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Chapter 1

Introduction

1.1 Fermi-Pasta-Ulam-Tsingou (FPUT) lattices

The Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence phenomenon refers to an un-

expected observation made during a numerical experiment in the early 1950s by

physicists Enrico Fermi, John Pasta, and Stanislaw Ulam with Maria Tsingou’s

help. The FPUT experiment was conducted at the Los Alamos National Laboratory

as an attempt to understand how energy is shared among the different modes

of a vibrating one-dimensional lattice. It was conducted using the MANIAC

(Mathematical Analyzer, Numerical Integrator, and Computer), which was one of

the earliest digital computers, specifically designed for scientific calculations [1].

Fermi et al. initially aimed at exploring the problem of thermalisation and

energy equipartition in an idealised lattice system. They considered a one-

dimensional chain of particles connected by nonlinear springs. They hypothesised

that the system, when given sufficient time to evolve, would exhibit the phe-

1
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nomenon of equipartition of energy, where the energy would be evenly distributed

among all normal modes of vibration, resembling thermal equilibrium.

To their surprise, when they performed numerical simulations of the FPUT

system, they found that the energy did not evenly distribute among the modes

as expected. Instead, the energy showed complex behaviour, with occasional

periods of recurrence where the system revisited its initial state, resembling the

phenomenon of a recurrence or return of the initial conditions.

The recurrence phenomenon observed in the FPUT system challenged the

prevailing notion at the time that systems with many degrees of freedom would

naturally approach thermal equilibrium and exhibit energy equipartition. Energy

equipartition is a principle in statistical mechanics that states, for a system in

thermal equilibrium, the average energy is equally distributed among all degrees

of freedom. Energy equipartition is expected over long periods if the system is

ergodic. Ergodic behaviour refers to a property of a dynamic system where, over

time, the system explores and visits all possible states with equal probability. In an

ergodic system, time averages of observables are equal to their ensemble averages.

The unexpected result sparked significant interest and debate within the scientific

community [2–4]. The recurrence observed in the FPUT system shows that the

system periodically returns to a state where energy is localised in specific modes

rather than being uniformly distributed.

The phenomenon of recurrence in the Fermi-Pasta-Ulam-Tsingou (FPUT) lattice

was explained by Zabusky and Kruskal [5] in real space. They demonstrated that

by considering the continuum limit of the FPUT lattice, the integrable Korteweg-de

Vries (KdV) equation can be derived. This derivation provided insights into the
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underlying dynamics that lead to the recurrence behaviour observed in the FPUT

system.

When energy is introduced into a specific normal mode with a wave number k,

it corresponds to initialising the system with a sinusoidal initial condition in real

space. As time progresses, the state of the system evolves and breaks into a series

of localised solutions, known as solitons. These solitons are self-reinforcing waves

that maintain their shape and move through the system without dissipating or

dispersing.

In the FPUT lattice, the solitons interact with the fixed ends or boundaries of the

system. When a soliton reaches a boundary, it reflects or bounces back, eventually

returning to its initial position. This interaction with the boundaries gives rise

to the recurrence phenomenon observed in the FPUT system. The solitons, after

bouncing back, continue to propagate and interact with each other, leading to

complex dynamics and recurring patterns in the system.

Further investigations into the FPUT recurrence phenomenon revealed that the

nonlinearity of the interparticle interactions played a crucial role in the system’s

behaviour. The FPUT system exhibited a rich dynamics with the coexistence of

regular and chaotic motion. The FPUT lattice system exhibits chaotic behaviour

under certain conditions. Chaos in a dynamical system refers to the sensitivity of the

system’s dynamics to small changes in initial conditions, leading to unpredictable

and highly divergent trajectories over time.

The chaotic nature of the FPUT lattice system was unexpected, as it initially

seemed to suggest the possibility of reaching thermal equilibrium. However,

the recurrence phenomenon observed in the system indicated a more intricate
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dynamics that goes beyond simple periodic behaviour. Chaos in the FPUT lattice

arises due to the interplay between nonlinearities, multiple degrees of freedom,

and energy exchange among different modes. In [6, 7], the behaviour of the FPUT

lattice system was examined under varying energy levels and different initial

conditions.

The chaotic behaviour of the FPUT system has been extensively studied using

numerical computations of chaotic indicators, such as Lyapunov exponents [8] and

Smaller Alignment Index (SALI) [9]. They are commonly employed to characterise

and quantify the chaotic properties of the system.

The FPUT lattice system also displays the intriguing phenomenon of super

recurrence, where the system exhibits recurrence behaviour on significantly

longer timescales than those observed in standard recurrence patterns. This

phenomenon was reported by M. Tsingou, who was involved in the original FPUT

experiment [10]. The research presented in [11] expands upon the previous work

and investigates the breakdown of super recurrences as the initial energy and

corresponding nonlinear parameters are systematically increased. They find that

for the FPUT-α lattice, the super-recurrences break down while the lattice is still

in the metastable state, a temporary state that the system can assume during its

evolution that is not in thermal equilibrium but can persist for an extended period

before eventually transitioning to a different state.

The lifetime of a metastable state in the FPUT lattice system can vary depending

on several factors, including the system’s energy, the initial conditions, and the

nonlinearities present in the system [12]. In this state, the FPUT-α system can be

considered as a perturbation of the integrable and regular Toda lattice [13].
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1.2 q-Statistics

In the study of dynamical systems, one approach to understanding their behaviour

is through statistical analysis. The behaviour of a dynamical system can be charac-

terised statistically by examining the distribution of a relevant statistical variable

that is generated from the system’s trajectories. By analysing the distribution of this

statistical variable, we can gain information about the behaviour and properties of

the system. The distribution describes how the values of the statistical variable are

spread out or distributed over a range of possible values.

The statistical distribution plays a crucial role in understanding the properties

of a dynamical system. In certain systems, the statistical variable derived from the

trajectories of the system can exhibit a normal distribution, commonly known as a

Gaussian distribution or a bell curve. This phenomenon arises due to the mixing

and ergodic nature of the system [14].

The Central Limit Theorem [15] provides further insight into this behaviour.

It states that when a system is mixing, the statistical variable generated from its

trajectory can be treated as a random variable. As a result, for a large number of

trajectories, the probability distribution of this random variable approximates a

Gaussian function.

However, in other cases, the distribution may deviate from a normal distribution

and exhibit non-Gaussian features. These deviations can indicate the presence

of complex dynamics and show a sign of nonergodicity. For this system, the

distribution is well approximated by a q-Gaussian distribution [14, 16–19].
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1.3 Thesis overview

The two primary goals of this thesis are (a) to investigate the FPUT-α system with

variability and their chaotic behaviour, and (b) to investigate the chaotic dynamics

of the standard map using q-statistics.

In chapter 2, we provide an overview of previous research related to these

topics and present the numerical tools that will be utilised in subsequent chapters.

In chapter 3, we examine the influence of variability in the nonlinear coupling

terms of the FPUT-α system to the localisation of normal mode energy and the

occurrence of blow-up solutions within a finite time. Through the application of

multiple time-scale expansions, we derived a two normal-mode approximation to

explain energy recurrence breakdown and solution blow-up in finite time beyond

a certain variability threshold. This study is followed in chapter 4 by introducing

the variability in the FPUT-α Hamiltonian and study the system at a fixed energy

level. By maintaining the Hamiltonian function of the system, we are able to

initiate the system at the same energy level while varying the degree of variability

up to 100%.

In Chapter 5, our focus turns to understanding the chaos exhibited by the

standard map by analysing the distribution of a probability distribution function

derived from the system’s trajectories. We examine various chaotic properties of

the standard map through this approach. Specifically, we investigate trajectories

originating from both the stability island and the chaotic sea regions. To identify

the probability distribution function of these trajectories, we employ the q-Gaussian

distribution. This distribution offers a suitable framework for characterising the
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complex behaviour observed in chaotic systems. To obtain the parameters of

the distribution, we develop a procedure that utilises a genetic algorithm. This

algorithm allows us to solve a multi-objective optimisation problem, enabling us

to determine the optimal parameters that best describe the probability distribution

function of the trajectories. We conclude our study in Chapter 6 where we also

discuss future work.



Chapter 2

Literature review

2.1 Hamiltonian systems

A Hamiltonian system is a dynamical system governed by Hamilton’s equations

of motion. It is a mathematical formalism developed by Hamilton to describe the

evolution of physical systems where their energy is being conserved in time. A

Hamiltonian system’s behaviour can be described by its Hamiltonian function

H. This function captures its total energy, typically expressed as generalised

coordinates and moments.

Mechanical systems are a subset of Hamiltonian system that can be defined as

the sum of kinetic and potential energies when energy is conserved, where each

term depends on generalised coordinates qqq(t) and momenta ppp(t), as follow

H(t,qqq(t),ppp(t)) = T(qqq(t),ppp(t))+V(qqq(t)). (2.1)

8
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The generalised coordinates q represent independent variables which define the

configuration of a system, such as position or angle. Moments represent conjugate

variables associated with generalised coordinates that reflect its velocity properties.

To analyse the Hamiltonian system, one needs to study the corresponding

Hamilton’s equations of motion. These equations consist of coupled first-order

ordinary differential equations which govern the time evolution of generalised

coordinates and momenta, given by

dqqq
dt
=
∂H
∂ppp

dppp
dt
= −
∂H
∂qqq

where qqq =
(
q1,q2, . . . ,qN

)
, ppp =

(
p1,p2, . . . ,pN

)
are called the position and momentum,

respectively, and H = H(t,qqq,ppp) is the Hamiltonian function. These equations

describe how coordinates and momenta change over time to form the trajectory in

phase space, where every point represents one state of a system. We also define N

as the degree of freedom of the Hamiltonian system (2.1). The phase space of a

Hamiltonian system can be conceptualised as a multi-dimensional space whereby

each individual point corresponds to a distinct combination of coordinates and

momenta. The time evolution of the system can be represented by a trajectory or

orbit within the phase space. A Hamiltonian system characterised by N degrees of

freedom exhibits a phase space dimension of 2N.

Hamiltonian systems exhibit various important properties, such as conservation

of energy and symplecticity, that stem from their mathematical structure. This
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makes the Hamiltonian framework particularly effective at studying conservative

systems such as those in classical and celestial mechanics.

If the Hamiltonian H does not depend explicitly on t (autonomous system),

then its value along any trajectories is constant. Indeed, direct calculations using

the chain rule give

dH
dt
=
∂H
dqqq

dqqq
dt
+
∂H
dppp

dppp
dt

=
∂H
dqqq
∂H
dppp
+
∂H
dppp

(
−
∂H
dqqq

)
= 0.

Therefore, H(qqq(0),ppp(0))=H(qqq(t),ppp(t))= E, where E is called the energy of the system.

Hamiltonian systems find many uses across disciplines such as physics, engi-

neering and applied mathematics. They play a fundamental role in understanding

the dynamics of many physical systems ranging from simple harmonic oscillators

to those with many degrees of freedom.

2.2 Coupled oscillators

One-dimensional (1D) systems of coupled oscillators refer to an assembly of

oscillators arranged linearly along one dimension that interact with their nearest

neighbors. Such systems often serve as simplified models to study how coupled

oscillators influence physical phenomena. Each oscillator can be described by

its position and momentum, denoted qi and pi, for oscillators 1 through n, using

equations of motion from either Hamiltonian formalism or Newton’s laws of

motion.
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These equations of motion describe how the positions qi and momenta pi of

oscillators change with time, taking into account interactions with neighboring

oscillators. Solving these equations allows us to study various phenomena

related to system behaviour such as propagation of waves, energy transfer or

synchronisation phenomena in detail.

The 1D n coupled-oscillator system serves as a simplified model to better

understand more complex systems such as vibrating strings, crystal lattices or

coupled pendulums. This gives insight into phenomena like wave propagation,

resonance and collective behaviour caused by interactions among oscillators, which

has applications across disciplines, such as physics, engineering and materials

science.

2.2.1 Systems of linear coupled oscillators

We consider the mass-spring system of N identical particles of mass m connected

by springs with equal spring constant k. The Hamiltonian function of the system is

H(q,p) =
N∑

j=0

p2
j

2m
+

N∑
j=0

k
2

(
q j+1−q j

)2
= E,

where the two endpoints are kept fixed, i.e. p0 = 0, x0 = xN+1 = 0, and E is the

constant energy of the system. The equations of motion are given by

q̈ j =
(
q j−1−2q j+q j+1

)
, (2.2)

where we have taken k/m = 1 for simplicity.
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Introducing the following transformations

qqq = AQQQ, ppp = APPP, (2.3)

where qqq= [q1 q2 . . . qN]T, ppp= [p1 p2 . . . pN]T, QQQ= [Q1 Q2 . . . QN]T, PPP= [P1 P2 . . . PN]T,

and

A =

√
2

N+1



sin
(
π

N+1

)
sin

(
2π

N+1

)
. . . sin

(
Nπ

N+1

)
sin

(
2π

N+1

)
sin

(
4π

N+1

)
. . . sin

(
2Nπ
N+1

)
...

...
. . .

...

sin
(

Nπ
N+1

)
sin

(
2Nπ
N+1

)
. . . sin

(
N2π
N+1

)


,

Eq. (2.2) can be written as

AQ̈QQ = SAQQQ, (2.4)

where

S =



−2 1 0 . . . 0

1 −2 1 0

...
. . .

...

0 0 . . . 1 −2


. (2.5)

According to [20], the eigenvaluesλk of matrix S given in Eq. (2.5), in decreasing

order are

λk = −4sin2
(

kπ
N+1

)
, k = 1,2, · · · ,N.
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By direct computations, it can be shown that

SA = AD, (2.6)

where

D =



λ1 0 . . . 0

0 λ2 0

...
. . .

...

0 0 . . . λN


.

Therefore, using Eq. (2.6) in the equations of motion (2.4), we obtain

Q̈QQ =DQQQ. (2.7)

Note that Eq. (2.7) is a system of uncoupled harmonic oscillators and can be

solved analytically as it is a linear system of ordinary differential equations. This

simplification is made possible due to the transformation given in Eq. (2.3). This

transformation is known as normal mode transformation and plays an important

rule in studying the one-dimensional lattices. It is worth noting that Eq. (2.7)

admits the Hamiltonian function

H =
1
2

N∑
k=1

(
P2

k +ω
2
kQ2

k

)
,
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where

ωk = 2sin
(

kπ
2(N+1)

)
, k = 1,2, · · · ,N.

Variables Pk and Qk are called the normal mode coordinates, and ωk are the normal

mode frequencies. Moreover, we can also define the normal mode energy for

mode k as

Ek =
1
2

(
P2

k +ω
2
kQ2

k

)
.

Hence, the total energy of the system is equal to the sum of the energies from each

individual modes.

In Chapters 3 and 4, our focus will be on the examination of normal mode

energy within a particular Hamiltonian system, namely the Fermi-Pasta-Ulam-

Tsingou-α (FPUT-α) system. We will delve into the details of this system to better

understand its normal mode energy behaviour.

2.3 Symplectic integrators

The sum of the projected areas on the N (pi,qi), i = 1, . . . ,N planes is preserved by

the flow of a Hamiltonian system with N degrees of freedom. This structure is

called symplectic structure and defined by the non-degenerate closed 2-form

ω = dp∧dq,
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which is also known as the wedge product [21]. The wedge product of two

arbitrary vectors u,v of the phase space is defined by the operation

u∧v = (uJ,v),

where

JJJ =


0 III

−III 0

 .
with 0 and the unitary matrix I are N×N blocks. Matrix J is known as the standard

symplectic matrix. A canonical transformation T : X→ X on a 2N-dimensional

manifold X with coordinates x = (q,p) is a transformation which satisfies

(DT )TJDT = J,

where DT is the Jacobian matrix of T and T denotes the transpose operation [21].

Symplectic integrators are numerical integration methods designed to preserve

the symplectic structures of Hamiltonian systems derived from Hamilton’s equa-

tions of motion. Such conservative systems feature energy conservation dynamics.

