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Abstract
Hyperparameters play a critical role in machine learning. Hyperparameter tuning can make the
difference between state-of-the-art and poor prediction performance for any algorithm, but it is
particularly challenging for structure learning due to its unsupervised nature. As a result, hyper-
parameter tuning is often neglected in favour of using the default values provided by a particular
implementation of an algorithm. While there have been numerous studies on performance eval-
uation of causal discovery algorithms, how hyperparameters affect individual algorithms, as well
as the choice of the best algorithm for a specific problem, has not been studied in depth before.
This work addresses this gap by investigating the influence of hyperparameters on causal struc-
ture learning tasks. Specifically, we perform an empirical evaluation of hyperparameter selection
for some seminal learning algorithms on datasets of varying levels of complexity. We find that,
while the choice of algorithm remains crucial to obtaining state-of-the-art performance, hyperpa-
rameter selection in ensemble settings strongly influences the choice of algorithm, in that a poor
choice of hyperparameters can lead to analysts using algorithms which do not give state-of-the-art
performance for their data.
Keywords: Hyperparameters, model selection, causal discovery, structure learning, performance
evaluation, misspecification, robustness

1. Introduction

Uncovering causal graphs is an immensely useful tool in data-driven decision-making as it helps
understand the underlying data generating process. A large number of causal structure learning
algorithms incorporate Machine Learning (ML) methods. These, in turn, heavily rely on hyperpa-
rameters (HPs) for accurate predictions (Bergstra et al., 2011). In addition, there has been grow-
ing evidence that correctly specified HPs can close the performance gap between State-of-the-Art
(SotA) and other methods (Paine et al., 2020; Zhang et al., 2021a; Machlanski et al., 2023; Tönshoff
et al., 2023). Are hyperparameters as important in structure recovery?

HP optimisation is extremely challenging in structure learning as the true graphs are inaccessi-
ble outside of simulated environments. This inability to reliably tune could be one of the reasons
behind the struggle to apply some of the algorithms to real data problems (Kaiser and Sipos, 2021),
or why HPs are often completely neglected in this area. On the one hand, benchmarks and eval-
uation frameworks (e.g. Raghu et al. (2018); Tu et al. (2019)) usually focus on finding a learning
algorithm that works best under specific circumstances but without considering HPs as part of the
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problem. On the other hand, studies that address HP tuning (e.g. Strobl (2021); Biza et al. (2022))
consider individual algorithms but not the impact of tuning (or the lack of it) on selecting the best
algorithm for the available data. Understanding how HPs affect algorithm choice, as well as individ-
ual methods, is clearly missing but can be a crucial next step towards more stable causal discovery
in real data applications. To make matters worse, the evaluation metrics used for tuning can be
imperfect and sometimes favour specific learning methods (Curth and van der Schaar, 2023). This
brings us to the core questions of this paper: Do different algorithms perform similarly given access
to a hyperparameter oracle? How robust are they against misspecified hyperparameters?

In this work, we set out to address these questions and investigate the impact HPs have on graph
recovery performance of individual algorithms, as well as on the best algorithm choice (see Figure
1). We start by showing how a single HP plays a crucial role in the simplest graph problem (two
variables). More extensive experiments strengthen this observation and confirm it as a more general
phenomenon. The experimental setup involves many seminal structure learning algorithms tested
against real and simulated datasets.
Contributions. a) Compare algorithms’ performances and their winning percentages across hyper-
parameters, b) Compare algorithms’ performances under well-specified and misspecified hyperpa-
rameters, and c) Compare algorithms’ winning percentages under well-specified and misspecified
hyperparameters.
Related work. This work connects with the existing literature mainly through the topics of per-
formance evaluation and HP analysis. The performance of structure learning algorithms has been
evaluated from a number of different perspectives, such as mixed data types (Raghu et al., 2018) or
time series data (Assaad et al., 2022). In an attempt to strengthen the evaluation, there have been
efforts to develop testing environments that closely resemble real-life datasets. Some examples in-
clude simulators based on gene regulatory networks (Van den Bulcke et al., 2006) or neuropathic
pain pathology (Tu et al., 2019). Grünbaum et al. (2023) take evaluation further by proposing to
test algorithms on the parts of real-life datasets that are known a priori. Furthermore, to improve
reproducibility, Rios et al. (2021) developed a benchmarking platform that covers a wide range of
learning methods and data scenarios. The importance of HPs and their impact on performance have
been mostly studied in other areas outside of structure learning. In the offline Reinforcement Learn-
ing (RL) setting, Paine et al. (2020) reported, among other aspects, that robustness to HP choices
is an important issue and that careful tuning can deliver close to optimal policies. Zhang et al.
(2021a), on the other hand, make a case for HP tuning in model-based RL. Similar observations
have been reported in causal effect estimation (Machlanski et al., 2023), graph learning (Tönshoff
et al., 2023), code classification (Shen et al., 2020) and evolutionary algorithms (Eiben and Smit,
2011), where SotA performance levels are attributed to HPs alone. HPs have been also studied in
the broader context of “tunability” (Probst et al., 2019) and optimisation approaches (Yu and Zhu,
2020). Some notable recent works even challenge our current understanding of how HPs interact
with loss functions (Huang and Li, 2023) and decision boundaries (Sohl-Dickstein, 2024). HPs in
structure learning have mostly been discussed in the context of tuning. One common approach is to
select HPs that result in stable structure predictions across random data samples (Liu et al., 2010;
Sun et al., 2013; Strobl, 2021). Another strand of work performs out-of-sample validation for tun-
ing purposes based on predictive accuracy of models fitted in accordance with the recovered graph
structure (Biza et al., 2022), or assigned scores developed specifically for structure recovery tuning
(Chobtham and Constantinou, 2023). Metrics based on regression error have been also considered
(Marx and Vreeken, 2019), though in the context of two variables.
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Figure 1: Summary of the main idea of the paper. We explore various structure learning algorithms and
investigate how hyperparameters affect their performance. Notation: h1 and h2 are different hyperparameter
values; X denotes i.i.d. data provided to algorithms; Â is recovered adjacency matrix while G(Â) is a causal
graph based on Â; SHD is structural Hamming distance (lower is better). Note how recovered graphs differ
between different hyperparameters of the same algorithm (green edges are correct; red incorrect). sim mean
are hyperparameters that achieved the best average performance across all simulations.

Structure. In Section 2 we briefly discuss the basics of structure learning. Section 3 demonstrates
the importance of hyperparameters in structure learning via a bivariate example, further motivating
more extensive numerical experiments presented in Section 4. Section 5 concludes the paper and
offers potential future work directions.

