜙𝜎(^𝜃 − 𝜃) + 𝛾
1

2𝜋
+ 𝛽

1

𝑚
∑ 𝜙𝜎(^𝜃 − 𝜃𝑖

∗)𝑚
𝑖  

Where 𝛽 is the probability of misremembering the target location and {𝜃1
∗, 𝜃2

∗, … 𝜃𝑚
∗ } are 

the feature values of the non-target items, m. Unlike Zhang and Luck’s (2008) two-parameter 

mixture model (Equation 1), k of a retrieved feature may be due to a mixture of Pm, Pguess and Pnt 

(i.e., probability of recalling a non-target feature). While Bays and colleagues’ (2009) three-

parameter mixture model offers further insight into the underlying memory parameters during 

feature retrieval (through the parametrisation of misbinding), one caveat of the three-parameter 

(and two-parameter) mixture model is that it is limited by the sum of the probability parameters to 

into one parameter. Therefore caution must be taken to interpret whether the observed memory 

parameters reflect feature retrieval. One way in which one could achieve better interpretation of a 

mixture models’ memory parameters is through a hierarchical modelling approach.  

 

Hierarchical Bayesian three-parameter mixture model 

Hierarchical modelling offers … (see Oberauer et al., 2017 for a discussion of hierarchical 

modelling). Oberauer and colleagues (2017) argued that applying a hierarchical modelling 

approach to the three-parameter mixture model (Bays et al., 2009) allows researchers to measure 

the memory parameters (k, Pm, Pguess and Pnt) on an individual level (i.e., one person’s retrieval 

probability, rather than a group mean retrieval probability) and on a group level (i.e., the mean 

retrieval probability), and the group level’s standard deviation (allowing for individual 

differences). Therefore, Oberauer and colleagues (2017) reparamertised the three-parameter 

mixture model (Bays et al., 2009) to account for individual differences during retrieval in a 

hierarchical Bayesian three-parameter mixture model: 
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(3) 𝑃𝑚𝑒𝑚 = 𝑃𝑚 ∙ 𝑃𝑡 

𝑃𝑛𝑡 = 𝑃𝑚 ∙ (1 − 𝑃𝑡) 

Pm is the probability that a participants’ response comes from any of the presented items, 

including the target item and the non-target items. Pt is the probability that the response mirrors 

the targets’ feature (e.g., colour). The hierarchical Bayesian three-parameter mixture model 

predicts that each response during retrieval, 𝑋𝑖,𝑗
^ ,1 of participant j in trial i is distributed according 

to a von Mises distribution, wherein 𝑚𝑖,𝑗  is the mean of the von Mises distribution and it is the 

true feature of the item from which the response derives: 

(4) 𝑥𝑖,𝑗~𝑉𝑀(𝑚𝑖,𝑗; 𝑧𝑖,𝑗 ∙  𝑘𝑗) 

The item determining the response is sampled from the array of presented items according 

to a categorical distribution with probability Pi,j: 

(5) 𝑚𝑖,𝑗 =  𝑀𝑖,𝑗(𝑖𝑡𝑒𝑚𝑖,𝑗) 

𝑖𝑡𝑒𝑚𝑖,𝑗 ~ 𝐶𝑎𝑡(𝑃𝑖,𝑗) 

𝑃𝑖,𝑗(1) = 𝑃𝑡𝑗  

𝑃𝑖,𝑗(2 ∶ 𝑛) =  
(1 − 𝑃𝑡𝑗)

𝑛 − 1 
 

𝑀𝑖,𝑗 is a vector of memory features in an array i presented to participant j. The first element 

is the target feature and Pi,j is a vector of probabilities of the responses of each of the features 

within an array of presented items. The response is related to the sampled memory feature mi,j, 

with probability Pmj, whereas with probability 1 - Pmj the retrieval response is drawn from a 

uniform distribution. The precision parameter k = 0 is a uniform distribution under the von Mises 
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distribution.  Therefore, Oberauer and colleagues (2017) multiplied kj with a binary variable zi,j 

drawn from a Bernoulli distrubtion: 

(6) 𝑧𝑖,𝑗 ~ 𝐵𝑒𝑟𝑛(𝑃𝑚𝑗) 

