
Path protection switching in

information centric

networking

Edita Gashi

Supervised by: Dr. Martin Reed

School of Computer Science and Electronic Engineering

University of Essex

A thesis submitted for the degree of PhD

Date of Submission: 2nd of November 2022

In honor of my Father Selami Gashi I dedicate my Phd to him. I hold a

special place in my heart for my late Dad. Education was important to him,

and he encouraged me during my childhood. I am honored and privileged to

honor Nanushi (Gjylie Maloki)’s wish, who passed away during the course

of my doctoral studies.

i

Abstract

Since its formation, the Internet has experienced tremendous growth, con-

stantly increasing traffic and new applications, including voice and video.

However, it still keeps its original architecture drafted almost 40 years ago

built on the end-to-end principle; this has proven to be problematic when

there are failures as routing convergence is slow for unicast networks and

even slower for multicast which has to rely upon slow multicast routing as

no protection switching exists for multicast. This thesis investigates pro-

tection in an alternative approach for network communication, namely in-

formation centric networking (ICN) using the architecture proposed by the

PSIRP/PURSUIT projects. This uses Bloom Filters to allow both unicast

and multicast forwarding. However, the PSIRP/PURSUIT ICN approach

did not investigate protection switching and this problem forms the main

aim of this thesis.

The work builds on the research by Grover and Stamatelakis who intro-

duced the concept of pre-configured protection p-cycles in 2000 for optical

networks and, with modification, applicable to unicast IP or packet networks.

This thesis shows how the p-cycle concept can be directly applied to packet

networks that use PSIRP/PURSUIT ICN and extends the approach to en-

compass both unicast and multicast protection switching. Furthermore, it

shows how the chosen p-cycles can be optimised to reduce the redundancy

overhead introduced by the protection mechanism.

The work evaluates the approach from two aspects, the first is how the

proposed approach compares to existing switching state and traffic in an

MPLS multicast architecture. The second considers the redundancy overhead

in three known network topologies for synthetic traffic matrices. The thesis

is the first work to demonstrate the efficiency of Bloom filter based switching

for multicast (and unicast) protection switching.

ii

Contents

List of Figures iii

List of Tables vii

1 Introduction 1

1.1 Overview . 1

1.2 Aims and Objectives . 4

1.2.1 Objectives . 4

1.3 Thesis Structure . 5

2 Literature Review 6

2.1 Traditional IP routing . 7

2.2 Multicast delivery . 10

2.2.1 IP Multicast . 11

2.3 MPLS . 12

2.3.1 Multicast with MPLS multi-point LSPs 16

2.4 Traditional Path Protection 18

2.4.1 Protection methods . 18

2.4.2 Packet network resilience 20

i

2.4.3 Optical resilience . 21

2.5 Path Protection with P-cycles 22

3 Information Centric Networking 27

3.1 Overview of ICN . 30

3.1.1 PSIRP/ PURSUIT Network Architecture 32

3.1.2 Rendezvous system . 35

3.2 Bloom Filter-based Forwarding 39

3.2.1 Bloom filters . 39

3.2.2 Bloom filter encoding a multicast tree 44

3.2.3 Stateless Multicast Switching (LIPSIN) 45

3.3 CCN Network Architecture 47

3.4 NDN Network Architecture 52

3.5 PURSUIT vs CCN/NDN for protection 54

4 Multicast Protection-cycles Through Path-Based Switching 55

4.1 Overview . 55

4.2 Supporting concepts . 56

4.2.1 Path Protection with P-cycles 56

4.3 On-the-Fly Protection of Bloom Filter-based Flows 58

4.4 Formal description of the proposed protection mechanism . . . 61

4.5 Evaluation . 66

4.6 Practical implications . 73

4.6.1 Header insertion . 73

4.6.2 Dissemination of cycle IDs 75

4.7 Summary . 76

ii

5 Optimising protection cycles 77

5.1 Overview of the approach . 78

5.2 Algorithmic description . 84

5.2.1 Algorithm complexity 87

5.3 Results . 89

5.4 Summary . 93

6 Conclusion 94

6.1 Future directions . 96

6.2 Final conclusion . 96

iii

List of Figures

2.1 MPLS Network . 15

2.2 Link Protection with alternative protection path 19

2.3 Protection Cycles : a) protection cycle without failure b) Pro-

tection against an on cycle failure and c)Protection against a

straddling link failure . 19

2.4 Path Protection . 19

2.5 on-cycle span protection of p-cycle 24

2.6 Straddling span protection of p-cycle 24

3.1 Content Distribution and Retrieval 31

3.2 PURSUIT Component Wheel 34

3.3 Architectural functions in PURSUIT 35

3.4 Rendezvous system in process 37

3.5 (a) Empty Bloom filter (b) X is added to Bloom filter by

setting the hash value array positions to 1, k = 4. (c) shows a

hash collision. Two hashes for element X’ both yield location

8, k = 5 . 40

iv

3.6 a) Shows a Bloom filter to which elements X and Y have been

added. The corresponding array positions denoted by the blue

and red arrows have been set to 1. The element W is not in

the Bloom filter, since the bit in array position 10 is 0. (b)

Shows the same Bloom filter and element F that has not been

added to the Bloom filter. However, the test for membership

indicates that F has been added, since all the corresponding

array positions are set to 1. F is a false positive 42

3.7 Bloom filter based forwarding. Each link has a directional

identifier, e.g. BF ab . BF PS on the left shows the con-

struction of a Bloom filter for path from P to S. The other

columns show how each router tests the presence of a link in

the Bloom filter. Red dotted line shows the path that the

packet is forwarded. 43

3.8 CCN replaces the global component of the network stack (IP)

with chunks of named content. 49

3.9 Data & Interest Packet example 50

4.1 P-cycles showing both on cycle links and node encirling links . 57

4.2 Path protection mechanism showing example working and pro-

tection trees. 59

4.3 Path protection mechanism showing how the protection cycle

can be modelled as an augmented graph 62

4.4 The number of unique CIDs for networks from the Internet

Topology Zoo against number of network nodes N 67

v

4.5 The number of unique CIDs for networks from the Internet

Topology Zoo against maximum node degree ∆ 68

4.6 Total Traffic for 1000 Multicast Tree using ICN. Traffic vari-

ation by Bloom filter length and different networks. Traffic is

measured by the number of hops in each path (path.hops). . . 69

4.7 Total State for 1000 and 2000 Multicast Trees for MPLS and

ICN with AD=0.5 . 71

4.8 Total Traffic for 1000 Multicast Tree for MPLS and ICN . . . 72

4.9 Total State for 1000 Multicast Tree using either MPLS or ICN

in HibernianGlobal network 73

4.10 Total Traffic for 1000 Multicast Tree using either MPLS or

ICN in HibernianGlobal network 74

5.1 Example showing redundancy overhead and differences in al-

location of redundancy for different edge/cycle selection: (a)

shows the working traffic, (b) allocates edge (b, e) to the right

cycle, (c) allocates edge (b, e) to the left cycle; (b) and (c)

show both working traffic and the redundancy overhead in the

corresponding colour. 81

5.2 Example of aggregating the two earlier cycles from Fig. 5.1

into one larger cycle . 82

5.3 Comparison between algorithms showing the relative improve-

ment in redundancy overhead R compared to the Unopt algo-

rithm . 90

5.4 Box plot showing the distribution of cycle lengths is highly

similar across all algorithms (for the Dfn network). 91

vi

List of Tables

5.1 Basic properties for the chosen networks from Internet Topol-

ogy Zoo . 92

5.2 Analysis showing number of cycles and mean cycle length in

finer granularity . 92

vii

Acknowledgements

This thesis has been a long project of learning and maturing as researcher

as an employee as a person and as a mother. It is with a great deal of

gratitude and appreciation that I acknowledge that Professor Martin Reed

is my hero. He will always hold a special place in my heart as well as in my

family. It has been a great experience working with Professor Reed. The most

amazing human being I have ever met or will ever meet is him .Thanks to

his constant encouragement and guidance, I have completed my Ph.D. thesis.

In appreciation, I would like to express my sincere gratitude and thanks to

my husband, Ylli Nogu Gashi, who has supported me throughout my PhD

research, encouraged me throughout my journey, listened to my frustrations

and complaints, and believed in me regardless of the circumstances. I am very

grateful that you have been an extremely generous and supportive friend to

me during my last few months caring for our son Noah. I am highly obliged

to your generosity and encouragements that enabled me to complete my

doctorate. This is my greatest pleasure and deepest joy, as I acknowledge

that I am the mother of a 15-month-old boy. I have had a very rewarding

and amazing experience. I am thankful to Noah for his patience during the

last few months. This was due to my absence from the house most of the

time. I found this difficult to deal with.

I would like to take this opportunity to express my sincere gratitude to my

mother Serbez Maloki who brought me to England for my education.Thank

you so very much for giving me the chance to attain such a great honor

and privilege to achieve the highest level of education and for fulfilling my

Father’s dream and yours.

viii

I would like to thank my brother Selami Gashi and his wife Erza and

my niece Moena. As well as my sister Anita Gashi and her husband Granit

and my niece Maja for being in my life and supporting me. I would like to

extend my appreciation to my uncle Bejtush Gashi encouraged me to pursue

my Ph.D. I am thankful for his support. Furthermore, I would like to take

this opportunity to express my gratitude to all the members of my Gashi and

Nogu families who have been so supportive of me during my journey towards

getting my doctorate, and I am grateful for that.

In Essex University, I had the pleasure of meeting Mays Al-Naday,

Maryam Alhalboni Chathura Sarathchandra, and Louis Clift. Thank you

for your encouragement and support. I have especially appreciated May’s

support and encouragement and consider her to be a close friend.

I am especially grateful to my close friend Eniana Kobuzi who has always

motivated and encouraged me through my journey. She has consistently

motivated me to achieve the success I’ve needed throughout the process of

finishing my thesis and I am grateful for her encouragement.

Thank you God for your Blessings for making this possible for me.

ix

Chapter 1

Introduction

1.1 Overview

The Internet has been exceeding all expectations with respect to its capability

to cope with the modern demands for information dissemination. In recent

years, YouTube has seen a dramatic increase in the amount of newly created

content available as consumers’ appetite for online video has increased. It is

estimated that approximately 30,000 hours of new video content are uploaded

every hour and from 2014 to 2020, video content hours uploaded every 60 sec-

onds increased by about 40% percent. The amount of web traffic generated

by mobile devices accounts for half of all web traffic worldwide in 2017 [1].

From the beginning of 2017, mobile devices (excluding tablets) accounted

for 58.99% of the global website traffic, which had reached around 50% be-

fore finally surpassing that in 2020 [1]. Considering that multimedia content

can now be served over the Internet in a variety of ways, we are witnessing

staggering statistics. Video streaming traffic today is mostly uni-cast using

1

HTTPS based streaming [2], whereas the tremendous growth in video traffic

suggests that multicast would be a better option [3]. However, multicast de-

livery to mobile and desktop devices (including smart TVs) is not supported

by the current Internet architecture due to limitations in streaming archi-

tectures. However, future Internet architectures such as Information-Centric

Networking (ICN) suggest that such multicast delivery may be possible [4]

and this is discussed further in Chapter 2 and used as the groundwork of this

thesis.

Failures appear frequently in networks, due to a variety of reasons e.g.

cable cuts, power outages, compromised network elements, etc. Extensive

research on path protection and recovery techniques in IP and MPLS current

networks, has been carried out in the last few decades but all of these efforts

have focused on either unicast routing or the physical layer. Deployment

of native IP-based multicast has failed in the global Internet, and overlay-

based multicast systems are inherently inefficient. The importance of network

protection and recovery in current and future networks is essential part of

networking for uni-cast and multicast.

In Information-Centric Networking (ICN), multicast forwarding is nat-

urally handled with the help of a Bloom Filter when using the PURSUIT

architecture [5]. Providing resilience against failures is an important require-

ment for many networks today, and the amount of disruption caused by a

network-related outage is becoming increasingly significant, because even a

single outage can cause millions of users to lose access to the network, re-

sulting in significant losses for both users and network operators. Protection

switching is the key technique used to ensure survivability. These protection

2

techniques involve providing rerouting the traffic around the failure using

multiple techniques. While, such protection switching has been addressed

many times in traditional networks, there is very little discussion of this

applied to ICN and this is focus of this thesis.

Physical layer impairment aware routing and physical layer routing with

protection have been well investigated for current networks. This work asks

the question: can existing techniques for these problem areas be applied to

Information Centric Networks? In particular can traditional algorithms for

protection and impairment aware routing be implemented in an ICN utilizing

a switched optical system?

Information Centric Networking (ICN) is one of the significant directions

of current networking research. ICN architecture proposes the use of the Pub-

lish/Subscribe paradigm to achieve data oriented approach unlike one that is

found in current networks based on a destination approach [4,5]. The Inter-

net allows rapid dissemination of information to users of internet/network,

where the users only care about the content and is oblivious to the location

of the content. Whether the consumer requires headlines from BBC news or

videos from YouTube does not care nor is aware of the desired data or service

location or for that matter in which ever machine the content resides and is

retrieved from. ICN has a number of approaches and architectures to solve

the problem of content delivery and these will be described in Chapter 2.

In this investigation we propose an overview on this increasing ICN

paradigm, taking the PURSUIT network architecture approach. This will

include the most relevant literature review on former research papers in ar-

eas of ICN focusing in PURSUIT approach. Furthermore the work explores

3

how existing path protection mechanisms can be reused in ICN networks and

possibly improved in this new context. In particular the work will look at

extending the use of p-cycles [6] for the ICN path protection; p-cycles will

be introduced in Chapter 2.

1.2 Aims and Objectives

The aim of this thesis is to propose protection switching in ICN based on

the PURSUIT architecture that supports multicast and combine this with

p-cycles which support fast recovery.

Following the primary aim the secondary aim is to improve the efficiency

of the p-cycle based protection mechanism.

1.2.1 Objectives

• 6 ICN context objectiveExplain the context of ICN - introduce

the concept of ICN and in particular in the context of the PURSUIT

network architecture.

• Explore ICN networks and its research approaches - Focus-

ing on PURSUIT network architecture approach and along with its

LIPSIN forwarding mechanism [7] (using Bloom Filters) and p-cycles

for protection.

• Explore p-cycles - Exploring the use of p-cycle based on the LIPSIN

forwarding mechansim [7] for protection in the use of ICN (PURSUIT

4

architecture) and compare it with the current MPLS switching for mul-

ticast in terms of switching state and traffic capacity.

• Demonstrate through simulation the novel idea of using Mul-

ticast Protection-cycles Through Path-Based Switching. Op-

timising the choice of cycles to reduce the redundancy overhead.

1.3 Thesis Structure

This chapter reviews several propositions for the potential structures of ICN,

briefly describing the current researched projects and defining the concepts

along with roles of PURSUIT and POINT network architecture approach.

Chapter 2 carries out a literature review and explains the necessary back-

ground. Chapter 3 proposes the central novel idea on multicast protection-

cycles through path-based switching. Chapter 4 proposes how the cycles

used for the multicast protection can be optimised to reduce the redundancy

overhead introduced by the p-cycles. Finally, Chapter 5 presents conclusions

of the commenced research.

5

Chapter 2

Literature Review

In this chapter, we provide an overview of the background and foundations of

traditional path protection in future networks such as content-based pub-sub

systems that will be required to understand this dissertation. We leave the

discussion on ICN for Chapter 3.

In this chapter we begin by describing related work on path protection

approaches such as MPLS, including p-cycle concept [6]. We present the ICN

internet architectures that focus on the content-based pub-sub system as cen-

tral entity as opposed to the current host-centric IP networking architecture.

Firstly, we describe related work and approaches, presenting the state-of-the-

art in the area of content-based pub-sub systems. Providing this background

allows for the classification of our own proposals that are presented later.

Secondly, we start to review recent path protection approaches to iden-

tify their inherent assumptions and the implications that can be drawn from

them. This review substantiates the hypothesis we have proposed in Chapter

1 and intensifies the need to solve the associated research questions. These

6

two contributions are reflected within the structure of this chapter. We begin

by briefly explain the mechanism of a typical packet router which involves

two closely couple concepts: (i) “routing” and (ii) packet forwarding, see

Section 2.1. We next introduce generally the notions and concepts of tradi-

tional path protection in Section 2.4. Background on the p-cycle mechanism

is provided in Section 2.5; this is important as in this thesis it is applied to

a specific content-based pub-sub ICN architecture.

Section 2.4 explains the traditional path protection then elaborates on

MPLS path protection and Traffic Engineering for the parameters influencing

these measures that are current solutions to the methods of path protections.

One of the main advances in protection are p-cycles that have been used in

pre-configuring protection for current networks in multiple ways that we will

explore in Section 2.5. We focus on exploring and reviewing the other main

concept, the routing process, that includes multicast in Section 2.2.

2.1 Traditional IP routing

Section 2.1 is now changed 1 start of the art IP, not source routing

1 moved textIn a traditional IP network, the router analyses the desti-

nation address in the packet header at each hop and makes an independent

forwarding decision as the packet travels from the source to the destination.