To obtain a symplectic integrator, we need to find a canonical transformation which

takes a set of variables (p0,q0) at t = 0, to another set (p,q) at time t.

Standard numerical integration methods such as Runge-Kutta [22] may intro-

duce errors that grow in time and compromise long-term simulation accuracy,

whereas symplectic integrators aim to maintain important properties of Hamilto-

nian systems such as energy conservation and phase space volume preservation

through long-term simulation.
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Symplectic integrators ensure this preservation through specific algorithms

designed to take advantage of Hamiltonian systems’ underlying symplectic

structure and maintain their symplecticity, so as to maintain close proximity

between solution paths in phase space and true trajectories.

Symplectic integrators offer numerous advantages over classical methods

for modeling Hamiltonian systems such as improved long-term accuracy, the

preservation of important physical properties, and long-term simulation without

significant energy drift or phase space distortion.

It is important to take into account that although symplectic integrators provide

advantages when simulating Hamiltonian systems of the form H = T+V, where

T is the kinetic and V the potential energies, their accuracy may not compare

favourably with non-symplectic methods when simulating general dynamical

systems which are not Hamiltonian. Therefore, the integration method chosen

will be determined by the type of the system that needs to be simulated.

Consider the autonomous Hamiltonian function which can be expressed as

H
(
ppp,qqq

)
= T

(
ppp
)
+V

(
qqq
)
, (2.8)

where T
(
ppp
)

is the kinetic energy, V
(
qqq
)

is the potential energy, and

qqq =
(
q1,q2, . . . ,qN

)
, ppp =

(
p1,p2, . . . ,pN

)
,

are the generalised coordinates and momenta, respectively. Hamilton’s equations

of motion can be written as

dxxx
dt
= JJJ
∂H
∂xxx
, (2.9)
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where

JJJ =


0 III

−III 0

 ,
with III is the identity matrix and xxx = (qqq,ppp). The Poisson bracket in the standard

form is defined as

{u,v} =
∂u
∂qi

∂v
∂pi
−
∂u
∂pi

∂v
∂qi
. (2.10)

Therefore, by using the chain rule for derivative, the equations of motion, which is

given by Eq. (2.9), become

dxxx
dt
=
∂xxx
∂qqq

dqqq
dt
+
∂xxx
∂ppp

dppp
dt

=
∂xxx
∂qqq
∂H
∂ppp
−
∂xxx
∂ppp
∂H
dqqq

= {xxx,H} (2.11)

Introducing the differential operator

DHxxx = {xxx,H} ,

Eq. (2.11) becomes

dxxx
dt
=DHxxx,

which can be integrated formally from t = 0 to t = τ to obtain

xxx = exp(τDH)xxx0.
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When the Hamiltonian has the form of Eq. (2.8), we note that

DH =DT+DV,

where

DTxxx =
{
xxx,T

(
ppp
)}
,

DVxxx =
{
xxx,V

(
qqq
)}
.

Hence, the formal solution becomes

xxx = exp(τ (DT+DV))xxx0. (2.12)

The differential operators DT and DV are, in general, non commutative operators.

To solve Eq. (2.12), we seek a set of real numbers ai,bi, i = 1,2, · · · ,k such that

exp(τ (DT+DV)) =
k∏

i=1

exp(aiτDT)exp(biτDV)+O
(
τn+1

)

Therefore, we have

xxx =
k∏

i=1

exp(aiτDT)exp(biτDV)xxx0+O
(
τn+1

)
, (2.13)

for a particular integer n [23]. In this context, n is called the order of the symplectic

integrator. The approximation to Eq. (2.13) is then given by

xxx =
k∏

i=1

exp(aiτDT)exp(biτDV)xxx0, (2.14)
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which is exact up to order n (O (τn)). It should be noted that the value of k is not

necessarily the same as n in Eq. (2.14). For n = 1 or the first-order symplectic

integrator, the coefficients are a1 = b1 = 1. This integrator is known as the symplectic

Euler method [24]. The second-order method is called the Verlet method [24] with

a1 = a2 = 1/2,b1 = 1 and b2 = 0. The third-order method was obtained in [25] with

a1 =
1
24
, a2 =

3
4
, a3 = −

1
24
, b1 =

2
3
, b2 = −

2
3
, b3 = 1.

Yoshida in [26] proposed a procedure to obtain the coefficients of the integrator

with even orders up to 8th order. For easy reference, the coefficients for the fourth

order integrator are given by

a1 =
1

2(2−21/3) , a2 =
1−21/3

2(2−21/3) , a3 = a2, a4 = a1,

b1 =
1

2−21/3 , b2 = −
21/3

2−21/3 , b3 = 0, b4 = b1.

(2.15)

Next, we explain how to compute the solutions to Eq. (2.14). Since

DTxxx = {xxx,T}

=
∂xxx
∂qi

∂T
∂pi
−
∂xxx
∂pi

∂T
∂qi

= (q̇i,0)
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and

D2
Txxx = {{xxx,T},T}

= {(q̇i,0),T}

= (0,0)

for all xxx, we conclude that

D j
Txxx = 0 (2.16)

for all j ≥ 2. Similarly, we also have

D j
Vxxx = 0 (2.17)

for all j ≥ 2. By using Eqs. (2.16) and (2.17) in the Taylor series expansions of

exp(aiτDT) and exp(biτDV), respectively, we get

exp(aiτDT) = 1+ aiτDT,

exp(biτDV) = 1+ biτDV.

Therefore, Eq. (2.13) can be numerically calculated by applying sequentially

two transformations at each step i in the expansion of Eq. (2.14), which evolves

the initial vector xxx j = (qqq j,ppp j) at time t j to its final state xxx j+1 = (qqq j+1,ppp j+1) at time

t j+1 = t j+τ according to the following steps: We first set qqqold
j = qqq j and pppold

j = ppp j, then
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we perform the following computations

qqqnew
j+1 = qqqold

j + aiτ

(
dT
dppp

)
ppp=pppold

j

(2.18)

pppnew
j+1 = pppold

j − biτ

(
dV
dqqq

)
qqq=qqqnew

j+1

(2.19)

for i = 1,2, . . . ,k, replacing qqqold
j and pppold

j with qqqnew
j+1 and pppnew

j+1 , respectively, after each i.

In Algorithm 1, we present the algorithm for the symplectic integrator that will

be used throughout this work. In particular, we use the fourth-order symplectic

integration where the coefficients are given in Eq. (2.15).

Algorithm 1 Symplectic integrator.

Input: Hamiltonian function H = T+V, initial condition (qqq0,ppp0), integration step
size τ, final integration time T, symplectic integrator coefficients (ai,bi), i =
1,2, . . . ,k

Output: Time evolution of (qqq j,ppp j).
1: qqqold

0 ← qqq0
2: pppold

0 ← ppp0
3: for j = 0 to T

τ −1 do
4: for i = 1 to k do
5: compute

qqqnew
j+1 = qqqold

j + aiτ

(
dT
dppp

)
ppp=pppold

j

6: compute

pppnew
j+1 = pppold

j − biτ

(
dV
dqqq

)
qqq=qqqnew

j+1

7: qqqold
j ← qqqnew

j+1

8: pppold
j ← pppnew

j+1
9: end for

10: qqq j+1← qqqnew
j+1

11: ppp j+1← pppnew
j+1

12: qqqold
j+1← qqq j+1

13: pppold
j+1← ppp j+1

14: end for
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2.4 Chaotic indicators

Dynamical systems employ chaotic indicators as measures or quantities that

provide information about their disordered nature, which typically manifests

itself through extreme sensitivity to initial conditions, irregular and unpredictable

motion, and the absence of long-term regular patterns. Chaotic indicators serve to

measure and identify chaos in dynamical systems. They provide insight into its

inherent unpredictability by providing information about its complex behaviour.

In this PhD thesis, we use two chaotic indicators, namely the maximum

Lyapunov exponent (mLE) and the Smaller Alignment Index (SALI). Both of these

indicators depend on the evolution of deviation vectors, which are governed by

variational equations. Therefore, we will begin with a discussion of the variational

equations of a Hamiltonian system. Then, we will give a brief overview of

mLE and SALI, as well as the algorithm to compute them. We also discuss the

numerical method for calculating the mLE and SALI. We present in the following

the extraction from [27].

2.4.1 Variational equations

We consider an autonomous Hamiltonian system with N degrees of freedom which

can be written as

H(qqq,ppp) = E, (2.20)

where qqq = (q1,q2, . . . ,qN and ppp = (p1,p2, . . . ,pN) represent the generalised coordinates

and momenta, respectively, and E is the fixed energy of the system. We can define
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a trajectory in the 2N dimensional phase space S of this system by a vector

xxx(t) = (qqq(t),ppp(t)) (2.21)

where xi = qi, xi+N = pi, i = 1,2, . . . ,N. The trajectory evolves in the phase space S

according to Hamilton’s equations of motion, which in matrix form can be written

as

ẋxx = fff (((xxx))) =
[
∂H
∂ppp

−
∂H
∂qqq

]T

= JJJ2N ·DDDHHH, (2.22)

with qqq = (q1(t),q2(t), . . . ,qN(t)),ppp = (p1(t),p2(t), . . . ,pN(t)), and

DDDHHH =
[
∂H
∂q1

∂H
∂q2
· · ·
∂H
∂qN

∂H
∂p1

∂H
∂p2
· · ·
∂H
∂pN

]T

.

The matrix JJJ2N is given by

JJJ2N =


000N IIIN

−IIIN 000N

 ,
where IIIN is the N×N identity matrix and 000N the N×N matrix with all its element

equal to zero.

The solution to Eq. (2.22) is formally written as

xxx(t) = Φt(xxx(0)),

for Φt : S→ S. Let TxxxS denotes the tangent space of the phase space S. Let www

denote the deviation vectors for a particular orbit of a dynamical system which

evolve on the tangent space TxxxS. Let dxxxΦ
t denote the linear mapping which maps

the tangent space of S at point xxx onto the tangent space at point Φt(xxx) so that
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dxxxΦ
t : TxxxS→TΦt(xxx)S is given by

www(t) = dxxxΦ
twww(0),

where www(0),www(t) are deviation vectors with respect to the reference orbit at times

t = 0 and t > 0, respectively. For the Hamiltonian (2.20), an initial deviation vector

www(0) = (δq1(0), · · · ,δqN(0),δp1(0), · · · ,δpN(0)) from the solution xxx(t) in Eq. (2.21)

evolves on the tangent space TxxxS according to the following equations

ẇww =DDD fff (xxx(t)) ·www

=
∂ fff
∂xxx

(xxx(t)) ·www

=
[
JJJ2N ·DDD

2HHH(xxx(t))
]
·www

= AAA(t) ·www, (2.23)

where DDD2HHH(xxx(t)) is the Hessian matrix of the Hamiltonian (2.20) calculated at

the reference orbit xxx(t) in Eq. (2.21). Equation (2.23) is called the variational

equations of Hamiltonian (2.20) [27]. Furthermore, the variational equations (2.23)

can be considered as the Hamiltonian equations of motion corresponding to the

Hamiltonian function

HV(δδδqqq,δδδppp) =
1
2

N∑
j=1

δp2
i +

1
2

N∑
j,k

DDD222VVV(((qqq(((ttt)))))) jkδq jδqk. (2.24)

The Hamiltonian function HV provided in Eq. (2.24) is called the tangent dynamics

Hamiltonian (TDH).
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2.4.2 Lyapunov exponents

The Lyapunov exponents (LCEs) are asymptotic measures that characterise the

average rate of growth (or shrinking) of infinitesimally close orbits of a dynamical

system. Their concept was introduced by Lyapunov in the late 19th centuries

when studying the stability of non-stationary solutions of ordinary differential

equations [28], and has been widely employed in studying dynamical systems

since then [29, 30]. All Lyapunov exponents are zero for regular orbits and there

is at least one positive Lyapunov exponent for chaotic orbits. Indeed, an orbit

can have at most n different Lyapunov exponents where n is the dimension of the

phase- or state-space of a dynamical system. The set of all Lyapunov exponents

is called the Lyapunov spectrum [30]. For a dynamical system which satisfies

the Multiplicative Ergodic Theorem [27], the n possibly nondistinct Lyapunov

exponents can be ordered in descending order λ1 ≥ λ2 ≥ · · · ≥ λn and it is sufficient

to compute only the maximal Lyapunov exponent λ1 to determine whether the

system is chaotic.

In any dynamical systems, it has been shown in [31] that at least one Lyapunov

exponent vanishes. Furthermore, in the case of autonomous Hamiltonian systems

of N degrees of freedom, the set of LCEs consists of pairs of values having opposite

signs [32]

λi = −λ2N−i+1, i = 1,2, . . . ,N. (2.25)
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Therefore, for Hamiltonian systems at least two LCEs vanish, i.e.

λN = λN+1 = 0,

and the sum of all LCEs is zero, i.e.

2N∑
i=1

λi = 0,

because of Eq. (2.25).

To compute the Lyapunov exponents, we follow the evolution of the orbit

xxx(t) and the unitary initial deviation vectors www(0) which respectively satisfy the

equations of motion (2.22) and variational equations (2.23). The p-largest Lyapunov

exponents λp, p = 1, . . . ,2N are approximated for t→∞ by

Xp(t) =
1
t

∑
i

lnγpi,

where ln is the natural logarithm. Hence,

λp = lim
t→∞

Xp(t) = lim
t→∞

1
t

∑
i

lnγpi.

In this context, γpi, p = 1, . . . ,2N, i = 1, . . . , are the norms of the deviation vectors,

which are orthogonalised successively at every time step h. In the case of regular

orbits, the maximum Lyapunov exponent λ1(t) tends to zero following a power

law t−1, while it converges to a nonzero positive value in the case of chaotic orbits.

In this work, we calculate only the value of the maximum Lyapunov exponent,

as this is sufficient to discriminate between regular and chaotic trajectories. We
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follow the standard method as described in [27] and present the procedure for

computing the mLE in Algorithm 2.

To compute mLE, we follow the evolution of a trajectory starting at the initial

point x(0) = (x1(0), . . . ,xN(0),q1(0), . . . ,qN(0)), that evolves according to Hamilton’s

equations of motion

ẋ = f(x) =
[
∂H
∂p

−
∂H
∂q

]T

,

and the evolution of a deviation vector

w(0) = (δx1(0),δx2(0), . . . ,δxN(0),δq1(0),δq2(0), . . . ,δqN(0)),

that evolves according to the variational equation

ẇ =
∂f
∂x

(x(t)) ·w.

Then, mLE is defined as

λ = lim
t→∞

1
t

ln
||w(t)||
||w(0)||

,

If mLE converges to zero following the law 1/t in a log log plot, then the trajectory

is regular, whereas if it converges to a positive value in time, then the trajectory is

chaotic [27].

2.4.3 The Smaller Alignment Index (SALI)

The Smaller Alignment Index (SALI) is an efficient chaotic indicator based on the

evolution of two initially distinct unit deviation vectors of an orbit [6, 9, 33–35]. The
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Algorithm 2 Numerical computation of the maximum Lyapunov exponent.

Input: Hamiltonian function H = T+V, initial condition xxx0 = (qqq0,ppp0), initial devia-
tion vector www0 = (δqqq0,δppp0), integration step size τ, maximum integration time
T, symplectic integrator coefficients (ai,bi), i = 1,2, . . . ,k

Output: Time evolution of maximum Lyapunov exponent (mLE) value Xk
1: Set flag← 0, s← 0, and k← 1
2: while flag = 0 do
3: Evolve the orbit xxxk−1 to xxxk and the deviation vector wwwk−1 to wwwk
4: Set αk← ∥wwwk∥

5: Compute the mLE X = 1
kτ

∑k
i=1 lnαi

6: Normalise deviation vector wwwk← wwwk/αk
7: Set k← k+1
8: if kτ > T or Xk−1 < 10−16 then
9: Set flag← 1

10: end if
11: end while

variational equations govern the time evolution of these two deviation vectors as

in the LCEs computations. SALI checks the possible coincidence of two normalised

deviation vectors www1(t) and www2(t) without the orthogonalisation process as in the

LCEs computations and is numerically computed at every time step by [33, 34]

SALI(t) =min{∥ŵww1(t)+ ŵww2(t)∥ ,∥ŵww1(t)− ŵww2(t)∥},

where ŵwwi(t) =
wwwi(t)
∥wwwi(t)∥

, i = 1,2. If the two initial unit deviation vectors are orthogonal,

then SALI(0) =
√

2. Therefore, 0 ≤ SALI(t) ≤
√

2 for all t.