2. Structure Learning

We briefly describe the notation and data assumptions used throughout the paper as well as important
details of structure learning methods necessary to read the technical parts of the document. For a
more detailed review, see recent literature (e.g. Eberhardt (2017); Glymour et al. (2019)).
Graphs. Let G = (V, E) be a graph with nodes/vertices V = {1, . . . , p} and edges E ⊆ V 2. Edges
are pairs of nodes (j, k) ∈ V where (v, v) /∈ E to exclude self-cycles. Nodes j, k are adjacent in G
if either (j, k) ∈ E or (k, j) ∈ E . An edge is undirected if (j, k) ∈ E and (k, j) ∈ E , whereas it is
directed if only one pair appears in E ; if this pair is (j, k) then j is called a child of parent k. The
set of parents of j in G is denoted by PAG

j . We call G directed if all its edges are directed. A mixed
graph consists of both directed and undirected edges. The skeleton of any directed or mixed graph
G is an equivalent graph with all directed edges replaced by undirected ones. A fully connected
graph G is one where all pairs of nodes are adjacent. A (directed) path is a sequence of nodes
connected by (directed) edges. A partially directed acyclic graph (PDAG) is a mixed graph such
that there is no pair (j, k) such that there are directed paths from j to k and vice versa. Then, G is a
directed acyclic graph (DAG) if it is a PDAG and is directed. Two graphs are Markov equivalent,
or belong to the same equivalence class, when they involve the same sets of d-separations (Pearl,
2000). A completed PDAG (CPDAG) can encode such a class of graphs, in which undirected edges
mean that the graphs within the class may contain a directed edge in either direction; directed edges
denote agreement in edge direction in subsumed graphs.
Assumptions. Now consider a vector of random variables X = (X1, . . . , Xp) generated according
to an unknown data generating process (DGP) leading to joint distribution L(X). The node j ∈
V represents random variable Xj and the edge between nodes j and k in E is directed if and
only if Xk is used in the DGP to generate Xj . We further assume that: a) there are no hidden
confounders (sufficiency); b) two variables are independent in L(X) if they are d-separated in G
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(Markov condition); and c) two variables are d-separated in G if they are independent in L(X)
(faithfulness).
Learning Methods. The goal of causal structure learning is to infer (or identify) graph G given
the distribution L(X). If it is possible to do this, we say G is identifiable from L. Traditional
methods, such as PC (Spirtes and Glymour, 1991) or GES (Chickering, 2002), were often built
around assumptions a-c) above, which are in most cases not enough to identify a unique DAG
solution, only the class of CPDAGs. If one, however, assumes the DGP is a Structural Causal
Model (SCM) then identification is possible, for example, if the DAG is a linear SCM with additive
non-Gaussian noise: Xj = fj(XPAG

j
)+ϵj (Shimizu et al., 2006). Subsequent research has extended

this result to nonlinear SCMs with additive noise (Hoyer et al., 2008), linear models with Gaussian
noise terms of equal variances (Peters and Bühlmann, 2014), and additive models of the form Xj =∑

k∈PAG
j
f(Xk)+ ϵj (Bühlmann et al., 2014). More recent approaches also involve neural network-

based algorithms that specifically restate the learning task as a continuous optimisation problem
(Zheng et al., 2018, 2020).

3. Hyperparameters in Structure Learning

3.1. Bivariate Example
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Figure 2: The number of allowed regression param-
eters, a hyperparameter, clearly affects prediction
error of the two models and can determine predicted
causal direction (see decision colours at the bottom).
The algorithm predicts X → Y if ϵf < ϵg , X ← Y
if ϵf > ϵg , and is inconclusive otherwise. Note that
the true causal direction is unknown in practice.

An illustrative example, strongly inspired by
Marx and Vreeken (2019), is the classic cause-
effect pairs challenge (Guyon et al., 2019) that
consists of two (synthetically generated here)
variables X and Y , with the goal of establishing
the existence and direction of the causal link be-
tween them (X → Y , X ← Y , no link) given
only observed data. One possible solution is to fit
two regressors y = f(x) and x = g(y), and pre-
dict the causal direction based on the lower pre-
diction error of the two models (ϵf = [y− f̂(x)]2

and ϵg = [x − ĝ(y)]2; no link if the errors are
comparable). As shown in Figure 2, changing the
HP that controls the number of regression param-
eters can result in a different causal direction be-
ing predicted. This is precisely what constitutes
the problem, since the true DGP and the correct
HP value are unknown.
Observation 1 Incorrect hyperparameters can
cause prediction mistakes.
Observation 2 There might be more than one correct and incorrect hyperparameter choice.

The problem grows in complexity as the number of graph nodes and edges increases. This is
because each edge is a potentially different function to approximate that will require a different
HP value (function complexity) to obtain the correct answer. In addition, many algorithms provide
multiple HPs to tune, making even more room for further mistakes, effectively increasing the chance
of HP misspecification. In fact, even the bivariate example can involve more HPs by, for instance,
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introducing a threshold such that the algorithm predicts ‘no link’ if |ϵf − ϵg| < threshold. To this
end, we make the following claim and set up the following key definition:
Claim 1 The existence and direction of an edge in the predicted graph strongly depends on algo-
rithm’s hyperparameters.
Definition 1 (Hyperparameter Misspecification) Mistakes in predicted graph structure arising
from incorrect hyperparameters.

Note that in practice HP misspecification may be not the only source of prediction mistakes as
not all learning algorithms are guaranteed to converge to optimal solutions.

3.2. General Form of the Problem

Let X ∈ Rn×p represent i.i.d. data of n observations and p features. Furthermore, let A ∈ {0, 1}p×p

be a binary adjacency matrix of directed graph G(A) such that ajk = 1 if (j, k) ∈ E and ajk = 0
otherwise. A weighted adjacency matrix W ∈ Rp×p is defined such that A(W )jk = 1 if wjk ̸= 0
and zero otherwise, which results in a weighted graph G(W ). Let us also define distance d(A,B)
between two adjacency matrices A and B such that d(A,B) = 0 if and only if G(A) = G(B)
are the same graph. From now on, let us denote A as the true adjacency matrix and Â its estimate
obtained by a programme P from i.i.d. data X using programme options O so that

Â = P (O,X), (1)

where O generally involves the user specifying algorithm S and hyperparameter values H . There-
fore, given K user-specified candidate programmes P = {P1, . . . , PK} and

Âk = P (Sk, Hk, X), (2)

where Sk and Hk are the algorithm and HP choices associated with program candidate k, then the
best program is

k∗ = argmin
k∈{1,...,K}

d(A, Âk), (3)

Note that k∗ is generally not identifiable unless A is known. Furthermore, identification of G does
not guarantee Âk∗ = A as Âk∗ depends on algorithms S and their ability to identify A, as well as
the choice of their HPs H .