IP forwarding is based on routing protocols such as Open Shortest Path First

(OSPF) and Border Gateway Protocol (BGP). These protocols are designed

to find the shortest path from the source to the destination and do not con-

sider factors such as latency and traffic congestion. However, the shortest

7

path is not known to the end station, but is rather left to the routers to

construct this in a connection-less manner. Clark gives an excellent intro-

duction to the design choices chosen for the Internet [8], which are driven

often by historic economic and technical conditions. Clark notes that source

routing was not chosen for two reasons: firstly, it is an economic issue as

there is no means to charge users for their choice of path; secondly, it is a

security issues as malicious users could then use the knowledge of paths to

introduce attack vectors to specific points [8]. The connection-less nature of

IP has led to some issues for example the lack of scalability of high-speed

routing at Internet scale. In order to overcome some of these restrictions

Multi-protocol Label Switching (MPLS) was introduced [9]. While this is

not strictly source routing, it does introduce the notion of a label switched

path that achieves a similar intention to source routing, albeit from a differ-

ent mechanism. While MPLS solves this scalability for unicast routing, it

does not solve it for multicast; for multicast switching the PURSUIT/PSIRP

switching described later in Chapter 3 introduces source routing using an ef-

ficient header data structure, Bloom filters. It should be noted that while

MPLS and PURSUIT/PSIRP have source routing like capabilities they get

around the problems discussed by Clark [8] as they do not allow the end

station to directly know or control this source route.

The mechanism of a typical packet router are often separated into (i)

the control computations “routing” and (ii) packet forwarding. The general

routing problem in a network consists of finding a routing protocol, or routing

function, or distributed routing algorithms, practically any pair of source

and destination nodes, any message from the source are often routed to the

8

destination.

When routing a message from a source to a destination in an IP network,

to determine where to forward the message to, a node relies on the local rout-

ing table, the destination address, and the message headers. As a result of

the routing algorithms, network state in form of forwarding information base

(FIB) encoded in forwarding tables is created by the routing and resource

control computations. As a result in-network memory information enables

hardware to perform fast packet processing operations [10].

While the traditional model works well for host-centric unicast routing

and forwarding systems, we find necessary to introduce subtle refinements

in order to (i) match our focus on packet forwarding for content-oriented

networks with multicast being the natural way of communication mode, and

(ii) account for our probabilistic approach, where we explore solutions that

deliver packets over protected path. Bloom filters [11] are data structures

that are widely used to query group membership for use in network applica-

tions that require the inspection of packet headers and content in order to

achieve space efficiency. Bloom filters are highly randomized data structures

that are highly effective in space efficiency [11,12].

Within this chapter, we will introduce the concept of forwarding efficiency

in order to measure the bandwidth efficiency of multicast-capable forwarding

methods, which will facilitate the comparison of alternative (probabilistic)

approaches to the solution space that will be discussed in more detail in the

following Chapter 3.

9

2.2 Multicast delivery

IP multicast, proposed in the early 90s by Deering et al. [13] was designed

as a new general Internet layer service. In IP multicast, a new named entity,

group address, was introduced to the network layer. Senders could choose a

multicast group address they would send to and receivers could choose the

group address they would listen to. The network would, match the senders

and the receivers in a general many-to- many architecture. For the many-

to-many model, the group address was topologically independent. Later on,

source-specific multicast was designed, making a group name dependent on

the source IP address in addition to the group address [14].

However, such multicast architectures placed the group maintenance at

the routers. This requires routers to maintain per group state, which leads

to additional complexity, and scalability and security problems [15]. Bloom

filter based multicast has been proposed as a way to create scalable multicast

by pushing the group management to the source and thus removing the per

group state at the transit routers [7]. In Bloom filter based multicast, the

links belonging to a multicast tree are encoded as a Bloom filter [11], which

is then placed in the packet header. Each router checks for the presence

of outgoing links and forwards the packet accordingly. Our work builds on

using Bloom Filters in-coding multicast trees and then providing protection

for this mechanism of forwarding.

10

2.2.1 IP Multicast

Multicast management for traffic flow through a L2 switch, static configu-

ration of multicast addresses on ports is required to send multicast traffic it

has a lot of administrative overhead and it is not very flexible.

IGMP protocol [16] is is used by hosts on a network segment to identify

group membership sending IGMP messages to multicast router. For example

using multicast for client to join a video stream, it sends a message directed at

the multicast router. The multicast router is a router or L3 Switch with mul-

ticast enabled with IGMP Proxy or protocol independent multicast (PIM)

routing protocol [17].

IGMP Snooping is used at a L2 switch to control multicast streams.

IGMP Snooping prevents multicast flooding to all ports in the switch. A

switch keeps a table of group to port members and streams are only sent

where they are required instead of all ports. A LAN segment must have a

Querier, which is usually a L3 switch or router, again, running IGMP Proxy

or PIM routing.

IGMP Querier is a feature allowing L2 Switch to pretend to be a multicast

router for the purpose of keeping IGMP snooping working. L3 equipment

needs to support: IGMP Proxy this is to route between VLANs and Protocol

independent Multicast (PIM-SM) (PIM -DM).

Unicast forwarding sends a copy of each packet to every client in case

of a video stream, unicast typically is used when only few clients needs to

access the application, if a message has to be sent to a larger group, the

same information has to be carried multiple times even on the same links

which results in consuming a lot bandwidth. Worst case scenario would be

11

if the unicast addresss is unknown it would then broadcast the traffic to the

whole network which would be huge waste of bandwidth and extra load on

the server and reduce the network performance.

2.3 MPLS

MPLS and how Label Switch Paths are set up MPLS establishes a connection-

oriented network overlaid onto the connection less framework of IP networks.

Due to this connection-oriented architecture, several new techniques for traf-

fic management are available [18]. In MPLS packets are forwarded by label

swapping or label switching. The labels are contained in an MPLS header

inserted into the data packet.

The label is a short fixed length physically contiguous identifier that in-

structs the routers how to forward the packets from the source to the desti-

nation. The packets follow a predetermined path called the Label Switched

Path (LSP) illustrated in Fig. 2.1, a LSP is also referred to as an MPLS

tunnel. A LSP is simply a concatenation of one or more hops in the network.

Signalling protocols such as Resource Reservation Protocol with Tunneling

Extensions (RSVP-TE) and Label Distribution Protocol (LDP) can be used

to establish connections and distribute labels [18].

MPLS operates at the network layer of the OSI model and provides a

mechanism for forwarding packets based on labels rather than traditional IP

routing based on destination IP addresses.

In MPLS, Label Switch Paths (LSPs) are established to create virtual

paths across the network. These LSPs are used to forward packets from one

12

network node to another based on the labels attached to the packets. The

following section explains how LSPs are configured in MPLS networks:

Label Distribution Protocol (LDP) or RSVP-TE: MPLS routers use pro-

tocols like Label Distribution Protocol (LDP) or RSVP-TE (Resource Reser-

vation Protocol with Traffic Engineering extensions) to exchange label in-

formation with their neighboring routers. These protocols allow routers to

establish label bindings, which associate specific labels with network desti-

nations.

Label assignment: Once the label distribution protocols have exchanged

information, each MPLS router assigns a label to a particular route or net-

work prefix. These labels are typically locally significant within a router’s

domain and are used to forward packets toward the destination.

Label Forwarding: Once the labels are assigned, the MPLS routers con-

struct a Label Forwarding Information Base (LFIB) that maps incoming

labels to outgoing interfaces or next-hop routers. This mapping determines

how the incoming labeled packet should be forwarded to reach its destination.

Label switching: When a labeled packet arrives at an MPLS router, the

router examines the incoming label and performs a lookup in its LFIB to

determine the appropriate outgoing interface or next-hop router for that

label. The router then swaps the incoming label with the outgoing label and

forwards the packet accordingly.

Label stack: In cases where a packet needs to traverse multiple MPLS

networks or hops, a label stack is used. The label stack allows routers to

apply multiple labels to a packet to guide it through various LSPs until it

reaches its final destination.

13

It is important to note that the exact process of setting up LSPs can vary

depending on the specific implementation of MPLS and the protocols used.

MPLS can be configured using different protocols such as LDP, RSVP-TE, or

even BGP (Border Gateway Protocol) with MPLS extensions. Each protocol

has its own mechanisms for label distribution and path establishment.

These protocols establish paths through the MPLS network and reserve

network resources along the path according to the requirement. The routers

in the MPLS network are called the Label Switch Routers (LSR’s) and the

routers in the edge of the network are called Label Edge Routers (LER’s).

The router at the entry point of the tunnel is referred to as the ingress router

and the router at the endpoint is called the egress router.

Fig. 2.1 When packets enter the network they are classified into Forward-

ing Equivalence Classes (FEC). All the packets belonging to the same FEC

receive the same forwarding treatment. A FEC is a logical entity created by

the router to represent a class of packets. After the initial classification, the

packets are then assigned a label and the path corresponding to that FEC

by the LER.

The label is used to identify an FEC. The packets are then forwarded

along the LSP. At each hop, the LSR removes the incoming label and attaches

an outgoing label. This outgoing label instructs the next router how the

packet should be forwarded. In Fig. 2.1 exhibits a typical MPLS network and

the associated elements. The central cloud represents the MPLS network.

The customer edge routers (CE routers) interface with the provider edge

routers (PE routers). The PE router at the ingress point attaches the MPLS

label to the packet and the PE router at the egress point removes the MPLS

14

L2 header IP Packet L2 header IP Packet

CE

PE

CE PE

PE

P

P

P

P

PE

2

4

4
4

LSP
LSP

LSPIngress

Egress

6

1 3

PE Provider Edge Router

CE Customer Edge Router

P Provider Router

LSP Label Switched Path

Customer
Network

Customer
Network

5

Service Provider MPLS Network

L2 header MPLS header IP header

Figure 2.1: MPLS Network

label from the packet. The CE and PE routers are the LER’s. Within the

MPLS domain, the Provider (P) routers forward the traffic hop by hop based

on the labels. The P routers are the LSR’s.

MPLS is a framework of functions it combines the benefits of packet

forwarding based on Layer2 Switching with that of Layer3 Routing and also

provides the benefit of Traffic Engineering (TE). It can also be used to set

up Virtual Private Networks.

MPLS allows label stacking [19], it stores a number of labels that can

speed up the flow of the network traffic and it makes it easier to manage,

rather than looking up routing tables based on the IP addresses. In the case

of ICN, there are no IP addresses so MPLS techniques can be compared with

ICN networks as we move traffic around based on labels known as Label Link

Identifiers (LIDs) explained fully in Section 2.3.2.

15

2.3.1 Multicast with MPLS multi-point LSPs

The predicaments with using multicast at operator scale have triggered state-

less solutions, such as multi-protocol stateless switching (MPSS) [20] and line

speed publish/subscribe inter-networking (LIPSIN) [7], that use the Bloom

filter (BF) as the forwarding identifier (FID) in the packet-header. For con-

ciseness, this form of switching will be described as BF switching. Certainly,

BF switching has been utilised by architectures such as PSIRP and PUR-

SUIT [5] that determine the basis of a clean- slate information-centric net-

work (ICN). These trials demonstrated that BF switching can deliver very

efficient unicast/multicast forwarding with the minimal state either in soft-

ware switches or utilising SDN switches [21].

MPLS supports Traffic Engineering as it allows explicit routing of packets.

Traffic Engineering (TE) is the process of selecting suitable paths for the

flow of data in a network so as to efficiently utilize the network resources and

enhance the network performance while maximizing the network revenue.

The main goal of Traffic Engineering is to deliver efficient and reliable network

operations. Traffic Engineering attempts to compute a path from the source

node to the destination while adhering to constraints such as bandwidth,

delay and other administrative requirements. After the path is computed,

Traffic Engineering enables the establishment of the path and also maintains

the forwarding capability of the path.

This allows MPLS networks to pre-establish backup paths for the primary

paths [22]. Each of these backup LSP’s has the same amount of bandwidth as

the primary LSP’s. Path Protection provides an end to end failure recovery

mechanism for MPLS Traffic Engineering tunnels. The backup paths have

16

the same source-destination pair as the corresponding primary paths. One

or more LSP’s are established in advance to provide failure protection for the

protected LSP.

If the primary LSP fails, the traffic is instantly switched onto the backup

LSP’s temporarily [22]. It is important that the backup LSP’s are either link

disjoint or node disjoint with the primary LSP’s i.e. the backup LSP’s do

not share a link or a node with the primary LSP’s else the failure of a shared

link or node would affect both the primary and backup paths.

Rerouting is another technique of providing path protection. In this

method, upon failure of the primary path the traffic is simply rerouted along

a new path or path segment. No resources are reserved in advance until the

fault occurs. This mechanism provides higher resource utilization but is slow

compared to protection switching as the secondary path is established upon

detection of a failure.

In MPLS, the routing decisions, particularly the choice of the path, are

addressed in connection with the underlying IP network. In MPLS, the path

is determined at the source and the forwarding is performed by use of a label

switched paths which are established beforehand on the base of an underlying

IP network. However, once a packet passes through the MPLS network only

the local forwarding decisions are made. Consequently, multicast turns out

to be very complex as an aggregation of switched labels is not easy and the

aggregation translates in multicast state and consequently, the efficiency is

reduced. Furthermore, considering the whole path is exposed in the network,

security may become an issue [8].

A similar perspective to MPLS has been proposed for the novel clean-slate

17

information/content-centric network developed initially within the frame-

work of the European project, PSIRP/PURSUIT [5] and POINT [4], where

the concept of an IP address is not part of the architecture anymore as ex-

plained in Chapter 3.

2.4 Traditional Path Protection

The aim of this section is to provide an overview of the traditional path pro-

tection mechanism. To date, IP traffic is the most common type of traffic

carried across networks, and it accounts for the majority of traffic. The native

IP system is limited in several respects, including the lack of traffic engineer-

ing capabilities, QoS features, Path Protection mechanisms, and mechanisms

for ensuring reliability. It is due to the limitations of IP alone that we explore

a variety of approaches that are currently being used in MPLS and Traffic

Engineering, as well as the p-cycle approach for path protection, to overcome

these limitations [22–26].

2.4.1 Protection methods

Protection also known as protection switching refers to a primary path pre-

established backup path that is switched when and if the primary path has

failed. Path protection requires the protection path of a request to be com-

pletely link-disjoint from the corresponding primary path, while the link pro-

tection scheme reroutes all affected requests over a set of replacement paths

between the two nodes terminating the failed link. Depending on the span

of the backup path a few protection techniques can be described as follows:

18

Failure

Source
node

Backup path

Primary path

Destination
node

Backup path

Figure 2.2: Link Protection with alternative protection path

a) Protection Cycle b) Protection against an on cycle failure c) Protection against a straddling link failure

Failure

Failure

Figure 2.3: Protection Cycles : a) protection cycle without failure b) Pro-
tection against an on cycle failure and c)Protection against a straddling link
failure

(i) Local protection : when the backup path protects a single link also

known as link protection refer to Fig. 2.2 that depicts a graphical represen-

tation of a link protection with the alternative path protection as alternative

path.

(ii) Pre-configure protection cycle known as a p-cycle is a form of pre-

configured cyclic closed paths from a spare capacity in a given mesh networks

Backup path

Source
node

Destination
node

Primary pathFailure

Figure 2.4: Path Protection

19

used to protect against on-cycle link and straddling link not on the cycle but

the end nodes of the link are on the cycle refer to Fig. 2.3 that depicts the

graphical representation of those protections.

(iii) Path protection when the path span from source (ingress) node to the

destination (egress) node refer to Fig. 2.4 that represents the path protection

in graphical form.

Local protection mechanisms have the disadvantage of requiring the es-

tablishment of a backup path for each link/node of the primary path in

order to protect against loss of data. Network resources on a backup path

are dedicated for protecting only one primary path, local protection mech-

anisms imply inefficient usage of resources. Switching time associated with

protection from primary to backup path for the local protection mechanisms

is shorter than for a path protection mechanisms, cause it is performed lo-

cally at the detecting node. Path protection switching is performed at the

source node, hence more signaling is required implying longer recovery time,

which also means larger amounts of lost traffic as compared to local protec-

tion mechanisms. There are many advantages to path protection, including

the ability to more efficiently utilize backup resources and to minimize prop-

agation delays [27].

2.4.2 Packet network resilience

Network resilience in packet switched networks is enabled through dynamic

routing protocols such as OSPF. OSPF [28] is based on the relative costs of

transferring information between hops (mainly routers and networks). The

protocol is classified as an Interior-Gateway Protocol (IGP), and is intended

20

to be run internally in an AS. It is distributed amongst the routers in the

AS, and allows them to build the same representation of the AS’s network

topology. This is achieved through publishing Link-State Advertisements

(LSAs) by the routers. Each router then constructs a shortest-path tree

to different destinations, with itself as a root. Then, it routes IP packets

through the net, based solely on their IP addresses.

In case of topological changes, the routes will be recalculated, using up-

dated LSAs (or their absence). Yet, the protocol generates relatively small

amounts of traffic used for the configuration. However, routing resilience

using such protocols is much slower than protection mechanisms [27].

2.4.3 Optical resilience

This thesis is bringing fast protection to packet networks. Currently, this

does not exist within the packet networks which instead rely upon routing

to provide routing table restoration. This type of resilience happens on a

much longer time-frame. However, fast protection switching has been used

over a long period in optical networks. Consequently, as this is closer to the

mechanisms used in this thesis optical network protection will be reviewed

here. Later we will show how p-cycles that were originally designed for optical

networks can be utilised for the packet network switching used in this thesis.

SONET Protection Networks Protection is defined here as a re-

silience mechanism where the path for the protected traffic is both determined

and established prior to a failure. Protection examples include SONET APS,

Bundled Interfaces Protection (BIP), RPR protection, and MPLS TE and

FRR. This is in contrast to restoration mechanisms, where the path for the

21

protected traffic is established (and often discovered) after the failure (e.g.,

through Open Shortest Path First, OSPF, or Intermediate System to Inter-

mediate System, IS-IS, convergence). By definition, protection is faster than

restoration since the protection path is assigned and pre-programmed prior

to a failure [29].