In the case of regular orbits, SALI fluctuates around some non-zero value

because the two deviation vectors tend to the tangent space of the torus, following

a t−1 time evolution in log-log scale and having in general 2 different directions

[34]. In contrast, the SALI for chaotic orbits tends to zero exponentially fast and

the rate of this decrease is related to the two largest LCEs of the system [35], i.e.

SALI ≈ ce−(λ1−λ2), (2.26)
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where c is a positive constant.

To compute SALI, we follow the time evolution of an initial condition and two

unit deviation vectors w1(0), w2(0) which are initially orthogonal to each other.

Then, SALI is defined by

SALI(t) =min{∥ŵ1(t)− ŵ2(t)∥ ,∥ŵ1(t)+ ŵ2(t)∥},

where ŵi(t) =
wi(t)
∥wi(t)∥

, i = 1,2, are the two normalized deviation vectors at time

t. SALI approaches zero exponentially fast in time (as a function of the largest

or 2 largest Lyapunov exponents) as in Eq. (2.26) for chaotic trajectories and

non-zero, positive, values for regular trajectories [6, 9, 35]. We employ Algorithm

3 to compute numerically the SALI for a trajectory of a dynamical system, as

demonstrated in [6, 9, 29].

Algorithm 3 Numerical computation of Smaller Alignment Index (SALI).

Input: Hamiltonian function H = T+V, initial condition xxx0 = (qqq0,ppp0), two initial
deviation vectors www(1)

0 = (δqqq(1)
0 ,δppp

(1)
0 ) and www(2)

0 = (δqqq(2)
0 ,δppp

(2)
0 ), integration step

size τ, maximum integration time T, symplectic integrator coefficients (ai,bi),
i = 1,2, · · · ,k

Output: Time evolution of SALI value Sk
1: Set flag← 0, s← 0, and k← 1
2: while flag = 0 do
3: Evolve the orbit xxxk−1 to xxxk, the deviation vectors www(1)

k−1 to www(1)
k and www(2)

k−1 to

www(2)
k

4: Normalize deviation vectors www(1)
k ← www(1)

k /∥www
(1)
k ∥ and www(2)

k ← www(2)
k /∥www

(2)
k ∥

5: Compute the SALI Sk =min{∥www(1)
k +www(2)

k ∥,∥www
(1)
k −www(2)

k ∥}

6: Set k← k+1
7: if kτ > T or Sk−1 < 10−16 then
8: Set flag← 1
9: end if

10: end while



2.4 Chaotic indicators 30

2.4.4 Numerical integration of variational equations

The evolution of a deviation vector which is governed by the variational equations

depends on a particular orbit. Therefore, the variational equations should be inte-

grated simultaneously with the equations of motion. Indeed, any non-symplectic

numerical integration algorithm can be used for the integration of Eqs. (2.22) and

(2.23) as one system. One can use the general purpose Runge-Kutta 4th order

and DOP853 integrators [36], which is an explicit non-symplectic Runge-Kutta 8th

order, to integrate the equations of motion and the variational equations. One main

issue with these non-symplectic integrators is that they produce relative energy

errors that grow in time. This will affect the quality of the solution to the equations

of motion and variational equations. In some cases, it will lead to the wrong

classification of the chaotic behaviour of an orbit. To overcome this drawback,

we opted in this PhD thesis to use the symplectic integrator method, provided

by Yoshida’s symplectic integrator scheme, to achieve the desired relative energy

error bounded by choosing a suitable integrator order.

Consider the set of Eqs. (2.22) and (2.23) as one system of differential equations

q̇qq = ppp, (2.27)

ṗpp = −
∂V(qqq)
∂qqq
, (2.28)

δ̇δδqqq = δδδppp, (2.29)

δ̇δδppp = −DDD2V(qqq)δδδqqq. (2.30)
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Two approaches for solving Eqs. (2.27)-(2.30), i.e. the tangent dynamics Hamilto-

nian constant coefficient (TDHcc) method and the tangent map (TM) method, are

explained in [37].

In the TDHcc method we initially integrate Eqs. (2.27)-(2.28) in the interval

[ti, ti+1], where ti+1 = ti+∆t, i = 0,1, . . . , and ∆t is the integration step size, to obtain

the time evolution of the orbit xxx(ti) = (qqq(ti),ppp(ti)). At the same interval, the Hessian

DDD2V(qqq(t)) is approximated by DDD2V(qqq(ti)). Therefore, Eqs. (2.29)-(2.30) which are

actually the equations of motion of the TDH (2.24), can be integrated by any

symplectic integration scheme.

System (2.27)-(2.30) can be written as

Q̇QQ = PPP,

ṖPP = FFF(((QQQ))),

with QQQ = (qqq,,,δδδqqq), PPP = (ppp,,,δδδppp), and FFF(((QQQ))) is a vector with coordinates

Fi =


−
∂V(qqq)
∂qi

for 1 ≤ i ≤N,

−

N∑
k=1

∂2V(qqq)
∂qi∂qk

δqk for N < i ≤ 2N.

The dynamics of any general variable U(QQQ,PPP) is given by

U̇(QQQ,PPP) =
2N∑
i=1

[
∂U(QQQ,PPP)
∂Qi

Q̇i+
∂U(QQQ,PPP)
∂Pi

Ṗi

]

=

 2N∑
i=1

[
Pi
∂
∂Qi

Q̇i+Fi
∂
∂Pi

Ṗi

]U(QQQ,PPP)

= (LA+LB)U(QQQ,PPP). (2.31)
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According to [38], if a first order system of differential equations has the form

Ẋ = (LA+LB)X, (2.32)

where LA and LB are differential operators for which the two systems Ẋ = LAX and

Ẋ = LBX are integrable, then the symplectic integration schemes can be applied to

Eq. (2.32). Therefore, the system (2.27)-(2.30) can be integrated by the symplectic

integrator since Eq. (2.31) satisfies Eq. (2.32). In analogy to Eqs. (2.18)-(2.19), the

solution to Eqs. (2.27)-(2.30) for the initial vector xxx j = (qqq j,ppp j) and initial deviation

vector www j = (δqqq j,δppp j) at time t j to its final state xxx j+1 = (qqq j+1,ppp j+1) and deviation

vector www j+1 = (δqqq j+1,δppp j+1) at time t j+1 is obtained by the following transformations

qqqnew
j+1 = qqqold

j + aiτ

(
dT
dppp

)
ppp=pppold

j ,

(2.33)

δδδqqqnew
j+1 = δδδqqq

old
j + aiτ

(
∂HV

∂δδδppp

)
δδδppp=δδδpppold

j ,

(2.34)

pppnew
j+1 = pppold

j −biτ

(
dV
dqqq

)
qqq=qqqnew

j+1 ,

(2.35)

δδδpppnew
j+1 = δδδppp

old
j −biτ

(
∂HV

∂δδδqqq

)
δδδqqq=δδδqqqnew

j+1 .

(2.36)

Equations (2.33)-(2.36) which solve simultaneously Hamilton’s equations of

motion (2.27)-(2.28) and the variational equations (2.29)-(2.30) are called the tangent

map (TM) method. We implement the numerical integration of the variational

equation according to Algorithm 4.

Next we apply different integration schemes to integrate the equations of motion

and the variational equations to study each method’s efficiency. In particular, we

use Yoshida’s 4th order integrator in both TDHcc and TM methods to study the
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Algorithm 4 Numerical integration of the variational equations.

Input: Hamiltonian function H = T+V, tangent dynamic Hamiltonian given by
Eq. (2.24), initial orbit xxx0 = (qqq0,ppp0), initial deviation vector www0 = (δqqq0,δppp0),
integration step size τ, maximum integration time T, symplectic integrator
coefficients (ai,bi), i = 1,2, . . . ,k

Output: Time evolution of (qqq j,ppp j,δqqq j,δppp j)
1: qqqold

0 ← qqq0 and pppold
0 ← ppp0

2: δqqqold
0 ← δqqq0 and δpppold

0 ← δppp0
3: for j = 0 to T

τ −1 do
4: for i = 1 to k do
5: compute

qqqnew
j+1 = qqqold

j + aiτ

(
dT
dppp

)
ppp=pppold

j

δδδqqqnew
j+1 = δδδqqq

old
j + aiτ

(
∂HV

∂δδδppp

)
δδδppp=δδδpppold

j

6: compute

pppnew
j+1 = pppold

j −biτ

(
dV
dqqq

)
qqq=qqqnew

j+1

δδδpppnew
j+1 = δδδppp

old
j −biτ

(
∂HV

∂δδδqqq

)
δδδqqq=δδδqqqnew

j+1

7: qqqold
j ← qqqnew

j+1 and pppold
j ← pppnew

j+1

8: δqqqold
j ← δqqq

new
j+1 and δpppold

j ← δppp
new
j+1

9: end for
10: qqq j+1← qqqnew

j+1 and ppp j+1← pppnew
j+1

11: qqqold
j+1← qqq j+1 and pppold

j+1← ppp j+1
12: δqqq j+1← δqqq

new
j+1 and δppp j+1← δppp

new
j+1

13: δqqqold
j+1← δqqq j+1 and δpppold

j+1← δppp j+1
14: end for
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well-known 2D Hénon-Heiles system [39] described by the Hamiltonian

H =
1
2

(
p2

x+p2
y

)
+

1
2

(
x2+ y2

)
+x2y−

1
3

y3, (2.37)

where x, y are the coordinates and px,py the conjugate momenta. The system

describes the motion of stars orbiting around a galactic center, with the assumption

that this motion occurs in a two-dimensional plane. Moreover, we integrate the

equations of motion and variational equations of this system by the classic 4th

order Runge-Kutta method and the DOP853 integrator [36] for comparison. We

consider some regular and chaotic orbits of the Hénon-Heiles system (2.37) in

Table 2.1 and calculate their mLE and SALI to investigate the performance of

various integration schemes. The results are verified by checking how well they

approximate the following theoretically known properties:

• The mLE tends to zero following a power law for regular orbits while it

converges to nonzero value in the case of chaotic orbits.

• SALI is constant for regular orbits and tends to zero following the law (2.26)

for chaotic orbits.

In our computations, we set the constant Hamiltonian value at H = 0.125 (which

is also the constant energy of the system) and consider several orbits where the

initial conditions (x, y,px,py) are given in Table 2.1. We also take the integration

step size τ = 0.01 for all integrators and set the relative and absolute error δ = 10−5

for the DOP853 method. Yoshida’s fourth order symplectic integrator is used to

integrate the equations of motions and the variational equations using the TDHcc

and the TM methods.
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Orbit Initial Condition Characteristic
R1 (0,0.1,0.267,0) Regular
R2 (0,0.4,0.3,0) Regular
R3 (0,0.5,0.144,−0.25) Regular
C1 (0,0.52,0.232,0.14) Chaotic
C2 (0,−0.38,0.17,−0.2) Chaotic
C3 (0,−0.1,0.488,−0.03) Chaotic

Table 2.1: Initial conditions for the Hénon-Heiles system (2.37).
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Figure 2.1. The time evolution of the mLCE for regular orbits of the Hénon-Heiles system.
The equations of motion and the variational equations are solved by (a) the Runge-Kutta
4th order method, (b) the TDHcc method, (c) the TM method, (d) the DOP853 method.
Note that the black-dashed line is the law 1/t and is a guide to the eye. Note also that all
axes are in logarithmic scale.
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Figure 2.2. The time evolution of the mLE for chaotic orbits of the Hénon-Heiles system.
The equations of motion and the variational equations are solved by (a) the Runge-Kutta
4th order method, (b) the TDHcc method, (c) the TM method, (d) the DOP853 method.
Note that all axes are in logarithmic scale.
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Figure 2.3. The time evolution of the SALI for regular orbits of the Hénon-Heiles system.
The equations of motion and the variational equations are solved by (a) the Runge-Kutta
4th order method, (b) the TDHcc method, (c) the TM method, (d) the DOP853 method.
Note that all axes are in logarithmic scale.
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Figure 2.4. The time evolution of the SALI for chaotic orbits of the Hénon-Heiles system.
The equations of motion and the variational equations are solved by (a) the Runge-Kutta
4th order method, (b) the TDHcc method, (c) the TM method, (d) the DOP853 method.
Note that all axes are in logarithmic scale.
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In Fig. 2.1 we see that the TM method and the DOP853 method successfully

evaluate the mLE of all three different regular orbits. The computed mLE tends

to zero following a t−1 law until the final integration time t = 107. However, the

Runge-Kutta 4th order method and the TDHcc method failed to demonstrate this

behaviour. The orbit R3 in Fig. 2.1(a) levels off after t = 104 which indicates the

chaotic nature of this orbit. It means that the Runge-Kutta 4th order method leads

to the wrong classification of a regular orbit as a chaotic. Furthermore, all regular

orbits are classified as chaotic orbits by the TDHcc method as shown in Fig. 2.1(b).

This problem where one wrongly classifies the regular orbits as chaotic orbits occur

not only from the computation of mLE, but also from the computation of the SALI

as we can see in Fig. 2.3. Therefore, the TM method and the DOP853 method are

the best options to integrate the equations of motion and variational equations

when studying Hamiltonian systems.

Although only the TM and the DOP853 methods produced correct results

characterising regular orbits, it is worth noting that all methods gave practically

similar results for chaotic orbits. Figure 2.2 shows the mLE converging to nonzero

values for chaotic orbits for all methods. Moreover, SALI decreases exponentially

to zero in Fig. 2.4 which indicates the orbits are chaotic.

In this PhD thesis, two methods are employed for evolving different types

of systems. The Tangent Map method is used for Hamiltonian systems, and the

DOP853 for non-Hamiltonian systems.

The Tangent Map method is a numerical integration technique specifically

designed for Hamiltonian systems. As explained before, it is based on the idea

of tracking the evolution of a point in the tangent space of the phase space of the



2.5 The Fermi-Pasta-Ulam-Tsingou system 40

system. By propagating the tangent vector along with the system trajectory, it

provides an accurate and efficient way to simulate the Hamiltonian dynamics.

On the other hand, the DOP853 method is utilised when dealing with non-

Hamiltonian systems. This method is a high-order adaptive integrator that can

handle stiff and non-stiff differential equations. It offers excellent accuracy and

stability, making it suitable for accurately evolving the orbit and variational

equation of non-Hamiltonian systems.

2.5 The Fermi-Pasta-Ulam-Tsingou system

Fermi, Pasta and Ulam conducted a numerical simulation in 1953 with Tsingou’s

assistance to investigate the rate of approach to energy equipartition in a dynamical

system that describes a one-dimensional particle chain with nonlinear forces

between particles - known as an FPUT lattice with fixed ends [1]. Their expectation

was that quadratic forces would allow the continuous energy transfer from the

initially excited first normal mode to higher normal modes that would led to

thermalisation or mixing. Instead, energy exchange only occurred among certain

few modes before returning back down within one percent of its initial value

so that the system appeared nearly periodic. This recurrence phenomena were

confirmed over a longer period of time following the work in [10, 11]. They

observed the appearence of super recurrence, in which more energy returned to

the initially excited mode.

