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Abstract

Purpose: Autonomous Mobile Robots (AMRs) play a crucial role in industrial and service fields. How-
ever, the LiDAR-based Simultaneous Localization and Mapping (SLAM) used by AMRs encounters chal-
lenges in dynamic and changing environments.

Design/methodology/approach: This research introduces SLAM-RAMU, a Lifelong SLAM system
that addresses these challenges by providing precise and consistent relocalization and autonomous map
updating. During the mapping process, local odometry is obtained using iterative error state Kalman fil-
tering, while back-end loop detection and global pose graph optimization are utilized for accurate trajectory
correction. Additionally, a fast point cloud segmentation module is incorporated to robustly distinguish
between floor, walls, and roof in the environment. The segmented point clouds are then used to generate a
2.5D grid map, with particular emphasis on floor detection to filter the prior map and eliminate dynamic
artifacts. In the positioning process, an initial pose alignment method is designed, which combines 2D
branch-and-bound search with 3D iterative closest point (ICP) registration. This method ensures high
accuracy even in scenes with similar characteristics. Subsequently, scan-to-map registration is performed
using the segmented point cloud on the prior map. The system also includes a map updating module that
takes into account historical point cloud segmentation results. It selectively incorporates or excludes new
point cloud data to ensure consistent reflection of the real environment in the map.

Findings: The performance of the SLAM-RAMU system was evaluated in real-world environments
and compared against state-of-the-art methods. The results demonstrate that SLAM-RAMU achieves
higher mapping quality and relocalization accuracy, and exhibits robustness against dynamic obstacles and
environmental changes.

Originality/value: Compared to other state-of-the-art methods in simulation and real environments,
SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization
accuracy.

1 Introduction

With the development of Lidar technology (especially the increasing popularity of 3D LiDAR), autonomous
mobile robots (AMRs) based on SLAM have been increasingly used in industrial and service fields, as shown
in the Figure 1. Where, in applications involving complex environments with diverse pedestrian, dynamic
obstacles or constantly changing scene, it is crucial for AMRs to maintain accurate and reliable navigation
during the execution of the task. Thus, the LiDAR-based SLAM navigation of AMR must meet the following
three challenges, i.e. require i) high-precision prior map capable to handle dynamic obstacles and environmental
changes, ii) robust initial alignment operation enabling fast and accurate registration with the prior map, and
iii) reliable relocalization performance ensuring real-time and accurate navigation while automatically updating
the prior map.

However, existing Lidar-based SLAM methods more or less have limitations in AMR applications to adapt
to the complex dynamic environments. Most SLAM methods (Shan & Englot 2018, Shan et al. 2020) are
developed based on LOAM (Zhang & Singh 2014), where the extraction of features leads to the loss of certain
constraint information. Even with the utilization of graph optimization in the back-end, accuracy cannot
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Notes: AMRs with 3D LiDAR SLAM navigation.
Source: Authors’ own work.

Figure 1: AMRs

be guaranteed. (Xu et al. 2022) processes all point clouds, but it lacks loop closure detection and global
optimization. Therefore, in long-term SLAM navigation, it is inevitable to encounter drift. Other than that,
most SLAM methods ignore dynamic obstacles which leads to ghosting in the prior map. At the same time, the
existing dynamic removal methods (Kim & Kim 2020, Lim et al. 2021) simply remove the dynamic obstacles
without distinguishing static point clouds (e.g., walls, pillars, floors). And SOTA relocalization methods
(Koide et al. 2019) based on prior maps ignore changes in the environment, which cannot guarantee repeated
localization accuracy. Furthermore, the lifelong SLAM systems with map updates (Zhao et al. 2021, Einhorn
& Gross 2015, Kim & Kim 2022) suffer from high complexity, multiple map switching, and inability to ensure
positioning continuity.

In this work, we propose a systematic framework to achieve lifelong SLAM based on 3D LiDAR and
IMU, which will not be affected by dynamic obstacles and environmental changes. Our method employs a
decoupled front-end local odometry (Xu et al. 2022) and a back-end optimization that optimizes global poses
through loop closure detection. And we introduce a fast point cloud segmentation algorithm to generate a
weighted 2.5D grid map (Fankhauser & Hutter 2016) only using static floor / wall points. Then, combined
with the optimized poses, a high-precision 3D prior map is generated. Moreover, our lifelong SLAM has
a relocalization sub-system for initial alignment and navigational positioning. Its initial alignment module
combines the segmentation results of the point cloud and utilizes a 2D branch-and-bound approach (Hess et al.
2016) for enhanced efficiency, followed by ICP registration (Besl & McKay 1992) for accuracy. Its navigational
positioning module employs iterative error state Kalman filter for pose prediction and update (Xu et al. 2022).
Simultaneously, the 3D prior map is updated with the 2.5D grid map filtering, which enabling the removal
of dynamic points from the current frame and timely updating of the prior map to adapt to environmental
changes.

We conducted experiments in challenging dynamic environments to demonstrate the performance of the
proposed SLAM framework. The results indicate that our methods outperform the state-of-the-art works
(Shan et al. 2020, Xu et al. 2022, Koide et al. 2019, Lee et al. 2022). The contributions of this work can be
summarized as follows:

• Less is more: Efficient point cloud segmentation method that facilitates the mapping of static environ-
ments, which only including fixed reference information such as floors, walls, and pillars.

• High-precision mapping: Local odometry is coupled with loop closure detection and pose graph opti-
mization for accurate prior map containing floors, walls from the cloud segmentation results.

• Robust global alignment: Combining segmented point clouds with resolution pyramid maps, and em-
ploying branch-and-bound search and ICP registration to achieve robust relocalization with unknown
initial values.