1+1 Path Protection Mechanism

With 1+1 path protection [30] the backup path transmits a copy of the traffic

on the primary path. Once detection of the failure is acknowledged, the traffic

is routed across the backup path. However the backup path resources are not

available to low priority traffic. Hence there is no sharing of the resources

involved in the backup path, resulting in fastest backup path. 1+1 path

protection mechanism can be link disjoint or node disjoint.

1:1 Path Protection Mechanism

With 1:1 path protection [30] the resources of the backup path are available to

low priority traffic. Therefore it allows sharing of the backup path resources.

Once a detection of a failure is acknowledged the low priority traffic is taken

into account and is switched from the primary to the backup LSP. 1:1 path

protection mechanism can be link disjoint or node disjoint.

2.5 Path Protection with P-cycles

P-cycles provide an attractive way for network protection, since the benefits

of both ring-based protection and mesh-based restoration can be utilized [31].

In this section the concept of p-cycles for link protection is explained.

Span-protecting p-Cycles are a type of span protection technique “p”

22

stands for “protection” and “preconfigured.” The traditional span restorable

network performs restoration at the two end nodes of a link, and shows much

better spare capacity efficiency but requires a relatively longer restoration

time than the ring techniques [30]. Better than the span-restorable tech-

nique, span-protecting p-cycles can achieve not only good spare capacity

efficiency, but also a very fast restoration speed as they are ring like [31].

Thus, span-protecting p-cycles are often featured as mesh-restorable spare

capacity efficiency and ring-like restoration speed.

A p-cycle has the same layout as the traditional ring, but it is more

advanced than a ring in its protection capability. In addition to protecting

on-cycle spans, which is also protected under the ring technique, a p-cycle

can also protect straddling spans as shown in Fig. 2.6. An on-cycle span

is defined as a span or link that is traversed by the cycle, and straddling

span is referred to as a span who is not on the cycle, but whose two end

nodes are on the cycle. For protection, a p-cycle can provide one protection

route for an on-cycle span failure and two protection routes for a straddling

span failure. Fig. 2.5 shows a pre-established p-cycle and it protects all the

on-cycle spans including spans (1-3), (1-5), (3-7), (7-4), (4-6) and (6-5) and

straddling spans including spans (1-4), (1-3) and (4-5). In Fig. 2.5, when

on-cycle span (3-7) fails, the p-cycle provides a protection path (3-1-5-6-4-7)

to recover the failure, which operates very similarly to the traditional BLSR

technique. One unit of p-cycle protection capacity can protect one unit of

working capacity on an on-cycle span. More efficient than the ring, the p-

cycle also offers protection for straddling spans as shown in Fig. 2.6, where

when straddling link (3-4) fails the p-cycle provides two protection routes

23

(3-7-4) and (3-1-5-6-4) for the failure recovery. Each of them carries a half of

traffic from the working straddling link. Thus, for straddling span protection,

one unit of p-cycle capacity can protect two units of working capacity on a

straddling span.

On – Cycle Protection

1

2 3

4

7

65

Failure

On – Cycle Span

Figure 2.5: on-cycle span protection of p-cycle

1

2 3

4

7

65

Failure

Straddler Protection

Straddling Span

Figure 2.6: Straddling span protection of p-cycle

P-Cycles, as described in [32,33] provide a method for protecting MPLS

networks by establishing virtual protection cycles. P-Cycles are a form of

pre-planned protection scheme that offer fast and efficient restoration in case

of network failures. 1 p-cycles are best used for relatively static links, and

24

what assumptions you are making about transient links that appear at the

edge.It should be noted that P-cycles are designed to provide protection in

a mesh like network where cycle structures can be created in the mesh. As

such they are suitable for core networks with relatively static connections.

They are less suited to leaf connections at the access. In the same way,

this thesis addresses protection in the core network. To protect the access

network alternative techniques such as multi-homing (a form of 1+1) are

generally used [34], the thesis assumes that such mechanisms are in place for

access protection. In this section, we will discuss several different ways in

which P-Cycles can be employed to protect MPLS networks. These are as

follows:

Protection Cycle Creation: P-Cycles are established by selecting a set of

network nodes and links to form a cycle or ring topology. This cycle is de-

signed to encompass the protected network elements and provide alternative

paths for traffic in the event of a failure. The P-Cycle should be able to

handle the capacity of the working network elements it protects.

Label Switch Path (LSP) Establishment: Once the P-Cycles are defined,

the MPLS routers establish Label Switch Paths (LSPs) that traverse the

primary working paths as well as the P-Cycles. LSPs are set up to direct

traffic along the working paths in normal conditions.

P-Cycle Activation: When a failure occurs on the working path, the

MPLS routers detect the failure and activate the corresponding P-Cycle.

The routers switch the affected LSPs from the failed working path to the

corresponding protection path within the P-Cycle.

Traffic Rerouting: By switching the LSPs to the protection paths within

25

the P-Cycle, MPLS routers are able to reroute traffic around the failed net-

work elements. The P-Cycles provide alternate paths that can carry the

traffic while the failed elements are restored or repaired.

Fast Restoration: P-Cycles offer fast restoration times because the pro-

tection paths are pre-planned and readily available. There is no need for

complex computation or signaling protocols to establish new paths. The

MPLS routers simply switch the LSPs to the protection paths, minimizing

downtime and ensuring continuity of service.

By incorporating P-Cycles into MPLS networks, network operators can

enhance the resiliency and fault tolerance of their infrastructure. P-Cycles

provide a robust protection mechanism that can do fast reroute traffic in the

event of network failures, ensuring uninterrupted service for critical applica-

tions.

26

Chapter 3

Information Centric

Networking

Information-Centric Networking, is a promising future internet architecture

that aims to revolutionize the way information is accessed, distributed, and

consumed on the internet. Unlike the traditional host-centric approach of the

current internet, ICN focuses on content as the primary entity, shifting the

paradigm from ”where” information resides to ”what” information is being

requested. [35]

In ICN, the fundamental concept is to assign unique names or identifiers

to content, rather than relying solely on IP addresses. This enables a more

efficient and scalable content delivery model. When a user requests content,

routers in the network use these content names to retrieve and deliver the

requested data, regardless of its physical location. [35,36]

Several key aspects and benefits of ICN should be noted, including:

• ICN operates on the principle of named data: content is assigned a

27

unique name. This allows content to be cached and distributed across

the network, bringing it closer to the end-users and reducing the re-

liance on centralized servers. [37]

• Data-centric Security: ICN inherently provides better security mecha-

nisms compared to the host-centric model. Since data is named and au-

thenticated, it becomes easier to apply access controls, verify integrity,

and ensure confidentiality. [38]

• Efficient Content Delivery: ICN utilizes in-network caching, enabling

content to be stored closer to users. This reduces the strain on content

servers and improves overall network efficiency by minimizing redun-

dant data transfers. [36,38,39]

• Mobility Support: ICN seamlessly handles mobility by associating con-

tent names with the actual data, rather than relying on fixed IP ad-

dresses. This simplifies the process of content retrieval and delivery,

even when devices or users change their network attachment points. [40]

• Multicast and Content Routing: ICN inherently supports content-

based multicast, where multiple users interested in the same content

can efficiently receive it from a single transmission. Additionally, rout-

ing in ICN is based on content names, enabling more flexible and scal-

able routing schemes. [36]

• Internet of Things (IoT) Integration: ICN is well-suited for IoT applica-

tions, as it can handle large-scale data dissemination and facilitate com-

munication between IoT devices by leveraging content names. [41,42]

28

While ICN holds significant potential, it is still an evolving area of research

and faces challenges in terms of standardization, deployment, and transi-

tioning from the current internet infrastructure. However, ICN offers a com-

pelling vision for a future internet architecture that addresses many of the

limitations and inefficiencies of the present host-centric model, making it an

exciting area of exploration for researchers and industry experts alike.

Internet pioneer Van Jacobson provides a vision [35] to understand the

motivation for a networking revolution; while the first networking generation

was about wiring (telephony) and the second generation was about intercon-

necting wires (TCP/IP), the next generation should be about interconnect-

ing information at large. This shift in the orientation of network architecture

design implies rethinking many fundamentals by handling information as a

first class object. A key question is to what extent a new paradigm thinking

‘out-of-the-TCP/IP-box’ for the future network is really necessary, e.g., as

packet switching was to circuit switching in the 70’s. The reasoning is based

on the large scale use of the Internet for dissemination of data. A myriad of

devices, including user-attended terminals and long-running automated ser-

vices, generate and consume content, without caring about the actual data

source location as long as integrity, authenticity and timeliness are assured.

This shift toward information-oriented networking is also noticeable in the

momentum of service oriented architectures (SOA) [43], deep packet inspec-

tion (DPI) [44], content delivery networks (CDN) [45] and peer-to-peer (P2P)

overlay technologies such as POINT [4].

29

3.1 Overview of ICN

In the following, we first briefly describe our overall pub/sub based inter-

networking architecture, and then present a forwarding solution that resem-

bles strict source routing but uses a fixed-sized, compact header, using Bloom

filters (explained later in Section 3.2) which are suitable for fast hardware

implementation.

The Internet architecture has been a tremendous success, during past

decades it has grown from a small research network into a global critical

communications infrastructure with billions of users. Its success has come

with rapid changes in the user base and use patterns. The Internet was

designed to enable global communications by providing a simple ”best effort”

service of datagram delivery among network attached devices an end-to-end

communication and accessing computing facilities remotely, the patterns of

communications has changed. Van Jacobson predicted in his first talk in 2006

that networks was changing from the idea of interconnecting host to inter-

connecting information and quite rightly the network architecture should

change with it and in-visioned a New Way to Look at Networking [35].

The recent rapid developments of Information Centric Networking (ICN)

research activities have significantly increased in results. The vision is to

move to so called ‘Future Internet’, based on Pub/Sub paradigm as an al-

ternative to the commonly used Send-Receive paradigm. The principle of

ICN communication is focused on directly retrieving information objects:

securely, reliably, scalable, and most of all efficiently. The architectural de-

sign is driven to directly address the current network challenges that are

fast growing and demanding effective and efficient data distribution in the

30

Figure 3.1: Content Distribution and Retrieval

communication services in networks/internet.

Furthermost ICN architectures use data caching, and two most commonly

caching approaches are: caching at the network edge and in network caching

[46]. When caching is used information gets stored along a path due to

previous requests made earlier in addition to this means subsequent requests

for the same information will be returned from a closer location/server to

the requester/client. Therefore this will result in efficient use of bandwidth

and improved reduced latency.

Routing in ICN involves finding and delivering copies of data objects to

provide receivers from the most efficient location in the network, as it shows

below on the diagram Fig. 3.1

When using caching for content retrieval, it is important to assure users

that cached content/information has truly come from the original source.

31

The focus is only on content, not on the hosts storing content. However

any data object delivery is controlled by receivers/subscribers as shown on

Fig. 3.1 above only when they requested it than it is distributed to be re-

ceived. In ICN, the content provider/senders who provide the object to

distribute, do not send content directly to receivers/subscribers neither it

transmits data into the network. This is completed via advertisement mes-

sage as presented on the Fig. 3.1.

First the provider/publisher sends an advertisement message to notify

the network that it has content to distribute, however this is done without

the receivers/subscribers awareness that may be interested in the particular

data. Only when receivers/subscribers requirement matches a published in-

formation object, then the network initiates a delivery path from the sender

to the receiver/subscriber so that content/object retrieval can be initiated

for the receiver/subscriber. This is very much similar to rendezvous system

as is described in the following PURSUIT network architecture.

3.1.1 PSIRP/ PURSUIT Network Architecture

We can view the global network of information as an acyclic graph of re-

lated pieces of data, each identified and scoped by some identifiers. In the

PSIRP architecture, identifiers define the relationships between the pieces of

information in our system on the different levels, such as the application or

networking level. The following are classes of identifiers:

• Application identifiers (AId), used directly by publishers and sub-

scribers.

32

• Rendezvous identifiers (RId), used to bridge higher level identifiers with

lower layer identifiers.

• Scope identifiers (SId), used to delimit the reachability of given infor-

mation.

• Forwarding identifiers (FId), used to define network transit paths and

transport publications across networks using Bloom based forwarding

(see Section 3.2).

A rendezvous identifier is implicitly associated with a well-defined (but

not necessarily fixed) data set, consisting of one or more publications. The

data sets may also have associated metadata, which may include, e.g., scoping

information and other useful information either for ultimate receivers or for

network elements. We also consider metadata that is understood within

the network itself. Such network-level metadata might be concerned with

how the communication for a particular data item may be conducted. This

network metadata may be found as soft state within the network, carried

as part of the communication header, or referred to by separate identifiers.

Such functions may include access control, flow control, error notification,

congestion notification, etc.

PURSUIT architecture is formed from three parts: Protocol Suit Archi-

tecture also known as Component Wheel, the Network Architecture, and

the Service Model. Component wheel considered as the core of PURSUIT

conceptual architecture.

The PURSUIT architecture Component Wheel including Rendezvous,

Routing, Forwarding and Caching is displayed in figure below:

33

PSIRP/PURSUIT
Component Wheel

Applications

APIs

Rendezvous

Caching Routing

Forwarding

Low-Level Link
API

Figure 3.2: PURSUIT Component Wheel

As it shows on the diagram above below the application is the APIs who

improves the accessibility to the networking applications, which also helps

with simpler implementation for various networking components. Connecting

applications across the network, PURSUIT network architecture relies on a

special class of identifiers such as Rendezvous Identifiers (RId).

PURSUIT places the notion of information in the centre of attention

through addressing information directly via Rendezvous Identifiers and al-

lowing for building networks of information via the concept of scopes. The

PURSUIT aims to modify the routing and forwarding paradigm of the cur-

rent internet. This is to make sure that it will be able to work based on

the concept of information and labels assigned to each pieces of information

specifying the scope of each piece and addressing all pieces of information

through rendezvous identifiers. Unlike the current internet architecture that

34

Figure 3.3: Architectural functions in PURSUIT

is based on assigning IP addresses to end hosts.

Architectural functions demonstration on a diagram as follows:

• Rendezvous at the top matches publishers and subscribers events

• Topology below is the network topology that knows all the paths which

creates paths

• Forwarding forwards the data to the subscribers which is fast data

delivery

3.1.2 Rendezvous system

The rendezvous is the function which is responsible for matching publica-

tions and subscriptions. Note that the solution implements a middle-ware

implementation of pub/sub and the purpose of the Rendezvous and Topology

manager is to take the middle-ware commands and turn them into packet

level operations. The rendezvous can be used by any layer to implement

pub/sub operations. For example, it could be used to replace a traditional

middleware pub/sub system [47] with an example being a voice or video ap-

plication that uses the pub/sub operations directly [48]; alternatively, in the

35

POINT project it is used to implement IP networking by using publish to

send packets to a server that subscribes to receive a packet [49] by using

middleware boxes that operate as gateways between traditional IP and the

ICN network. Thus, rendezvous is a somewhat abstract concept that needs

to be placed in the context of the particular application, please see the ex-

amples just given for more detail. There are a variety of publish/subscribe

networking approaches [50] . The topic-based mechanism seems to offer the

best scalability. In this scheme, participants publish events and subscribe

to topics that are identified with a keyword. In our case, the keyword is a

randomly looking flat label called RId [50]. The concept of topic is very

similar to the concept of group. Subscribing to a topic T can be viewed as

becoming a member of the group T and publishing an event on the topic T

can be viewed as broadcasting that event among the members of the group

T.

The topic in this context is viewed as a particular event service identi-

fied with a name. Having flat labels, the use of hierarchies in organising

topics proposed in PSIRP appears to be a key improvement to the original

scheme. The hierarchy offers the possibility to organise topics according to

relationships. A subscription made to some node in the hierarchy implies

a subscription to all the subtopics of the node. The role of the rendezvous

function can be summarised in this way: an application first subscribes to

a local rendezvous service. If the application has any data that it wants to

make available to other applications, it publishes a list of the publications

at the rendezvous service. Similarly, if the application wants to receive data

that has been published by some other applications, it subscribes to those

36

Figure 3.4: Rendezvous system in process

publications through the rendezvous service. In this way, the rendezvous ser-

vice maintains a database containing all the publications labelled with flat

labels (randomly looking labels) called RIds.

There will probably be a large number of rendezvous systems correspond-

ing, for example, to various communities, networks, interest groups, and man-

aging domains. Typically, the local rendezvous has to establish subscriptions

to other rendezvous systems that the applications have expressed interest

in. Whenever the rendezvous identifies a publication that has a publisher

and one or more subscribers, it requests the topology manager function to

construct the delivery tree connecting the publisher and the subscribers. In

this way, rendezvous functions and topology functions constitute the control

plane in the architecture. The rendezvous function has reached a mature

stage but still needs work to provide scalability when working at the scale of

the Internet [51]. The Rendezvous system is shown in Figure 3.4

37

The rendezvous system is identified as a well-defined zone that enforces

policy decisions completed by the policy decision points in addition to a pro-

cess allowing network endpoints to be able to make their own decisions. Ad-

ditionally permitting the subscriptions and publications to derive together

in the stated scope formerly rendezvous system may apply them to de-

velop a part of the forwarding path to receivers/subscribers that is from

the senders/publishers.

Now the forwarding path continues until it completes the state, on the

assumption that there is at least one active subscriber/receiver and a pub-

lisher/sender through relating the RId to intra- and inter-domain identifiers.