More generally, when considering different algorithms S and HPs H , Equation 3 is the standard
model selection problem, whereas if the choice of algorithms is fixed to a specific value, leaving
HPs as the only variable, the task reduces to hyperparameter tuning. In practical terms, obtaining
the distance d(A, Â) is not feasible, as the true matrix A and its corresponding graph G(A) are
inaccessible outside of simulated environments. As algorithms can vary substantially in design, the
appropriate way to compare them requires the use of distance measures that incorporate the ground
truth A. This renders model selection impractical in structure learning problems. Tuning HPs of a
single algorithm might be feasible by comparing its relative scores across explored HP values.

3.3. Common Hyperparameters

Despite differences in algorithms, many of them share similar HPs. Commonly used ones are briefly
described here.
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Significance level of independence tests. Refers to the p-value of independence tests and the
desired level of certainty. Decreasing the value (increasing certainty) will usually result in fewer
predicted edges. Often named as alpha and incorporated by traditional and pairwise algorithms.
Sparsity. A penalty term that encourages sparser solutions. Higher values result in fewer predicted
edges. Similar in mechanism to L1 regularisation which discards less relevant features. Often
employed by regression-based solutions, especially if they perform some form of feature selection.
Model complexity. A penalty that encourages simpler models to avoid overfitting (L2 regularisa-
tion). As shown in the example in Section 3.1, its influence on the final prediction is complicated.
Usually applies to solutions that model the assumed form of SEMs.
Post-prunning threshold. Many SEM-based methods output weighted adjacency matrices W that
need to be converted to the binary form of A. This is usually done by applying a threshold below
which all edges are set to zero. That is, aij = 1 if wij > w thresh; 0 otherwise..

Note that alpha and w threshold are algorithm agnostic and can be transferred between methods,
whereas the other two HPs may differ in value between algorithms.

4. Experiments

Since our analysis in Section 3 is based merely on a simple and artificial example, our next step
is to study the influence of HPs more rigorously in a more general setting. We devise a set of
experiments consisting of diverse data sets of various size and difficulty (Section 4.1), processed by
a representative set of structure learning algorithms (Section 4.2). Different HP selection scenarios
are also detailed (Section 4.4).

The experimental framework is implemented through Benchpress (Rios et al., 2021), a bench-
marking platform to evaluate structure learning algorithms. Performances of all algorithms are col-
lected from Benchpress, followed by some mild post-processing of the results to suit our analysis
of HPs. The code and data are available via Appendix A.5.

4.1. Graphs and Data

4.1.1. SIMULATIONS

We follow recent literature in structure learning when it comes to simulating different DGPs. The
simulation procedure starts with generating a random DAG G with p nodes and d edges, built ac-
cording to a random graph model. The resulting graph is binary, with A ∈ {0, 1}p×p. Next, i.i.d.
data X ∈ Rn×p are sampled from a simulated SEM of choice, with n being the sample size. Each
individual combination of settings is repeated for 10 seeds and forms a single experiment. In our
experiments, we explore p ∈ {10, 20, 50}, d ∈ {1p, 4p}, and n ∈ {200, 1000}. Included random
graph models are Erdös-Rényi (ER) (Erdös and Rényi, 1959) and Barabási-Albert (Barabási and
Albert, 1999), with the latter also known as scale-free (SF). We also explore n = 10, 000 but only
for sparse ER graphs with p = 50 nodes due to computational limitations. As for explored SEMs,
we include the following:
Linear Non-Gaussian (gumbel). X = XW T + z ∈ Rp, with W ∈ Rp×p as edge weights
assigned independently from U([−2,−0.5]∪ [0.5, 2]) and based on A. Noise z follows the Gumbel
distribution z ∼ Gumbel(0, Ip×p).
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Nonlinear Gaussian (gp). Xj = fj(XPAG
j
) + zj for all j ∈ [p] in the topological order of G. Noise

zj follows Gaussian distribution zj ∼ N (0, 1), j = 1, . . . , p. Where functions fj represent a draw
from a Gaussian process with a unit bandwidth RBF kernel.

Note that both settings have been shown to be identifiable. That is, linear non-Gaussian additive
models (Shimizu et al., 2006) and nonlinear additive models (Hoyer et al., 2008).

4.1.2. REAL DATASETS

We also tested structure learning algorithms against real or semi-real datasets. The most popular
ones in the literature are protein signaling and SynTReN.
Protein signaling comes from Sachs et al. (2005) which measures protein and phospholipid expres-
sion levels in human cells. The ground truth causal graph has been established and accepted by the
experts in the field. We use the second dataset that is already logged and standardised and consists
of n = 902 observations, p = 11 nodes and d = 17 edges.
SynTReN is a generator of synthetic transcriptional regulatory networks and related gene expres-
sion data that simulate a real experiment (Van den Bulcke et al., 2006)1. We use the same data as in
Lachapelle et al. (2019), which consist of 10 random seeds, n = 500 samples and p = 20 nodes.

4.2. Structure Learning Algorithms

We consider in our setup the following algorithms. PC (Spirtes and Glymour, 1991), FCI (Spirtes
et al., 1993), FGES (Ramsey et al., 2017), LiNGAM (Shimizu et al., 2006), ANM (Hoyer et al.,
2008), CAM (Bühlmann et al., 2014), NOTEARS (Zheng et al., 2018) and NOTEARS MLP (Zheng
et al., 2020). Due to high computational demands, we only focus on well-established and seminal
algorithms that, in our view, effectively represent different classes of solutions. More details about
the algorithms and HPs involved can be found in Appendix A.2. Note the algorithms may have
different termination criteria due to design differences, but they all produce (CP)DAGs.

4.3. Evaluation

We compare algorithms’ performances across three commonly used metrics: structural Hamming
distance (SHD), false positives (FPs), and false negatives (FNs). All three accommodate for the fact
that the ground truth is always a DAG but some of the incorporated algorithms output CPDAGs.
The implementation of SHD we use counts not only the number of edge additions, removals and
reversals, but also edge orientations, needed to turn the predicted graph into the true DAG. FPs and
FNs count false edges and are calculated based on graph skeletons. For this purpose, predicted and
true graphs are converted to skeletons to obtain the two metrics. This allows us to include methods
that output CPDAGs even though the primary focus of this study is DAG recovery. See Appendix
A.4 for more detailed definitions of the metrics.