• Reliable relocalization for navigation: Fast relocalization is designed to minimize the impact of dynamic
obstacles while the prior map is automatically updated to reduce interference caused by environmental
changes. This ensures to get real-time lifelong SLAM for accurate and reliable navigation.
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2 Related Works

2.1 LiDAR(-Inertial) SLAM

SLAM is an essential component of a complete robotic system, and with the widespread use of multi-line
LiDAR, various localization methods have been proposed. Zhang & Singh (2014) introduced LOAM, which
extracts line and plane features from point clouds. It utilizes frame-to-frame registration for odometry with
low fidelity and submap-to-map registration for mapping and odometry with high fidelity. Shan & Englot
(2018), Shan et al. (2020) presented LeGO-LOAM and LIO-SAM. LeGO-LOAM builds upon LOAM by incor-
porating a ground segmentation module to reduce computation and includes loop closure detection to mitigate
long-term errors. LIO-SAM incorporates IMU measurements, uses preintegration for initial registration val-
ues, and employs direct frame-to-submap registration along with ISAM2 (Kaess et al. 2012) for system-wide
optimization.

Jiang et al. (2023) proposed a method which tightly couples point cloud features with ground constraints
and gravity constraintss for graph optimization in the back-end. Xu & Zhang (2021), Xu et al. (2022) pre-
sented FAST-LIO and its improved version, FAST-LIO2. These methods utilize IMU measurements for pose
prediction, apply data compensation to the point cloud, and employ iterative error-based Kalman filtering
based on the assumption of a strong Markov property.

In the works (Shan & Englot 2018, Shan et al. 2020), feature segmentation is applied to the point cloud
during mapping, which leads to the loss of certain point cloud constraints and introduces significant errors in the
z-axis. Additionally, the complexity of the structure makes it challenging to ensure real-time performance. On
the other hand, (Xu et al. 2022) utilizes all the point cloud data for calculations, ensuring odometry accuracy
through Kalman filtering and real-time performance. However, it does not include global optimization, which
can result in significant errors in large-scale mapping scenarios.

The proposed SLAM module in this paper combines the strengths of both methods (Xu et al. 2022, Shan
et al. 2020). The front-end local odometry is developed based on the method (Xu et al. 2022), ensuring accuracy
and real-time performance. The back-end incorporates loop closure detection and pose graph optimization,
resulting in higher localization and mapping accuracy compared to other methods.

2.2 Initial Aligning

The traditional methods for initial alignment in laser-based systems can be categorized into two types. The first
category is the branch-and-bound approach proposed by Hess et al. (2016). They developed a multi-resolution
map and calculated scores of overlapping pixels at regular intervals. By iteratively searching for the optimal
solution using depth-first search, they achieved initial alignment. Koide et al. (2019) extended this approach
to 3D by projecting point clouds within a specific height range onto a xy-plane and using branch-and-bound
to search for the optimal solution.

The second category is feature descriptor-based registration methods. For instance, Rusu et al. (2009)
introduced the FPFH descriptor, which encodes the spatial geometric relationships between a point and its
neighboring points. In (Koide et al. 2019), they constructed a KD-tree of FPFH descriptors and performed
nearest neighbor searches to find the most similar results.

The method proposed by (Hess et al. 2016) ensures real-time performance but sacrifices 3D information,
making it susceptible to misalignment in repetitive scenes. The Rusu et al. (2009) method performs well when
the scene has distinct features, but it struggles to handle sparse feature scenarios, leading to ambiguous results.
Additionally, the computation of descriptors in this system is time-consuming, resulting in low efficiency.
Our method combines 2D and 3D methods, ensuring both robustness and computational efficiency in initial
alignment.

2.3 Lifelong SLAM

In indoor applications, the environment undergoes changes over time, necessitating the real-time updating of
the prior map, known as Lifelong SLAM. Zhao et al. (2021) proposed a fundamental and general framework for
this purpose. Their approach collects dynamic information during positioning, detects differences between the
old map and the real-time updated map, and prunes the old map based on this information. Einhorn & Gross
(2015) presented a sensor-independent graph-based SLAM system. They performed probabilistic updates on
the occupancy map using a normal distribution and optimized each node in the pose graph, which stored
information about the current submap. By trimming the pose graph vertices, they avoided data inflation
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Figure 2: Overview of the system

resulting from lifelong operations. Kim & Kim (2022) introduced LT-mapper, which addressed the lifelong
problem by decoupling it into different periods. They performed independent alignment, dynamic cleanup,
and generated a new map while pruning the original map.

However, the aforementioned methods maintain multiple sets of maps simultaneously, which may compro-
mise real-time performance. The map updates involve switching and trimming processes between maps, which
can introduce inconsistencies. Therefore, in our approach, we propose a continuous map updating system that
achieves dynamic updates within a single point cloud map. This ensures consistency and real-time performance
in localization.

3 Lifelong SLAM System Overview

The SLAM-RAMU system (Figure 2), designed in this paper, consists of two main components: initial mapping
with global optimization and relocalization with map updates.

The initial mapping system is divided into three parts. The local odometry module obtains continuous
pose estimates using iterative error state Kalman filtering. The loop detection and global optimization module
updates the historical pose information by detecting loop closures and optimizing the global pose graph. The
cloud segmentation and mapping module process the point clouds, segmenting them based on smoothness to
generate a 2.5D grid map. It also produces a 3D point cloud map that has been segmented and filtered, with
specific attention given to floor detection for removing dynamic artifacts.

The relocalization system first performs initial alignment based on the segmented point cloud, obtaining
an initial pose estimate. Then, it performs scan-map registration using the segmented point cloud on the prior
map to achieve real-time pose estimation. Simultaneously, based on the segmented point cloud and grid map,
the original point cloud map is updated to reflect the real environment by selectively adding or subtracting
new point cloud information.

Overall, the SLAM-RAMU system combines initial mapping and relocalization, providing a comprehensive
and efficient solution to the lifelong SLAM problem in an indoor AMR environment.