Hence dynamic policies like caching and inter-domain routing can be per-

formed applying this way. A number of forwarding routers cache copies of

publications to improve data accessibility and to reduce the load of referring

to the publisher.

Briefly going into the security in PURSUIT the author’s goals are to

protect the data source and rendezvous system from unwanted traffic. [52]

Rendezvous signaling messages are protected by PLA (Packet Level Authen-

tication).

In today’s internet information is assumed to be valid because the sender

appears legitimate, where the Information Centric Security approach enables

a much better level of security and trust. The security is based on the infor-

mation itself rather than via authentication and encryption, the information

objects carry security meta data for verifying the objects integrity and au-

thenticity therefore objects are verifiable without having to trust the source.

38

3.2 Bloom Filter-based Forwarding

Bloom filter forwarding is used by the PURSUIT ICN architecture as the

primary forwarding mechanism [5] and is the basis for the forwarding used

in this thesis.

3.2.1 Bloom filters

Bloom filter-based source routing has been suggested as a solution for multi-

cast forwarding [7]. Using Bloom filters to encode the multicast forwarding

tree into the packet removes the need for the routers to maintain state per

multicast tree. This solves an important scalability problem in multicast and

can be used to enhance the control receivers and senders have over multicast

communications. By decoupling group management from multicast routing,

it also makes it possible for sources to deploy different end-to-end group man-

agement solutions, depending on need. We next introduce Bloom filters and

then go through the relevant related work in using in-packet Bloom filters

for packet forwarding.

A Bloom filter is a probabilistic data structure. It is an m-bit long array

and initially, all bits are set to 0 as shown in Figure 3.5(a). Elements can

be added into a Bloom filter by computing a set of array positions in the

Bloom filter that are set to 1, as shown in Figure 3.5(b). The presence of

an element is tested by checking if those array positions are set to one. This

means that new elements can always be inserted into a Bloom filter, but no

elements can be deleted. False positives are possible, i.e. a membership test

can return positive even if the element has not been added to the Bloom filter.

39

Figure 3.5: (a) Empty Bloom filter (b) X is added to Bloom filter by setting
the hash value array positions to 1, k = 4. (c) shows a hash collision. Two
hashes for element X’ both yield location 8, k = 5

40

However, false negatives are not possible. Each element e is represented with

k positions in the array. For example, k separate hash functions can be used

to compute k array positions - each hash function giving and output value in

the range [0,m− 1]. The element can be encoded as an m-bit long vector in

which the array positions denoted by the k hash values are set to 1 as shown

in Figure 3.5(b). Two hash values can collide, as shown in Figure 3.5(c) bit

8. As the figure shows, k = 5 hash values are inserted into the Bloom filter,

but only 4 array positions are marked to one. An element can be added to

a Bloom filter by bitwise ORing the element’s m bit vector together with

the Bloom filter. The presence of an element is tested by checking if the

k array positions are set to one. This can be efficiently done with the test

F ∈ B | m ∧ e == e.

Figure 3.6 (a) shows a Bloom filter after elements X and Y have been

added to it. The membership of an element, such as W, is tested by checking

if each array position set to 1 in W is also set to 1 in the Bloom filter. The

membership testing for W shows that W is not a member in the filter, since

the bit in array position 10 is set to 0. When an element has not been added

to the Bloom filter, but the array positions of the element are set to 1, a false

positive happens. As an example, Figure 3.6 (b) shows a false positive. Only

two elements, X and Y, have been added to the Bloom filter. F is denoted

by the array positions 2, 4, 8, 9, which have all been set to 1 due to X and Y.

Hence, membership testing will indicate that F is in the Bloom filter, while

it has, in fact, not been added. In the context of multicast forwarding using

Bloom filters, the process involves encoding a multicast tree each link on

the forwarding tree is locally named a Bloom filter element. These links are

41

Figure 3.6: a) Shows a Bloom filter to which elements X and Y have been
added. The corresponding array positions denoted by the blue and red arrows
have been set to 1. The element W is not in the Bloom filter, since the bit in
array position 10 is 0. (b) Shows the same Bloom filter and element F that
has not been added to the Bloom filter. However, the test for membership
indicates that F has been added, since all the corresponding array positions
are set to 1. F is a false positive

42

Figure 3.7: Bloom filter based forwarding. Each link has a directional iden-
tifier, e.g. BF ab . BF PS on the left shows the construction of a Bloom
filter for path from P to S. The other columns show how each router tests
the presence of a link in the Bloom filter. Red dotted line shows the path
that the packet is forwarded.

then inserted into the Bloom filter, as shown in Figure 3.7. The resulting

Bloom filter is placed into the packet header. This makes the Bloom filter a

compact representation of the source tree from source to the set of receives.

The routers forward the packet by checking which outgoing links are included

in the Bloom filter, i.e. for each outgoing link a router makes a membership

test. Each router names all its links locally with an m-bit long string with

k bits set to one 3 with k << m. In some cases, Bloom filter with fill factor

0.5 represents a good choice of values. It is assume that each of the k bits is

in a random position. Collisions are allowed. Hence, it is possible that the

resulting string has less than k bits set to 1. The length (m) of the Bloom

filter is constrained by the available size. The longer the filter, the larger

the packet overhead is from using Bloom filters, but also more links can be

encoded in a single Bloom filter. As an example, with m = 256,i.e. 32 bytes

43

and k = 5,≈

 m

k

 ≈ 5 · 10 \ 12 different link identifiers. A Bloom filter

for a multicast tree is formed by bitwise ORing the links together, as shown

in Figure 3.7. Three variables that affect the fill factor are the number of

elements n, the number of hashes used k, and the length of the Bloom Filter

m. Choosing these three variables well, results in a Bloom filter that has a

fill factor of ≈ 0.5. Intuitively, having a filter with approximately 50 % of

array positions set to 1 maximises randomness and minimises redundancy in

the Bloom Filter.

3.2.2 Bloom filter encoding a multicast tree

To encode a multicast tree as a Bloom filter, each link on the forwarding tree

is locally named as a Bloom filter element. These links are then inserted into

the Bloom filter. The resulting Bloom filter is placed into the packet header

making the Bloom filter a compact representation of the source tree from

source to the set of receivers. The routers forward the packet by checking

which outgoing links are included in the Bloom filter, i.e. for each outgoing

link a router makes a membership test. Each router names all its links locally

with an m-bit long string with k bits set to one. Traditional IP Multicast

architectures place the group maintenance at the routers (as described in

Section 2.2.1. This requires routers to maintain per group state, which leads

to additional complexity, and scalability issues. However, Bloom filter-based

multicast [7] has been proposed as a way to create scalable multicast by push-

ing the group management to the source and thus removing the per-group

state at the transit routers. In Bloom filter-based multicast, the links belong-

44

ing to a multicast tree are encoded as a Bloom filter, which is then placed

in the packet header. Each router checks for the presence of outgoing links

and forwards the packet accordingly. Our work builds on this solution-based

forwarding via multicast trees inheriting LIPSIN forwarding mechanism as

follows:

LIPSIN [7] proposes a Bloom filter-based forwarding method for PUR-

SUIT, a publish subscribe based internet, architecture [5]. The architecture

is divided into three parts: rendezvous, topology, and forwarding, and ex-

plained in more detail in Section 3.1.1.

The novel forwarding fabric, termed LIPSIN, was firstly proposed by

Jokela et al. [7] within the framework of the PSIRP project where the path

and the links composing the path are expressed through Bloom filters. A

Bloom filter is a probabilistic data structure that allows encoding the path

in a Boolean vector [11].

3.2.3 Stateless Multicast Switching (LIPSIN)

In this section, we briefly explain the forwarding method, used in our work, a

number of details such as two-direction traffic, loop prevention, and multiple

link protection, which are expanded and described in Chapter 4. The most

vital part of our forwarding method is adopted from [7]. LIPSIN uses LIDs

encoded as m-bit length binary identifiers that are statistically unique into

a Forwarding ID (FID) via Bloom Filter.

The forwarding path is performed in the following steps: an FID is cre-

ated using a Bloom Filter via performing a bitwise OR of each LID in the

path discussed in section 2.1 in detail. To forward the packet the FID is sent

45

in the header that is then checked in each forwarding node. The forward-

ing decision for a particular packet is made by testing for a membership of

the LID in a Bloom Filter contained in the packet header. Membership is

accomplished by performing bitwise logical AND of each LID with the FID,

if the result matches the LID, then the membership is confirmed then the

packet is forwarded out of that link, if membership fails LID is not a match

the packet is not forwarded on to that link.

In this section, we briefly explain the forwarding method, used in our

work, a number of details such as two-direction traffic, loop prevention, and

multiple link protection, which are expanded and described in section 3.2.

To encode a multicast tree as a Bloom filter, each link on the forwarding

tree is locally named as a Bloom filter element. These links are then inserted

into the Bloom filter. The resulting Bloom filter is placed into the packet

header making the Bloom filter a compact representation of the source tree

from source to the set of receives. The routers forward the packet by checking

which outgoing links are included in the Bloom filter, i.e. for each outgoing

link a router makes a membership test. Each router names all its links locally

with an m-bit long string with k bits set to one 3, with k m.

The length (m) of the Bloom filter is constrained by the available size.

The longer the filter, the larger the packet overhead is from using Bloom

filters, but also more links can be encoded to a single Bloom filter. As an

example, with m = 256, i.e. 32 bytes and k = 5, mk 5 1012 different link

identifiers. A Bloom filter for a multicast tree is formed by bitwise ORing

the links together.

For practical and security reasons, explained in detail below, it is useful

46

to enforce a maximum fill factor, e.g. slightly above 50%. If the number of

links is greater than can be inserted into the Bloom filter without exceeding

the fill factor, at least three possible solutions exist as described below:

1. Using a longer Bloom filter. The capacity of Bloom filter, given a

target false positive probability and k grows linearly with the size of

the Bloom filter. Hence, by doubling the size of a Bloom filter, it is

possible to approximately double the number of links the Bloom filter

can contain.

2. Splitting the multicast tree into sub-trees that are small enough to

fit in the field [7]. Arbitrarily large multicast trees can be supported

by splitting them into several separately encoded multicast trees, each

with its own Bloom filter. For large groups, this approach may be

needed. The source will have to send a copy of every packet separately

for each group.

3. Using virtual links [7]. It is possible to encode a path or a tree in the

network so that it will be treated as a single link for the Bloom filter.

As an example, an MPLS path or tree could be used as a single virtual

link in a Bloom filter.

3.3 CCN Network Architecture

Above we have described the PURSUIT ICN architecture, but it is not the

only ICN architecture, this section describes CCN and the next describes the

closely related NDN architecture. Although these are not used in this thesis,

47

they are the main competing ICN approach so it is important to include a

review of this in the thesis.

CCN network architecture is focused on data rather than where the data

is located, the aim of CCN is to replace the “where” (the data is), with

“what” (is the data) without the requisite to distinguish the location which

means the packet “address” names content and not location of the data.

This investigation has discovered numerous, current research projects

starting from CCN and ICN all focusing on Publish/Subscribe paradigm

on the basis of information/data in networking, mentioned above, the only

difference is in its network architecture and approach taking to achieve net-

working based on information/data. This is since the demand is very high

accessing data as fast as possible.

CCN Van Jacobson [53] argues that named data is a better abstraction

in today’s communication problems than named hosts, and propose to shift

the internet from a host centric to Information Centric Architecture. The

authors of [54] claim that CCN achieves scalability, security and performance,

through their results.

Jacobson [53] highlights the history of networking in three generation:

(i) “Phone System” (Telephony) which focus on the wires, (ii) “Internet”

(TCP/IP) focuses on connecting endpoints via existing phone system (iii)

“Dissemination” focus on the data .

Content-Centric Networking (CCN) [55] defines a novel communications

architecture built on named data - a packet ‘address’ names content, not

location. The new waist’ of the stack (i.e., the traditional network layer)

is now based on named data, and becomes the only layer requiring global

48

Figure 3.8: CCN replaces the global component of the network stack (IP)
with chunks of named content.

agreement. Figure 3.3 compares the IP and CCN protocol stacks. Like

in the traditional layers of the hourglass model of IP, layers of the stack

reflect bilateral agreements (e.g., L2 framing protocol between ends of a

physical link, L4 transport protocol between data producer and consumer).

CCN preserves the design decisions that make TCP/IP simple, robust and

scalable, including minimal demands on layer 2 (i.e., stateless, unreliable,

unordered and best-effort delivery). As a consequence, CCN can be layered

over anything, including IP itself.

The CCN architecture consists of two packet types, ‘Interest’ and ‘Data’.

This mechanism works through a consumer requesting for content by broad-

casting its Interest in the internet/network, any node hearing the Interest

which holds the data that matches the Interest, can respond with a Data

49

Interest Packet
Content Names

Selector
(Order preference, Publisher filter, Scope ...)

Nonce

(a) Interest Packet

Data Packet
Content Names

Signature
(Digest, Algorithm, Witness, ...)

Signed Info
(Publisher, ID, Key Locator, Sale Time ...)1

Data

(b) Data Packet

Figure 3.9: Data & Interest Packet example

packet known as (content chunk). The Data is only transmitted if it was

requested via Interest across the network [56]. Furthermore multiple nodes

who are interested in the same content can share the transmissions over a

broadcast link using standard multicast suppression techniques, given that

the Interest and Data detect the content chunks are exchanged by name,

hence the possibility of multiple nodes interested in the same content can

share the transmission [56].

The drawback of this approach is request flooding inefficient resource

utilization due to redundancy and scalability of data naming system.

In CCN network architecture, Data has to satisfy an Interest if the Con-

tentName that is the (CCN name) in the Interest Packet as shown in Figure

3.9a on page 50 is a prefix of the ContentName in the Data Packet in Figure

3.9b.

The following displays the Internet Packet and Data Packet followed by

example of a data name:

Packets are forward in CCN including former approaches, via content

routers; it uses the Longest Prefix Match (LPM) when an Interest is being

requested. LPM performs a look up match on the name, when a packet

arrives on the interface and action is taken based on the results of that

50

lookup. There are few ways of implementing LPM either in the hardware

using Ternary Content Addressable Memory (TCAM) or in software using a

multi-bit tree or a Bloom Filters.

Ternary Content Addressable Memory (TCAM) is a hardware device that

supports high-speed table look-ups [57]. This is a smart solution for appli-

cation such as packet forwarding and classification. Forwarding in CCN is

based on three main data structures: FIB (Forwarding Information Base),

ContentStore (buffer memory), and PIT (Pending Interest Table).

FIB (Forwarding Information Base) is used in CCN to forward the ‘Inter-

est’ packets on the route to matching ‘Data’ requested by the user. A table of

destination for Interests is organised for retrieval by the longest prefix match

lookup on names rather than IP addresses, each prefix entry in the FIB can

point to a list of destination rather than only one found in the current IP.

Content Store (CS) is almost identical as buffer memory of an IP router

the only difference is that it has a different replacement policy. Buffer mem-

ory organises the retrievals by the longest prefix match lookup on names.

Pending Interest Table (PIT) is a table of sources that keeps track of In-

terests forwarded, it organises the Interest packets for retrieval by the longest

prefix match lookup on names. CCN only routes the Interest packets. When

transmitting the Interest Packet in the direction of potential Data sources,

this leaves a trail of ‘bread crumbs’ for a matching Data packet to follow

back to the original requester(s).

Therefore each PIT entry is a bread crumb and PIT entries are removed

as soon as they have been used to forward a matching Data Packet in other

words the Data ‘consumes’ the Interest. For Interests Packets that never

51

find a matching Data are eventually timed out rather than being held in-

definitely [56] CS and PIT are the same as buffer memory same contents

different replacement policy, FIBs are also most identical except CCN has

list of output interfaces (Faces), there is no TTL decrement since nothing

can loop as CCN packets are never modified in transit.

CCN approaches a wide range of advantages involving content caching,

the technique implies that the congestion is reduced and it improves delivery

speed, in addition it requires a simpler configuration of the network devices

and this will build security at the data level of the network.

However this change to CCN networking will require high speed hard-

ware and software to support named based data forwarding and packet level

caching. Today’s hardware and software can only support a fraction of the

routing state required aimed at forwarding operations at internet scale.

3.4 NDN Network Architecture

Similar to all aforementioned ICN architectures and unlike the current IP-

based Internet, NDN focuses on content as the primary citizen in the net-

work [37]. For that purpose, NDN names content items and uses those names

for addressing, routing and retrieving data.

NDN advocates the use of human-readable and hierarchically structured

names. In fact, a content name in NDN is represented as a “/” delimited

path-like representation. For example, the name of UCLA’s main homepage

would be /ndn/ucla/home/index.htm.

On the other hand, large content such as videos can be split into chunks

52

where chunk 50 of Bob’s youtube video could possibly have the name:

/ndn/youtube/bob/vid15.mp4/50. This hierarchy allows applications to rep-

resent relationships between data objects and more importantly allows for

aggregation, which is a necessity for scaling.

There are two types of packets in NDN: interest and data packets. Since

NDN is a consumer-driven architecture, a node interested in a particular

content sends an interest packet specifying the name of the content needed.

The packet is forwarded through the network until it reaches a node that has

the content of interest. The data will then be sent, in a data packet, on the

same path back to the original requester.

For packet forwarding, each node in the network has three main data

structures: a Pending Interest Table (PIT), a Forwarding Information Base

(FIB) and a Content store (CS). The PIT stores all the interests the node

has forwarded but for which the corresponding data packet has not arrived

yet.