The Hamiltonian function of the FPUT-α system is given by

H(x,p) =
1
2

N∑
j=0

p2
j +

N∑
j=0

1
2

(
x j+1−x j

)2
+
α
3

(
x j+1−x j

)3
= E, (2.38)
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with fixed boundary conditions x0 = xN+1 = 0 and p0 = 0. Here, E is the total energy

of the system. By viewing the FPUT−α lattice as a model of particles coupled

with springs, x j(t) represents the relative displacement of the jth-particle from its

equilibrium position at any time t and p j(t) its corresponding conjugate momentum

at any time t. The equations of motion of Hamiltonian (2.38) follow as

ẍ j =(x j+1−x j)+ (x j−1−x j)+α
(
(x j+1−x j)2

− (x j−x j−1)2
)
. (2.39)

Using the linear normal-mode transformations

xxx = AQQQ, (2.40)

ppp = APPP, (2.41)

where xxx= [x1 x2 . . . xN]T, ppp= [p1 p2 . . . pN]T,QQQ= [Q1 Q2 . . . QN]T, PPP= [P1 P2 · · · PN]T,

and

A =

√
2

N+1



sin
(
π

N+1

)
sin

(
2π

N+1

)
. . . sin

(
Nπ

N+1

)
sin

(
2π

N+1

)
sin

(
4π

N+1

)
. . . sin

(
2Nπ
N+1

)
...

...
. . .

...

sin
(

Nπ
N+1

)
sin

(
2Nπ
N+1

)
. . . sin

(
N2π
N+1

)


. (2.42)

we can rewrite the Hamiltonian function (2.38) as

H =
1
2

N∑
k=1

(
P2

k +ω
2
kQ2

k

)
+αH3(Q1,Q2, · · · ,QN),



2.5 The Fermi-Pasta-Ulam-Tsingou system 42

for some nonlinear function H3, where

ωk = 2sin
(

kπ
2(N+1)

)
. (2.43)

Furthermore, the normal mode energy of mode k is defined as

Ek =
1
2

(
P2

k +ω
2
kQ2

k

)
.

Note that according to this definition, the sum of normal-mode energies
∑N

k=1 Ek is

exactly the same as the Hamiltonian energy E only for linear lattices with α = 0.

Nonetheless, it serves as a good approximation for relatively small nonlinear

strengths α where energy contributions from coupled modes are negligible. Using

Eqs. (2.40)-(2.41) in (2.39), we obtain the equations of motion in normal-mode

coordinates as

Q̈QQ =DQQQ+A−1FFF(QQQ), (2.44)

where

D =



−ω2
1 0 · · · 0

0 −ω2
2 0

...
. . .

...

0 0 · · · −ω2
N


, FFF(QQQ) =



f1(QQQ)

f2(QQQ)

...

fN(QQQ)


.

and A−1 denotes the inverse of matrix A given in Eq. (10).
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Fermi, Pasta, Ulam and Tsingou [1] excited a single mode, i.e. the first normal

mode with k = 1, and let the energy slowly drift to other modes. They opted for

the initial condition

pi = 0, (2.45a)

xi = sin
(
πi

N+1

)
, i = 1, . . . ,N. (2.45b)

They expected to observe the thermalisation of energy predicted by Boltzmann-

Gibbs (BG) statistical mechanics and wanted to measure the thermalisation rate

of this system. Surprisingly, their numerical experiment showed that after 157

periods of the mode k = 1 (first linear normal mode) almost all energy was back to

the first mode. Figures (2.5)-(2.6) show respectively the normal-mode energy for

the first four modes of the FPUT-α system (2.39) with N = 32 and N = 64.
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Figure 2.5. FPUT recurrences of the Hamiltonian system (2.38). (a) Dynamics of x j(t)
using the initial condition in (2.45), where E = 0.07471. Panel (a) shows the top view of
the oscillation envelope of x j(t) in time. (b) Energy of the first four normal modes in the
dynamics shown in panel (a). Note in panel (b) how almost all of the energy returns to the
first normal mode at around t = 104, i.e., the appearance of an FPUT recurrence. Here we
have used N = 32 in the computations in both panels. The range of values in the vertical
axis in panel (a) is between 1 and N = 32.
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Figure 2.6. FPUT recurrences of the Hamiltonian system (2.38). (a) Dynamics of x j(t)
using the initial condition in (2.45), where E = 0.03795. Panel (a) shows the top view of
the oscillation envelope of x j(t) in time. (b) Energy of the first four normal modes in the
dynamics shown in panel (a). Note in panel (b) how almost all of the energy returns to
the first normal mode at around t = 6×104, i.e., the appearance of an FPUT recurrence.
Here we have used N = 64 in the computations in both panels. The range of values in the
vertical axis in panel (a) is between 1 and N = 64.

2.6 Statistical mechanics

2.6.1 Boltzmann-Gibbs statistics

Boltzmann-Gibbs statistics provides a framework that help us describe systems

in an equilibrium state, where mixing and ergodic properties prevail. This

equilibrium state is underpinned by the Central Limit Theorem, ensuring the

convergence of statistical properties. A defining feature of Boltzmann-Gibbs

statistics is the emergence of exponential and Gaussian distributions, which arise

from maximising the Boltzmann-Gibbs entropy. These distributions encapsulate

the probabilistic behaviour of equilibrium systems, reflecting the underlying

principles of statistical mechanics.
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The Boltzmann-Gibbs entropy for a set of W possible discrete states is given by

[40]

SBG = −k
W∑
i=1

pi lnpi, (2.46)

with

W∑
i=1

pi = 1.

and where k is a positive constant. Here, pi is the probability of the system

occupying the i-th microstate. Equation (2.46) can be written as

SBG = −k⟨lnpi⟩ = k⟨ln1/pi⟩, (2.47)

where ⟨x⟩ =
∑W

i=1 pi(x) is the standard mean value. For a particular case of equal

probabilities, where pi = 1/W, ∀i (since there are W possible microstates), Eq. (2.46)

becomes

SBG = k lnW. (2.48)

The formula in Eq. (2.48) is engraved on Boltzmann’s tombstone in his honour.

The BG entropy for continuous-states system is given by

SBG = −

∫
∞

−∞

p(x) lnp(x)dx,
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where ∫
∞

−∞

p(x)dx = 1. (2.49)

Consider the case where the mean value of the x variable is 0. In this case, we

might know the mean value of the squared variable

∫
∞

−∞

x2p(x)dx = X(2). (2.50)

In order to use the Lagrange method to obtain the optimising distribution, we

define

Φ(p) = −
∫
∞

−∞

p(x) lnp(x)dx−α
∫
∞

−∞

p(x)dx−β
∫
∞

−∞

x2p(x)dx.

Imposing the condition dΦ(p)/dp = 0, we obtain

1+ lnp+βx2 = 0,

where Eq. (2.49) is used to eliminate the Lagrange parameter α, hence

p = e−1−βx2
. (2.51)

By using Eq. (2.51) in Eq. (2.49), we have

∫
∞

−∞

e−βx
2

dx = e,
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therefore

p =
e−βx

2∫
∞

−∞
e−βx2dx

=

√
β

π
e−βx

2
. (2.52)

Furthermore, by using (2.52) in (2.50) we have

X(2) =
1

2β
,

hence

p =
e−x2/(2X(2))
√

2πX(2)
. (2.53)

Equation (2.53) gives the connection between Gaussian distributions and BG

entropy.

2.6.2 Tsallis entropy

One way to explain the idea behind Tsallis entropy, which is a generalisation of

BG entropy, is by considering the differential equation

dy
dx
= yq, (2.54)

with y(0) = 1 and q ∈R [40]. The solution to Eq. (2.54) is given by

y =
(
1+ (1− q)x

)1/(1−q) , (2.55)
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where its inverse function is given by

y =
x1−q
−1

1−q
, x > 0. (2.56)

From Eqs. (2.55) and (2.56), we define the q-exponential and the q-logarithm as

ex
q =

(
1+ (1− q)x

)1/(1−q) ,

and

lnq x =
x1−q
−1

1− q
, x > 0. (2.57)

Note that for q = 1, we have ex
q = ex and lnq x = lnx.

The BG entropy can be generalised by the following formula [41]

Sq = k lnq W

where S1 = SBG. Moreover, Eq. (2.47) can also be generalised by

Sq = k⟨lnq(1/pi)⟩. (2.58)

Using Eq. (2.57) in Eq. (2.58), we obtain

Sq = k
1−

∑W
i=1 pq

i

q−1
. (2.59)

The formula in Eq. (2.59) is known as Tsallis entropy [40, 41].
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Now consider the entropic optimisation case similar to what we did previously

for the BG entropy. For continuous systems, Eq. (2.59) takes the form

Sq = k
1−

∫
∞

−∞
(p(x))qdx

q−1
,

with

∫
∞

−∞

p(x)dx = 1.

Consider the case where the q-mean value of the x variable is 0. Then, we might

know the q-mean value of the squared variable

∫
∞

−∞

x2P(x)dx = X(2)
q ,

where

P(x) =
(p(x))q∫
∞

−∞
p(s)ds

.

In order to use the Lagrange method to obtain the optimising distribution, we

define

Φ(p) =
1−

∫
∞

−∞
(p(x))q dx

q−1
−α

∫
∞

−∞

p(x)dx−βq

∫
∞

−∞
x2(p(x))qdx∫
∞

−∞
(p(x))qdx

.
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Imposing the condition dΦ(p)/dp = 0, we obtain

popt(x) =
e
−β′qx2

q∫
∞

−∞
e−β

′s2

q ds
, (2.60)

with

β′q =
βq

1+ (1−q)βqX(2)
q

.

The probability distribution function (2.60) is known as a q-Gaussian. It is connected

to Sq entropy in the same way Gaussians are connected to SBG.

In general, the q-Gaussian function can be written as [42]

Gq(β,x) =

√
β

Cq
e−βx

2

q ,

where

Cq =



2
√
πΓ

(
1

1−q

)
(3−q)
√

1−qΓ
(

3−q
2(1−q)

) , −∞ < q < 1,

√
π, q = 1,
√
πΓ

(
3−q

2(q−1)

)
√

q−1Γ
(

1
q−1

) , 1 < q < 3.

Here, Cq is the normalisation factor and β is a parameter which charaterises the

width of the q-Gaussian distribution function [42, 43].

The q-Gaussian distribution is a prominent probability distribution that arises in

various systems, as demonstrated in [14, 16, 42]. This distribution proves especially

useful when addressing systems characterised by significant correlations among
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the random variables, where the limiting distribution deviates from the standard

Gaussian distribution. In Chapter 5 we will study the standard map with different

parameter values which exhibit chaotic and regular behaviour.



Chapter 3

Variability in the nonlinear coupling

terms of the FPUT-α lattices

A one-dimensional lattice system with variability refers to a mathematical or

physical model consisting of a linear arrangement of nodes or sites, where each node

exhibits some form of uncertainty or diversity in its properties or characteristics.

This system is often studied in the context of statistical physics [44], condensed

matter physics [45], or mathematical modeling [46].

In a one-dimensional lattice, the nodes are arranged sequentially along a line,

forming a chain-like structure. The variability in this system typically arises from

differences in the properties or states of the individual nodes. These properties

can include energy levels, spin orientations, particle densities, or other relevant

parameters depending on the specific context of the study [47].

The variability in a one-dimensional lattice can have a significant impact on

the overall behaviour and properties of the system. It introduces disorder or

inhomogeneity into an otherwise ordered structure, leading to interesting and

52



53

often complex phenomena. The presence of variability can affect the system’s

thermodynamic properties [48], phase transitions [49], and transport phenomena

[50].

Various mathematical and computational techniques can be employed to

investigate one-dimensional lattice systems with variability. These techniques

may include statistical mechanics [44], Monte Carlo simulations [51, 52], exact

diagonalisation methods [53], or other approaches suitable for capturing the

system’s behaviour and analysing its properties.

In a one-dimensional lattice system, disorder can manifest in various forms. It

can arise from disordered potentials, as seen in the Anderson model [54]. Random

interactions between neighboring particles [55], imperfections in crystal structures

[56], or the presence of heterogeneous particle chains with different masses, sizes,

or interaction potentials [57] are additional sources of disorder within the system.

This chapter focuses on the investigation of one-dimensional lattice systems

with heterogeneity, specifically the FPUT-α system featuring variability in the

nonlinear coupling terms. Observing the FPUT-α system at low energy reveals

that it closely resembles the Toda model [13]. However, when we depart from the

Toda model (increasing variability), the system’s behaviour is expected to diverge

from the integrable and recurrent characteristics of the Toda model. This chapter

provides an analytical and numerical investigation to validate this expectation.

Additionally, we explore the system’s chaotic behaviour by examining the effect of

varying the strength of variability.
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3.1 Variability in the FPUT-α lattices

Nelson et al. [57] numerically showed that the recurrences in the FPUT system

could be weakened if one introduced tolerances into each particle. Moreover,

the recurrences will disappear for large enough tolerance and the energy will be

localised. In their study, the tolerances are incorporated into the system in several

scenarios based on manufacturing constraints. Here, we study the case where the

variability is incorporated in the nonlinear terms only, therefore the equations of

motion become

ẍ j =(x j+1−x j)+ (x j−1−x j)

+α
(
(v j+1x j+1−v jx j)2

− (v jx j−v j−1x j−1)2
)
, (3.1)

for some random number v j. The variabilities or the tolerance values vi’s are

generated randomly from a Gaussian distribution. For τ% tolerance, the values

of vi are drawn from a Gaussian distribution with a mean of 1 and a standard

deviation of σ = 1/3× 0.01τ. Therefore, the values of vi lie within the interval

[1−0.01τ,1+0.01τ].

In Fig. 3.1 we show the first four modes of normal mode energy of N = 64

particles for four different tolerance, i.e. 0%, 1%, 5%, and 10%. We can observe

that tolerance has the effect of destroying the recurrence. We can notice a minor

drop in the second peak of E1 with a rather modest tolerance, namely 1%. As

tolerance increases, less energy returns to the first normal-mode and the system

distributes energy with more additional normal-modes. When we increase the
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tolerance, energy localisation occurs, and the energy is concentrated only on the

originally excited mode, i.e. the first normal-mode.
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Figure 3.1. The normal mode energy with (a) 0% tolerance, (b) 1% tolerance, (c) 5%
tolerance, and (d) 10% tolerance for N = 64 particles.

The equations of motion (3.1) in the normal mode coordinates follow as

Q̈QQ =DQQQ+A−1F̂FF(((QQQ))), (3.2)

for some nonlinear, vector-function F̂(Q) that depends on τ, which is different to

F(Q) in Eq. (2.44) in the absence of variability. The initial conditions then become

Q1(0) =
√

(N+1)/2, Qk(0) = 0, k = 2,3, . . . ,N, and Q̇k = 0, k = 1,2, . . . ,N.
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3.2 A two normal-mode system and bifurcation analy-

sis

The recurrences suggest that most of the normal mode coordinates are zero.

Therefore, we can approximate system (3.2) by considering only the first few

modes while taking all other modes equal to zero. Figure 3.2 shows the normal

mode energy obtained from the solutions of the equation of motion (3.2) using

different number of modes without variability (i.e. 0% tolerance) for N = 64

particles. Moreover, Figs. 3.3-3.4 show the normal mode energy of different

number of modes where the variability is incorporated in the equation of motion

(3.2). From Figs. 3.2-3.4, we can see that we can still observe the recurrences

and the breakdown when we increase the tolerance for the FPUT-α system even

if we only use a few modes. Therefore, we approximate Eq. (3.2) by taking

Qk(0) = 0, k = 3,4, . . . ,N and obtain the following system

Q̈1 = −ω
2
1Q1+ϵ

(
A1Q2

1+A2Q2
2+A3Q1Q2

)
, (3.3)

Q̈2 = −ω
2
2Q2+ϵ

(
B1Q2

1+B2Q2
2+B3Q1Q2

)
, (3.4)

where ω2 = 2ω1 + ϵ, ϵ≪ 1, Ai, Bi ∈ R, i = 1,2,3. In the next section, we solve

Eqs. (3.3)-(3.4) using multiple-time scale approximation [58]. It is worth noting

that the Poincaré-Lindstedt series has been employed to study the FPUT system

without disorder in [59]. We compare the multiple-time scale approximation

and the Poincaré-Lindstedt series method by solving the Duffing equation using

both methods in the Appendix. Our calculation indicates that both methods are
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Figure 3.2. The normal mode energy of system (3.2) for N = 64 particles with 0% tolerance
for (a) 2 modes, (b) 3 modes, (c) 4 modes, (d) 8 modes, (e) 16 modes, and (f) 32 modes.

equivalent. Therefore, we expect that both methods will give us the same result

when we apply to the disordered FPUT system.