4 Initial Mapping with Global Optimization

4.1 LiDAR-inertial Odometry

The local odometry module is adapted from (Xu et al. 2022). The LiDAR coordinate system is denoted as
(·)L, the IMU coordinate system is denoted as (·)I , and the first frame’s IMU position in the mapping process
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is selected as the global map coordinate system denoted as (·)G. The extrinsic calibration between LiDAR
and IMU is determined to be fixed as TI

L = (RI
L,p

I
L) through a calibration method (Zhu et al. 2022). T̂

represents the predicted pose from the Kalman filter, and T̄ represents the updated pose. The raw point
cloud information obtained at time tk for the kth frame is denoted as PL

k . The IMU pose at this time can be
represented as TG

I,k = (RG
I,k,p

G
I,k), and the LiDAR pose can be represented as TG

L,k. The relationship can be
expressed as:

TG
L,k = TG

I,kT
I
L (1)

Neglecting the zero drift and system noise of the IMU system, the kinematic model of the IMU system at
any arbitrary moment in continuous time can be described as:

ṘG
I = RG

I ω
∧, ṗGI = vGI , v̇GI = RG

I a + gG, ġG = 0 (2)

where RG
I and pGI represent the orientation and position information of the IMU in the global coordinate

system, gG is the gravity vector in the global coordinate system, ω and a are the measured values of the IMU
in ideal conditions.

4.1.1 Cloud Deskew

The point in PL
k obtained at time tk is actually collected between tk−1 and tk. When the system is in motion,

points collected at different moments correspond to different robot poses. Assuming that there is a point pLi in
PL
k collected at time ti, where ti is a moment between tk−1 and tk, and the LiDAR pose at time ti is described

by TG
L,i, combining TG

L,k−1 and the IMU kinematic model, we can use the propagation equation in (Xu et al.

2022) for the pose prediction, obtaining the predicted poses T̂G
L,i for each point and the predicted pose T̂G

L,k

at the end of the frame. Applying the following equation:

p̂Li = T̂G
L,i(T̂

G
L,k)

−1pLi (3)

where p̂Li is the projection of pLi onto the cloud at time tk. All the projected points p̂Li within the interval

between tk−1 and tk are accumulated to generate the de-skewed cloud P̂L
k for the kth frame. P̂L

k is transformed

to (·)I by P̂I
k = TI

LP̂L
k . And then the local map Lodom is generated with P̂I

0 directly.

4.1.2 Point-Plane Residual

For each point p̂Ii in P̂I
k , the nearest neighboring plane satisfying certain conditions is identified within Lodom.

The measurement model is as follows:
0 = (uGi )

T(T̄G
I,kp̂

I
i − qGi ) (4)

where uGi is the normal vector of the nearest neighboring plane, and qGi is a point on that plane. By combining
the measurement model, an optimization equation is established in (Xu et al. 2022). Then the Kalman filter
updates T̂G

I,k to T̄G
I,k. The point cloud P̄G

k in (·)G is obtained as follows:

P̄G
k = T̄G

I,kP̂I
k (5)

4.2 Loop Detection and Pose Optimization

4.2.1 keyframe Selection

The schematic diagram of pose graph optimization is shown in Figure 3. The set of T̄G
I,k is denoted as T̄k, where

T̄k = [T̄G
I,0, . . . , T̄

G
I,k]. There also exists a set of keyframes T̄j such that T̄j ⊂ T̄k, and T̄j = [T̄G

I,0, . . . , T̄
G
I,j ]. The

selection of keyframes is determined using the following equation, where f(·) indicates a judgment based on
the Euclidean distance and angular difference between poses:

T̄G
I,j ← f(T̄G

I,k, T̄
G
I,j−1) (6)

When T̄G
I,k satisfies the judgment with T̄G

I,j−1, T̄
G
I,k is added to T̄j and denoted as T̄G

I,j . Similarly, T̄G
I,j

represents the pose of the robot at time tj . The pose transformation T̄j−1
j between T̄G

I,j−1 and T̄G
I,j forms the

odometry factor between global pose graph nodes, providing local constraints.
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Figure 3: Schematic diagram of data transmission

4.2.2 Loop Detection

The loop detection module uses a radius-based search method. Taking into account the time-related con-
straints, in a certain radius range of T̄G

I,j witn T̄j , the nearest pose is identified using the kd-tree. Assuming

that there exists a pose T̄G
I,J at j = J that satisfies the time and radius condition, the point clouds corre-

sponding to the frames around T̄G
I,J in T̄j , denoted as {P̄G

J−m. . . , P̄G
J . . . , P̄G

J+m}, are used to generate a submap

LJ
loop. And then conduct ICP registration between P̄G

j of T̄G
I,j and Lloop to obtain the transformation T̃J

j and
judge validity of the loop by registration score.

4.2.3 PGO

If the loop is valid, the loop closure factor between the corresponding nodes is added using T̃J
j , and the global

pose graph optimization is performed using the iSAM2 (Kaess et al. 2012) to obtain the updated set T̃j , where
the pose representation is T̃G

I,j . Finally, the kd-tree is reconstructed using T̃j and the loop detection operation
is repeated.

4.2.4 Poses Update

The following equation is used to update T̄k using T̃j , where T̃G
I,k represents the updated frame pose, forming

the set T̃k.
T̃G

I,k = T̄G
I,k(T̄

G
I,j)

−1T̃G
I,j (7)

4.3 Cloud Segmentation and Mapping

While optimizing the poses, the proposed method also segments the point cloud and then removes dynamic
objects from the map. The de-skewed cloud point P̂L

k of time tk consist of Nk points, which can be known as

a set P̂L
k = {pL1 , . . . , pLNk

} with 3D points pLi = (xi yi zi ringi timei)
T.