The FIB is the routing table equivalent for NDN which is populated using

a name-based routing protocol. As for the CS, it is the node’s repository of

cached content [39].

When a node receives an interest packet, it first checks if it has the re-

quested content in its CS. If so, it will send a data packet back to the original

requester of content. Otherwise, it looks up the interest in its PIT table. In

the case when the interest does not exist, the node will add a new PIT entry

which includes the interest name and the interface from which the interest

was received, then it will forward the interest packet towards the data source

using the FIB.

53

Otherwise, if the interest exists in the PIT, the node adds the incoming

interface to the existing PIT entry and discards the interest packet.

A data packet, whether originating from the source or from an intermedi-

ate node is forwarded back to the requester using the PIT table entries, i.e.,

using the reverse path taken by the interest packet.

Specifically, when a node receives a data packet, it looks up its content

name in the PIT. If the look up succeeds, the node forwards the packet to

all the interfaces listed in the PIT entry and also caches the content. If not,

the node considers the data packet unsolicited and discards it.

3.5 PURSUIT vs CCN/NDN for protection

The drawback of the CCN and NDN approach is that request flooding is in-

efficient with respect to resource utilization due to the redundancy and scala-

bility of the data naming system [58]. Additionally, the nature of CCN/NDN

forwarding is stochastic in nature using interest in the PIT so that it is dif-

ficult to embed fast deterministic protection paths, instead recovery from

failure requires much slower updates of the PIT tables. In contrast, the

PURSUIT ICN architecture uses deterministic “paths” set up by the topol-

ogy manager so that it is possible to embed deterministic fast protection

paths. Consequently, this thesis uses the PURSUIT ICN architecture to

enable fast protection switching for ICN.

54

Chapter 4

Multicast Protection-cycles

Through Path-Based Switching

4.1 Overview

This work is focused in ICN taking the PSIRP/PURSUIT network architec-

ture approach in exploring how existing path protection mechanisms can be

reused in ICN networks via Bloom filter. The work makes use of p-cycles [33],

as introduced in Chapter 2 is incorporated to achieve fast path protection.

However, unlike existing p-cycle work, the work of this chapter provides mul-

ticast protection as a natural part of the Bloom filter forwarding. Care needs

to be taken to ensure that this protection does not introduce loops and ad-

ditionally that it maintains the multicast-tree, assuming that this is possible

given the alternative paths.

This chapter assumes the use of publish-subscribe (Pub/Sub) architecture

using the PURSUIT/POINT model as described in in Chapter 2. Following

55

that architecture subscribers and publishers are anonymous to each other

and there are no explicit source and destination addresses as we find in the

current network; instead the unicast path, or multicast tree, is uniquely

defined using the Bloom Filter. This chapter will show how the p-cycle

concept can be merged with the Bloom filter forwarding by the addition of a

cycle identifier that is added during the redirection of the path/tree around

a broken link. Additionally, it will be noted that this mechanisms could

be implemented using an SDN infrastructure with no change to hardware

switches. SDN infrastructure is described in Chapter 2.

This chapter is structured as follows in Section 4.2 supporting concepts

includes path protection with p-cycle mechanism that we apply using path

protection via cycle. Section 3.3 explains on the fly protection of bloom

filter based flows and explains the path protection principle via multicolor

cycle tree. Section 3.4 gives a formal description of the proposed protection

mechanism using graph theory to explain the problem. The evaluation in 4.5

includes the explanation of the results that we present.

4.2 Supporting concepts

4.2.1 Path Protection with P-cycles

As described in Chapter 2, Grover and Stamatelakis first introduced the

conception of pre-configured p-cycles in 1998 [59]. A p-cycle is a ring based

protection scheme and is a promising protection technique, it achieves the

speed of a ring with the efficiency of mesh [33], as described in Chapter 2.

Here we use the concept of p-cycles to provide protection in the Bloom filter

56

(a) Illustration of Link p-Cycle Protecting on Cycle links

(b) Illustration of Node encircling p-Cycle Protecting Node G and on Cycle Links

Figure 4.1: P-cycles showing both on cycle links and node encirling links

forwarding, as used in ICN and described in Chapter 2. We should note that

the aim here is to provide protection, not only for unicast traffic, but also

for the multicast traffic that is switched efficiently using a Bloom filter.

Link failures are the most common failures that cause substantial network

downtime as described by Turner et al. [60], due to a varying range of prob-

lems, but often due to failure in the link itself. When a link failure occurs,

protection switching is performed at the two end nodes of the failed link. In

the original p-cycle work the aim is to protect both on cycle links, straddling

links and nodes as shown in Fig. 4.1. Noting that link failures are the most

57

common, this work will concentrate on only protecting link failures. One

reason for link failures being a more common and long-lived problem is that

node failures can often be mitigated through duplicate equipment with the

operator premises, whereas link failures are less under an operator’s control

(e.g. construction work along a fibre path that causes a catastrophic failure).

For this chapter only on cycle-link failures will be considered. This means

that every link (that has a possible cycle) will be on a cycle. The effect of this

is to use what we will call minimal cycles. For example in Fig 4.1a, instead of

the larger p-cycle B-C-D-E-F-B, instead we have the smallest possible cycles

e.g. E-F-D which protects links E-F, D-F or D-E. Chapter 5 will go further

by considering optimising the use of the cycles and thus will use straddling

links and larger cycles.

In this scheme, at the event of a failure, the packets are re-routed via a

p-cycle to the next point of failure, where the packets were intended to leave

at. To employ the p-cycle technique in the Bloom filter mechanism we will

introduce a cycle identifier (CID) as explained in the next section.

4.3 On-the-Fly Protection of Bloom Filter-

based Flows

Fig. 4.2 shows a stylised network which will be used to explain the path

protection principle. Consider the working tree (the blue tree) shown in

Fig. 4.2 which subsequently has a link failure on the link x↔y. The p-cycle

associated with the link x→y is x→y→i→j→k→x, noting that the cycle is

in the reverse direction to the link that it protects. We assume that the

58

k i

yx

Working tree

Protection tree

j f

g

s

Figure 4.2: Path protection mechanism showing example working and pro-
tection trees.

p-cycles are all predetermined (and updated during topology change). There

are a potentially large number of cycles and counting all of them is an NP-

complete problem (a Hamiltonian is one such possible cycle and finding it or

showing it does not exist is NP-complete [61]). However, in practice a set of

minimum cycles that serve as a p-cycle for a particular link can be determined

easily using Dikstra’s algorithm by simply removing the link to be protected.

Determining the optimum cycle for a link depends upon the optimisation

criteria e.g., minimising path length and/or minimising capacity reserved for

protection. Here we will assume that minimising protection path length is

the criterion and refer the reader to Chapter 5 and also [62] as an alternative

strategy that minimises reserved protection capacity. Consequently, we will

59

assume a set of minimum cycles Cmin that are formed from the set of all

minimum cycles C as can be simply determined using Dijstra’s algorithm

and link removal.

To protect the link x→y it is necessary to send the traffic around the cycle

x→k→j→i→y→x. The way this is proposed is to insert a cycle identifier

(CID) in addition to the FID, so that now the header is {CID|FID}. When

the failure occurs in the x→y the node x notes that any packets that are to

be sent over x→y need to have the appropriate CID inserted and this will

be continued until the failure is corrected, i.e. when the traffic reaches the

end of the cycle. At the end of the cycle, the node (at the other end of the

failure) notes that the cycle is identified with the link failure and as the node

is aware of the failure (through link monitoring) it can remove the CID and

forward the packet as normal. We should note that here we are assuming that

there is only a single link failure. This is a reasonable assumption in most

fixed networks at operator scale where typical link downtime is measured in

minutes per year, thus to have two link failures at the same time is highly

unlikely. If there were to be additional link failures on the same cycle, the

system will do its best to forward packets from the first node on the cycle

that has a link failure and the cycle will not continue to the second failure.

Further work could look at mechanisms to cope with multiple failures on a

cycle. Multiple failures in different cycles will be handled correctly by this

mechanism. A further question is: where should this additional header be

located? To answer this, we first need to investigate the size of the header

as will be analysed below.

Note that in a large network there could be a very large number of cy-

60

cles, in the example shown in Fig. 4.2 there are seven cycles. However, it

is not necessary to have an equally large number of CIDs as it is only a

requirement that the CID is unique on an edge, not for the whole network

(as will be proved in Section 4.4). For example, in Fig. 4.2, although there

are seven cycles, there only needs to be four unique CIDs as indicated by

the four different colours used to identify the cycles. In fact, for all planar

graphs, as with the graph in Fig. 4.2, there need only be up to four unique

CIDs as will be formalised in the next section. As noted earlier, the Bloom

Filter based forwarding of multicast/unicast traffic can be implemented in

practice in existing SDN capable switches with substantially less overhead

than even conventional switching mechanisms (e.g. MAC based or IP based

switching) [21]. While [21] showed how the standard FID can be encoded by

overloading the existing IPv6 header, it did not address protection switching.

We note here that it would be straightforward to overload the MPLS header

field in the Ethernet shim label [19] which is implemented from OpenFlow

v1.1 [63].

4.4 Formal description of the proposed pro-

tection mechanism

We will consider a graph G(V,E) and an edge as the ordered pair f = (x, y)

which is part of a directed and ordered protection cycle c where

c = {{(x, y), (y, i), (i, j), . . . , (k, x)} ∈ E} (4.1)

61

i

yx g

f

x`

k`

y`

i`j`

jk

Figure 4.3: Path protection mechanism showing how the protection cycle can
be modelled as an augmented graph

noting that not every edge in G may have a valid protecting cycle. To be

precise, using our definition of c above, f is actually protected by the reverse

cycle which we denote c′. Note the notation used here matches the example

shown in Fig. 4.2.

Consider that the protection mechanism proposed in Section 4.3 can be

represented as an augmented graph G′(V ′
⋃
V,E ′

⋃
E). The modification

adds virtual nodes V ′ = {v ∈ V ′|v /∈ V ∧ V ′ −→ c′} that have a one-to-one

correspondence (termed a bijection, −→) with the cycle c′ nodes. Using the

notation above for c, and noting its reverse c′ is the bijection to V ′ then

we can define the new protection cycle as b′ = {(x′, k′), . . . , (j′, i′), (i′, y′)}

where the s′ ∈ V ′ −→ s ∈ c ∈ V . An example of such a modified graph is

shown in Fig. 4.3 which matches the earlier example in Fig. 4.2. Additional

62

edges provide the protection cycle and exits from the protection cycle so we

have the final definition of E ′ = {(x, x′)
⋃
b′
⋃

(y′, y)}. We then note that a

packet has a FID which operates on the graph (G or G′) to select forwarding

edges from each node, we denote the forwarding action, F , that defines a

sub-graph P on a graph G as P = F (G) and note that in the case of a

multicast delivery P is a directed acyclic graph (DAG) [64]. We define that

P has a source s and destination nodes D ∈ V . During a failure condition

we have an alternative tree P ′ 6= P with the same source S and destinations

D′. For the failure to be successfully protected we require that the failure

tree is fully connected between the source s and the original destinations, i.e.

D = D′, and that the protection mechanism does not introduce loops into

the network, i.e. P ′ is a DAG.

Lemma 1. In the case of a failure of edge f on a DAG P ⊂ G (G not DAG),

where f is protected by cycle c′, and P results from the forwarding action

P = F (G) connecting the source s to destinations D; then, the resulting

protection tree P ′ = F (G′, f), which connects S to destinations D′ through

the protection graph G′, is a DAG and D′ = D.

Proof. As, by definition, P defines a DAG on G we denote an order to each

node s ∈ P starting from s. Consider that under the failure condition on

f = {x, y} that the associated reverse edge f ′ = {y, x} is also disconnected

and that traffic in P that matches the link f is automatically forwarded into

the associated protection cycle b′ and has the associated CID set (i.e. the

CID is not zero). The original tree P can be broken into three parts, PA, part

of the tree that is before the failed link (i.e a tree pruned at x, y,), the failed

link {x, y}, and the remainder of the tree, PΩ, thus P = {PA, {x, y}, PΩ}.

63

Without loss of generality, as P is a DAG, we can label all of the nodes

of this tree in an ordered sense [64] starting at s such that PA is less than

the label of x, that X is labelled with |PA| + 1, y we choose to label with

|PA| + 1 + |b′| + 1 and the labels of PΩ are ordered and all greater than

|PA| + 1 + |b′| + 1. Now consider the protection tree P ′, as b′ provides an

alternative path linking x and y, we can say that P ′ is fully connected and

consists of a tree P ′ = {PA, b
′, PΩ}, thus D′ = D. The order of labels in

PA and PΩ have not changed and the labels in b′ can be ordered naturally

along the cycle such that they are greater than the label of x and less than

the label of y. Thus, the labels of P ′ are ordered which means that it is a

DAG [64].

To provide connectivity through the protection cycle we have introduced

a new label to the packet header that identifies the cycle. This is to ensure

that the packets are forwarded on the cycle. It is important that the packet

header is kept reasonably short, we have already used some of this resource

for the Bloom filter for the multicast tree. The question then is: how many

additional bits are required for the protection cycle identifier? We can find a

bound for this in the following Lemma 2 which uses graph colouring theorems,

and the later Corollary will tighten this bound for most networks.

Lemma 2. An upper bound to the number of unique CIDs is given by the

largest node degree, ∆, or ∆+1 in the case of a full mesh (a complete graph).

Proof. We note that a unique CID for each cycle passing through a node can

be satisfied by a graph colouring problem of a unique colour of a neighbouring

vertex, the chromatic number of the graph. Brook’s theorem [65] states that

64

the chromatic number of a graph is bounded by the maximum node-degree,

∆, for all graphs except a fully connected graph or a cycle with an odd

number of nodes in which case it is ∆ + 1. In the case of a cycle we note

that only one CID is actually required as there is only one cycle in this

graph showing that Brook’s theorem is a pessimistic bound in at least this

case. Thus, Brook’s theorem satisfies the constraint for the CID numbering

problem, but is not exactly equivalent, as shown in the cycle case.

It has been noted that in most cases real-world graphs are planar

graphs [66], and in this case we can significantly reduce the bound presented

in Lemma 2 as follows below.

Corollary 1. For a planar network the upper bound of the unique CIDs is

four.

Proof. As with Lemma 2 we note that the problem can be satisfied by the

graph colouring problem, i.e. the chromatic number of the graph. For a

planar graph the chromatic number is at most four as proven from the four

colour map problem [67].

Corollary 1 is useful for planar graphs, but does not answer the ques-

tion for non-planar networks. The following evaluation section will consider

experimental analysis for non-planar networks and also consider how many

graphs are likely to be non-planar.

65

4.5 Evaluation

In the evaluation we have, mainly, concentrated on the difference between im-

plementing multicast forwarding using either a Bloom Filter or using MPLS.

In terms of protection switching times, these have not been evaluated as

they are strongly dependent on hardware implementation issues. However,

generally, hardware systems that simply note a hardware failure, update a

forwarding table and redirect a packet can generally operate in a number

of milliseconds. As both the Bloom Filter mechanism and MPLS require a

similar order of table operations the difference in protection switching times

between these two is likely to be minimal, and probably dominated by the

detection of the failure which will be the same in both instances. Thus, we

proceed by firstly enumerating key operational parameters such as the num-

ber of CIDs and false positive performance of the Bloom Filter switching;

secondly we compare key performance issues between the Bloom Filter and

MPLS multicast implementations.

Fig. 4.4 shows a scattergram of the maximum number of cycle colours for

each of the networks within the Internet Topology Zoo network database [68].

For brevity, when mentioning specific networks by name it should be assumed

they are from this database. As proven in Section 4.4 the number of unique

CIDs required in each network is directly related to the notion of graph

colour when treating each cycle as a region. Planar networks conform to the

classic Four Colour Map theorem [67], and Bowden et al. show that for the

147 networks in the Internet Topology Zoo only 14% (21) were non-planar.

Thus, for most of the networks that exist (and with some conjecture, are

likely to exist) only require four unique CIDs. For non-planar graphs, the

66

0

5

10

15

50 100 150 200 750
N

N
um

be
r

of
 C

ID
s

Figure 4.4: The number of unique CIDs for networks from the Internet Topol-
ogy Zoo against number of network nodes N

map colouring problem is non-trivial, in fact is has been shown to be NP-

complete [69]. Consequently, to check the number of CIDs for the all the

networks (including the non-planar networks) in the Internet Topology Zoo

dataset we need an algorithm that can find an upper-bound; we have selected

the greedy DSatur algorithm [70] as it is readily available. Consquently,

taking all of the Internet Topology Zoo (now expanded to 225 networks) and

allocating p-cycles that correspond to minimal cycles, the number of CIDs

was enumerated and shown in Fig. 4.4.

In this case the p-cycles were optimised to reduce the likely protection

traffic using the algorithm by Drid et al. [62]. The results shows that the

67

0

5

10

0 20 40 60

∆, maximum node degree

N
um

be
r

of
 C

ID
s

Figure 4.5: The number of unique CIDs for networks from the Internet Topol-
ogy Zoo against maximum node degree ∆

number of graph colours is mostly four or less, as would be expected. Out of

225 in the Internet Topology Zoo, 24 had no valid protection cycles (they were

pure trees, and are indicated with Graph Colours of zero), 171 had four or

fewer unique CIDs, 30 required more then four unique CIDs. Interestingly,

those that required more than four where not the larger networks, rather

they were unusual in some aspect, e.g. full-mesh (as with GlobalCentral)

or implemented with existing 1:1 protection links. A good example of the

latter being Belnet 2004, which is star network with 1:1 protection needing

14 unique CIDs, but which by 2010 had transitioned to a mesh network

needing only two unique CIDs; one might point out that if the network has

68

0

10000

20000

30000

40000

Dfn Garr200112 HiberniaGlobal

To
ta

l T
ra

ffi
c

(p
at

h.
ho

ps
)

BF Length
64
128
256
512

Figure 4.6: Total Traffic for 1000 Multicast Tree using ICN. Traffic variation
by Bloom filter length and different networks. Traffic is measured by the
number of hops in each path (path.hops).