4.4. Hyperparameters

All incorporated learning algorithms have at least one HP. We collect performances of algorithms
across all HP combinations (exhaustive grid search; see Appendix A.1). Note that while many HPs
are defined on continuous spaces, we search over a pre-defined set of points chosen to cover the

1. http://bioinformatics.intec.ugent.be/kmarchal/SynTReN/index.html
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space as completely as possible. To better understand the influence of HPs on structure recovery
performance, we experiment with four different HP selection strategies described below.
BEST. To simulate the choice of the best HPs (as if we had access to the HP oracle), we pick HP
values that achieved the lowest metric value in that particular data setting. Each data setting can
have a different set of the best HPs.
WORST. Identified similarly to ‘best’ except the criterion here is the highest metric value.
DEFAULT. Default HP values recommended by the authors of an algorithm. See Appendix A.2.
SIM MEAN. An alternative to ‘default’. We found a single set of HP values per algorithm that
achieved the lowest average metric value across all simulations. These are simulation-derived
default values. See Appendix A.1 for identified values.

4.5. Results

Presented results employ the following naming convention with respect to the DGP: graph p (num-
ber of nodes), graph d (edge density), graph type (graph models; ER or SF), data n (sample size),
data sem (SEM type; gumbel or gp). Error bars are standard errors unless stated otherwise. Due to
space limitation only the most important results are presented in the main content of the paper. The
rest of the results, that do not change conclusions, are in Appendix B.
Performance Distribution Across Hyperparameters. As per Figure 3, all algorithms perform
similarly when averaged across all simulations and hyperparameters. This confirms that no single
algorithm is the best in all conditions; they rather specialise in solving specific challenges that are
ingrained in their design via assumptions. Some minor deviations from this general observation can
be noticed when considering FPs (false positives) only (see FCI, PC and ANM), but they become
negligible when considering the main metric (SHD).
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Figure 3: Proportions of performances (lower is better) across all HP values and simulations. Interpretation:
algorithms perform similarly when averaged over all DGPs and HPs; no algorithm is the best in all conditions.

Performance vs. Hyperparameter Quality. As shown in Figure 4, achieved performance is clearly
affected by both algorithm and HP choices. Even assuming access to HP oracle (blue colour),
selecting different algorithms will have a significant impact on the result (blue bars differ among
algorithms). This is because assumptions, either implicit or explicit, about the DGP play a critical
role in controlling the performance of each method. It is worth noting that, in contrast to previous
studies of HP choice for other causal methods, the absolute performance level achieved by the
algorithms is low: no algorithm comes close to achieving SHD = 0. The complexity of the learning
task is such that accurate structure discovery currently lies beyond the state of the art. In this
context, fixed HPs (orange and green) seem to be a viable strategy as they are relatively close to the
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Figure 4: Performances (lower is better) for small sparse graphs (p = 10, d = 1) with linear (gumbel) and
nonlinear (gp) SEMs depending on the quality of selected HPs (see the legend). Interpretation: a) fixed HPs
(orange and green) perform similarly as the optimal ones (blue), b) algorithm selection is important even with
optimal HPs (blue bars differ among algorithms), c) certain algorithms and setups are more risky (differences
among red bars), and d) methods with optimised HPs provide only true edges (see blue bars in FPs).

best cases (blue). This shows that HP values transfer well between different DGPs, which can be
exploited in practice as a countermeasure to challenging HP optimisation. The differences between
simulation-derived and paper-default values (orange and green respectively) are negligible in most
cases with the exception of FNs (false negatives) where the former perform better. This indicates
that the recommended defaults often prioritise sparsity, which reduces FPs, at the cost of increased
FNs. The worst HPs (red), on the other hand, can result in performances substantially worse than
the fixed ones. This shows the risks of HP misspecification, the degree of which clearly varies
across algorithms (different robustness), which could be due to again different data assumptions
in algorithms or varied degrees of freedom via algorithm’s HPs. Note also how the majority of
mistakes under misspecified HPs (red) is due to FPs (red bars in FPs larger than in FNs). However,
once HPs are optimised (blue), FPs are mostly eliminated and the remaining mistakes are now due
to FNs (blue bars larger in FNs than FPs). This has critical implications for practice: the predicted
edges can be trusted (FP small) but the absence of an edge cannot (FN large). Remaining FNs could
be also a sign of too aggressive sparsity/prunning or simply failed identification, with the latter
being an indicator for future algorithmic improvements.
Performance vs. Cardinality of Hyperparameters. A speciously interesting comparison that
emerges from our study is the relationship between the cardinality of the HPs we explore and al-
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Figure 5: The influence of explored HP cardinalities (HP card) across algorithms on performance (lower is
better), depending on the quality of selected HPs (see legend). DGP: small sparse graphs (p = 10, d = 1)
with linear (gumbel) and nonlinear (gp) SEMs. Note how higher cardinalities lead to small SHD gains under
optimal HPs (blue), but at the cost of much worse performances under misspecified HPs (red). Warning:
different cardinalities may involve different algorithms (possible coincidental trends).

gorithm performance. Our study was not set up to explore this issue so we now clarify what can
and cannot be concluded about this relationship from our study. As presented in Figure 5, higher
cardinalities (81 and 200) lead to only small performance improvements under optimised HPs (blue
bars), but they involve significantly higher risks of poor performances if HPs are misspecified (red).
This shows that larger HP search spaces should be explored with caution as they provide little gain
for a much higher risk of poor performances. Note, however, that different cardinalities presented
here may involve different algorithms, making room for coincidental trends. For example, it is un-
clear given the data if robustness to misspecified HPs is due to HP cardinalities or algorithms as the
two highest cardinalities were explored exclusively with (potentially volatile) neural networks.
Winning Algorithms vs. Hyperparameter Quality. Previous analysis revealed that the best algo-
rithm choice may depend on specific DGP properties as well as HP choices. To make it clearer, we
collect winning algorithms across different DGP properties and HP selection strategies. An algo-
rithm with the lowest SHD in a given setting wins. Table 1 presents top performers across different

Table 1: Top algorithm choices based on the highest winning percentages, grouped by DGP properties
(graph p, data sem, graph d) and quality of selected HPs (best, sim mean, worst). If there is no clear winner,
multiple top performers are reported. Notice how the winners change across DGPs (columns), but also across
HPs (rows), showing algorithm selection is nuanced. N MLP denotes NOTEARS MLP.

graph p 10 20 50
data sem gumbel gp gumbel gp gumbel gp
graph d 1 4 1 4 1 4 1 4 1 4 1 4

HP
best

FGES
FCI

FGES CAM CAM FGES
PC
N MLP

CAM CAM FGES
PC
N MLP

CAM CAM

HP
sim mean

FGES
PC

FGES
CAM
ANM

CAM CAM FGES PC CAM CAM FGES PC CAM CAM

HP
worst

FGES
FGES
PC
CAM

LiNGAM
FGES

CAM FGES PC LiNGAM
CAM
LiNGAM

FGES PC LiNGAM LiNGAM
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settings based on accumulated winning percentages. The results confirm that no single algorithm
wins in all settings. Specific DGP properties may favour certain methods. When looking at how
top performers change depending on different HP choices, it is clear that the best algorithm selec-
tion depends not only on DGP properties, but also on the type of available HPs. For instance, to
minimise the risk of poor performances, one can select algorithms from the ‘HP worst’ category.
Performance vs. Sample Size. Figure 6 confirms that increased sample size generally helps, even
with relatively large graphs (p = 50), though some algorithms need more data to notice major
benefits (see LiNGAM in gumbel and NOTEARS MLP in gp). Positive effects can be noticed with
respect to improved best HP cases (min values) and an increased proportion of good performances
(mean values). This case also confirms that relatively large and sparse graphs can be recovered with
high accuracy given the right HPs (min values of some green boxes are close to 0).