4.3.1 Cloud Segmentation

In (Himmelsbach et al. 2010), all points are projected and binned on to the xy-plane. The minimum z value
of all points in the bin is used to represent the bin. Our segmentation algorithm refers to their method, and
combined with the point’s own parameters to optimize the algorithm. Similar to (Himmelsbach et al. 2010),
the parameter ∆α is set as the angle covered by each sector. Therefore, we obtain Msector = 2π

∆α sectors.
The index of the sector corresponding to pLi is denoted as sector(pLi ) and can be calculated by the following
equation:

sector(pLi ) =
arctan(yi, xi)

∆α
(8)

If the timei parameter of pLi is stable and reliable, then sector(pLi ) can be calculated by the follow-
ing equation to improve the efficiency of the algorithm. Where, the value range of timei is represented as
[timemin, timemax].

sector(pLi ) =
timei − timemin

timemax − timemin
Msector (9)
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(a) (b) (c)

Notes: (a) represents part of the point cloud in a scan. Select some sectors of point cloud to be colored as
a rainbow color from -0.5m to 2.5m on the z-axis. (b) The colored points are extracted in the LiDAR view
to show the relationship between points and rooms. The points between the vertical dotted lines are points
with sector(pLi ) = s, and loop(pLi ) = l between the horizontal dotted lines. The intersection forms the room
rs,l which is displayed as rectangles in (b). (c) Project the rooms with sector(r) = s onto a rr-rh coordinate
system. The circles represent each room, and the solid line represents the slope between the rooms. The
color correspondences are the floor(green), the wall(red), the roof(brown), and the grey ones do not meet the
conditions which will be abandoned.
Source: Authors’ own work.

Figure 4: Schematic diagram of pointcloud segmentation

Different from (Himmelsbach et al. 2010), inspired by (Zhang & Singh 2014), we explore 2D projection
to 2.5D with a relation between rings. pLi has a reliable parameter ringi, representing the order relationship
between the point cloud beams. The point cloud has a total of τmax rings, and we set the parameter ∆τ as
the number of rings covered by each loop. Thus, we obtain Mloop = τmax

∆τ loops, and the index of the loop
corresponding to pLi is denoted as loop(pLi ), which can be calculated using the following equation:

loop(pLi ) =
ringi
∆τ

(10)

Each pLi has its indexes of sector and loop, we denote the set Rs,l as points with same indexes:

Rs,l = {pLi ∈ P̂L
k |sector(pLi ) = s, loop(pLi ) = l} (11)

Assuming there are rsize points in Rs,l, it can be represented as Rs,l = {ps,l1 , . . . , ps,lrsize} with 3D points

ps,li = (xi yi zi ringi timei)
T. We adjust the format of ps,li to (hi ri)

T using the following equations:

hi =
√

xi
2 + yi2, ri = zi (12)

Set Rs,l corresponds to a room rs,l, in which there are multiple parameters. Among them, the height is
represented as rh, the distance is represented as rr, and the height covariance is represented as rhcov. The
above parameters are calculated according to the following equation:

rh =

rsize∑
hi

rsize
, rr =

rsize∑
ri

rsize
, rhcov =

rsize∑
(rh − hi)

2

rsize
(13)

To avoid the limitation of the minimum value, the information of rs,l is determined by the average value of
all points in Rs,l. At the same time, the minimum and maximum loop values for each sector are recorded as
lbeg and lend. Then, the rooms in each sector are sequentially calculated and evaluated, as shown in Algorithm
1.

The segmentation method first checks the values of lbeg and lend to skip sectors where data collection has
failed. Starting from lbeg, as shown in Figure 4, for each room rs,l and the previous room rs,l−1, the method

calculates the height difference rs,l∆h and distance difference rs,l∆r, and uses them to calculate the slope rs,ls and

the slope difference rs,l∆s between the rooms, representing the smoothness between the loops.
Threshold check is then applied to the calculated values. For the floor and roof, assuming that the robot

runs in an environment without steep slopes, it first checks whether rs,lh satisfies within a specific range. It
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Algorithm 1: Cloud Segmentation Method

Input: rs,l, rs,l−1, floor slope threshold σs
F and so on σ∆s

F , σhcov
F , σs

R, σ
∆s
R , σs

W, σ∆s
W , possible floor

height interval IF and so on IR
Output: Segmented cloud F ,R,W

1 if lbeg > lend then
2 Skip this sector;
3 end
4 for l← lbeg to lend do

5 rs,l∆h ← rs,lh − rs,l−1
h ; rs,l∆r ← rs,lr − rs,l−1

r ;

6 rs,ls ← rs,l∆h ÷ rs,l∆r; rs,l∆s ← rs,ls − rs,l−1
s ;

7 if rs,lh ∈ IF and rs,ls < σs
F and rs,l∆s < σ∆s

F and rs,lhcov < σhcov
F then

8 Push back relevant points to floor cloud F ;
9 else if rs,lh ∈ IR and rs,ls < σs

R and rs,l∆s < σ∆s
R then

10 Push back relevant points to roof cloud R;
11 else if rs,ls > σs

W and (rs,ls )−1 − (rs,l−1
s )−1 < σ∆s

W then
12 Push back relevant points to wall cloud W;
13 else
14 Skip this room;
15 end

16 end

then ensures that rs,ls is below a certain threshold relative to the robot’s current pose. Finally, it evaluates rs,l∆s

to judge the smoothness between rooms. In the case of the floor, to ensure robustness, rs,lhcov is also considered.
For wall points, after taking the inverse transformation, the method only checks the absolute slope and relative
slope difference for classification.

4.3.2 Poses correspond

After segmentation, removing the roof points and unclassified points, we select the floor point cloud F̂L
k and

the wall point cloud ŴL
k . These point clouds are then associated with poses in T̃k using the following equation.

Obtain F̃G
k and W̃G

k in (·)G.
(F̃G

k , W̃G
k ) = T̃G

I,kT
I
L(F̂L

k , ŴL
k ) (14)

4.3.3 Projection & Update

A 2.5D grid map M with a resolution of rM is constructed in (·)G, utilizing (Fankhauser & Hutter 2016) with
the multi-dimensional and easily addressable properties As shown in Figure 5, grid(x,y) represents a grid with
a center point located at (x, y) and a diameter of rM . The points in F̃G

k and W̃G
k are projected onto M .

Assuming that grid(x,y) contains n floor points pF and m wall points pW, θF and θW represent the weights
of the floor and wall, respectively. The information contained in grid(x,y) is computed using the following
equation:

grid
(x,y)
judge =

m∑
θW −

n∑
θF, grid

(x,y)
height = min(pF.z) (15)

where gridjudge represents the floor judgment information, determining whether the corresponding grid is
classified as floor or wall, and gridheight represents the lowest height of the grid.