1:1 protection then the p-cycles would not be needed anyway. The largest

network, KDL, needs only five unique CIDs. Fig. 4.5 shows how the number

of CIDs compares to the maximum node degree, ∆, which is a bound on the

number of CIDs for any graph (except full-mesh) as given in Lemma 2. As

suspected from the construction of the Lemma, this is a pessimistic bound

for most cases. However for three networks the number of CIDs does match

this bound. In one case, Globalcenter network, it is a full-mesh and thus the

number of CIDs is one less than the bound.

Use of a Bloom filter for forwarding can result in false positives. We

investigated this for 2000 randomly generated multicast trees and each case

with different Bloom filter lengths and across three Internet Toplogy Zoo net-

works (node degree N , diameter D): Dfn (N=58,D=6), Garr200112 (N=24,

D=3) and HiberniaGlobal (N=55,D=16). The graphs were chosen to reflect

69

a range of network types, but avoid star (or mostly star) networks which

have little opportunity for mesh protection. The trees were generated using

a Zipf distribution for source node selection and tree size. This is motivated

by observations that source selection tends to follow a Zipf law and this ap-

proach has been used by others investigating multicast trees [71]. While this

does not significantly affect this result, it will be important in later results.

If there are false positives in the Bloom Filter, this results in higher traffic

as additional traffic is sent on links that are not needed (as with aggregated

MPLS that we will discuss later). Fig. 4.6 shows the results for this. As can

be seen there is a substantial difference between a 64-bit Bloom Filter in the

HiberniaGlobal network and longer Bloom Filters. Generally, the traffic is

higher in this network as it is the network with the largest diameter, so when

measuring traffic as the total hops in all the paths it is higher as the paths

tend to have a larger stretch. Additionally, with the larger stretch comes

more opportunities for false positives and hence the greater diversity in traf-

fic compared to Bloom Filter length. It is notable that there is generally

little benefit in increasing beyond 256 bits for the Bloom Filter length, and

this is a useful length as it has been shown to be implementable in existing

SDN switches [21].

The remaining set of results compare the state and traffic with Bloom

Filter based protection mechanism against a multicast implementation that

uses MPLS. MPLS does not natively support multicast and consequently

there are a number of approaches to transporting multicast [72], essentially

these are a compromise between minimising state or minimising traffic. In the

two extremes either all traffic is duplicated from the multicast source (min-

70

0e+00

1e+05

2e+05

Dfn Garr200112 HiberniaGlobal

To
ta

l S
ta

te

Transport/Tree Size
ICN/1000

ICN/2000

MPLS/1000

MPLS/2000

0

100

200

Dfn Garr200112 HiberniaGlobal

Figure 4.7: Total State for 1000 and 2000 Multicast Trees for MPLS and
ICN with AD=0.5

imising state), or alternatively tunneling state is needed as every multicast

replication point (minimising traffic). In practice operators may choose to

implement trees that aggregate a set of multicast trees to reach a compromise

between state and traffic. This compromise is described in the key MPLS im-

plementation standards [72] but more clearly enumerated by Martinez-Yelmo

et al. [73].

The Figs. 4.7 and 4.8 show the key differences between the Bloom Filter

and MPLS multicast implementations when using a mid-way compromise for

the MPLS trees, an aggregation degree of 0.5 in the terminology of Martinez-

Yelmo et al. [73]. Figure 4.7 shows a key difference between the Bloom Filter

and MPLS techniques with regard to the switching state when implementing

either 1000 or 2000 multicast trees. While the number of trees was chosen

somewhat arbitrarily, it should be noted that a typical catalogue size of

streaming services is in the order of 1000; although with the provision virtual

71

0

20000

40000

60000

Dfn Garr200112 HiberniaGlobal

To
ta

l T
ra

ffi
c

(p
at

hs
.h

op
s)

Transport/Tree Size
ICN
MPLS

Figure 4.8: Total Traffic for 1000 Multicast Tree for MPLS and ICN

private multicast trees this number could grow much larger. In particular it

can be noted that the state size is, comparatively, very small for the Bloom

Filter implementation (as duplicated in the inset graph) and does not increase

with the number of trees; meanwhile, the MPLS state size is many orders

of magnitude higher and is, unsurprisingly, proportional to the number of

multicast trees. Difference in traffic is shown in Fig. 4.8 showing that MPLS

has, very roughly, twice the volume of traffic compared to using Bloom Filter

switching for the aggregation degree of 0.5; this is because of the compromise

through tree aggregation in MPLS.

In practice, an operator might wish to change the aggregation degree used

in their multicast deployment, and this changes the compromise between

traffic and state. The results in Figs. 4.9 and 4.1011 show this compromise

between state and traffic, respectively. Fig. 4.9 shows that for the highest

aggregation degree of 1 the state in MPLS is a similar order to that of using

Bloom Filter approach, whereas with an aggregation degree of zero MPLS

72

● ● ● ● ● ● ● ● ● ● ●0

50000

100000

150000

0.00 0.25 0.50 0.75 1.00

Aggregation Degree

S
w

itc
hi

ng
 S

ta
te

● ICN.State

Aggregated.MPLS.State

Unicast.MPLS.State

Figure 4.9: Total State for 1000 Multicast Tree using either MPLS or ICN
in HibernianGlobal network

is the same as implementing the multicast as unicast (as indeed this is the

implication). The error bars show 95 % confidence intervals.

4.6 Practical implications

4.6.1 Header insertion

Having now investigated the likely number of CIDs we can now answer the

question about the practical implementation of the CIDs. We note that, at

first site, it is not obvious that the Bloom filter forwarding is compatible

with existing switching systems. However, on closer analysis is has been

found that the Bloom filter forwarding can be directly implemented on exist-

ing SDN hardware as demonstrated by [21]. This mechanism uses the IPv6

address space to implement the Bloom filter FID and uses the MAC address

73

● ● ● ● ● ● ● ● ● ● ●

1e+05

2e+05

0.00 0.25 0.50 0.75 1.00

Aggregation Degree

To
ta

l T
ra

ffi
c

(p
at

hs
.h

op
s)

● ICN.Traffic

Aggregated.MPLS.Traffic

Unicast.MPLS.Traffic

11 corrected figure

Figure 4.10: Total Traffic for 1000 Multicast Tree using either MPLS or ICN
in HibernianGlobal network

to separate the use of the IPv6 address space for Bloom filter forwarding

from any “normal” IP routing, so that the two mechanisms can operate in-

dependently on the same switches. This then leaves the question about the

CID field. Fortunately, this can be simply implemented using the MPLS

header feature in SDN switches. This is very convenient as the switches sup-

port “pushing” this header on and “popping” this header off very easily [19].

The MAC Ethertype field is also used to denote MPLS Ethernet frames so

that this can also be easily used to mark the packets as on the protection

cycle. Additionally, the 10-bit MPLS header is much larger than the CID

requirements of 16 values as was suggested by the analysis so that it would

be possible to allocate a small part of the MPLS label space to the CIDs

while allowing existing MPLS forwarding to exist at the same time.

74

4.6.2 Dissemination of cycle IDs

The cycle IDs need to be distributed to the nodes from the topology man-

ager as this entity has knowledge of the links within the network. Thus, the

topology manager is the entity that will carry out the algorithms associated

with the cycle ID calculations (and optimisation as described in Chapter 5).

One important consideration is: how often would cycle IDs have to be opti-

mised and distributed? Certainly, new cycle IDs need to be computed when

the network topology changes. In the context of large-scale transport net-

works, changes in physical topology occur in the context of days rather than

seconds, in other words: major changes to topology occur infrequently [74].

Simply adding or removing leaf nodes in the network has no significant effect

on the cycle IDs as only adding or removing links that change the minimum

cycle set has an effect. In Chapter 4 we will see that the optimisation of

the cycles takes into account the traffic demands on the links to ensure the

minimum “overbooking” of link capacity to allow for link failures. While this

could be computed continuously, this would generally be wasteful as it is only

the peak traffic that has a significant effect on the computation: i.e., if we

ensure capability for the peak load it will ensure there is capacity for lower

loads. An in-depth guide to traffic matrices in networks is provided by Tune

and Roughan in 2013 [74] and while this is now 10 years old, the anecdotal

reports from operators are that, while the trend has been moving upwards,

the general day-to-day patterns follow similar trends. Tune and Roughan

show that traffic patterns tend to peak once each day and are generally sta-

ble over a few hours of the peak period [74]. Thus, we would propose that

cycle IDs are optimised once a day based upon recent days’ traffic patterns

75

ahead of the forthcoming peak traffic and probably distributed in early morn-

ing periods when there is often an ”at risk” period for possible maintenance

tasks and when demands, and thus failure impacts, are low. Given that the

assignment of cycle IDs is a relatively straightforward task, the overall com-

putational impact of this work on the topology manager performance will be

negligible.

4.7 Summary

This chapter has introduced the proposition of using p-cycle switching in

combination with the PURSUIT ICN architecture. It has shown that it can

have significantly less switching state and traffic overhead than MPLS. This

was demonstrated by simulating the network scenario in a number of realistic

networks. The work has shown that there can be a provable bound on the

additional switching overhead in terms of switching state and packet header

size represented by the CID; in the case of a planar network this is limited

to simply four different identifiers, i.e., two bits. In the case of non-planar

networks the highest number of unique CIDs was found to be 14.

76

Chapter 5

Optimising protection cycles

In Chapter 4 the simplest, smallest protection cycles were used, every node

in the network was included in a protection cycle, assuming that a possible

minimal cycle exists. The main difference between p-cycle and ring protection

is that, p-cycle protection not only protects the cycle links but protect all

links whose end nodes belong to the p-cycle. In other words, p-cycle protects

the cycle links and the straddling links in the cycle. A straddling link is

a link which does not belong to the p-cycle but whose end-nodes are both

on the p-cycle. While this was not the case in Chapter 4 as minimal cycles

were chosen, a larger p-cycle can allow the protection of a straddling, as

described in Chapter 2. Each p-cycle can offer two restoration paths to the

failed straddling links without requiring any additional spare capacity. This

propriety reduces effectively the required protection capacities. Thus, the

hypothesis is that larger cycles can be more efficient. The major problem of

this method of protection resides in finding the optimal set of p-cycles which

protects the network for a given working capacity distribution.

77

The method to generate p-cycles with better efficiency is inspired by the

work of Drid et al [62] and has two stages: in the first stage the set of shortest

cycles is generated (as used in Chapter 2), in the second stage, the cycles are

incrementally aggregated to look for more efficient cycles.

5.1 Overview of the approach

In Chapter 4 we assumed that the protection cycles where drawn from the

set of minimum cycles C, where these are defined as the smallest cycle that

can be used to protect each edge (assuming that each edge has a cycle to

protect it). We noted there that finding the optimum set of cycles is a

different matter and depends upon the optimisation criteria. In Chapter 4

this was assumed to be simply the smallest cycle. This is often an important

criteria in optical networks where it can be difficult to guarantee physical

layer constraints. However, here we are using electronic switching, in this

case smaller cycles might be useful to minimise latency, but otherwise it is

less important to minimise the cycle length. Instead a more useful metric is

to minimise the amount of capacity assigned for protection formulated as a

relative redundancy overhead, R.

The redundancy overhead, R can be expressed as below:

min(R) s.t. (5.1)

R =

∑
e∈E ae∑
e∈E we

(5.2)

ae = arg max
i∈c

(wi), e ∈ c, (i, c) ∈ A (5.3)

78

where ae is the allocated capacity on edge e for all the protection cycles that

include e and we is the working traffic allocated to edge e. Eq. 5.3 defines

ae as the maximum working capacity of any edge using the cycle c that

protects edge e and noting that there could be more than one cycle that uses

e. Here we introduce the set A as the set of tuples (e, c) that denote that e is

protected by cycle c, noting that each c ∈ (e, c) ∈ A is unique, but, that there

are multiple edges typically allocated to each cycle. We can informally state

additional constraints for (5.2) are that any cycles used to form protection

must maintain connectivity for the traffic matrix T under the condition of a

single edge failure on edge e. In practice, not every edge may be protected

by a cycle, but we will simply ignore these edges in the formulation as it does

not change the exposition.

Fortunately, it has been proven that a ring-like structure, such as that

used by p-cycles, is the most efficient protection structure [33]. Unfortu-

nately, the aforementioned work by Stamatelakis and Grover does not deter-

mine the optimum set of cycles, which we will prove is NP-complete below,

in Theorem 1. The aim of this chapter is to find a good set of cycles to

lower R compared to a trivial cycle set such as a minimal cycle set [75]. The

probability of increasing the traffic to use this increased protection switching

cost is dependent upon the link (or node) failure rate in the network.

3 cost to network The value R represents the cost to the network to

introduce the protection scheme, and this is the most significant cost of the

scheme; we will see in Section 5.2.1 that the algorithmic complexity added to

the ICN topology manager is relatively small. Specifically, R is the increase

in planned capacity to enable protection switching. If the operator is to offer

79

protection switching to cope with a link (or node) failure there is no option

but to add this planned protection cost. The p-cycle scheme here assumes

that there will be at most one link (or node) failure at any one time. Given

the typical availability of modern core networks this is a usual assumption as

the probability of two link failures affecting the same network is very small.

Obtaining figures for real network failure rates is difficult to obtain as this is

often protected business knowledge. However, a good study on failure rates

in practical carrier networks is given by Mello et al. [76], their study shows

that for typical carrier networks (they investigate a national Italian and USA

network) a single link failure probability rate, at some point in the network,

is of the order of between 10−1 − 10−2 with repair times approximately 12

hours for each failure. While the actual probability of failure and repair

times vary greatly, Mello et al. [76] show that these assumptions – from

working knowledge of practical networks — lead to the 0.99999 reliability

figures which are commonly used for carrier networks. Thus, we can assume

that the network will be called on to activate the protection switching a small

number of times each year and in each case for the order of 12 hours [76].

An example showing how the differences in cycle association with edges

gives rise to different redundancy overhead is shown in Fig. 5.1. Assuming

working traffic is assigned to each edge then we can assign the required spare

capacity that must be allocated to allow for the possible use of the p-cycle.

For example in Fig. 5.1 (b) edge (b, e) needs four units of traffic and thus all

the other edges on the right cycle need four units of additional capacity. The

edge (b, e) only needs three units of protection overhead as the remaining edge

with the largest traffic in the cycle is (b, c) with three units. Alternatively,

80

b c

fe

2

4

3 3
a

d

1

3

2

b c

fe
2

4

3 3
a

d

1

3

2
4

43

3

3 4

b c

fe

3

3
3

a

d

1

3

2
3

2

4

4

4

2 3

4
3

(a)

(b) (c)

Figure 5.1: Example showing redundancy overhead and differences in alloca-
tion of redundancy for different edge/cycle selection: (a) shows the working
traffic, (b) allocates edge (b, e) to the right cycle, (c) allocates edge (b, e)
to the left cycle; (b) and (c) show both working traffic and the redundancy
overhead in the corresponding colour.

as shown in Fig. 5.1 (c) edge (b, e) is allocated to the left cycle so now all the

other edges in that cycle need four units of traffic. We can now compute the

redundancy overhead for the scenario Fig. 5.1 (b), Rb and Fig. 5.1 (c), Rc as:

Rb =
3 + 4 + 4 + 4 + 3 + 2 + 4

3 + 3 + 1 + 2 + 3 + 2 + 4
=

24

18

Rc =
4 + 2 + 3 + 3 + 4 + 4 + 3

3 + 3 + 1 + 2 + 3 + 2 + 4
=

23

18

Thus, we can see that the scenario in Fig. 5.1 (c) has lower redundancy

overhead and would be the preferred choice.

81

b c

fe

4

a

d

1

3

2

2

33

3 4

3

3 4

4

Figure 5.2: Example of aggregating the two earlier cycles from Fig. 5.1 into
one larger cycle

Fig. 5.2 However, there is one other possibility of choice of cycle as shown

in Fig. 5.2. Here the two cycles shown in Fig. 5.1 are aggregated into one

larger cycle; using the p-cycle terminology, edge (b, e) is converted to a strad-

dling link. Now the capacity for edge (b, e) still has to be covered by edges

(b, c), (c, f) and (f, e), but edge (b, e) does not have to cover any protection

traffic. Now the redundancy overhead, Ragg is:

Ragg =
3 + 4 + 4 + 4 + 3 + 3

3 + 3 + 1 + 2 + 3 + 2 + 4
=

21

18

It can be seen that this now has an even lower redundancy overhead than

either of the minimal cycles.

The examples shown above demonstrate that it is possible to have a

lower redundancy overhead with an aggregated cycle, but this is not always

the case and it is not, immediately, obvious which cycles are best to select. In

practice the minimisation problem in (5.1), under its associated constraints,

82

is NP-complete.

Theorem 1. Determining the optimum set of p-cycles for an arbitrary net-

work is NP-complete.