3.2.1 Multiple-time scale approximation

Assume the approximate solutions to Eqs. (3.3)-(3.4) are given by the following

asymptotic series

Q1 = X0(t,T)+ϵX1(t,T)+ · · · ,

Q2 = Y0(t,T)+ϵY1(t,T)+ · · · ,

where T = ϵt is the slow time variable in multiple-time scale expansions [58]. Using

the chain rule, we have

dQ1

dt
=

(
∂X0

∂t
+
∂X0

∂T
dT
dt

)
+ϵ

(
∂X1

∂t
+
∂X1

∂T
dT
dt

)
,

=
∂X0

∂t
+ϵ

(
∂X0

∂T
+
∂X1

∂t

)
+O(ϵ2),
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Figure 3.3. The normal mode energy with 1% tolerance, 5% tolerance, and 10% tolerance
for (a)-(c) 2 modes, (d)-(f) 3 modes, and (g)-(i) 4 modes.
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Figure 3.4. The normal mode energy with 1% tolerance, 5% tolerance, and 10% tolerance
for (a)-(c) 8 modes, (d)-(f) 16 modes, and (g)-(i) 32 modes.
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Furthermore, differentiating with respect to t again gives

d2Q1

dt2 =
∂2X0

∂t2 +ϵ

(
2
∂2X0

∂T∂t
+
∂2X1

∂t2

)
+O(ϵ2). (3.5)

Following similar procedures, we also have

d2Q2

dt2 =
∂2Y0

∂t2 +ϵ

(
2
∂2Y0

∂T∂t
+
∂2Y1

∂t2

)
+O(ϵ2). (3.6)

Substituting Eqs. (3.5) and (3.6) into Eqs. (3.3) and (3.4) and collecting powers of ϵ

gives

∂2X0

∂t2 = −ω
2
1X0, (3.7)

∂2Y0

∂t2 = −ω
2
2Y0, (3.8)

2
∂2X0

∂T∂t
+
∂2X1

∂t2 = −ω
2
1X1+A1X2

0+A2Y2
0+A3X0Y0, (3.9)

2
∂2Y0

∂T∂t
+
∂2Y1

∂t2 = −ω
2
2Y1+B1X2

0+B2Y2
0+B3X0Y0. (3.10)

The general solutions to Eqs. (3.7) and (3.8) are given by

X0 = q1(T)eiω1t+ q∗1(T)e−iω1t, (3.11)

Y0 = q2(T)eiω2t+ q∗2(T)e−iω2t. (3.12)
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Using Eqs. (3.11) and (3.12) in Eq. (3.9), we have

2iω1eiω1t dq1

dT
−2iω1e−iω1t

dq∗1
dT
+
∂2X1

∂t2 = −ω
2
1X1

+A1

(
q1

2e2 iω1t+2q1q∗1+q1
∗2e−2 iω1t

)
+A2

(
q2

2e2 iω2t+2q2q∗2+q2
∗2e−2 iω2t

)
+A3

(
q1q2ei(ω1+ω2)t+q1q∗2ei(ω1−ω2)t+ q∗1q2e−i(ω1−ω2)t+ q∗1q∗2e−i(ω1+ω2)t

)
. (3.13)

Equation (3.13) will give solutions that grow in time, unless we set

2iω1
dq1

dT
= A3q∗1q2eiT. (3.14)

Similarly, substituting Eqs. (3.11) and (3.12) into Eq. (3.10) gives

2iω2eiω2t dq2

dT
−2iω2e−iω2t dq∗2

dT
+
∂2Y1

∂t2 = −ω
2
2Y1

+B1

(
q1

2e2 iω1t+2q1q∗1+q1
∗2e−2 iω1t

)
+B2

(
q2

2e2 iω2t+2q2q∗2+q2
∗2e−2 iω2t

)
+B3

(
q1q2ei(ω1+ω2)t+ q1q∗2ei(ω1−ω2)t+q∗1q2e−i(ω1−ω2)t+q∗1q∗2e−i(ω1+ω2)t

)
. (3.15)

Following similar procedures as above, Eq. (3.15) gives

2iω2
dq2

dT
= B1q2

1e−iT. (3.16)
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Expressing q1 and q2 in polar form as q1 = q1(T)eiT and q2 = q2(T)eiT, then

dq1

dT
=

dq1(T)
dT

eiT+ iq1(T)eiT, (3.17)

dq2

dT
=

dq2(T)
dT

eiT+ iq2(T)eiT. (3.18)

Using Eqs. (3.17) and (3.18) in Eqs. (3.14) and (3.16), we have the following system

i
dq1(T)

dT
= q1(T)+ Ãq∗1q2 (3.19)

i
dq2(T)

dT
= q2(T)+ B̃q2

1 (3.20)

where Ã = A3
2ω1

and B̃ = B
2ω2
. The initial conditions of Eqs. (3.19)-(3.20) are

q1(0) =
Q1(0)

2
, (3.21)

q2(0) = 0. (3.22)

We note that parameters Ã and B̃ depend on τ.

In Fig. 3.5, we plot these parameters as a function of τ for N = 64 particles

and 100 realisations. These realisations have been computed by fixing τ and then

opting for 100 sets of N = 64 randomly generated numbers from the Gaussian

distribution with mean 1 and standard deviation σ = 1/3×0.01τ. Therefore, the v js

in the 100 sets lie in the interval [1−0.01τ,1+0.01τ]. As we can see in panel (a), Ã is

positive for all τ, whereas B̃ changes sign at around τ = 10%. Particularly, B̃ starts

positive for small τ values before it becomes negative at around τ = 10%. By using

polynomial regression, we have been able to fit the mean of the 100 realisations

in panel (b) by the function B̃ ≈ −0.00893τ2
−0.000084τ+0.90728, with a sum of
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square errors (SSE) of 3.46×10−19. This allowed us to estimate with good accuracy

the threshold for the percentage of variability where B̃ changes sign and found to

be given by τc ≈ 10.0749% as B̃(τc) = 0. In Sec. 3.2.2, we show that when B̃ < 0, that

is for τ > τc, trajectories of Eqs. (2.39) may blow up in finite time.
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Figure 3.5. Plot of Ã (in panel (a)) and B̃ (in panel (b)) as a function of the tolerance
obtained numerically for N = 64. The dash-dotted curve is the mean value over 100
realisations of the same percentage of variability (see the discussion in the text), while the
lengths of the shaded regions are two standard deviations. Using a polynomial regression,
the mean is found to be given approximately by Ã ≈ 0.01739τ2

−0.00029τ+3.62805 and
B̃ ≈ −0.00893τ2

−0.000084τ+0.90728, where the sums of square errors are 2.14×10−15 and
3.46×10−19 in panels (a) and (b), respectively. Note the horizontal black dashed line at
B̃ = 0 from which τc is derived (see text for details).

A comparison of the dynamics of the normal modes Q1 and Q2 of Eqs. (3.3)-(3.4)

and those of the slow-time variables q1 and q2 of Eqs. (3.19)-(3.20) is shown in Fig.

3.6, where one can see that q j is an envelope of Q j for j = 1,2.

Next we explain the cause of localisation with the increase of the percentage of

variability τ. Note that from Eqs. (3.20), there can be transfer of energy from q1(t)

to q2(t) through the nonlinear coupling coefficient B̃. Panel (b) in Fig. 3.5 shows

that B̃ decreases from positive values with the increase of τ until τ = τc, after which

it becomes negative. When B̃ vanishes at τ = τc, there is no transfer of energy and

hence localisation. In the following, we will also show that when B̃ < 0, i.e., for

τ > τc, there might be unbounded trajectories that blow up in finite time.



3.2 A two normal-mode system and bifurcation analysis 64

0 2 4 6 8 10

Time 10
4

-6

-4

-2

0

2

4

6

(a)

0 0.5 1 1.5 2

Time 10
5

-6

-4

-2

0

2

4

6

(b)

Figure 3.6. Time evolution of the normal mode variables Q1 (blue curve) and Q2 (red
curve) with their envelopes q1 and q2 (black curves) from Eqs. (3.20) for τ = 0% in panel (a)
and τ = 10% in panel (b). Note that in both panels τ < τc, so trajectories do not blow up.

3.2.2 Equilibrium solutions

We start by analysing the standing wave solutions of the envelope equations (3.20).

To do so, it is convenient to write q1 and q2 in polar form q1 = r1eiϕ1 and q2 = r2e2iϕ2 ,

where r1 = |q1|, r2 = |q2|. Then, we define the new variables

P = r2
1+ r2

2, (3.23a)

∆ = r2
1− r2

2, (3.23b)

θ = ϕ2−ϕ1. (3.23c)

Differentiating Eqs. (3.23a)-(3.23c) gives

Ṗ = 2r1ṙ1+2r2ṙ2, (3.24a)

∆̇ = 2r1ṙ1−2r2ṙ2, (3.24b)

θ̇ = ϕ̇2− ϕ̇1. (3.24c)
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Moreover, using the product rule for differentiation, we obtain

q̇1 = ṙ1eiϕ1 + ir1ϕ̇1eiϕ1 , (3.25a)

q̇2 = ṙ2e2iϕ2 +2ir2ϕ̇2e2iϕ2 . (3.25b)

Substituting Eqs. (3.25) into Eqs. (3.19)-(3.20) yields

iṙ1− r1ϕ̇1 = r1+ Ãr1r2e2i(ϕ2−ϕ1), (3.26a)

iṙ2−2r2ϕ̇2 = r2+ B̃r2
1e−2i(ϕ2−ϕ1). (3.26b)

Collecting real and imaginary parts of Eqs. (3.26) and recalling θ in Eq. (3.23c),

we have

ṙ1 = Ãr1r2 sin(2θ), (3.27a)

ṙ2 = −B̃r2
2 sin(2θ), (3.27b)

θ̇1 = −1− Ãr2 cos(2θ), (3.27c)

θ̇2 = −
r2+ B̃r2

1 cos(2θ)

2r2
. (3.27d)

Substituting Eqs. (3.27) into Eqs. (3.24) and noting that

r1 =

√
P+∆

2
, (3.28a)

r2 =

√
P−∆

2
, (3.28b)
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we have the following system of first order differential equations (a similar

derivation can be seen in [60])

Ṗ =
Ã− B̃

Ã+ B̃
∆̇, (3.29a)

∆̇ =

√
2(P−∆)sin(2θ) (P+∆)

(
Ã+ B̃

)
2

, (3.29b)

θ̇ = −
2 Ãcos(2θ) (∆−P)+ B̃cos(2θ) (∆+P)−

√
2(P−∆)

2
√

2(P−∆)
. (3.29c)

From Eq. (3.29a), we define the constant of motion C as

C = P−
Ã− B̃

Ã+ B̃
∆.

First, we will study the stability of the equilibrium points of the reduced system

given in Eqs. (3.29b), (3.29c). Then we will discuss the stability of the equilibrium

points of its corresponding system in Eqs. (3.19)-(3.20). To study the reduced

system of Eqs. (3.29b), (3.29c), we restrict the phase difference θ in the interval

0 ≤ θ < π and obtain two equilibrium points, namely (θ j,∆ j), j = 1,2. The θ j

equilibria depend on Ã and B̃, and are given by

1. if Ã > 0 and B̃ > 0 or Ã < 0 and B̃ < 0, then θ1 = 0 and θ2 = π/2,

2. if Ã > 0 and B̃ < 0, then θ1 = θ2 = π/2, and

3. if Ã < 0 and B̃ > 0, then θ1 = θ2 = 0.

Furthermore, the ∆ j equilibrium points, for j = 1,2, are

∆ j =

(
6 Ã2C−3 ÃB̃C− (−1) j

√
1+6 Ã

(
Ã+ B̃

)
C−1

)(
Ã+ B̃

)
18Ã2B̃

. (3.30)
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Next, we study the stability of the equilibrium points, which is determined by

the eigenvalues of the Jacobian matrix of Eqs. (3.29b), (3.29c), evaluated at the

equilibrium points, i.e., by

λ
( j)
1,2 = ±

√
−3−18Ã2C−18ÃB̃C+6(−1) j

√
1+6 Ã

(
Ã+ B̃

)
C

3
. (3.31)

Equation (3.30) implies that the equilibrium points exist when

1+6 Ã
(
Ã+ B̃

)
C ≥ 0. (3.32)

Using the initial conditions in Eq. (3.21), Eq. (3.32) becomes

1+12ÃB̃r2
1 ≥ 0.

Therefore, the threshold for the existence of the equilibrium points is given by

1+12ÃB̃r2
1 = 0,

which is the blue curve in Fig. 3.7. The solid and dashed lines represent the curve

below and above the line Ã+ B̃ = 0, respectively. The black dashed line represents

the line Ã+ B̃ = 0.

When the equilibrium points exist, the eigenvalues given in Eq. (3.31) are either

real or purely imaginary, indicating that the equilibrium points are saddle nodes

or centres. Using the initial conditions in Eqs. (3.21), the thresholds that separate
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between real and purely imaginary eigenvalues are

1+12ÃB̃r2
1 = 0, (3.33)

1−4ÃB̃r2
1 = 0. (3.34)

We plot in Fig. 3.7, Eqs. (3.33) and (3.34) as blue and red curves, respectively.

System (3.29) with parameter values Ã and B̃ above the red curve in the first

quadrant or below the red curve in the third quadrant in Fig. 3.7 has two equilibria

given in Eq. (3.30), which are both centres, and are therefore stable. Conversely, if

both parameters lie between the two red curves, then one equilibrium is a centre

while the other is a saddle node.

Next, we will discuss the stability of the equilibrium points of Eqs. (3.19)-(3.20).

As this system can be transformed into Eqs. (3.29b) and (3.29c) in terms of ∆ and

θ, we utilise Eqs. (3.29b) and (3.29c) to describe the dynamics of Eqs. (3.19)-(3.20).

Equations (3.29) are obtained from Eqs. (3.19)-(3.20) by using Eqs. (3.23), where

both r1 and r2 are non-negative real numbers. Equations (3.29) require P−∆ > 0 in

order to have real solutions, whereas Eq. (3.23) requires P−∆ ≥ 0 and P+∆ ≥ 0,

otherwise r1 and r2 are complex numbers. The region that fulfils these two

inequalities is referred to as the well-defined region, and it is represented by the

shaded area in Fig. 3.7. For instance, the well-defined region in the first quadrant

is bounded. There are two equilibrium points in the region above the red curve,

while there is only one in the region below it. This means that Eqs. (3.19)-(3.20)

and (3.29) have two equilibrium points in the region above the red curve, whereas

they share only one equilibirum point in the region below it as ∆2 lies outside the
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shaded region. To determine the boundary for ∆ in the well-defined region, we

solve the inequalities P−∆ > 0 and P+∆ ≥ 0, which depend on Ã and B̃, as follows:

• if Ã−B̃
Ã+B̃
≥ 1, then ∆ >max

{
∆1

crit,∆
2
crit

}
, where

∆1
crit =

C
(
Ã+ B̃

)
2B̃

and ∆2
crit = −

C
(
Ã+ B̃

)
2Ã

,

• if −1 ≤ Ã−B̃
Ã+B̃
< 1, then ∆2

crit ≤ ∆ < ∆
1
crit, and

• If Ã−B̃
Ã+B̃
< −1, then ∆ <min

{
∆1

crit,∆
2
crit

}
.

All types of well-defined regions in (Ã,B̃)-plane are depicted in Fig. 3.7.
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Figure 3.7. Bifurcation diagram of the equilibrium points ∆1 and ∆2 and the regions
where the dynamics of system (3.29) is well-defined (see text for more details).
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System (3.29) with parameter values above the red curve in Fig. 3.7 is bounded,

with ∆1
crit and ∆2

crit being the upper and lower bounds, respectively. The two

equilibrium points given in Eq. (3.30) are both centres, and are therefore stable.