4.3.4 Map Filter

Finally, the map filtering process is performed. Inspired by (Lim et al. 2021), all points in F̃G
k and W̃G

k are
accumulated to obtain the original 3D point cloud map Graw. For each point praw in Graw, if its corresponding
grid

(x,y)
judge in M satisfies a threshold condition (⩽0), it is classified as floor, and indicating that only floor

points should exist on the floor. Based on this, filtering is performed in combination with grid
(x,y)
height, with rG
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(a) (b) (c) 

Notes: (a) represents the segmented point clouds F̃G
k

(green) and W̃G
k (red) from a 3D perspective. The

varying shades of the floor indicate the magnitude of

grid
(x,y)
judge. (b) shows a 2D view, and a localized zoom-

in of the yellow box is depicted in (c). This particular
grid contains n floor points pF and m wall points pW.
Source: Authors’ own work.

Figure 5: Schematic diagram of gridmap

representing the point cloud map resolution, as shown in the following equation:

Gbuild = {praw|
praw ∈ Graw, grid(x,y)judge ⩽ 0,

grid
(x,y)
height − praw.z < rG

} (16)

The dynamic points on the floor have been filtered out, resulting in a new 3D map Gbuild that contains
only floor and wall information, excluding dynamic obstacles.

5 Relocalization and Autonomous Map Updating

5.1 Relocalization for Initial Aligning

When a robot is turned on and its initial pose in the prior map is unknown, this requires a first global
relocalization process to achieve initial aligning. We propose an efficient and robust initial aligning method.
The method takes the initial segmented clouds F̂L

Init and ŴL
Init obtained from the segmentation method

described earlier as input, as well as the 2.5D grid map M and 3D point cloud map Gbuild generated by the
mapping system.

5.1.1 Pyramid Grid Map

Firstly, referring to (Hess et al. 2016), a multi-resolution pyramid map M level, {level = 0, 1, 2, 3} is created.
M0 is obtained directly from M as follows:

M0
(x,y) =


−1, M.grid

(x,y)
judge ⩽ 0

1, M.grid
(x,y)
judge > 0

0, others

(17)

where (x, y) represents the pose of each grid center relative to the origin. M.grid
(x,y)
judge represents the floor

judgment at the corresponding (x, y) position in M . The other layers of the pyramid map are calculated using
the following equation:

M level
(x/2,y/2) =

∑
M level−1

(x,y) (18)

Finally, for the remaining layers, the following equations are performed to differentiate between floor and
wall:

M level
(x,y) =


−1, M level

(x,y) ⩽ 0

1, M level
(x,y) > 0

0, others

(19)

This generates a multi-resolution pyramid map with segmentation information, as shown in Figure 6. The
original gridjudge is used to judge the M0 layer, and then an iterative strategy is employed using M0 to
generate subsequent layers. This strategy avoids the problem of losing features in low resolution maps that
would occur if each layer used the gridjudge information.
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Notes: The actual display of each layer of the pyra-
mid M . The upper corner zooms in on the coarsest
resolution, and M3, M2, M1, M0 reflect the features
from coarse to fine.
Source: Authors’ own work.

Figure 6: Resolution pyramid

Algorithm 2: Initial Aligning Method

Input: F̂L
k , ŴL

k ,M,Gbuild, score tolerance σscore

Output: TG
L,Init

1 Build pyramid map M level based on M ;

2 Set pyramid vector set V level
F and V level

W based on F̂L
k and ŴL

k ;

3 Set initial possible 2D pose set S2D;
4 repeat
5 Get best s̃2D of S2D using BBS ;

6 Switch s̃2Dpose to s3Dpose with gridheight;

7 Get s̃3Dpose using ICP with initial transform s3Dpose;

8 Calc 3D registration score s̃3Dscore and push s̃3D to S3D;

9 Block S2D based on s2D;

10 until s3Dscore > σscore or max iteration;

11 Pick pose with best score in S3D as TG
L,Init;

Finally, M level is divided into three parts: floor grids (-1), wall grids (1), and unknown grids (0). Then,
an initial set of possible positions S2D is established, where each element s2D contains score, level, and pose
information. s2Dpose represents the 2D position information of the element, which is selected on the coarsest
resolution map M3 in the translation dimension. Since the robot is only expected to exist above the floor, only
positions where M level

(x,y) is floor grid are selected to reduce the number of elements in the set. In the rotation

dimension, samples are taken at fixed intervals within 360 degrees. s2Dscore represents the score corresponding
to that position, and s2Dlevel represents the level corresponding to that position. F̂L

Init and ŴL
Init are also

constructed into multi-resolution sets by voxel downsampling, resulting in V level
F and V level

W . Next, for each
element s2D in S2D, obtain the translated and rotated 2D points V̄ level

F and V̄ level
W by the following equation:

(V̄ level
F , V̄ level

W ) = s2Dpose(V level
F ,V level

W ) (20)

For all KF points with pose of (x, y) in V̄ level
F , assuming that the number of points satisfying M level

(x,y) as floor

gird is NF, we can similarly obtain the parameters KW and NW for V̄ level
W . Therefore, s2Dscore is calculated as

follows:

s2Dscore = (

NF∑
θ+F −

KF−NF∑
θ− +

NW∑
θ+W −

KW−NW∑
θ−)2s

2D
level (21)

where θ+F represents the positive weight for floor points, θ+W represents the positive weight for wall points,
and θ− represents the negative weight. Additionally, considering that the density of 2D points cross different
levels, a level score gain of 2s

2D
level is added to ensure that the scores remain comparable.
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5.1.2 B&B Search

The overall method is shown as Algorithm 2. In (Hess et al. 2016), a comprehensive description of the branch
and bound search (BBS) method with depth-first search is provided. In this paper, based on that, considering
the low robustness of 2D registration, an improvement is made. After obtaining the optimal result s̃2D from
the BBS, a 3D pose s3Dpose is obtained by combining it with the corresponding gridheight in M .