Proof. Firstly there may be a, practically, uncountable number of possible

cycles in an arbitrary graph. One of these possible cycles is a Hamiltonian

cycle. Finding (or disproving the existence of) such a Hamiltonian is known

to be NP-complete [61] completing the proof.

Following Theorem 1, a heuristic algorithm is required to find a good set

of cycles, Ĉ that lowers R compared to the minimum cycle set Cmin ⊂ C .

The algorithm here builds upon that by Drid et al. [62] with one important

change that is highlighted below and in the results. The algorithm by Drid

et al. [62] is described for wavelength division multiplexed networks, but can

be adapted for electrically switched networks here as shown in Algorithm 1.

The algorithm starts with a set of minimum cycles denoted Cmin as was

used in the previous chapter. A minimum cycle is the smallest cycle that

includes a specific edge e. Finding a minimum cycle (assuming one exists)

for each edge is very straightforward to determine, unlike the largest cycle,

a Hamiltonian. To determine a minimum cycle to protect an edge is simply

a matter of deleting the edge e = s, t from the graph G and using a shortest

path algorithm (such as Dijkstra’s) to find a path that connects s, t. However,

as there maybe multiple paths, this means that Cmin is not unique, and as

it is possible that multiple edges can be protected by a cycle there maybe

multiple combinations of cycles.

83

5.2 Algorithmic description

We note that the algorithm by Drid et al. [62] may not select an optimum

choice of cycles to start the algorithm. Consequently, we propose an im-

provement to the algorithm which greedily chooses a good choice of minimum

cycles, Ĉmin. First we will describe the algorithm by Drid [62] which is shown

in Algorithm 1. The algorithm takes as input: a set of minimum cycles C (or

rather Ĉmin that we will later describe); the working traffic allocated on each

edge, W = {we ∈ W} on the graph G(E, V); and, the allocation of edges to

protection cycles, A = {(e, c)|e ∈ E, c ∈ C}.

The algorithm is recursive and modifies the input variables so copies are

made in lines 1–3. Then the algorithm works on trying to increase the cycles

one-by-one by, merging them aiming to achieve a lower redundancy overhead,

R; if the merged cycle results in a lower R it accepts this as a better cycle to

replace the two selected for testing. The cycles tested then have their working

traffic that they are protecting set to zero (whether they were merged or not)

and the loop (lines 4–14) continues until there is no traffic left (line 4). The

setting of the traffic to zero is just one way of “counting” the edges that have

been searched for lowering the redundancy overhead, it does not have any

other significance in the algorithm.

The first part of the loop (line 5) selects a set of cycles that have the

least working traffic assigned to them CminW . This is a good choice to start

as a consideration for merging as it will add the least amount of traffic to

a larger cycle (potentially not adding any additional overhead if the cycle

already was covering that amount of traffic for other edges). As there could

be more than one of these cycles, the algorithm selects the largest, ĉ, (line

84

OptCycles(C,W,G,A)
1 Ŵ = W

2 Â = A

3 Ĉ = C

4 while Ŵ 6= 0 do
5 CminW = arg min

c∈Ĉ
(min(we|e ∈ c, we 6= 0))

6 ĉ = arg max
c∈Cmin T

(|c|)

7 C ′ ={
c′ ∈ Ĉ

∣∣ e ∈ ĉ ∧ e′ ∈ c′, ĉ 6= c′, R(Ŵ , Ĉ, G) > R(Ŵ ,M(Ĉ, c′, ĉ), G)
}

8 if C ′ 6= ∅ then

9 c′ = arg max
c∈C′

(
R(Ŵ , Ĉ, G)−R(Ŵ ,M(Ĉ, c′, ĉ), G)

)
10 Ĉ = M(Ĉ, c, ĉ)

11 Â = M(Â, c′, ĉ)

12 we = 0, ∀e ∈ (e,M(c′, ĉ)) ∈ A, we ∈ Ŵ

13 else

14 we = 0, ∀e ∈ (e, ĉ) ∈ Â, we ∈ Ŵ

15 if |Ĉ| < |C| then

16 Ĉ = OptCycles(Ĉ,W,G, Â)

17 return (Ĉ, Â

Algorithm 1: Algorithm to optimise cycles

6) as this has the potential to merge the most number of edges. Once this

cycle has been selected then it is compared with every cycle c′ ∈ Ĉ that

shares common edges with ĉ, looking for a combination that has a lower R

if the cycles are merged. Although this would be implemented as a loop in

practice, it can be expressed as one line in set notation (line 7). In line 7 e′

is the reverse edge of e and thus e ∈ ĉ ∧ e′ ∈ c′ denotes that we are looking

for cycles, c′, that share an edge (and reverse edge) in their cycles; these are

cycles that can be merged. In line 7 we introduce a generic merge function

85

M which denotes that the two cycles are merged, deleted from the cycle set

and returned with the new merged cycle added. There may be more than

one cycle c′ that lowers R if it is combined with ĉ and these are denoted C ′

(line 7). Consequently: lines 8-12 find the particular cycle that has the best

reduction in R (line 9); then records this new merged cycle in the updated

cycle set, Ĉ, (line 10); and, updates the allocation of edges to this new merged

cycle Â (line 11, with an overloaded form of the generic merge function M).

Then the working traffic for edges in this new cycle is set to zero (line 12). It

should be noted that the function to merge Â = M(Â, c′, ĉ) (and generically

used earlier) will replace the common edge that was selected in both cycles

(in its bidirectional sense) and thus the allocation will record this link as a

straddling link in the new merged cycle. It is possible that multiple edges

are shared in two cycles, but it is likely that only one can be replaced by a

straddling link, thus here we assume that only one edge at a time is removed

to form the merged cycle. For example, if two consecutive links were replace,

then that would leave the middle node missing from the merged protection

cycle.

As stated earlier the algorithm by Drid et al. [62], in Algorithm 1 does

not consider the best choice of the starting minimum cycles, Cmin ⊂ C. It

is hypothesised that a good selection are those that start with the lowest

redundancy overhead. Consequently, a greedy approach is taken as shown

in Algorithm 2. This starts with the list of all candidate minimum cycles,

C and computes the “best” choice for Cmin ⊂ C by computing the minimum

redundancy overhead, R for all the candidate cycles that protect an edge, e

(line 4). Once the best cycle has been chosen for an edge this is added to the

86

GreedyCyclesSel(C,W,G(E, V))
1 A = ∅
2 for e ∈ E do
3 C ′ = {c ∈ C|e ∈ c}
4 c = arg min

c∈C′
(R(W, c,G))

5 A = A + (e, c)

6 Ĉmin = {c ∈ C|c ∈ (e, c) ∈ A}
7 (Ĉ, Â) =OptCycles(Ĉmin,W,G,A)

8 return (Ĉ, Â)

Algorithm 2: Algorithm to greedly pre-sort all the mimum cycles C

allocation set A. Once the allocation set has been created then the candidate

cycles, Cmin ⊂ C can be simply determined from A (line 6). Finally, this is

the candidate set of cycles that are input to Algorithm 1 (line 7) so that the

optimised set of cycles, Ĉ, and edge allocations to cycles, Â can be returned.

5.2.1 Algorithm complexity

3 complexityThe algorithm complexity will be considered in two parts: first

Algorithm 2 which implements GreedyCycleSel, this then calls Opt-

Cycles which is shown in Algorithm 1 and will be considered secondly.

GreedyCycleSel consists of a for loop for each edge e ∈ E and in each

iteration the dominating item is line 4 which calculates R with complexity

O(|E|), consequently this loop is O(|E|2), the other lines are simple up-

dates to the data structures. It should be noted that GreedyCycleSel

needs the minimum cycle set as an input. The simplist way to calculate the

minimum cycle set is to perform Dijkstra’s algorithm for each edge (remov-

ing the edge to find the shortest loop for each edge), thus the complexity

87

of this is running Dijkstra’s algorithm [77] for each edge, i.e., complexity

O(|E|2 + |E||V | log |V |). The last step in GreedyCycleSel is to call Opt-

Cycles. Excluding this last step we can thus give the complexity as domi-

nated by calculating the minimum cycle set.

The complexity of OptCycles is harder to compute as it varies opon the

while loop in line 4 and the recursion in line 16, which are dependent upon

the exact scenario. However, as the combination of this loop and recursion

are to convert each minimum cycle to a larger cycle the worst case would

be to start with all minimum cycles and iterate one-by-one until there is

a single (Hamiltonian) cycle. Given that the number of cycles is at most

O(|E|) we can unroll the worst case of OptCycles as a loop of O(|E|).

In each of these loops the dominating lines are calculating Cmin which is

O(|E|) and line 7 which calculates the redundancy overhead R which is also

O(|E|). The other lines are are either updates to data structures or line

9 which can be computed while calculating line 7. Thus the worst case

complexity of OptCycles is O(|E|2). Now noting that this is comparable

to (or dominated by) the complexity of GreedyCycleSel we have the final

complexity as:

O(|E|2 + |E||V | log |V |) (5.4)

While this complexity is of a power two in the number of edges, it should be

noted that the number of edges are reasonably small for example the largest

network in the Internet Topology Zoo is the KDL network [68] with 899

edges. The algorithms described above would be implemented in the Toplogy

Manager as this would assign the cycle IDs, as described in Section 4.6.2.

Given that the cycles are only updated periodically, for example daily based

88

upon the peak hour estimation from previous days, then this complexity is

not highly significant compared to the general LID allocation task of the

Topology Manager.

5.3 Results

To evaluate the algorithm, the redundancy as calculated according to Eq. 5.2

was computed for three different graphs from the Internet Topology Zoo [68],

namely: Dfn, HibernianGlobal and Garr200112. These were chosen as they

are representative of typical operator networks i.e. they are mesh networks

rather than some of the networks in Internet Topology Zoo which are simple

star networks. The properties for the networks are presented in Table 5.1.

The graphs were tested 100 times, with a different traffic matrix each time

that was generated between all pairs using a Log Normal distribution as is

commonly seen in operator networks [78].

The results are shown in Figure 5.3, where the algorithms are denoted as:

Unopt is the assignment of minimal cycles, as used in Chapter 3

Ran is the algorithm as proposed by Drid et al.

Greedy is the algorithm presented in this chapter as Algorithm 2.

The results are presented as the ratio of the redundancy overhead R improve-

ment between the Unopt case and either the Ran or Greedy algorithms. It

can be seen that both Ran and our Greedy algorithm have a mean improve-

ment of between 1.08 and 1.2 depending upon the network however, in all

cases our Greedy algorithm outperformed the Ran algorithm and in some

89

●

●
●

●●●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

1.50

1.75

2.00

2.25

2.50

1.0

1.1

1.2

1.3

1.4

Dfn Greedy vs UnOpt

Dfn Ran vs UnOpt

HiberniaGlobal G
reedy vs UnOpt

HiberniaGlobal R
an vs UnOpt

Garr2
00112 Greedy vs UnOpt

Garr2
00112 Ran vs UnOpt

R
el

at
iv

e
im

pr
ov

em
en

t

Figure 5.3: Comparison between algorithms showing the relative improve-
ment in redundancy overhead R compared to the Unopt algorithm

90

3

4

5

6

7

8

Greedy Ran Unopt
Algorithm

C
yc

le
 le

ng
th group

Greedy

Ran

Unopt

Figure 5.4: Box plot showing the distribution of cycle lengths is highly similar
across all algorithms (for the Dfn network).

91

Network No. Nodes No. Edges Mean Node Degree
Dfn 58 87 3.0
HiberniaGlobal 55 81 2.95
Garr2001112 24 26 2.17

Table 5.1: Basic properties for the chosen networks from Internet Topology
Zoo

Algorithm Mean Num. Cycles Mean Cycle Length
Greedy 60.24 3.987
Ran 60.14 3.989
Unopt 62.00 3.968

Table 5.2: Analysis showing number of cycles and mean cycle length in finer
granularity

cases achieved a substantial improvement of up to 2.4 times (compared to

the best for Ran of 1.8).

The distribution of cycle lengths is shown in Figure 5.4 which shows that

there is no clear difference between the algorithms at this level of view. More

detailed analysis shows that the cycles only differ by a small amount. For

example, for the Dfn network, in the Unopt case there are 62 cycles, but in

the Ran algorithm there typically between 58 and 62 cycles, whereas in our

Greedy algorithm there are between 57 and 62. The mean statistics, across

the 100 experiments, are shown in Table 5.2. Thus, only a small difference in

cycles accounts for the significant savings shown in the results in Figure 5.3.

In practice this is because aggregating the cycles for the paths with significant

overheads is enough to reduce the redundancy overhead, and once these cycles

have been aggregated there is no further benefit in aggregating.

92

5.4 Summary

In Chapter 4 the set of minimal cycles were assumed without considering

the optimal cycles. Now this chapter considered optimising the cycles to

reduce the overhead when using p-cycles. The approach extended the work

by Drid et al. [62] by aggregating minimal cycles into larger cycles where

this reduced the overhead. The work found that Drid et al. did not consider

the choice of minimal cycles to use in their algorithm. Consequently, here

a greedy algorithm was added which pre-selected the best minimal cycles,

based upon initial lowest initial overhead. Then these cycles were used in

the process of cycle aggregation. The analysis, using synthetic traffic but

realistic networks, showed consistently better performance compared to the

algorithm by Drid et al. and typically a factor reduction in the redundancy

overhead of between 1.17 and 1.2 compared to using minimal cycles.

93

Chapter 6

Conclusion

The forth chapter introduced the p-cycle switching in combination with the

PURSUIT ICN architecture. It showed that it can have significantly less

switching state and traffic overhead than MPLS multicast switching. This

was demonstrated by simulating the network scenario in a number of realistic

networks. The work has shown that there can be a provable bound on the

additional switching overhead in terms of switching state and packet header

size represented by the CID. In the case of a planar network it was proven that

this can be achieved using only four different identifiers, i.e., the overhead in

the frame for the CID is only two bits. In the case of non-planar networks,

the highest number of unique CIDs was proven to be at most the largest node

degree in the network. In the case of practical networks the largest number

of unique CIDs was found to be 14 in a common database of real networks

provided by the Internet Toplogy Zoo [68].

The second contribution was presented in Chapter 5 which optimised the

cycles to reduce the overhead caused by capacity planned for possible pro-

94

tection switching. This adapted the cycles that were used in Chapter 3,

which assumed minimal cycles without considering the optimal cycles. The

approach extended the work by Drid et al. [62] by aggregating minimal cycles

into larger cycles where which reduced the protection capacity overhead. The

work found that Drid et al. did not consider the choice of minimal cycles to

use in their algorithm. Consequently, a greedy algorithm was added which

pre-selected the best minimal cycles, based upon the initial lowest initial

overhead. Then these cycles were used in the process of cycle aggregation.

The analysis, used synthetic traffic but realistic networks and showed con-

sistently better performance compared to the algorithm by Drid et al. and

typically a factor reduction in the redundancy overhead of between 1.17 and

1.2 compared to using minimal cycles.

In both Chapters 4 and 5 the practicalities of implementing the system

were discussed. Firstly in Chapter 4, it was shown that the mechanism can

be simply implemented in existing SDN switches by simply overloading the

MPLS header to use as the CIDs. This is compatible with earlier work

that showed that SDN switches can be used to implement the Bloom filter

switching [21]. As the mechanism only requires the CIDs to be allocated

when the topology changes it was clear that the overhead of the protection

mechanism can be simply implemented in the ICN Topology Manager as a

low-level background task when compared to the online path determination

that it has to perform. In Chapter 5 it was shown that the complexity

of the cycle optimisation was at most a square relationship of the size of

the network. Again as this optimisation is only performed when there is a

topology change in the network it is of relatively low cost and can again be

95

implemented in the Topology Manager.

6.1 Future directions

The work presented in this thesis also reveals that multiple failures and node

failures may be further considered by extending the theories described here

to include multiple failures and node failures and other aspects as well. Ad-

ditionally, some simulation results on real time impairment monitoring and

analysis of switching times would be a useful extension, but would require a

new experimental framework to be developed which simulates actual outages.

6.2 Final conclusion

This work is the first, and only, contribution on protection switching in ICN

architectures, and as far as the author is aware is the only stateless multicast

protection solution. The work has shown that the state and traffic costs

are significantly less for multicast switching in the chosen ICN architecture

compared to MPLS. Furthermore, the thesis has shown that the optimisation

of p-cycles can be improved to give a highly efficient multicast protection

mechanism for next generation networks.

96

Bibliography

[1] L. Ceci, “Hours of video uploaded to youtube every minute

as of february 2020.” https://www.statista.com/statistics/

259477/hours-of-video-uploaded-to-youtube-every-minute/ [ac-

cessed 12th January 2022], 2022.

[2] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the

internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

[3] D. Trossen, A. Rahman, C. Wang, and T. Eckert, “Appli-

cability of BIER multicast overlay for adaptive streaming ser-

vices,” 2021. IETF Internet Draft draft-ietf-bier-multicast-http-

response-06 [available online https://datatracker.ietf.org/doc/

html/draft-ietf-bier-multicast-http-response-06].

[4] D. Trossen, M. J. Reed, M. Georgiades, N. Fotiou, and G. Xylomenos,

“IP Over ICN - The Better IP? An Unusual Take on Information-Centric

Networking,” in Networks and Communications (EuCNC), 2015 Euro-

pean Conference on, 2015.

97

https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://datatracker.ietf.org/doc/html/draft-ietf-bier-multicast-http-response-06
https://datatracker.ietf.org/doc/html/draft-ietf-bier-multicast-http-response-06

[5] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing In-

formation Networking Further: From PSIRP to PURSUIT,” in Broad-

band Communications, Networks, and Systems (I. Tomkos, C. J. Bouras,

G. Ellinas, P. Demestichas, and P. Sinha, eds.), (Berlin, Heidelberg),

Springer Berlin Heidelberg, 2012.