When the parameter values lie on the red curve, ∆2 = ∆
2
crit. Furthermore, if the

parameter values are below the red curve and B̃ > 0, system (3.29) is still bounded,

but it only shares one equilibrium point ∆1 with system (3.20), whereas ∆2 does not

belong to the well-defined region. Equation (3.29), on the other hand, is unbounded

when B̃ < 0. In this case, it either extends to ∆→∞ or −∞ and depending on the

value of Ã−B̃
Ã+B̃

, ∆1 can be a centre and ∆2 a saddle node in this region. Additionally,

the system has only one equilibrium point on the blue curve.

Based on the data shown Fig. 3.5, we have computed numerically the parameter

values for Eqs. (3.19)-(3.20). Our findings indicate that the values of Ã are

consistently positive, but B̃ can have either positive or negative values. Hence, Eqs.

(3.19)-(3.20) are restricted to the first and fourth quadrants in Fig. 3.7. Additionally,

we present the location of the equilibrium point (θ j,∆ j) and their nature in Fig. 3.7.

We also plot the values of ∆ j in Fig. 3.8. To better visualise ∆2 as it approaches

infinity when Ã or B̃ approaches zero, we plot in Fig. 3.8 (b) tanh(∆2/100) instead

of ∆2.

In the following, we illustrate the phase portrait of the reduced system of

Eqs. (3.29b), (3.29c) for different percentages of variability τ, which correspond

to different values of Ã and B̃. When there is no variability (i.e., for τ = 0%),

the parameter values are Ã = 3.63 and B̃ = 0.91 and the equilibrium points are

(θ1,∆1) = (0,5.09) and (θ2,∆2) = (π/2,4.34). Both are stable and the phase space

in this case is shown in Fig. 3.9(a). As we can see in panel (b) in Fig. 3.5, as τ
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Figure 3.8. Plot of (a) ∆1 and (b) tanh(∆2/100) as a function of Ã and B̃. In panel (a), the
color bar denotes the values of ∆1 and in panel (b), the values of tanh(∆2/100). The black
dashed, red and blue curves are discussed in the text and are the same with those in Fig.
3.7.

increases, B̃ decreases and becomes negative for τ > τc. The parameter values

for τ = 10% variability are Ã = 4.97 and B̃ = 0.05 and the equilibrium points are

(θ1,∆1) = (0,6.27) and (θ2,∆2) = (π/2,4.08). Similar to the previous case, both

equilibrium points are stable and the phase space is shown in Fig. 3.9(b). Note

that for the initial conditions (3.22), we have that

lim
B̃→0
∆1

crit = r2
1, lim

B̃→0
∆2

crit = 0,

which shows that ∆ becomes positive as we increase τ. Indeed, ∆ > 0 corresponds

to energy localisation as the magnitude of q1 remains larger than q2.

As we can see in Fig. 3.10 for τ ≈ 10.0833% > τc, B̃ is negative (B̃ = −0.0015) and

the region in the (∆,θ)-space becomes unbounded (see also Fig. 3.7). It extends to

either ∆→∞ or −∞ and depends on Ã. In this case, the two equilibrium points

are (θ1,∆1) = (π/2,9.1274), which is a (stable) center, and (θ2,∆2) = (π/2,15.4383),

which is a (unstable) saddle point. The plot shows that in this case, one may obtain

bounded solutions as well as unbounded ones, depending on the initial condition.
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(a) (b)

Figure 3.9. Phase portraits of the reduced system of Eqs. (3.29b), (3.29c) for (a) τ = 0%
percentage of variability and (b) τ = 10% percentage of variability.

For example, the initial condition of Eqs. (2.45) (or Eqs. (3.21), (3.22)) results in θ

and ∆ values in the unbounded region in Fig. 3.10, where the trajectory is shown

as the blue curve and starts at the bottom of the plot.
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Figure 3.10. The same as Fig. 3.9, where the parameter values are Ã = 5.3932 and
B̃ = −0.0015, which correspond to τ ≈ 10.0833% > τc. The blue curve is the trajectory of the
initial condition in Eqs. (3.21), (3.22).

3.3 Chaotic behaviour

Energy recurrences arise in the homogeneous FPUT lattice (2.38) when the system

remains in the quasi-stationary state for an extremely long time, making the
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approach to equipartition of energy unobservable. This state is characterised by

an energy concentration on low-frequency modes that appears to be stable for a

very long time [61]. In the quasi-stationary state, the FPUT lattice can be viewed

as the perturbation of the regular, integrable Toda lattice [62].

Here we study the effect of variability on the chaotic properties of system (3.1).

Particularly, we consider lattices of N = 4,8,16,32,64 particles in systems (2.38)

(homogeneous, no variability) and (3.1) (with variability) and use the mLE [32]

and SALI [34, 35] to discriminate between regular and chaotic dynamics. We want

to see if energy localisation in the first normal mode that we observed in Sec. 3.2

for τ = 10% < τc corresponds to chaotic dynamics, by increasing τ from 0 to 10%.

We utilise Algorithm 2 to calculate the mLE and Algorithm 3 to compute SALI.

These algorithms provide a systematic approach for obtaining these important

chaotic indicators, allowing us to analyse and quantify the dynamics of the system

under investigation.

First, we consider the case without variability, that is the FPUT−α system (2.38).

We integrate the equations of motion (2.39) and its corresponding variational

equations by using the tangent-map method [37] and Yoshida’s fourth order

symplectic integrator [26]. We have found that a time step of 0.01 keeps the relative

energy error below 10−9. In all our computations, the final integration time is

t = 108. Here, we use the same initial condition in Eq. (2.45) for all N. This initial

condition then results in different energies for different N, i.e., E = 0.4775 for N = 4,

E = 0.2714 for N = 8, E = 0.1447 for N = 16, E = 0.0747 for N = 32, and E = 0.0379

for N = 64. Our results in Fig. 3.11 show that all trajectories for N = 4,8,16,32,64

are regular up to t = 108, corroborated by the tendency of the mLEs to converge
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to zero following the 1/t law and SALI to tend to fixed positive values, shown in

panels (a) and (b), respectively. These results are in agreement with the fact that

energy recurrences in the homogeneous FPUT lattice (2.38) arise when it remains

in the quasi-stationary state for extremely long times, making the approach to

equipartition of energy unobservable.
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Figure 3.11. Plot of mLE (panel a)) and SALI (panel b)) in time for a range of N values
seen in the insets (denoted by different colours) in the absence of variability, i.e., of the
FPUT system (2.38). Note that all axes are logarithmic. The black dashed line in panel (a)
is the law 1/t of regular trajectories to guide the eye.

Finally, we look at the case of τ = 10% < τc, for which we have observed almost

energy localisation in the first normal mode in Sec. 3.2. Since in this case we

only know the equations of motion (3.1), we integrated them using the DOP853

integrator [36], an explicit Runge-Kutta method of order 8 due to Dormand and

Prince, to achieve good numerical accuracy. We compute the chaotic indicators

for 30 realisations of the same percentage of variability τ = 10%, while keeping

the initial conditions fixed for each number of particles N. For N = 4 and 8, all

trajectories in panels (a)-(d) in Fig. 3.12 appear to be regular up to final integration

time t= 108, corroborated by the tendency of the mLEs to converge to zero following

the 1/t law and SALI to tend to fixed positive values. However, for N = 16, two of

the 30 trajectories in panels (e), (f) in Fig. 3.13 are chaotic as their mLEs converge



3.3 Chaotic behaviour 75

to positive values at t = 108 and their SALI decrease to zero exponentially fast.

Figure 3.13 shows that there are more chaotic orbits than those for the smaller

values of N in Fig. 3.12. We show the percentage of chaotic trajectories (out of the

30 realisations) as a function of N in Fig. 3.14, where the increase from N = 4,8,16

to N = 32,64 is apparent. These results suggest that in the case of almost complete

energy localisation, variability promotes chaos in the system as the number of

particles increases. However, further studies are required to determine whether

the increase is monotone.
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Figure 3.12. Plot of mLE (panels (a), (c)) and SALI (panels (b), (d)) in time for 30 trajectories
(denoted by different colors) and τ = 10% (see Eq. (3.1)). Panels (a), (b) are for N = 4 and
panels (c), (d) for N = 8. Note that all axes are logarithmic. The black dashed lines in
panels (a), (c) are the law 1/t of regular trajectories to guide the eye.
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Figure 3.13. Plot of mLE (panels (a), (c), (e)) and SALI (panels (b), (d), (f)) in time for 30
trajectories (denoted by different colors) and τ = 10% (see Eq. (3.1)). Panels (a), (b) are
for N = 16, panels (c), (d) for N = 32 and panels (e), (f) for N = 64. Note that all axes are
logarithmic. The black dashed lines in panels (a), (c) are the law 1/t of regular trajectories
to guide the eye.
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Figure 3.14. Percentage of chaotic trajectories as a function of N for 30 realisations of
variability with τ = 10%. The black-dash line segments connect the black points and are
there to guide the eye.

3.4 Conclusions

In this chapter, we have studied a disordered FPUT-α system, considering vari-

ability in its parameters to account for inherent manufacturing processes. By

employing a two normal-mode approximation, we have successfully explained the

underlying mechanism behind energy localisation and the occurrence of solution

blow-ups when the percentage of variability surpasses a certain threshold, which

we have computed using the theory we developed.

Furthermore, we have delved into the impact of variability on the chaotic

behaviour of the system, quantifying it through the calculation of the mLE

and SALI. Through numerous realisations at the same percentage of variability

corresponding to energy localisation, we have observed that trajectories tend to

exhibit chaotic behaviour more frequently as the number of particles N increases,

provided the variability remains below the threshold.

Notably, we have not only confirmed the well-known result that variability

leads to energy-recurrence breakdown and energy localization studied in [57],
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but we have also made a significant new discovery. By systematically increasing

the percentage of variability beyond the threshold determined by our theory, we

have found that the system’s solutions may undergo finite-time blow-ups. This

intriguing phenomenon arises because we considered the equations of motion

without a Hamiltonian, which would otherwise ensure the system’s energy

conservation throughout the dynamics.

In the next chapter, we will delve into the investigation of the Hamiltonian

model with heterogeneity, which promises to unveil further insights into the

system’s behaviour.



Chapter 4

Hamiltonian FPUT-α lattices with

variability

In a nonintegrable Hamiltonian system, energy plays a crucial role in determining

the behaviour and dynamics of the system. The Hamiltonian, which represents

the total energy of the system, is a fundamental (conserved) quantity that governs

the system’s evolution.

The energy of a Hamiltonian system is typically composed of two components,

the kinetic energy and the potential energy. The kinetic energy is associated with

the system’s motion, while the potential energy captures the interactions and

forces within the system. One fundamental characteristic of Hamiltonian systems

is the conservation of energy. The total energy, given by the Hamiltonian, remains

constant throughout the system’s evolution unless there are external influences or

dissipation mechanisms.

Energy can be transferred between different degrees of freedom within the

system. For example, in a coupled oscillator system, energy can be exchanged

79
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between different oscillators, leading to phenomena such as resonances or energy

localisation [29]. Additionally, dissipation mechanisms, such as damping or

friction, can cause energy to gradually dissipate from the system, leading to

decreasing amplitude in time.

The energy level of a Hamiltonian system affects its trajectory in the phase

space. The phase space represents the set of all possible system states, and the

trajectory traces a path in this space as it evolves. Different energy levels can

result in distinct trajectories, exhibiting a range of behaviours such as periodic,

quasi-periodic, weakly chaotic, and chaotic.

In this chapter, our focus is on examining the disordered FPUT-α system, where

variability is introduced into the Hamiltonian function [57]. We are specifically

interested in understanding the impact of variability on the behaviour of the

system.

One aspect we explore is the lack of energy recurrence in the system as the

percentage of variability increases while maintaining a fixed energy level. Energy

recurrence refers to the phenomenon where a system returns to its initial energy

configuration after a certain period of time and we have seen it in Chapter 3. By

systematically increasing the percentage of variability in the system, we investigate

how this affects the occurrence of energy recurrence. This analysis provides

insights into how the introduction of variability disrupts the regular behaviour of

the system and influences its long-term energy dynamics.

Furthermore, we delve into the chaotic behaviour of the disordered FPUT-

α system. To quantify chaos, we employ the concept of mLE and SALI. By

calculating these chaotic indicators for varying degrees of variability in the system,
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we assess how the introduction of variability impacts the chaoticity in the system.

This examination allows us to understand how the system’s sensitivity to initial

conditions and its long-term predictability are affected by the presence of variability

in the Hamiltonian function. By conducting these investigations, we aim to gain a

comprehensive understanding of the disordered FPUT-α system with variability.

This is expected to contribute to the broader understanding of the effects of disorder

and variability on the behaviour of dynamical systems in general.

4.1 Variability in the FPUT-α Hamiltonian

The impact of disorder in the one-dimensional lattices system has been studied

in [63, 64]. In [63], the complex interplay between disorder and nonlinearity that

determines the heat conductivity of acoustic chains has been investigated. The

authors considered the FPUT-β chain of equal masses with disordered in the

harmonic spring constants and additional quartic anharmonicities in the spring

potential. They demonstrated that anharmonic disordered systems provide a

superior approach for investigating the processes of anomalous conductivity, while

also serving as more realistic models for experimental configurations. In [64], the

authors investigate how heat, in the form of waves, flows across disordered chains.

Unlike ideal chains, which allow heat to move freely, disorder can trap waves,

resulting in Anderson localisation [54] and no heat movement. Interestingly, when

the waves become nonlinear (interact in a specific way), the situation shifts. Their

calculations reveal that even with disorder, heat conduction is recovered, but the

amount of heat flow is substantially dependent on the temperature of the chain.

Heat flow increases rapidly at low temperatures, but grows more slowly at higher



4.1 Variability in the FPUT-α Hamiltonian 82

degrees. This phenomenon is related to the chaotic structure of nonlinear waves,

implying a complicated interaction between disorder and nonlinearity in affecting

heat transport.

Anderson localisation [54] is the occurrence of wave localisation in disordered

systems. In a highly organised crystalline arrangement, waves, such as those

linked to electrons in a solid, can propagate unhindered with minimal scattering.

Nevertheless, the introduction of disorder into the system, such as contaminants or

faults, might cause the waves to undergo localisation, resulting in their confinement

to certain regions rather than their uniform distribution across the material.

Anderson localisation arises when the level of disorder is sufficiently high to

impede the propagation of waves across extended distances. Consequently, the

waves become restricted to specific areas, resulting in a limited ability to transfer

particles or energy across the material.

In Chapter 3, we studied the system with variability where the equation of

motion are given by Eq. (3.1). Although it recovers the FPUT-α Hamiltonian

system in the absence of variability, the system with variability given by Eq. (3.1)

is not a Hamiltonian system. In this chapter, we consider the FPUT-αHamiltonian

system with variability whose Hamiltonian function is

H(x,p) =
1
2

N∑
j=0

p2
j

t j
+

N∑
j=0

1
2

(
t j+1x j+1− t jx j

)2
+
α
3

(
t j+1x j+1− t jx j

)3
= E (4.1)

with fixed boundary conditions x0 = xN+1 = 0 and p0 = 0. Here, the variabilities

t j are picked at random from a Gaussian distribution in the following way: for a

tolerance τ%, the values of t j were drawn from a Gaussian distribution with mean

1 and standard deviation σ = 1/3×0.01τ. As a result, the values of t j fall in the
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range [1−0.01τ,1+0.01τ]. The equations of motion follow as

ẋ j =
p j

t j

ṗ j = t j
(
t j−1x j−1−2t jx j+ t j+1x j+1

)
+αt j

(
(t j+1x j+1− t jx j)2

− (t jx j− t j−1x j−1)2
)

or, combining both in one, as

ẍ j =t j−1x j−1−2t jx j+ t j+1x j+1

+α
(
(t j+1x j+1− t jx j)2

− (t jx j− t j−1x j−1)2
)
. (4.2)

These can be written in matrix form as

ẍ = Sx+αF(x), (4.3)

where

ẍ =



ẍ1

ẍ2

ẍ3

...