5.1.3 ICP Registration

F̂L
Init and ŴL

Init are combined into ĈLInit. ICP registration is then performed between ĈLInit and Gbuild with the
initial transformation s3Dpose to obtain the solution s̃3Dpose and calculate the corresponding score s̃3Dscore. If the ICP

is converged, we can obtain s̃3Dpose and then calculate the corresponding score s̃3Dscore. Using s̃3Dpose, ĈGInit in (·)G
is obtained. ĈGInit contains Nall points. The nearest neighbor distances ri within Gbuild of each point in ĈGInit
are calculated. Here, i represents the index of the point, and ri less than the map resolution is considered as
an inlier. There are Nin inliers. The final score is expressed as follows:

s̃3Dscore =
Nin

Nall
÷

Nin∑
ri

Nin
(22)

where the former equation can be viewed as the inlier ratio parameter, which is the ratio of the number of
inliers to the total number of input points in the point cloud. The latter can be viewed as the registration
error parameter, which is the mean distance between all inliers and their nearest neighbors. A higher score
indicates a more accurate registration.

The result s̃3D is stored in the set S3D, and a region constraint is applied to S2D to prevent the BBS
from outputting duplicate solutions. This iteration process continues until the convergence condition is met
or the maximum number of iterations is reached. Finally, the pose corresponding to the element S3D with the
highest score in is output as TG

L,Init.

5.2 Relocalization for Navigation

The initial aligning result TG
L,Init is transformed to TG

I,Init in (·)I , which serves as the initial pose for the

relocalization system, denoted as T̄G
I,0. Same as the previous odometry section, for the kth frame, we can get

T̂G
I,k and P̂I

k . However, in navigation secton, P̂I
k does not directly execute point-to-plane registration. Instead,

it follows a consistency strategy between mapping and relocalization. The segmentation method is used to
obtain F̂L

k and ŴL
k from the proposed cloud segmentation method and form ĈIk using the following equation:

ĈIk = {p|p ∈ F̂L
k ,p ∈ ŴL

k } (23)

Compared to P̂I
k , ĈIk reduces the number of point cloud points and removes most irregular points, improving

the success rate of finding nearest neighbor surfaces. And then, ĈIk undergoes point-to-plane registration and
residual calculation within Gbuild, followed by Kalman filtering to obtain the updated pose T̄G

I,k.
In registration process, we can create knn(·) which outputs number of nearest neighbor points within Gbuild

and kmin which means minimum number of points forming a plane. And we can split ĈIk into two parts using
the following equations:

CP = {p|p ∈ ĈIk , knn(p) ⩾ kmin},
CNP = {p|p ∈ ĈIk , knn(p) < kmin}

(24)

Only CP can go to residual calculation process and effect the final pose. At the same time, the points
corresponding to dynamic objects in navigation process will be classified as CNP due to the fact that only
stationary wall and floor points are retained in Gbuild. Therefore, proposed method eliminates the influence
of dynamic objects on positioning during the navigation process, ensuring the stability of the relocalization
system.

5.3 Autonomous Map Updating

When the environment undergoes changes, such as a group of shelves or tables being moved or shifted, the
relocalization system’s accuracy is inevitably influenced if it relies on the original map Gbuild for registration.
To address this issue, we propose an autonomous map updating module.
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localization accuracy. In (a), we also selected several poses as A to E arrows for initial aligning. The starting
point of the arrow indicates the position, and the direction indicates the angle.
Source: Authors’ own work.

Figure 7: Description of the dataset

In a dynamic environment, ĈIk is divided into four categories:

• Original static wall point cloud CS, such as load-bearing walls.

• Newly added static wall point cloud C+S, such as newly installed shelves or tables.

• Dynamic obstacle point cloud CD, such as moving individuals.

• Floor point cloud CF.

The task of the entire update module is to partition these four categories of point clouds. The segmentation
module is responsible for the differentiation of CF and the other three categories. According to the previous
navigation section, we can distinguish CS using the following equation:

CP = CS, CNP = C+S ∪ CD (25)

Subsequently, for the differentiation of C+S and CD, the 2.5D grid map method is used again. C+S, CD, and
floor points CF are transformed into (·)G using T̄G

I,k, and then execute Projection & Update method. Points

in C+S and CD will be classified by floor judgment of their corresponding grids in M . If a point is only a
dynamic obstacle, it will not have an impact on the final floor judgment. The corresponding grid will still

satisfy grid
(x,y)
judge ⩽ 0. On the other hand, for newly added static points, the corresponding grid will gradually

accumulate, and eventually grid
(x,y)
judge > 0, indicating a wall grid. At the same time, the floor distribution in

M is also updated based on CF.
As described above, the distinction between C+S and CD is completed, CD is removed, and C+S is added to

Gbuild, completing the update of the prior map. This update process is a progressive process used to distinguish
long-term stationary objects from short-term stationary objects. Additionally, at a certain frequency, Map
Filter is performed. It takes Gbuild as input, combines it with the grid map M , and completes the removal and
update of the prior map. Together, these two processes constitute the automatic map update module of the
system.

6 Experiments

The experiment was tested in both real and simulation environments. The real environment as shown in
Figure 7 contained a wide range of walls and long corridors with dynamic objects. The real experiment
platform consisted of a Robosense RS-LiDAR-16 LiDAR, an Xsens MTi 30 series IMU, and an Agilex Scout-
mini UGV. The simulation environment was set up as a garbage dump scenario in which the placement of trash
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Notes: Segmentation results of proposed method and
SOTA methods.In (a)(b), green is the segmented floor,
gray is the unsegmented point cloud, in (c)(d) the
green is the floor, the red is the wall, and the brown
is the roof. The comparison on the right shows the
misclassification of methods.
Source: Authors’ own work.

Figure 8: Comparison of segmentation

cans, etc., changes. The simulated robot also contained a 16-line LIDAR and an IMU. The computing platform
used for experiments was Nvidia AGX Xavier or a personal computer with an AMD R7-4800H processor.