[6] A. Kodian and W. D. Grover, “Failure-independent path-protecting p-

cycles: Efficient and simple fully preconnected optical-path protection,”

vol. 23, no. 10, pp. 3241–3259, 2005.

[7] A. Zahemszky and S. Arianfar, “Fast reroute for stateless multicast,” in

2009 International Conference on Ultra Modern Telecommunications &

Workshops, pp. 1–6, 2009.

[8] D. Clark, Designing an Internet. MIT Press, 2018.

[9] S. Pasqualini, A. Iselt, A. Kirstädter, and A. Frot, “Mpls protection

switching versus ospf rerouting,” in Quality of Service in the Emerging

Networking Panorama (J. Solé-Pareta, M. Smirnov, P. Van Mieghem,

J. Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, and R. J.

Gibbens, eds.), (Berlin, Heidelberg), pp. 174–183, Springer Berlin Hei-

delberg, 2004.

[10] X. Zhao, Y. Liu, L. Wang, and B. Zhang, “On the aggregatability of

router forwarding tables,” in 2010 Proceedings IEEE INFOCOM, pp. 1–

9, 2010.

[11] M. Mitzenmacher, Bloom Filters, pp. 252–255. Boston, MA: Springer

US, 2009.

98

[12] Y. Chen, A. Kumar, and J. J. Xu, “A new design of bloom filter for

packet inspection speedup,” in IEEE GLOBECOM 2007 - IEEE Global

Telecommunications Conference, pp. 1–5, 2007.

[13] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram in-

ternetworks and extended lans,” ACM Trans. Comput. Syst., vol. 8,

p. 85–110, may 1990.

[14] H. Holbrook and S. Systems, “Source-Specific Multicast for IP.” RFC

4607, Aug. 2006.

[15] B. Zhang and H. Mouftah, “Forwarding state scalability for multicast

provisioning in ip networks,” IEEE Communications Magazine, vol. 41,

no. 6, pp. 46–51, 2003.

[16] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. S. Thyagarajan,

“Internet group management protocol, version 3.” RFC 3376, 2002.

[17] B. Fenner, M. J. Handley, H. Holbrook, I. Kouvelas, R. Parekh, Z. J.

Zhang, and L. Zheng, “Protocol Independent Multicast - Sparse Mode

(PIM-SM): Protocol Specification (Revised).” RFC 7761, Mar. 2016.

[18] X. Xiao, A. Hannan, B. Bailey, and L. Ni, “Traffic engineering with mpls

in the internet,” IEEE Network, vol. 14, no. 2, pp. 28–33, 2000.

[19] D. Tappan, Y. Rekhter, A. Conta, G. Fedorkow, E. C. Rosen, D. Fari-

nacci, and T. Li, “MPLS Label Stack Encoding.” RFC 3032, Jan. 2001.

[20] A. Zahemszky, P. Jokela, M. Sarela, S. Ruponen, J. Kempf, and

P. Nikander, “MPSS: Multiprotocol Stateless Switching,” in 2010 IN-

99

FOCOM IEEE Conference on Computer Communications Workshops,

Mar 2010.

[21] M. J. Reed, M. Al-Naday, N. Thomos, D. Trossen, G. Petropoulos,

and S. Spirou, “Stateless multicast switching in software defined net-

works,” in 2016 IEEE International Conference on Communications

(ICC), pp. 1–7, May 2016.

[22] S. A. Ladhe and V. T. Raisinghani, “A resource efficient common protec-

tion path approach for mpls-based recovery,” in 2013 Fifth International

Conference on Communication Systems and Networks (COMSNETS),

pp. 1–9, 2013.

[23] F. Blouin, A. Sack, and W. Grover, “Benefits of p-cycles in a mixed

protection and restoration approach,” in Fourth International Workshop

on Design of Reliable Communication Networks, 2003. (DRCN 2003).

Proceedings., pp. 203–210, 2003.

[24] H. Alazemi, S. Sebbah, and M. Nurujjaman, “Fast and efficient network

protection method using path pre-cross-connected trails,” Journal of

Optical Communications and Networking, vol. 5, no. 12, pp. 1343–1352,

2013.

[25] M. S. Kiaei, C. Assi, and B. Jaumard, “A survey on the p-cycle pro-

tection method,” IEEE Communications Surveys & Tutorials, vol. 11,

no. 3, pp. 53–70, 2009.

[26] O. Lemeshko and O. Yeremenko, “Linear optimization model of mpls

traffic engineering fast reroute for link, node, and bandwidth protec-

100

tion,” in 2018 14th International Conference on Advanced Trends in

Radioelecrtronics, Telecommunications and Computer Engineering (TC-

SET), pp. 1009–1013, 2018.

[27] D. Tipper, “Resilient network design: challenges and future directions,”

Telecommunication Systems, vol. 56, pp. 5–16, May 2014.

[28] J. Moy, “OSPF Version 2.” RFC 2328, Apr. 1998.

[29] L. Aguirre-Torres and G. Rosenfeld, “A comparison of layer-2 protec-

tion and restoration mechanisms for data-aware transport networks,” in

Optical Fiber Communication Conference and Exposition and The Na-

tional Fiber Optic Engineers Conference, p. NThN2, Optica Publishing

Group, 2005.

[30] G. Maier, A. Pattavina, S. De Patre, and M. Martinelli, “Optical net-

work survivability: Protection techniques in the wdm layer,” Photonic

Network Communications, vol. 4, pp. 251–269, Jul 2002.

[31] F. Blouin, A. Sack, and W. Grover, “Benefits of p-cycles in a mixed

protection and restoration approach,” in Fourth International Workshop

on Design of Reliable Communication Networks, 2003. (DRCN 2003).

Proceedings., pp. 203–210, 2003.

[32] D. Stamatelakis and W. Grover, “Ip layer restoration and network plan-

ning based on virtual protection cycles,” IEEE Journal on Selected Areas

in Communications, vol. 18, no. 10, pp. 1938–1949, 2000.

[33] D. Stamatelakis and W. D. Grover, “Theoretical underpinnings for

the efficiency of restorable networks using preconfigured cycles (”p-

101

cycles”),” IEEE Transactions on Communications, vol. 48, no. 8,

pp. 1262–1265, 2000.

[34] P. Nikander, A. Gurtov, and T. R. Henderson, “Host identity protocol

(hip): Connectivity, mobility, multi-homing, security, and privacy over

ipv4 and ipv6 networks,” IEEE Communications Surveys & Tutorials,

vol. 12, no. 2, pp. 186–204, 2010.

[35] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, “Networking named content,” in Proceedings of the

5th International Conference on Emerging Networking Experiments and

Technologies, CoNEXT ’09, (New York, NY, USA), p. 1–12, Association

for Computing Machinery, 2009.

[36] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-

los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of

information-centric networking research,” IEEE Communications Sur-

veys & Tutorials, vol. 16, pp. 1024–1049, Second 2014.

[37] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,

C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”

SIGCOMM Comput. Commun. Rev., vol. 44, p. 66–73, jul 2014.

[38] X. Fu, D. Kutscher, S. Misra, and R. Li, “Information-centric networking

security,” IEEE Communications Magazine, vol. 56, pp. 60–61, 11 2018.

[39] D. Saxena, V. Raychoudhury, N. Suri, C. Becker, and J. Cao, “Named

data networking: A survey,” Computer Science Review, vol. 19, pp. 15–

55, 2016.

102

[40] M. Al-Khalidi, N. Thomos, M. J. Reed, M. F. AL-Naday, and

D. Trossen, “Anchor free ip mobility,” IEEE Transactions on Mobile

Computing, vol. 18, no. 1, pp. 56–69, 2019.

[41] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera,

R. L. Aguiar, and A. V. Vasilakos, “Information-centric networking for

the internet of things: challenges and opportunities,” IEEE Network,

vol. 30, pp. 92–100, 2016.

[42] B. Nour, H. Khelifi, H. Moungla, R. Hussain, and N. Guizani, “A dis-

tributed cache placement scheme for large-scale information-centric net-

working,” IEEE Network, vol. 34, pp. 126–132, 2020.

[43] Service-Oriented Architecture, pp. 89–113. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2007.

[44] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet in-

spection as a service,” in Proceedings of the 10th ACM International

on Conference on Emerging Networking Experiments and Technologies,

CoNEXT ’14, (New York, NY, USA), p. 271–282, Association for Com-

puting Machinery, 2014.

[45] M. Pathan, R. Buyya, and A. Vakali, Content Delivery Networks: State

of the Art, Insights, and Imperatives, pp. 3–32. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008.

[46] E. B. Nascimento, D. D. de Macedo, and E. D. Moreno, “Resources

optimization in icns through distributed cache using software defined

103

networking – sdn,” in 2018 Symposium on High Performance Computing

Systems (WSCAD), pp. 268–268, 2018.

[47] S. Kul and A. Sayar, “A survey of publish/subscribe middleware sys-

tems for microservice communication,” in 2021 5th International Sym-

posium on Multidisciplinary Studies and Innovative Technologies (ISM-

SIT), pp. 781–785, 2021.

[48] G. Parisis, B. Tagger, D. Trossen, D. Syrivelis, P. Flegkas, L. Tassiu-

las, C. Stais, C. Tsilopoulos, and G. Xylomenos, “Demonstrating an

information-centric network in an international testbed,” in Testbeds

and Research Infrastructure. Development of Networks and Commu-

nities (T. Korakis, M. Zink, and M. Ott, eds.), (Berlin, Heidelberg),

pp. 400–402, Springer Berlin Heidelberg, 2012.

[49] G. Xylomenos, Y. Thomas, X. Vasilakos, M. Georgiades,

A. Phinikarides, I. Doumanis, S. Porter, D. Trossen, S. Robitzsch, M. J.

Reed, M. Al-Naday, G. Petropoulos, K. Katsaros, M.-E. Xezonaki, and

J. Riihijarvi, “Ip over icn goes live,” in 2018 European Conference on

Networks and Communications (EuCNC), pp. 319–323, 2018.

[50] S. Tarkoma, M. Ain, and K. Visala, The Publish/Subscribe Internet

Routing Paradigm (PSIRP): Designing the Future Internet Architecture,

pp. 102–111. Netherlands: IOS PRESS, 2009.

[51] Z. Ahmad, Z. ul Abidin Jaffri, and I. Ali, “A survey on publish-subscribe

internet routing paradigm,” International Journal of Informatics and

Communication Technology, vol. 2, pp. 144–154, 2013.

104

[52] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,

“A survey of information-centric networking,” IEEE Communications

Magazine, vol. 50, no. 7, pp. 26–36, 2012.

[53] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. Braynard, “Networking named content,” Communications of the

ACM, vol. 55, pp. 117 – 124, 2012.

[54] A. Shinde and S. M. Chaware, “Content centric networks (ccn): A sur-

vey,” in 2018 2nd International Conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile,

Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on,

pp. 595–598, 2018.

[55] X. Qiao, H. Wang, W. Tan, A. V. Vasilakos, J. Chen, and M. B.

Blake, “A survey of applications research on content-centric network-

ing,” China Communications, vol. 16, no. 9, pp. 122–140, 2019.

[56] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,

“A survey of information-centric networking,” IEEE Communications

Magazine, vol. 50, no. 7, pp. 26–36, 2012.

[57] K. Kogan, S. I. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eug-

ster, “Exploiting order independence for scalable and expressive packet

classification,” IEEE/ACM Trans. Netw., vol. 24, p. 1251–1264, apr

2016.

105

[58] T. A. Wibowo, N. R. Syambas, et al., “Named data network (ndn)

scalability problem,” in 2019 IEEE Asia Pacific Conference on Wireless

and Mobile (APWiMob), pp. 112–118, IEEE, 2019.

[59] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed precon-

figuration: ring-like speed with mesh-like capacity for self-planning net-

work restoration,” in ICC ’98. 1998 IEEE International Conference on

Communications. Conference Record. Affiliated with SUPERCOMM’98

(Cat. No.98CH36220), vol. 1, pp. 537–543 vol.1, 1998.

[60] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California

fault lines: Understanding the causes and impact of network failures,”

Computer Communication Review, vol. 40, no. 4, pp. 315–326, 2010.

[61] G. Narasimhan, “A note on the Hamiltonian circuit problem on directed

path graphs,” Information Processing Letters, vol. 32, no. 4, pp. 167–

170, 1989.

[62] H. Drid, B. Cousin, and M. Molnar, “Heuristic Solution to Protect Com-

munications in WDM Networks using P-cycles,” in Workshop on Traffic

Engineering, Protection and Restoration for Future Generation Internet,

(Oslo, Norway), 2007.

[63] ONF, “OpenFlow switch specification version 1.2,” tech. rep., Open

Networking Foundation, December 2011.

[64] J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithms and Ap-

plications. Springer Publishing Company, Incorporated, 2nd ed., 2008.

106

[65] R. L. Brooks, “On colouring the nodes of a network,” Mathemati-

cal Proceedings of the Cambridge Philosophical Society, vol. 37, no. 2,

p. 194–197, 1941.

[66] R. Bowden, H. X. Nguyen, N. Falkner, S. Knight, and M. Roughan,

“Planarity of data networks,” in Proceedings of the 23rd International

Teletraffic Congress, ITC ’11, p. 254–261, International Teletraffic

Congress, 2011.

[67] K. Appel and W. Haken, “Every planar map is four colorable. part I:

Discharging,” Illinois J. Math., vol. 21, pp. 429–490, 09 1977.

[68] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,

“The internet topology zoo,” IEEE Journal on Selected Areas in Com-

munications, vol. 29, pp. 1765–1775, October 2011.

[69] R. M. Karp, Reducibility among Combinatorial Problems, pp. 85–103.

Boston, MA: Springer US, 1972.

[70] D. Brélaz, “New methods to color the vertices of a graph,” Commun.

ACM, vol. 22, p. 251–256, Apr. 1979.

[71] M. Castro, M. B. Jones, A. . Kermarrec, A. Rowstron, M. Theimer,

H. Wang, and A. Wolman, “An evaluation of scalable application-

level multicast built using peer-to-peer overlays,” in IEEE INFOCOM

2003. Twenty-second Annual Joint Conference of the IEEE Computer

and Communications Societies (IEEE Cat. No.03CH37428), vol. 2,

pp. 1510–1520 vol.2, March 2003.

107

[72] E. Rosen and R. Aggarwal (eds), “Multicast in MPLS/BGP IP VPNs.”

IETF RFC 6513, February 2012.

[73] I. Martinez-Yelmo, D. Larrabeiti, I. Soto, and P. Pacyna, “Multicast

traffic aggregation in MPLS-based VPN networks,” IEEE Communica-

tions Magazine, vol. 45, no. October, pp. 78–85, 2007.

[74] P. Tune, M. Roughan, H. Haddadi, and O. Bonaventure, “Internet traffic

matrices: A primer,” Recent Advances in Networking, vol. 1, pp. 1–56,

2013.

[75] D. B. Johnson, “Finding all the elementary circuits of a directed graph,”

Vol, Siam J Comput, vol. 4, no. 1, pp. 77–84, 1975.

[76] D. A. Mello, H. Waldman, and G. S. Quitério, “Interval availability

estimation for protected connections in optical networks,” Computer

Networks, vol. 55, no. 1, pp. 193–204, 2011.

[77] M. Barbehenn, “A note on the complexity of dijkstra’s algorithm for

graphs with weighted vertices,” IEEE Transactions on Computers,

vol. 47, no. 2, pp. 263–, 1998.

[78] A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically

generating ip traffic matrices: Initial recommendations,” SIGCOMM

Comput. Commun. Rev., vol. 35, p. 19–32, jul 2005.

108

	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Aims and Objectives
	1.2.1 Objectives

	1.3 Thesis Structure

	2 Literature Review
	2.1 Traditional IP routing
	2.2 Multicast delivery
	2.2.1 IP Multicast

	2.3 MPLS
	2.3.1 Multicast with MPLS multi-point LSPs

	2.4 Traditional Path Protection
	2.4.1 Protection methods
	2.4.2 Packet network resilience
	2.4.3 Optical resilience

	2.5 Path Protection with P-cycles

	3 Information Centric Networking
	3.1 Overview of ICN
	3.1.1 PSIRP/ PURSUIT Network Architecture
	3.1.2 Rendezvous system

	3.2 Bloom Filter-based Forwarding
	3.2.1 Bloom filters
	3.2.2 Bloom filter encoding a multicast tree
	3.2.3 Stateless Multicast Switching (LIPSIN)

	3.3 CCN Network Architecture
	3.4 NDN Network Architecture
	3.5 PURSUIT vs CCN/NDN for protection

	4 Multicast Protection-cycles Through Path-Based Switching
	4.1 Overview
	4.2 Supporting concepts
	4.2.1 Path Protection with P-cycles

	4.3 On-the-Fly Protection of Bloom Filter-based Flows
	4.4 Formal description of the proposed protection mechanism
	4.5 Evaluation
	4.6 Practical implications
	4.6.1 Header insertion
	4.6.2 Dissemination of cycle IDs

	4.7 Summary

	5 Optimising protection cycles
	5.1 Overview of the approach
	5.2 Algorithmic description
	5.2.1 Algorithm complexity

	5.3 Results
	5.4 Summary

	6 Conclusion
	6.1 Future directions
	6.2 Final conclusion