ẍN


, x =



x1

x2

x3

...

xN


, S =



−2t1 t2 0 . . . 0

t1 −2t2 t3 0

...
. . .

...

0 . . . tN−2 −2tN−1 tN

0 0 tN−1 −2tN


,

and F is some nonlinear vector function. Let

V = [v1 v2 · · · vN] (4.4)
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denote a matrix where its columns are the eigenvectors of S with ∥vi∥ = 1,

i = 1, . . . ,N and the corresponding eigenvalues λ1,λ2, · · · ,λN. For convenience, let

λk = −ω̂
2
k , k = 1, . . . ,N. (4.5)

Note that t j = 1 for all j in the FPUT-α system without variability, so S becomes a

tridiagonal matrix. In this case, V is similar to A and λk = −ω
2
k ,k = 1, . . . ,N, given

in Eq. (2.43)[20].

Introducing the (linear) normal-modes transformation

x =MQ, (4.6a)

p′ =MP, (4.6b)

where p′j = p j/t j, M = kV, and k = cω̂1/
√

2E for some constant c ∈R, the equation

of motion (4.3) becomes

Q̈ =DQ+αM−1F̂(Q), (4.7)

where D is a diagonal matrix with the diagonal entries given by the eigenvalues of

S and F̂ is a nonlinear vector function. Similarly to the approach in Chapter 3, the

energy of normal mode k is defined as

Ek =
1
2

(
P2

k + ω̂
2
kQ2

k

)
, (4.8)

where ω̂k is given by Eq. (4.5).
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Next, we investigate the influence of variability on the evolution of the normal-

mode energy (4.8) at a fixed energy level. In the same spirit as the original FPUT-α

experiment, we choose initial conditions in the physical space such that only the

lowest normal-mode is excited. The initial energy employed in our computations

is equal to the initial energy of the original FPUT-α system in Eq. (2.38) under the

initial conditions (2.45) for each number of particle N. Then, the initial conditions

of Eq. (4.2) are chosen by finding a constant c ∈R such that

x(0) = cv1, p(0) = 0, (4.9)

satisfy Eq. (4.1) for a fixed energy E. In this context, v1 refers to the first column of

matrix V defined in Eq. (4.4). We note that in the normal-mode space, the initial

conditions read as

Q1(0) =

√
2E
ω̂1
, Qk(0) = 0,k = 2, . . . ,N, P j(0) = 0, j = 1, . . . ,N. (4.10)

The time evolution of the solutions to system (4.2) with initial conditions (4.9)

and its associated normal mode energy Ek of the first four modes for N = 32

particles and three different percentages of tolerance, namely τ = 5%,τ = 50% and

τ = 95%, are shown in Fig. 4.1. The initial energy of the system is E = 0.07471,

which is similar to the initial energy in Fig. 2.5. Comparing panel (b) in Fig. 2.5

with panels (b), (d), (f) in Figs. 4.1, we can see that the recurrence is weakening due

to the effect of variability, as evidenced by the declining peak of the mode energy

E1. Then as the variability increases, it becomes more difficult to transmit energy

from the lowest to the higher modes, resulting in the localisation of energy, shown
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Figure 4.1. Dynamics of x j(t) with its corresponding normal-mode energy in time for the
system in Eq. (4.2) using the initial condition in Eq. (4.9) for N = 32. Panels (a) and (b) are
for τ = 5% tolerance, panels (c) and (d) for τ = 50% and panels (e) and (f) for τ = 95%. The
colour bars in panels (a), (c), (e) denote the peak of the oscillation envelope of x j(t) in time.
Note that the ranges in the vertical axes in panels (a), (c), (e) are from 1 to N = 32.
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Figure 4.2. The harmonic energy for N = 32 with (a) 0% (b) 10% (c) 20% (d) 30% (e) 40%
(f) 50% (g) 60% (h) 70% (i) 80% tolerance.

in panels (d) and (f) in Fig. 4.1. We also provide the evolution of normal mode

energy for N = 32 and N = 64 with several difference tolerances in Figs. 4.2-4.3.

Moreover, the corresponding eigenvectors and eigenvalues from Eqs. (4.4)-(4.5)

are shown in Figs. 4.4-4.5.

In the next section, we will explain why the energy exchange across modes

decreases as the percentage of variability grows. As a result, energy localisation

takes place in the energy-mode space. The plots of normal-mode energies show

that in the event of energy localisation, the majority of the mode coordinates

vanish in time. Thus, rather than working in the real (physical) space, it will give a

great advantage if we work in the normal-mode coordinate system given in Eq.
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Figure 4.3. The harmonic energy for N = 64 with (a) 0% (b) 10% (c) 20% (d) 30% (e) 40%
(f) 50% (g) 60% (h) 70% (i) 80% tolerance.
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Figure 4.4. The eigenvectors and the corresponding eigenvalues of Fig. 4.2 for N = 32
with (a) 0% (b) 10% (c) 20% (d) 30% (e) 40% (f) 50% (g) 60% (h) 70% (i) 80% tolerance
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Figure 4.5. The eigenvectors and the corresponding eigenvalues of Fig. 4.3 for N = 64
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(4.7), as we can approximate system (4.7) by taking only the first few modes into

account. We present in Fig. 4.6 the normal-mode energy from the approximation

of Eq. (4.7) using only 2, 4, and 8 normal modes, while all other modes are fixed

at 0, and different percentages of variability to demonstrate numerically that this

approximation can be justified.

In terms of recurrence period, we can observe in Fig. 4.6 that using 4 and 8

modes produces dynamics that are nearly identical to those seen in Fig. 2.5 in the

absence of variability. We can detect energy recurrence and localisation even with

2 modes as the percentage of variability grows. We can see from panels (d) and

(f) in Fig. 4.1 and panels (g) and (j) in Fig. 4.6 that a two normal-mode system

yields an adequate approximation to Eq. (4.7). Therefore, we will look at these

two normal-mode approximations in the following section.

4.2 Two normal-mode system

The majority of high-order modes are negligible when energy localisation takes

place as illustrated in Fig. 4.1. Therefore, similar to Sec. 3.2, we set all high-order

normal-modes to zero, except the first two, in order to obtain a two normal-mode

system. In particular, we set Qk(t) = 0 for k = 3,4, . . . ,N in Eq. (4.7). This gives us

the following system

Q̈1 = −ω̂
2
1Q1+ϵ

(
A1Q2

1+A2Q2
2+A3Q1Q2

)
, (4.11a)

Q̈2 = −ω̂
2
2Q2+ϵ

(
B1Q2

1+B2Q2
2+B3Q1Q2

)
, (4.11b)

where Ai, Bi ∈R, i = 1,2,3 and ω̂k is given in Eq. (4.5).
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Figure 4.6. The evolution of normal-mode energy as obtained from integrating Equation
(4.7) using different numbers of normal modes. In panels (a), (d), (g), and (j), only two
normal modes are used, in panels (b), (e), (h), and (k), four modes are used, and in panels
(c), (f), (i), and (l), eight modes are used. Each row represents different tolerance, i.e. 0%
((a)-(c)), 5% ((d)-(f)), 50% ((g)-(i)), and 95% ((j)-(l)). The first four modes, except for the
two modes system, are plotted in all panels, but they are only activated for 0% and 5%
tolerance in panels (a) and (f). For 95% tolerance, all modes except the first are essentially
0.
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In [65, 66], the authors studied the localisation property of FPUT lattices in

normal-mode space (or q-space). They found that time-periodic states can be

exponentially localised in q-space. These time-periodic solutions, called q-breathers,

are obtained by continuing the simple harmonic motion exhibited by the q-th

normal-mode in the uncoupled case. For small values of the coupling parameters

or the initial energy, the distribution of energy in q-space remains localised in

only a few modes. Therefore, the variability in FPUT lattices leads to q-breathers

because the energy remains localised in q-space.

Furthermore, the authors in [59, 67] expand the idea of q-breathers by con-

sidering classes of special solutions lying on tori of any low dimension s, that is

solutions with s independent frequencies, representing the continuation of motions

resulting from exciting s modes of the uncoupled case. Such tori are referred to as

q-tori. For N = 32, it has been reported in [67] that the original FPUT system lies

on a 5-dimensional torus.

The Poincaré-Lindstedt method has been employed to derive such solutions on

q-tori. According to this approach, the incommensurable frequencies, indicative of

the q-tori’s dimension, are considered as minor corrections to the normal mode

frequencies, as outlined in [59]. These corrected frequencies are subsequently

validated through numerical verification using the GALI method [68]. In this

context, we can interpret our two-normal-mode system in Eq. (4.11) as a two-

frequency solution that lies on a two-dimensional torus.

In the following, we employ the multiple-time scale expansion approach to

provide approximations for the solutions of Eq. (4.11). This approach serves as a
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tool to explain the energy localisation mechanism as we increase the percentage of

variability.

4.2.1 Multiple-time scale approximation

We consider the following asymptotic series

Q1 = X0(t,T)+ϵX1(t,T)+ . . . , (4.12a)

Q2 = Y0(t,T)+ϵY1(t,T)+ . . . , (4.12b)

where ω̂2 = 2ω̂1 + ϵ, |ϵ| ≪ 1, and T = ϵt is a slow-time variable to approximate

the solutions of Eq. (4.11). Following similar procedures as in Sec. 3.2.1, the

leading-order approximation to Eqs. (4.12) are given by

X0 = q1(T)eiω̂1t+q∗1(T)e−iω̂1t, Y0 = q2(T)eiω̂2t+ q∗2(T)e−iω̂2t, (4.13)

where q1(T) and q2(T) satisfy the following system of ordinary differential equations:

i
dq1(T)

dT
= q1(T)+ Ãq∗1q2, (4.14a)

i
dq2(T)

dT
= q2(T)+ B̃q2

1, (4.14b)

Here, Ã = A3/(2ω̂1) and B̃ = B1/(2ω̂2). Recalling Eqs. (4.10), the initial conditions

of system (4.14) are

q1(0) =
Q1(0)

2
, q2(0) = 0. (4.15)
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Our numerical computations show that both Ã and B̃ in Eq. (4.14), which are a

function of τ, are either positive or negative for fixed τ. However, Eq. (4.14) is

invariant when Ã and B̃ have the same sign, as we can use the transformation

q̂2 = −q2. Therefore, we plot these parameters when both Ã and B̃ are positive

only as a function of τ for N = 32 particles and 100 realisations in Fig. 4.7. These

realisations have been computed by fixing τ and opting for 100 sets of N = 32

randomly generated numbers from the Gaussian distribution with mean 1 and

standard deviation σ = 1/3×0.01τ. Thus, the t js in the 100 sets lie in the interval

[1−0.01τ,1+0.01τ].
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Figure 4.7. The parameter values Ã and B̃ as a function of τ obtained numerically for
N = 32. The solid black curve is the parameter mean over 100 sets of variability at the
same percentage, and the upper and lower black dashed curves are their maximum and
minimum values, respectively. Note the logarithmic axis on the vertical axis and both Ã
and B̃ are always positive (see discussion in the text).

We compare the dynamics of the normal modes Q1 and Q2 of Eq. (4.11) and its

slow-time variable approximations q1 and q2 of Eqs. (4.14) in Fig. 4.8, where it can

be shown that q j is an envelope of Q j for j = 1,2.

Next we describe the mechanism of energy localisation when the percentage of

variability τ increases. It is worth noting that as q2(0) = 0, the energy transmission

from q1(t) to q2(t) is made possible due to the nonlinear coupling coefficient B̃.
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Figure 4.8. Evolution of the normal-mode variables Q1 (blue curve) and Q2 (red curve) in
time with their envelopes q1 and q2 (black curves) from Eqs. (4.14) for τ = 0% in panel (a)
and τ = 50% in panel (b).

Therefore, we will analyse the role of B̃ in the localisation of energy as we increase

τ.

4.2.2 Equilibrium solutions

Since Eq. (4.14) is identical to Eqs. (3.19)-(3.20), we follow the same method as in

Section 3.2.2 to analyse the equilibrium solutions. The bifurcation diagram is once

more illustrated in Figs. 3.7 or 4.9, while the equilibrium points ∆ j, j = 1,2 are

plotted in Fig. 4.10. Similar to Fig. 3.8, we represent in Fig. 4.10 (b) tanh(∆2/100) in

place of ∆2 to effectively demonstrate the behaviour of ∆2 as it approaches infinity

when either Ã or B̃ approach zero.

According to Fig. 4.7, we have obtained numerically the parameter values for

Eq. (4.14) and have found that they are either both positive or negative. Therefore,

this equation can only occupy the first and third quadrants in Fig. 4.9. If both

paramater values are positive (negative), then for a small percentage of variability
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Figure 4.10. The colour plot of ∆1 (in panel (a)) and tanh(∆2/100) (in panel (b)) as a
function of Ã and B̃. Note that the red, black dashed, and blue curves are the same curves
with those in Fig. 4.9.
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both of them will be located above (below) the red curve in Fig. 4.9. In this

case, Eq. (4.14) will have two equilibrium points where both of them are centres,

hence stable. Upon increasing the percentage of variability further, both parameter

values are decreasing and at some percentage, they cross the red curve. In this

case, Eq. (4.14) will only have one stable equilibrium point, which is a centre. The

phase space for these two different cases are shown in Fig. 4.11. For τ = 0% or in

the absence of variability, the parameter values are Ã = 2.58 and B̃ = 0.65. The two

stable equilibrium points are (θ1,∆1) = (0,2.74) and (θ2,∆2) = (π/2,1.98), which are

shown in Fig. 4.11a. For τ = 50%, the parameter values are Ã = 0.13 and B̃ = 0.03.

The stable equilibrium point is (θ1,∆1) = (0,4.16), which is shown in Fig. 4.11b. We

can also determine the boundary of the well-defined region as

lim
B̃→0
∆1

crit = r2
1, lim

B̃→0
∆2

crit = 0, (4.16)

where we have used the initial conditions (4.15) in the computations of the two

limits. Equation (4.16) implies that ∆ in the well-defined region is positive definite

as B̃→ 0. Recalling Eq. (3.23b), we conclude that ∆ > 0 corresponds to energy

localisation as the magnitude of q1 is always greater than q2.

4.3 Chaotic indicators

The FPUT-α system can be viewed as as a truncation of the regular, integrable

Toda system [69]. As a result, the non-integrable FPUT-α system acts similarly

to the integrable Toda system for a period of time before exhibiting the expected

non-integrable system behaviour [70]. The length of this period, also known as
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Figure 4.11. Phase portraits of the (∆,θ) system given by Eqs. (3.29b), (3.29c) for τ = 0%
in panel (a) and τ = 50% in panel (b).

the lifetime of the metastable state, depends on the energy E and the number

of particles N [12]. For a small initial energy, the FPUT-α system persists in the

metastable state for a long time, causing energy thermalisation to be difficult to

observe.

It has been shown in [12] that the lifetime of the metastable state tm follows

the scaling law tm = 0.023× (Eα2)−4.9. Therefore, we expect to observe the regular

dynamics of the FPUT-α system (2.38) for t ≤ tm. At the same energy level, we also

study the system (4.1) and see how variability affects the chaotic properties of

this system. Particularly, we look at lattices of N = 4,8,16,32 particles in systems

(4.1) and utilise the mLE [32] and SALI [34, 35] to distinguish between regular and

chaotic dynamics. We employ Algorithm 2 to calculate the mLE and Algorithm 3

to compute SALI.

For each number of particles N, the initial conditions are given in Eq. (4.9),

where the initial energy is similar to that in the case without variability which has

been studied in Chapter (3.3). We compute the mLE and SALI for 40 realisations
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of variability for τ = 5%, 50%, and 95%. The corresponding plots are shown in

Figs. 4.12 and 4.13.

For N = 4, all trajectories with τ = 5%, 50%, and 95% in panels (a)-(c) of Figs.