We collected several datasets using the above sensors for our experiments. Four datasets were collected as
follows, details of which were presented in later sections:

• Office Global Dataset : The real robot passed through most areas of the office and returned to the origin.
The dataset is used for building the map.

• Office Repeat Dataset : In dynamic environment, the real robot passed the same place several times
through different paths in order to test the repeated localization accuracy of the proposed method.

• Garbage Dump A Dataset : The simulated robot moved in Garbage Dump A and created a prior map
for relocalization.

• Garbage Dump B Dataset : Change the position of most of the items in Garbage Dump A to create
Garbage Dump B. The simulated robot moved through B, recording the trajectory and comparing it
with the simulated odometey as the ground truth(GT).

6.1 Cloud Segmentation

The referenced method (Himmelsbach et al. 2010) and the state-of-the-art (SOTA) method patchwork++
(Lee et al. 2022) were chosen for comparison.In terms of real-time performance, we tested methods on the
personal computer. The results are shown in Figure 8, where (a) (Himmelsbach et al. 2010) took 36.284
ms, (b) patchwork++ (Lee et al. 2022) took 2.232 ms, (c) the proposed method took 2.268 ms, and (d) the
proposed method utilizing the time parameter took 1.559 ms. Moreover, the proposed method simultaneously
segments multiple classes of points, such as floor,wall and roof.

As can be seen from Figure 8, there is a significant occurrence of misclassifying non-floor points as floor
points in methods (a) and (b). This misclassification phenomenon is particularly prominent at the junction
between the floor and walls. However, in the proposed method, thanks to the multi-dimensional criteria for
floor points, there is no misclassification in floor segmentation, demonstrating higher robustness.

6.2 Mapping Quality

We used Office Global Dataset for mapping quality testing and compared the proposed method with SOTA
methods FAST-LIO2 (Xu et al. 2022) and LIO-SAM (Shan et al. 2020).

6.2.1 Trajectory

The aerial view and elevation of trajectories are shown in Figure 9. In the solid box of Figure 9, due to the
lack of global optimization, the trajectory of FAST-LIO2 cannot be closed. In the dashed box of Figure 9, the
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Figure 9: Aerial view and elevation
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Figure 10: Comparison of floor error

robot made a sharp turn, causing LIO-SAM to drift. As a comparison, from the aerial view, the trajectory
obtained by the proposed method is closed and with no drift throughout.

In addition to the problem of drift, LIO-SAM also suffered from a large ground height estimation error,
due to the feature based odometry loses several constraints. From elevation of Figure 9, the maximum height
difference of LIO-SAM reached 2.35 metres, and in contrast, only 1.24 meters for the proposed method is,
which is approximately half of LIO-SAM. In order to visualize the floor error, we used the Probabilistic Map
Filter algorithm (Zhang et al. 2003), and extracted the floor of the map built by LIO-SAM and proposed
method, as shown in Figure 10. Obviously, the proposed method has a more uniform change in height and a
smaller difference.

Based on the trajectories of the respective methods, we can obtain the corresponding maps through point
cloud accumulation, as shown in Figure 11. Due to the lack of global optimization, map built by FAST-LIO2
had huge errors that did not reflect the real environment. LIO-SAM broadly reflected the real environment,
but there were still problems in details due to the drift in the trajectory. This was reflected in the map by the
presence of blunt edges and multiple walls, as shown in the right box of Figure 11. On the other hand, the
proposed method benefited from reliable loop closure detection and efficient pose graph optimization, resulting
in sharp edges and a true reflection of the real environment.

6.2.2 Dynamic Removal

Additionally, with the integration of the dynamic removal method, the proposed method successfully removed
a significant portion of dynamic objects, as shown in Figure 12. In comparison to (a), with the same resolution
of 0.2 m, (b) exhibited a reduction of approximately 70% in the number of point clouds, thus saving storage
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Figure 11: Comparison of built map
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LIO-SAM, (b) is proposed method.
Source: Authors’ own work.

Figure 12: Schematic diagram of dynamic filter

space.

6.3 Initial Aligning

To demonstrate the performance of the proposed initial aligning method, six locations within the map were
selected as test benchmarks, as shown in Figure 7.

The proposed method was compared with two other methods: the BBS (Hess et al. 2016), which is modified
to suit for 3D point clouds, and the FPFH method (Rusu et al. 2009) based on descriptors. The experimental
results are shown in Table 1. The BBS successfully completed the relocalization task in most cases, but
failed in locations C and E. This is because these two locations have similar long corridors with other similar
scenes in the map, as seen in Figure 7. Reliance solely on 2D alignment can easily result in misalignment.
In contrast, the proposed method combined 2D and 3D information, enhancing robustness. In terms of the
computation time, thanks to the robust floor detection of the proposed method, the initial BBS priority queue
is constrained, significantly improving convergence speed. The proposed method achieved a time consumption
of only 10% compared to the original BBS method. The FPFH method failed in all locations due to the high
repetition of the environment.
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Table 1: Align Compare (unit: second)

A B C D E F

BBS 8.351 2.894 fail 2.199 fail 2.767
FPFH fail fail fail fail fail fail

proposed 0.480 0.172 0.274 0.149 0.202 0.297

Source: Authors’ own work.

Garbage Dump A Garbage Dump B

(a) (b)

Notes: Schematic diagram of the simulation scenario
where the green points constitute the robot motion
trajectory.
Source: Authors’ own work.

Figure 13: Simulation scenario
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Figure 14: Comparison of trajectories

6.4 Relocalization Accuracy

6.4.1 Simulation Environment

We created two simulated garbage dump environments, as illustrated in Figure 13, to evaluate the accuracy of
relocalization. Initially, we utilized the Garbage Dump A Dataset to construct a prior map within the Garbage
Dump A environment, employing the mapping method outlined previously (Figure 15(a)). Subsequently,
we transitioned to a different environment, referred to as the Garbage Dump B Dataset to compare various
relocalization methods. Specifically, we selected FAST-LIO2(M) and HDL for comparison purposes. In the case
of FAST-LIO2(M), we exclusively employed frame-to-map matching within FAST-LIO2 without conducting
any point cloud accumulation. On the other hand, HDL (Koide et al. 2019), a state-of-the-art relocalization
method, utilized the Normal Distributions Transform (NDT) for registration and the Unscented Kalman Filter
(UKF) for pose updates. HDL has demonstrated its reliability in a wide range of environments (Koide et al.
2019).