When 𝑧𝑖,𝑗 = 1, the retrieval response is drawn from a von Mises centred on 𝑚𝑖,𝑗 whereas 

when 𝑧𝑖,𝑗 = 0 the retrieval response is drawn from a uniform distribution. Therefore, the memory 

parameters for each participant (i.e., target memory, target feature, and precision; Pmj, Ptj, and kj) 

are drawn from distributions with their own variability across participants. Thus allowing one to 

understand the individual differences of the memory parameters through: 

 

(7) 𝑃𝑚𝑗~ 𝛽(𝐴𝑃𝑚, 𝐵𝑃𝑚) 

𝑃𝑡𝑗  ~ 𝛽(𝐴𝑃𝑡, 𝐵𝑃𝑡) 

𝑘𝑗  ~ 𝛾(𝑆𝑘, 𝑅𝑘) 

 

Furthermore, to analyse the memory parameters on a group level, Oberauer and colleagues 

(2017) formalised the priors that should be fit to the retrieval responses: 

(8) 𝐴𝑃𝑚~ 𝛾(1, 0.1) 

𝐵𝑃𝑚~ 𝛾(1, 0.1) 

𝐴𝑃𝑡~ 𝛾(1, 0.1) 

𝐵𝑃𝑡~ 𝛾(1, 0.1) 

𝑀(𝑘)~ 𝛾(1, 0.1) 

𝜎(𝑘)~ 𝛾(1, 0.1) 
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𝑆𝑘 =  
𝑀(𝑘)2

𝜎(𝑘)2
 

𝑅𝑘 =  
𝑀(𝑘)

𝜎(𝑘)2
 

 

The 𝛾 distribution for the group level parameters is parameterised by its shape (S) and rate 

(R). Oberauer and colleagues (2017) placed priors on the mean and standard deviation of k (𝑀𝑘, 

𝜎𝑘). Furthermore, the researchers proposed that the means and variances of the  𝛽 distribution of 

the parameters is calculated as: 

 

(9) 𝑀(𝑃𝑚) =  
𝐴𝑃𝑚

𝐴𝑃𝑚+𝐵𝑃𝑚
 

𝑉𝑎𝑟(𝑃𝑚) =  
𝐴𝑃𝑚 ∙ 𝐵𝑃𝑚

[𝐴𝑃𝑚 +  𝐵𝑃𝑚]2[𝐴𝑃𝑚 + 𝐵𝑃𝑚 + 1]
 

𝑀(𝑃𝑡) =  
𝐴𝑃𝑡

𝐴𝑃𝑡 + 𝐵𝑃𝑡
 

𝑉𝑎𝑟(𝑃𝑡) =  
𝐴𝑃𝑡 ∙ 𝐵𝑃𝑡

[𝐴𝑃𝑡 + 𝐵𝑃𝑡]2[𝐴𝑃𝑡 + 𝐵𝑃𝑡 + 1]
 

 

In other words, the hierarchical Bayesian three-parameter mixture model (Oberauer et al., 

2017) parametrises k, Pm, Pguess, and Pnt such that both individual differences and the group level 

memory parameters are accounted for under individual-specific and group-specific distributions. 

Arguably this allows for researchers to understand whether the group level memory parameters 

reflect individual feature retrieval. Thus, the group level parameters are reflected by the 
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participants’ individual memory parameters. Through a Bayesian approach, the hierarchical three-

parameter mixture model allows for researchers to specify the distribution of the parameters on 

each level of its hierarchy. This highlights the flexibility of Bayesian hierarchical models, relative 

to the two- and three-parameter mixture models (Bays et al., 2009; Zhang & Luck, 2008). 

Additionally, fitting Oberauer and colleagues’ (2017) model to the retrieved feature values in a 

continuous-report paradigm allows one to draw on Markov-Chain Monte-Carlo (MCMC) 

algorithms for estimating the posterior distribution of the memory parameter values. This allows 

one to determine the convergence of the model fitted relative to the data.  