0 20 40 60 80 102 103
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LINGAM

NOTEARS
NOTEARS_MLP

PC

 

data_sem=gumbel

0 20 40 60 80 102 103
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data_n
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LINGAM

NOTEARS
NOTEARS_MLP

PC

 

data_sem=gp

0 20 40 60 80 102 103
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data_sem=gp

0 20 40 60
FN

 

data_sem=gp

Figure 6: The influence of sample size (data n; colours) on performances (lower is better) across all HPs.
DGP: sparse (d = 1) large (p = 50) ER graphs with linear (gumbel) and nonlinear (gp) SEMs. ANM
was excluded due to long execution time against 10, 000 samples. Note how increased sample size not only
improves performances under the best and worst HPs (min and max decrease), but also the proportion of good
performances (means decrease as well), suggesting increased sample size helps with HP misspecification.

Semi-Synthetic and Real Data. We put our simulation-derived findings to a test by performing
structure recovery on SynTReN and Sachs datasets (Figure 7). SHD numbers are compared to
SotA performances retrieved from Lachapelle et al. (2019), which are 33.7 ± 3.7 and 12 SHD for
SynTReN and Sachs respectively. Both cases generally confirm that fixed HPs (sim mean and de-
fault) can work almost as well as the best HPs, and that even the best HPs may not be enough
to reach the best possible performance as some algorithms perform better than others under those
conditions. It is also clear from both cases that HPs play an important role and, in fact, can decide
whether an algorithm reaches or beats SotA. For instance, against SynTReN, both NOTEARS meth-
ods and LiNGAM seem to be good options under the best and fixed HPs. But under the worst HPs,
NOTEARS methods can be extremely inaccurate, making ANM the safest choice in this case. In
the Sachs dataset, this is no longer the case with ANM, showing that the best algorithm pick indeed
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(a) SynTReN dataset. Numbers are averaged across data seeds.
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(b) Sachs dataset

Figure 7: Performances (lower is better) against SynTReN (top) and Sachs (bottom) datasets depending on
the quality of selected HPs (colours). Notice that: a) HP values derived from simulations perform well here
(orange), and b) the quality of HPs and algorithm choice are both important for beating SotA.

strongly depends on DGP properties. All algorithms except ANM can, in fact, beat SotA on Sachs
data. However, when it comes to robustness to HP misspecification and safety of use, NOTEARS
methods appear to be the most risky, with LiNGAM being extraordinarily robust as it beats SotA
even with its worst HPs.

5. Conclusion

In this work, we have successfully shown that HPs play an important role in causal structure learn-
ing. However, the way HPs influence the methods is somewhat different than recent results from the
ML literature. More specifically, Machlanski et al. (2023); Tönshoff et al. (2023) found that many
learners can reach SotA performance levels with the right HPs, reducing the importance of model
selection. But in this study, we observe that algorithms still differ significantly in performance even
with access to the HP oracle. However, reliable tuning is not always available in structure learning,
leading to HP misspecification and prediction errors. This is where HPs become important as we
showed that different learning algorithms vary in robustness to HP misspecification, and that strong
performance under the right HPs does not necessarily translate to misspecification robustness. As
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a consequence, an algorithm that is the best pick under correct HPs, might be a suboptimal choice
when its HPs are misspecified; another algorithm with better misspecification robustness might be
safer to use, especially in those cases where minimising the consequences of potential misspecifi-
cation is a priority. Thus, overall, the best algorithm choice may depend not only on the properties
of the data generating process, but also on the quality of selected HP values. In terms of secondary
findings, default HPs seem to perform surprisingly well in many cases, and hence may constitute a
viable alternative to tuning. Moreover, in the case of sparse graphs, predictions with optimised HPs
seem to include only true edges (no FPs, some FNs), which has critical implications for practice.
Another interesting observation is that relatively large sparse graphs (50 nodes) can be recovered
with high accuracy, subject to large sample size and the right HPs. It is also important to acknowl-
edge the possibility that robustness to misspecified HPs might be impacted by the cardinality of
explored HPs as larger search spaces may increase the probability of poor performances. Our re-
sults show this is indeed possible, but crucially the chances of good performances also slightly rise
in this case. This suggests that higher HP cardinalities can be advantageous and disadvantageous,
which motivates including the worst performances in this analysis. Furthermore, while we agree
that the probability of getting the worst performances is low in practice, it is undeniably greater
than zero and hence worth considering.
Recommendations. As for practical advice, we stress the fact that there are no universal answers
in structure learning; there are many forces at play (DGP properties, algorithms, HPs) that make
the choices highly nuanced. Algorithm selection seems to be the most important for performance,
though HPs should not be neglected (see Table 1 for guidance). Default HPs (from packages or this
paper) should be a reasonable starting point. For further tuning, one can consider prediction sta-
bility across HPs (Liu et al., 2010; Sun et al., 2013; Strobl, 2021), though larger HP search spaces
should be considered with care (risk of poor performances). Focusing on “tunable” HPs (Probst
et al., 2019) may help reduce the search space.
Limitations. This study is naturally limited by our choice of explored algorithms, HPs and sim-
ulation properties. It is worth noting, however, that we do not intend to identify the best possible
learning algorithm or HPs. On the contrary, the objective of this work is to show that the appropri-
ate algorithm choices are nuanced, as also recently shown in the treatment effect estimation domain
(Curth and van der Schaar, 2023), and that HPs should be part of that subtle decision-making pro-
cess, further confirming the importance of HPs reported in the literature (Paine et al., 2020; Zhang
et al., 2021a; Machlanski et al., 2023; Tönshoff et al., 2023). And while more extensive search
spaces are unlikely to negate such conclusions, it is worth pointing out that in our experiments we
explore discrete HP values of continuous search spaces. As for the choice of HPs and values, we
believe our setup accurately reflects common practice.
Future work. As increasing the sample size increases the proportion of good performances across
HPs, a next step would be to examine if HP misspecification vanishes with infinite data. More
challenging “anterial graphs” (Sadeghi, 2016) with cycles and undirected edges could be another
direction. The surprising effectiveness of fixed HPs might be also worth a systematic study, with
an emphasis on transfer between DGPs. Further study into the source of robustness to misspecified
HPs is also in order (HP cardinality or algorithms). Furthermore, making advanced tuning metrics
more accessible could help facilitate better practice. Finally, although some HP tuning metrics are
general enough to perform algorithm selection (e.g. Liu et al. (2010); Biza et al. (2022)), doing so on
real-life datasets is still a challenge. One promising direction could be validation that incorporates
domain knowledge (Grünbaum et al., 2023).
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Daniel Grünbaum, Maike L. Stern, and Elmar W. Lang. Quantitative probing: Validating causal
models with quantitative domain knowledge. Journal of Causal Inference, 11(1), January 2023.
ISSN 2193-3685. doi: 10.1515/jci-2022-0060.