The trajectories of relocalization-based methods are depicted in Figure 14(a). A comparison of the Absolute
Trajectory Error (ATE) is presented in Table 2. Notably, FAST-LIO2(M) and HDL lacked a map update
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Table 2: Absolute Trajectory Error Analysis

Method RMSE(m) MAX(m) <0.15m(%) <0.2m(%)

FAST-LIO2(M) 0.153 0.723 78.157 92.491
HDL 0.222 0.649 29.730 47.635

FAST-LIO2 0.275 0.648 35.932 66.271
LIO-SAM 0.195 0.337 14.991 33.390

proposed 0.111 0.289 85.154 96.587

Source: Authors’ own work.

Re-

localization

Map

Filter

(a) (b) (c)

Notes: The changes of pointcloud map during relocalization and after map filter.
Source: Authors’ own work.

Figure 15: Changes of built map

module, potentially causing significant offsets when the surrounding environment deviated substantially from
the prior map, as evident in the enlarged section of Figure 14(a). In contrast, our proposed method incorporates
a robust map update module, yielding outstanding relocalization performance.

We conducted a similar comparison between our proposed method and state-of-the-art (SOTA) SLAM
methods, with results displayed in Figure 14(b) and summarized in Table 2. Thanks to the prior map, our
method consistently outperformed traditional SLAM methods.

In Figure 14(c), box plots depicting ATE for the five methods are presented. Figure 15 illustrates the
evolution of the prior map throughout the entire process. During relocalization, new static points were pro-
gressively incorporated into the map, culminating in a filtration process guided by the Map Filter. A direct
comparison with Figure 13 readily demonstrates the consistent alignment of the point cloud map with the
actual environment.

6.4.2 Real Environment

To demonstrate the method’s generalizability, we conducted tests in a real-world environment. We conducted
a comparative analysis, pitting our method against the relocalization methods, namely FAST-LIO2(M) and
HDL, previously mentioned.

The proposed method benefits from the consistency between relocalization and mapping, which gives it an
advantage in terms of repeated localization accuracy. To conduct the test, we recorded the trajectory using
the Office Repeat Dataset as illustrated in Figure 16. A landmark was placed in the environment as shown
in Figure 7(c). In addition to this, the environment was changed as shown in Figure 17 by adding cardboard
boxes as new static walls. The robot was controlled to start from the landmark, pass through different paths,
and then pass the same landmark four more times to obtain the robot’s pose at each arrival. The standard
deviation of each axis was calculated, and the repeatability of the localization was determined. As summarized
in Table 3, the proposed method achieved a repeatable localization accuracy of 0.5cm, which was significantly
better than others.

Figure 17 shows the updated grid map that correctly reflects the floor changes of the real environment,
which benefits the robot’s path planning. The updated point cloud map is shown in Figure 18. New static
wall points are accurately added to the map and existing wall points are updated, making the point cloud map
more relevant to the environment.

To test the stability of the relocalization system with respect to dynamic objects, we held the robot
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Figure 16: Trajectory of Office Repeat Dataset

Table 3: Repeatability (unit: meter)

σ of x-axis σ of y-axis σ of z-axis Error

FAST-LIO2(M) 0.00612 0.00368 0.00162 0.00732
HDL 0.00542 0.01452 0.00571 0.01652

proposed 0.00276 0.00320 0.00288 0.00512

Source: Authors’ own work.

Environment

Change

New Static Walls

Dynamic Objects

New Static Walls

(a) (b)

Grid map

Update

Notes: (a) are environment and grid map before up-
dating, and (b) are after updating.
Source: Authors’ own work.

Figure 17: Results of map updating in real

stationary and walked randomly around it as shown in Figure 19(a). The poses are shown as in Figure 19(b).
We analyzed it quantitatively, as shown in Table 4. The proposed relocalization system is not disturbed by
dynamic objects and can maintain high stability.

6.5 Time Analysis

Real-time performance is also one of the core advantages of the proposed method. We evaluated the time
consumption of each module within per LiDAR frame of the relocalization in real environment in the proposed
SLAM-RAMU for comparison with HDL on a laptop PC with AMD R7-4800H processor. The results are
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Figure 18: Plots of the updated map
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Figure 19: Schematic diagram of dynamic environment

Table 4: Stability (unit: meter)

σ of x-axis σ of y-axis σ of z-axis Error

FAST-LIO2(M) 0.00489 0.00203 0.00108 0.00541
HDL 0.00997 0.01291 0.00468 0.01696

proposed 0.00249 0.00121 0.00124 0.00303

Source: Authors’ own work.

Table 5: Mean Time Consumption (unit: millisecond)

AMD R7

Deskew 3.903
Segmention 2.483

proposed Odometry 7.352
Map Update 3.767

Total 17.505

HDL Total 30.125

Source: Authors’ own work.

shown in Table 5. The proposed method reduces the processing time by about 50% compared to HDL,
meeting the real-time requirements completely.
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7 Conclusion

We proposed SLAM-RAMU, a Lifelong SLAM system using LiDAR and IMU, to provide accurate and con-
sistent relocalization and autonomous map updating for challenging dynamic environments. In the initial
mapping stage, the global optimization is combined with robust local odometry and loop closure detection, in
order to obtain a more accurate trajectory. At the same time, the point cloud is segmented to obtain static
point cloud map without dynamic objects. In the relocalization stage, the 2D branch-and-bound search and
3D ICP registration are united for fast initial pose alignment. Then, the scan-map registration is performed
using the segmented point cloud on the prior map to achieve real-time pose estimation. Simultaneously, the
original point cloud map is updated to reflect the real environment based on the segmented point cloud and
grid map. Finally, we compared to other state-of-the-art methods in simulation and real environments, and
SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization
accuracy.
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