Moreover, fitting Oberauer and colleagues’ (2017) model allows for researchers to analyse 

whether the difference between two conditions (i.e., experimental and control) is credible by 

determining whether the low and high highest-density intervals (HDI) overlap. For example, while 

comparing the experimental condition with the control (baseline) condition, if both the low HDI 

and high HDI are less than 0, or they are both greater than 0, then this is considered a credible 

effect. This is particularly advantageous when comparing the mean memory parameters (k, Pm, 

Pguess, and Pnt) between two conditions, as this offers researchers an insight as to whether the 

manipulation within the experimental condition impacts feature retrieval, relative to the control 

condition. Therefore, to understand the processing of single features and feature bindings, all the 

work in this thesis fit a hierarchical Bayesian three-parameter mixture model (Oberauer et al., 

2017). 
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Appendix B  
Chapter 2 Power Analysis 

 

The power analyses determining the sample size for Experiment 1 and Experiment 2 of Chapter 2 

are reported below. The power analysis R script is readily available on the Open Science 

Framework (OSF; https://osf.io/jr3eh/). The description of the power analyses reported below is 

reported in Stage 1 review of the registered report (accepted 1 February 2021) and is available on 

the OSF (https://osf.io/yrm83). For brevity the power analysis was not included in Stage 2 review, 

nor was it included in the published version of the registered report (https://doi.org/10.3758/s13414-

023-02655-y).    

 

Experiment 1 

We determined the sample size of 24 participants, and the number of trials per condition 

by simulating 150 experiments based on the parameter estimates derived from fitting a hierarchical 

Bayesian three-parameter mixture model to the raw data of Souza and Oberauer (2017, Experiment 

1A) whose design we closely follow in the current experiment. The analysis scripts and results of 

the simulations for both Experiments 1 and 2 can be found on the OSF. The rationale of this “power 

analysis” was to determine an appropriate number of participants and trials per condition to 

observe the predicted effects in at least 80% of the convergent simulations.  

As explained previously, in Experiment 1 we predict that the central (but not peripheral) 

attention demand should increase extrinsic binding errors relative to the no-disruption baseline. 

We consider an effect as credible when the 95% highest density interval (HDI) of the comparison 

https://osf.io/jr3eh/
https://osf.io/yrm83
https://doi.org/10.3758/s13414-023-02655-y
https://doi.org/10.3758/s13414-023-02655-y
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of interest (e.g., central versus no disruption) does not overlap with 0. The HDI gives a sense of 

how certain it is that the true effect lies in its range and its overlap with the null, thereby allowing 

us to draw inferences for our predictions. When fitting the three-parameter mixture model to Souza 

and Oberauer’s raw data, we observed that the peripheral attention demand indeed had no impact 

on binding errors (mean estimate = 0.00, HDI range = -0.11 – 0.11). Conversely, although the 

central attention demand credibly impaired the probability that the target was recalled (mean 

estimate = 0.15, HDI range = 0.05 – 0.25), the effect on binding errors was not credible (mean 

estimate = -0.07, HDI range = -0.18 – 0.03). Given that other similar work has shown a credible 

effect of a central attention demand on binding errors (e.g., Zokaei et al., 2014), we wondered 

whether the demand was not strong enough to elicit an effect on binding errors. Indeed, there was 

no credible effect of a “low” central attention demand in Souza and Oberauer’s Experiment 1B on 

the probability of recalling the target (mean estimate = 0.07, HDI range = -0.05 – 0.20) or the 

probability of binding errors (mean estimate = -0.08, HDI range = -0.21 – 0.06). Thus, in the 

current experiment we plan to adjust the pitch of the tones to make them more challenging to 

discriminate to increase the demand of the task (Portrat et al., 2008). Accordingly, we conducted 

the simulations with a mean difference of 0.15 in binding errors between the central attention and 

no disruption conditions. The results showed that 83% of the HDIs for the central attention 

disruption effect did not overlap with 0 (range M = 0.21, SD = 0.01), whereas 99% of the HDIs for 

the peripheral attention disruption effect overlapped with 0 (range M  = 0.18, SD = 0.01). 

 

Experiment 2 

We will collect data from 24 participants, with the same criteria as in Experiment 1. We 

determined this sample size and number of trials per condition by using the same simulated 
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experiments method from Experiment 1. Specifically, we conducted 150 simulated experiments 

using the parameter estimates derived from fitting a hierarchical Bayesian three-parameter mixture 

model to the younger adult data of Souza (2016), who showed that (extrinsic) retro-cues reduced 

binding errors relative to a no-cue baseline (mean estimate = -0.18, HDI range = -0.26 – -0.09). 

As in Experiment 1, the logic of this analysis was to check the percentage of convergent 

simulations that showed a credible retro-cue effect in binding errors with a given sample size and 

number of trials per condition. The results showed that 100% of the HDIs for the retro-cue effect 

in binding errors did not overlap with 0 (range M = 0.13, SD = 0.004), thus justifying the proposed 

sample size. 
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