Isabelle Guyon, Alexander Statnikov, and Berna Bakir Batu. Cause effect pairs in machine learning.
Springer, 2019.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. In Advances in Neural Information Processing
Systems, volume 21. Curran Associates, Inc., 2008.

Mingyu Huang and Ke Li. On the hyperparameter landscapes of machine learning algorithms. arXiv
preprint arXiv:2311.14014, 2023.

A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE
Transactions on Neural Networks, 10(3):626–634, 1999. doi: 10.1109/72.761722.

Marcus Kaiser and Maksim Sipos. Unsuitability of NOTEARS for Causal Graph Discovery.
arXiv:2104.05441 [cs, math, stat], April 2021.

Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. Causal Discovery Toolbox: Uncovering
causal relationships in Python. Journal of Machine Learning Research, 21(37):1–5, 2020. ISSN
1533-7928.
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Appendix A. Experimental Details

A.1. Hyperparameters

We attempted to explore the hyperparameters as thoroughly as possible to make our findings general
enough while at the same time managing computational demands that increase with each added
hyperparameter and explored value. In addition, some methods are considerably more demanding
than others, which makes the exploration even more difficult. With these constraints in mind, we
believe our hyperparameter exploration accurately reflects common practice.

Table 2: Hyperparameter search spaces defined per algorithm. Note that hyperparameters are in most cases
continuous, but we explore a discrete space of values.

algorithm hyperparameters and values carda (total)

ANM alpha ∈ {0.001∗, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} 10 (10)

CAM cutoff ∈ {0.001∗, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} 10 (10)
score = nonlinear
selmethod = gamboost
prunmethod = gam

FCI alpha ∈ {0.001∗, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} 10 (10)
test = fisher-z-test

FGES penaltyDiscount ∈ {0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5∗} 8 (8)
score = sem-bic

LiNGAM thresh ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5∗} 10 (20)
max iter ∈ {100∗, 1000} 2

NOTEARS lambda1 ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2∗, 0.3, 0.5} 10 (200)
max iter ∈ {100∗, 1000} 2
w threshold ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2∗, 0.3, 0.5} 10
loss type = l2
h tol = 1e− 8
rho max = 1e+ 16

NOTEARS MLP lambda1 ∈ {0.001, 0.01∗, 0.1} 3 (81)
lambda2 ∈ {0.001, 0.01, 0.1∗} 3
w threshold ∈ {0.1, 0.3, 0.5∗} 3
hidden layers = 1
hidden units ∈ {8, 16∗, 32} 3
max iter = 100
h tol = 1e− 8
rho max = 1e+ 16

PC alpha ∈ {0.001, 0.002∗, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} 10 (10)
indepTest = gaussCItest

∗Found to perform best on average across all simulations (sim mean).
aCardinality of the hyperparameters considered in the experiments.
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A.2. Summary of Algorithms

This study incorporates the following algorithms and hyperparameters.

• PC (Spirtes and Glymour, 1991). Peter and Clark algorithm. Constraint-based approach
that starts with a fully-connected undirected graph and removes edges based on conditional
independence tests. Next, it attempts to orient as many of the remaining edges as possible.
The result is a CPDAG.
Hyperparameters: alpha (significance level for conditional independence tests).

• FCI (Spirtes et al., 1993). Fast Causal Inference. Constraint-based. An important generalisa-
tion of PC to unknown confounding variables.
Hyperparameters: alpha (significance level for conditional independence tests).

• FGES (Ramsey et al., 2017). Fast Greedy Equivalence Search. Optimised and parallelised
version of the original score-based GES algorithm (Chickering, 2002). It starts with an empty
graph and adds an edge that yields maximum score improvement until no significant score
gain is achieved. Then it removes edges in the same greedy manner until a plateau.
Hyperparameters: penaltyDiscount (sparsity penalty).

• LiNGAM (Shimizu et al., 2006). Linear Non-Gaussian Acyclic Model. Assumes linear
SEMs and non-Gaussian noise that enters additively: Xj =

∑
k∈PAG

j
wjkXk + ϵj .

Hyperparameters: max iter (FastICA (Hyvarinen, 1999)), thresh (post-prunning threshold).

• ANM (Hoyer et al., 2008). Additive Noise Model. Assumes nonlinear SEMs and additive
noise: Xj = fj(XPAG

j
) + ϵj .

Hyperparameters: alpha (significance level for the independence test).

• CAM (Bühlmann et al., 2014). Causal Additive Models. Assumes a generalised additive
noise model with additive noise and functions: Xj =

∑
k∈PAG

j
f(Xk) + ϵj .

Hyperparameters: cutoff (variable selection threshold).

• NOTEARS (Zheng et al., 2018). Score-based continuous DAG optimisation with a smooth
acyclicity regularisation term. Assumes linear SEMs with additive noise.
Hyperparameters: lambda1 (sparsity term), max iter (optimisation steps) and w threshold
(post-prunning threshold).

• NOTEARS MLP (Zheng et al., 2020). Nonlinear extension of NOTEARS by incorporating
the Multi-Layer Perceptron (MLP). Assumes nonlinear SEMs with additive noise.
Hyperparameters: lambda1 (sparsity term), lambda2 (regularisation strength), w threshold
(post-prunning threshold), hidden units (number of units in the hidden layer).

Many traditional algorithms, such as PC, FCI and FGES, make the standard set of assumptions
that involve sufficiency, faithfulness and Markov condition. These, however, are often not enough
to identify a unique DAG as a solution, which is a major drawback of these methods (they output
CPDAGs). Making assumptions about distributions and functional forms of the data generating
process seems to be critical to overcome this issue (all methods above except for PC, FCI and FGES
output DAGs).
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Table 3: Summary of incorporated algorithms and their sources. Recommended default hyperparameters have
been derived from respective papers as much as possible. If necessary, they have been further supplemented
with defaults suggested within respective packages.

algorithm default hyperparameters package paper

ANM alpha = 0.05 gCastle (Hoyer et al., 2008)

CAM cutoff = 0.001 cdt (Bühlmann et al., 2014)
score = nonlinear
selmethod = gamboost
prunmethod = gam

FCI alpha = 0.01 tetrad (Spirtes et al., 1993)

FGES penaltyDiscount = 2.0 tetrad (Ramsey et al., 2017)

LiNGAM thresh = 0.3 gCastle (Shimizu et al., 2006)
max iter = 1000

NOTEARS lambda1 = 0.1 gCastle (Zheng et al., 2018)
max iter = 100
w threshold = 0.3
loss type = l2
h tol = 1e− 8
rho max = 1e+ 16

NOTEARS MLP lambda1 = 0.01 gCastle (Zheng et al., 2020)
lambda2 = 0.01
w threshold = 0.3
hidden layers = 1
hidden units = 10
max iter = 100
h tol = 1e− 8
rho max = 1e+ 16

PC alpha = 0.01 pcalg (Spirtes and Glymour, 1991)

A.3. Summary of Packages

Table 4: Summary of incorporated algorithm packages.

package paper link

gCastle (Zhang et al., 2021b) https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle

cdt (Kalainathan et al., 2020) https://fentechsolutions.github.io/CausalDiscoveryToolbox

tetrad (Ramsey et al., 2018) https://cmu-phil.github.io/tetrad/manual/

pcalg (Kalisch et al., 2012) https://cran.r-project.org/package=pcalg
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A.4. Performance Evaluation

We incorporate commonly used evaluation metrics that are provided via Benchpress (Rios et al.,
2021, appendix A.1.). For the convenience of the reader, we briefly describe here those that are
useful for this study.

A.4.1. SHD

Let us define E and E′ as a set of edges of the true and predicted DAG respectively. Then, for
e ∈ E′, true positives (TP) and false positives (FP) are assigned as follows:

TP (e) =


1 if e ∈ E and correctly oriented
0.5 if e ∈ E and incorrectly oriented
0 otherwise

(4)

FP (e) =


1 if e /∈ E

0.5 if e ∈ E and incorrectly oriented
0 otherwise

(5)

where TP and FP are sums of all TP(e) and FP(e) scores respectively. The structural Hamming
distance (SHD) aggregates the number additions, removals and reversals in predicted edges so they
match the true ones (E = E′). It can be defined as:

SHD = |E| − TP + FP (6)

Note the SHD defined as above allows to evaluate mixed graphs, that is, compare DAGs to
CPDAGs. If, for instance, a predicted undirected edge exists in E but is supposed to be directed,
it will result in TP = 0.5 and FP = 0.5, ultimately leading to SHD = 1. This shows that the
need to orient an undirected edge is treated equally as the need to add, remove or reverse an edge so
E = E′. Such evaluation puts algorithms outputting CPDAGs at a disadvantage compared to DAG-
only methods. We justify it on the grounds that the main focus of this study is DAG recovery, hence
any predicted undirected edge is treated as any other mistake. The ability to evaluate mixed graphs
is an important feature for this study as it allows us to compare algorithms outputting CPDAGs and
DAGs.

A.4.2. FALSE POSITIVES AND NEGATIVES

The false positives (FPs) and false negatives (FNs) that we use as standalone performance metrics
differ from those defined as part of SHD above. Crucially, the FP and FN metrics we use are always
computed based on graph skeletons. To achieve this, all directed edges of a predicted or true graph
are converted to undirected ones. This modification makes the comparison between algorithms that
output CPDAGs and DAGs more fair. Once the graphs in question are converted to skeletons, we
can define the metrics as follows.

Let us define E and E′ as a set of undirected edges of the true and predicted graph skeleton
respectively. Then, for e ∈ E and e′ ∈ E′, false positives (FP) and false negatives (FN) are
assigned as follows:
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FP (e′) =

{
1 if e′ /∈ E

0 otherwise
(7)

FN(e) =

{
1 if e /∈ E′

0 otherwise
(8)

where FP and FN are sums of all FP(e’) and FN(e) scores respectively.

A.5. Code and Data

All numerical experiments can be fully replicated using the code and data that are available online
at: https://github.com/misoc-mml/hyperparams-causal-discovery.
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Appendix B. Supplemental Results

The following results complement the ones presented in the main content of the paper. Although
they do not change the overall conclusions of the paper, they offer additional analysis that may
facilitate a deeper understanding of the problem and the final outcomes.

B.1. Best Performances

Figures 8 and 9 focus on performances achieved specifically with the best (oracle) hyperparameters.
These correspond to the best performances presented in Figure 4 (blue bars). Some important
observations: a) algorithms differ in performance even with access to a hyperparameter oracle, b)
number of graph nodes and edge density can significantly impact performance, and c) no algorithm
performs best under all conditions (linear vs. nonlinear).
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Figure 8: Best performances against ER graphs. Error bars are standard errors.
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Figure 9: Best performances against SF graphs. Error bars are standard errors.

B.2. Large Graphs with Large Sample Size

Previous results showed that p = 50 graphs are much more challenging than smaller ones. Figure
10a demonstrates that with enough data samples, even such larger graphs are possible to solve
accurately. As presented in the subfigure (b), increased sample size can also help with robustness.
Note also how the degree of the benefits vary between algorithms.

Figures 11, 12 and 13 further extend the results to performance distributions over all hyperpa-
rameters (SHD, FP, and FN respectively). Notice how larger sample size increases the proportion
of good performances (the lines shift to the left and hit higher proportion numbers for lower metric
values). If the improvement trend remains for even larger sample sizes, one can wonder if the HP
misspecification issue could be solved entirely by larger quantities of data alone.
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Figure 10: Performances for ER1 p = 50 graphs.
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Figure 11: Distribution of SHD performances across all hyperparameters (ER1 p = 50 graphs).

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

data_sem = gumbel | data_n = 200 data_sem = gumbel | data_n = 1000 data_sem = gumbel | data_n = 10000

0 20 40 60 80 102 103

FP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

data_sem = gp | data_n = 200

0 20 40 60 80 102 103

FP

data_sem = gp | data_n = 1000

0 20 40 60 80 102 103

FP

data_sem = gp | data_n = 10000

CAM
FCI
FGES
LINGAM
NOTEARS
NOTEARS_MLP
PC

Figure 12: Distribution of false positives (FPs) across all hyperparameters (ER1 p = 50 graphs).
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Figure 13: Distribution of false negatives (FNs) across all hyperparameters (ER1 p = 50 graphs).

B.3. Performance vs. Hyperparameter Quality

Figures 14, 15 and 16 complement Figure 4 from the main content by showing the results for other
types of DGPs.
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Figure 14: SHD performances depending on the quality of selected hyperparameters (colours), grouped by
DGP properties such as number of nodes (graph p), edge density (graph d) and SEM type (data sem; gumbel
is linear, gp nonlinear).
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Figure 15: FP (false positive) performances depending on the quality of selected hyperparameters (colours),
grouped by DGP properties such as number of nodes (graph p), edge density (graph d) and SEM type
(data sem; gumbel is linear, gp nonlinear).
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Figure 16: FN (false negative) performances depending on the quality of selected hyperparameters (colours),
grouped by DGP properties such as number of nodes (graph p), edge density (graph d) and SEM type
(data sem; gumbel is linear, gp nonlinear).
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B.4. Performance Distribution Across Hyperparameters

Figures 17, 18 and 19 complement Figure 3 from the main content by showing the results for other
types of DGPs.

0 200 400 600 800 1000 1200
SHD

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

data_sem = gumbel

0 200 400 600 800 1000 1200
SHD

data_sem = gp

ANM
CAM
FCI
FGES
LINGAM
NOTEARS
NOTEARS_MLP
PC

(a) data sem

0 200 400 600 800 1000 1200
SHD

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

data_n = 200

0 200 400 600 800 1000 1200
SHD

data_n = 1000

(b) data n

0 200 400 600 800 1000 1200
SHD

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

graph_d = 1

0 200 400 600 800 1000 1200
SHD

graph_d = 4

(c) graph d

0 200 400 600 800 1000 1200
SHD

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

graph_type = er

0 200 400 600 800 1000 1200
SHD

graph_type = sf

(d) graph type

0 200 400 600 800 1000 1200
SHD

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

graph_p = 10

0 200 400 600 800 1000 1200
SHD

graph_p = 20

0 200 400 600 800 1000 1200
SHD

graph_p = 50

(e) graph p

Figure 17: Distributions of SHD performances across all hyperparameters, grouped by SEM types
(data sem), sample size (data n), edge density (graph d), graph type (ER or SF) and number of nodes
(graph p).
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Figure 18: Distributions of false positive (FP) performances across all hyperparameters, grouped by SEM
types (data sem), sample size (data n), edge density (graph d), graph type (ER or SF) and number of nodes
(graph p).
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Figure 19: Distributions of false negative (FN) performances across all hyperparameters, grouped by SEM
types (data sem), sample size (data n), edge density (graph d), graph type (ER or SF) and number of nodes
(graph p).
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B.5. Winning Algorithms vs. Simulation Properties

Figure 20 complements Table 1 from the main content but removes hyperparameters from the pic-
ture in order to analyse how DGP properties alone affect winning odds of the algorithms. The results
presented here involve the use of the best hyperparameter values. From this perspective, it is clear
that no algorithm is the best under all conditions, and that SEM types involved and edge density
have the strongest impact on the winning odds.
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Figure 20: Percentage of wins per algorithm across different DGPs.

B.6. Winning Algorithms vs. Hyperparameter Quality

Figure 21 forms the basis for Table 1 from the main content. It presents winning percentages of
algorithms across different DGP types, from which Table 1 was derived.
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Figure 21: Percentages of winning algorithms under different DGP and hyperparameter conditions.
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Appendix C. A Guide To Algorithm Selection

C.1. General Recommendations

• Current algorithms seem to work reasonably well for sparse graphs of up-to 20 nodes. Bigger
graphs (50 nodes) are also possible to solve, but more data might be required (10, 000 sam-
ples) to achieve good accuracy. The accuracy of recovered structures drops dramatically for
dense graphs.
Recommendation: Stick to sparse graphs with up-to 20 nodes (moderate amount of
data) or up to 50 nodes (a lot of data). Avoid dense graphs.

• No single algorithm is the best option for all problems. Some perform the best under very
specific conditions.
Recommendation: Choose an algorithm that is the most likely to accurately solve the
problem at hand based on assumptions derived from data.

• The best choice of an algorithm may depend not only on graph and data properties, but also
on the availability of quality hyperparameters. This is because algorithms vary in robustness
to misspecified hyperparameters.
Recommendation: When selecting the best algorithm for the problem at hand, take into
account the type of hyperparameters that are available and algorithm’s robustness to
misspecified hyperparameters.

C.2. Hyperparameter Selection Strategies

Optimal hyperparameters are almost never available in structure recovery problems due to inac-
cessible ground truth. Some methods provide scores that can be used to decide whether a set of
hyperparameters is better than others for the same algorithm. However, this strategy cannot be used
to compare different algorithms to each other, as they are likely to use different score metrics (while
some use none at all). In addition, in order to use those scores, an algorithm’s internal code must be
modified in most cases, creating a substantial barrier to practitioners.

Thus, default hyperparameters might be a reasonable selection strategy as they often work al-
most as well as the optimal ones. This is especially the case if the recommended defaults have been
derived from data problems similar in nature to the problem at hand.

If, however, the problem to solve is believed to be fairly unique, blindly using default hyperpa-
rameters without considering other factors might not be safe. In this case, the best course of action
(assuming hyperparameter tuning is not an option) might be to still use default hyperparameters but
choose the algorithm that is the most robust to hyperparameter misspecification under specific graph
and data conditions that are believed to be applicable to the problem at hand.

C.3. How to Select Algorithms

Figure 22 summarises the best algorithm choices based on Figure 21, and which takes into consid-
eration data and graph properties as well as the types of hyperparameters available.

36



ROBUSTNESS OF ALGORITHMS FOR CAUSAL STRUCTURE LEARNING TO HYPERPARAMETER CHOICE

nodes (p)

SEM

10

SEM20

nonlinear

edge density (d)

linear

edge density (d)

50

linear
SEM

linear

edge density (d)

nonlinear

edge density (d)

edge density (d)

nonlinear

edge density (d)

sparse

CAM CAM LiNGAM / FGES

sparse

FGES / FCI FGES / PC FGES

sparse

FGES FGES FGES

sparse

CAM CAM LiNGAM

sparse

FGES FGES FGES

sparse

CAM CAM LiNGAM

dense

CAM CAM CAM

dense

FGES FGES / CAM / ANM FGES / PC / CAM

dense

PC / NOTEARS_MLP PC PC

dense

CAM CAM CAM / LiNGAM

dense

PC / NOTEARS_MLP PC PC

dense

CAM CAM LiNGAM

quality

          best
          sim_mean
          worst

Figure 22: Recommended algorithm choices based on the number of graph nodes, SEM types and edge
density in the graph. The final choice depends also on the type of hyperparameters available – see ‘quality’
colours. In case there is no clear winner, multiple choices are provided in the order of higher winning
percentage.
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