4.12 seem to be regular up to the final integration time t = 108, which is shown by

the mLEs’ tendency to converge to zero following the 1/t law. We observe similar

behaviour for N = 8 and a tolerance level of τ = 5%. However, when the tolerance

level increases to 50% and 95%, we observe three and four chaotic trajectories,

respectively. This is evident from the tendency of the mLE to converge to positive

values for these trajectories, as shown in Figs. 4.12(d)-(f). Additionally, SALI

exhibits a sudden decrease to very small values, further indicating the chaotic

behaviour of these trajectories, as depicted in Figs. 4.13(a)-(c).

The number of chaotic trajectories increases significantly for N = 16 and 32.

The percentage of chaotic trajectories (out of 40 realisations) as a function of

N is illustrated in Fig. 4.14, where the increase is evident for τ = 5% and 50%.

Nevertheless, when τ = 95%, the proportion of chaotic trajectories only increases

for N = 4,8,16, and then decreases for N = 32. These results imply that a small

percentage of tolerance has less effect on chaotic behaviour than a bigger percentage

for small N, and this trend is reversed as N increases.

Now we want to study how energy localisation relates to the chaotic character

of its trajectory. In the absence of variability, the appearance of super recurrence

when we integrate Eq. (2.39) for a long time has been reported in [10, 11, 71, 72].

Therefore, the energy recurrence is an attribute of a regular trajectory according to

Fig. 3.11. In the case with variability, system (4.1) contains chaotic and regular

trajectories, which depend on N and τ. We find that either energy recurrence or



4.3 Chaotic indicators 101

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(a)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(b)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(c)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(d)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(e)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(f)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(g)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(h)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(i)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(j)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(k)

10
1

10
4

10
8

10
-15

10
-10

10
-5

10
0

(l)

Figure 4.12. Plot of the maximum Lyapunov exponent for 40 trajectories with N = 4 in
panels (a)-(c), N = 8 in panels (d)-(f), N = 16 in panels (g)-(i), and N = 32 in panels (j)-(l).
The tolerance is 5% in panels (a), (d), (g), (j), 50% in panels (b), (e), (h), (k), and 95% in
panels (c), (f), (i), (l).
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Figure 4.13. Plot of the SALI for 40 trajectories with N = 8 in panels (a)-(c), N = 16 in
panels (d)-(f), N = 32 in panels (g)-(i). The tolerance is 5% in panels (a), (d), (g), 50% in
panels (b), (e), (h), and 95% in panels (c), (f), (i).
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Figure 4.14. Percentage of chaotic trajectories as a function of N for 40 realisations of
variability with 5%,50%, and 95% tolerance. The black-dash line segments connect the
black points and are there to guide the eye.
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energy localisation takes place when the trajectory is regular. In contrast, chaotic

trajectory corresponds to the thermalisation of energy. In Fig. 4.15, we illustrate a

particular instance of mLE and its corresponding normal mode energy for N = 16

and τ = 5%, 50%,95% resulting from regular and chaotic trajectories. We use a

similar initial energy as in Fig. 3.10, i.e. E = 0.1447.

The super recurrence can be seen in panel (b) in Fig. 4.15 with period of about

7×107, while panel (d) shows the localisation of energy in the first few normal

modes. This localisation is getting stronger (no energy is transferred to other

normal modes) if we consider the regular trajectory with higher percentage of

tolerance τ. Furthermore, the thermalisation of energy as a consequence of chaotic

trajectories is shown in panel (f) in Fig. 4.15, where the energy is shared among all

normal modes.

4.4 Conclusions

In this chapter, we focused on the disordered FPUT-α system with variability at

a fixed energy level. To understand the phenomenon of energy localisation as

the percentage of variability increases, we have employed a two normal-mode

approximation technique, which has been solved using multiple-scale expansion

methods. Through this approach, we have successfully explained the underlying

mechanism behind energy localisation in the system. Additionally, this two normal-

mode system can be viewed as the two-frequency solution on q-tori because it has

two incommensurable frequencies.

Furthermore, we have investigated the influence of variability on the chaotic

behaviour of the system by calculating the maximum Lyapunov exponent and
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Figure 4.15. The maximum Lyapunov exponent (mLE) and its corresponding normal
mode energy for N = 16 and tolerance τ = 5% in panels (a)-(b), τ = 50% in panels (c)-(d),
and τ = 95% in panels (e)-(f). We plot all normal mode energy Ek, k = 1, . . . ,16 in panels (b),
(d), (f).
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the Smaller Alignment Index for many realisations at the same percentage of

variability. Our findings reveal interesting patterns. For tolerance levels of 5% and

50%, the likelihood of observing chaotic trajectories increases as the number of

particles N is increased. However, at a tolerance level of 95%, the percentage of

chaotic trajectories exhibits a growth trend for N = 4,8,16, but a slight decline for

N = 32. This suggests a complex relationship between the number of particles, the

tolerance level, and the occurrence of chaotic behaviour.

Moreover, we have explored the connection between energy localisation

and the chaotic nature of the trajectories of the system. Our analysis indicates

that when the trajectory exhibits regular behaviour, it can either lead to energy

recurrence or energy localisation. In contrast, a chaotic trajectory tends to result in

energy thermalisation, implying a more random distribution of energy among the

components of the system.



Chapter 5

Analysing chaos in the standard map

using q-statistics

In the previous two chapters, we have studied the chaotic behaviour of dynam-

ical system by computing two chaotic indicators, namely maximum Lyapunov

exponent and smaller alignment index (SALI). Another way to study the chaotic

behaviour is by considering a probability distribution function (PDF) which can

be derived from the system’s trajectories. This PDF is then analysed by using

q-statistics which has been subject to intense research [44, 73–76].

The statistical characterisation of dynamical systems is based on the analysis

of the distribution of a statistical variable derived from their trajectories. In the

case of chaotic systems, the probability distribution function (PDF) of this variable

tends to a Gaussian distribution, indicating a chaotic behaviour. On the other

hand, systems can also display PDFs that can be approximated by a q-Gaussian

distribution, which signifies a certain level of regularity and determinism.

106



5.1 Dynamics of the standard map 107

In the context of the standard map, previous studies [18, 43] have demonstrated

that the PDF of the system depends on the initial conditions. When the initial con-

ditions are chosen randomly from the chaotic sea in the phase space, the resulting

distribution can be well fitted by a Gaussian. However, if the initial conditions

are randomly selected from the stability island, the distribution converges to a

q-Gaussian.

This chapter focuses on analysing the probability distribution of trajectories

of the standard map for different parameter values, specifically exploring both

chaotic and regular cases. Our goal is to obtain the parameters that best fit the PDFs

by solving a multi-objective optimisation problem. To achieve this, we employ

a genetic algorithm approach, which allows us to determine the optimal set of

parameters for the q-Gaussian distribution that accurately describes the numerical

data obtained from the standard map trajectories.

5.1 Dynamics of the standard map

We consider the standard map, which is defined by

pi+1 = pi−K sinxi (5.1a)

xi+1 = xi+pi+1 (5.1b)

where pi and xi are taken modulo 2π. This is a one parameter map with parameter

K and can exhibit chaotic behaviour for a wide range of parameter values. The

phase spaces of this map for four typical values of K are shown in Fig. 5.1. All black

regions are the areas in the phase space that are occupied by chaotic trajectories.
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(a) (b)

(c) (d)

Figure 5.1. Phase portraits of the standard map for (a) K = 0.2, (b) K = 0.6, (c) K = 2, (d)
K = 10. As K increases, chaos prevails.

These areas are getting bigger as we increase K. Moreover, Fig. 5.2 shows the

corresponding mLE when the initial conditions for Eq. (5.1) are taken from the

phase space. In addition, we also plot SALI for the same initial conditions in Fig.

5.3.

Next, we study the stability of the fixed points of the standard map. The fixed

points are given by

pi = pi−K sinxi

xi = xi+pi
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Figure 5.2. Maximum Lyapunov exponents of the phase portrait of the standard map for
(a) K = 0.2, (b) K = 0.6, (c) K = 2, (d) K = 10. In each case, the mLEs are calculated for 106

initial conditions which are evenly distributed on the whole phase space and each initial
condition is iterated 107 times. The colour bar represents the value of the mLE associated
with a trajectory originating from the initial conditions (x,p).
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Figure 5.3. SALI plots of the phase portrait of the standard map for (a) K = 0.2, (b) K = 0.6,
(c) K = 2, (d) K = 10. In each case, the SALIs are calculated for 106 initial conditions and
each initial condition is iterated 500 times. The colour bar represents the value of SALI
associated with a trajectory originating from the initial conditions (x,p).
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which yield the set of simultaneous equations

sin(xi) = 0,

pi = 0 mod 2π.

Therefore, the fixed points are given by

x∗ = nπ, (5.2)

p∗ = 2mπ, (5.3)

where n,m ∈Z.

The Jacobian matrix of the standard map, evaluated at the fixed points (x∗,p∗)

given by the Eqs. (5.2)-(5.3), is

J =


∂xi+1
∂xi

∂xi+1
∂pi

∂pi+1
∂xi

∂pi+1
∂pi

 =

1−K cosx∗ 1

−K cosx∗ 1

 .

Note that det(J) = 1 and tr(J) = 2−K cosx∗ = 2−K(−1)n,where n ∈Z. The eigenval-

ues of matrix J are given by

λ1,2 =
tr(J)

2
±

√
tr(J)2

4
−det(J). (5.4)

From Eq. (5.4), the eigenvalues are real when tr(J)≤−2 or tr(J)≥ 2, and are complex

otherwise. If n is odd and K > 0, then tr(J) = 2+K > 2, so both eigenvalues are real

with |λ1| > 1 and |λ2| < 1. Hence, the fixed points are unstable [77, 78]. If n is even,
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then tr(J) = 2−K, so the fixed points are stable for 0 ≤ K ≤ 4 (complex eigenvalues

with
∣∣∣λ1,2

∣∣∣ ≤ 1) and unstable for K > 4 (real eigenvalues with |λ1| > 1 and |λ2| < 1).

5.2 Gaussian and q-Gaussian distributions

The Gaussian distribution function is given by

G(x) = G(0)e−bx2
(5.5)

for some parameter b ∈R. If we use the transformation x̃ = xG(0), G̃(x̃) =G(x)/G(0),

and b̃ = b/G(0)2, the Gaussian distribution in Eq. (5.5) can be written as

G̃(x̃) = e−̃bx̃2
. (5.6)

This transformation has the effect to normalise the Gaussian distribution function

so that G̃(0) = 1. Solving

∫
∞

−∞

G̃(x̃)dx̃ = 1,

we obtain b̃ = π. Therefore, the Gaussian distribution in Eq. (5.6) is characterised

by the parameter value b̃ = π.

Next, the q-Gaussian distribution function in general form is given by

Gq(x) = aexpq(−bqx2)
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where

expq(x) = (1+ (1− q)x)1/(1−q).

Using the same transformation as before, we have x̃ = xGq(0), G̃(x̃) = Gq(x)/Gq(0),

and obtain

G̃q(x̃) = expq

(
−̃bx̃2

)
. (5.7)

Equation (5.7) is equivalent to

G̃q(x̃) = (1− (1− q)bqx2)1/(1−q). (5.8)

Note that the distribution in Eq. (5.8) converges to a Gaussian distribution (5.6) in

the limit of q→ 1.

5.3 Probability distribution function of the standard

map orbits

In this section, we explain the procedure to obtain the numerical probability

distribution function (PDF) of a variable which is generated from the orbits of the

standard map for a particular parameter K. The numerical PDF will be used to

characterise the chaotic behaviour of the map.

To begin with, we choose randomly the initial condition x( j)
0 , for j = 1,2, . . . ,M.

All these initial conditions are then iterated up to N number of iterations, and we
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define the random variables X j as

X j =

N∑
i=1

(x( j)
i −⟨x⟩), j = 1,2, · · · ,M, (5.9)

where M is the number of randomly chosen initial conditions. ⟨x⟩ denotes the

average over M and N, and is given by

⟨x⟩ =
1
M

1
N

M∑
j=1

N∑
i=1

x( j)
i .

To generate the numerical PDF, we first create the histogram of the random

variables X j where each bin in the histogram represents the relative probability.

Then, we create a curve which serves as a numerical PDF of X j. We present the

Matlab function to create this numerical PDF in Algorithm 5.1, where the inputs to

the function are the random variables X j and the desired bin width. It is important

to note that the resulting histogram has been normalised so that it is symmetric

about the y-axis and centred at zero.

1 function [x,y]=pdf_binedges(y,binwidth)

2 left_edges=[-binwidth/2:-binwidth:min(y)-binwidth];

3 right_edges=[binwidth/2:binwidth:max(y)+binwidth];

4 binedges=[fliplr(left_edges) right_edges];

5 h=histogram(y,'Normalization','pdf','BinEdges',binedges);

6 x=(h.BinEdges(1:end-1)+h.BinEdges(2:end))/2*max(h.Values);

7 y=h.Values/max(h.Values);

8 end

Algorithm 5.1: Matlab code for generating a normalised PDF.
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Figure 5.4. The normalised probability distribution function of the variable X j for three
different bin widths, namely for 10 (blue curve), 100 (red curve), and 500 (yellow curve).
In all curves, P(0) is set to be the height of the central bin which include 0.

To compute the PDF, we must carefully determine the bin width, as different

bin widths will result in distinct PDF. Figure 5.4 illustrates the normalised PDF

of X j with various bin width, which has been constructed by using the Matlab

code in Algorithm 5.1. In this case, we take the map parameter K = 0 and choose

randomly 108 initial conditions that are iterated 222 times. The severe fluctuation

on both tails of the PDF is due to the fact that we can only consider a finite number

of initial conditions N. These tails will become smoother as N increases. Therefore,

we must limit our domain to an interval in which the PDF does not contain highly

fluctuated tails. We show the PDF in a shorter interval in Fig. 5.5.

The probability distribution function of X j for several K values has been studied

in [18]. The authors chose the value of K to accommodate the fact that the phase

plane contains both regular and chaotic orbits, as illustrated in Figs. 5.2-5.3. The

authors obtained the same q value for the q-Gaussian distribution when they fitted



5.3 Probability distribution function of the standard map orbits 116

-150 -100 -50 0 50 100 150

10
-8

10
-6

10
-4

10
-2

10
0

10

100

500

Figure 5.5. The normalised probability distribution function of the variable X j, similar to
that shown in Fig. 5.4 but for a smaller interval.

the numerical PDF with its corresponding distribution, which is q ≈ 1.935. In

their study, they observed the numerical PDF is either a Gaussian, a q-Gaussian,

or a mixed PDF which is a linear combination of a Gaussian and a q-Gaussian

distribution. We reproduce the results in their paper in Figs. 5.6-5.7 by using the

same number of trajectories and also plot its corresponding distribution using the

obtained distribution parameters. We choose the bin width appropriately to align

with the distribution function.

The process of fitting the numerical PDF with its appropriate distribution is

described in the following section. We will focus on the case where the numerical

PDF is well approximated by the Gaussian in the chaotic case and the q-Gaussian

in the regular and weakly chaotic cases.
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Figure 5.6. Numerical PDF (blue curve) and a q-Gaussian distribution (black curve) for
K = 0.2 (panel (a)) and K = 2 (panel (b)), where the initial conditions are taken from a
stability island only. The number of initial conditions are 4×107 and 107 in panel (a) and
(b), respectively. In both cases, the map is iterated 222 times. The q-Gaussian distribution
is given in Eq. (5.8) with parameter values q = 1.935 and bq = 21 in panel (a) and q = 1.935
and b = 15.5 in panel (b).
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Figure 5.7. Numerical PDF (blue curve) and a q-Gaussian distribution (black curve) for
K = 10 (panel (a)) and K = 2 (panel (b)), where the initial conditions are taken from the
chaotic sea only. The number of initial conditions in both cases are 107 and the map is
iterated 222 times. The q-Gaussian distribution is given in Eq. (5.8) with parameter values
q = 1 and bq = 3.14 in both panels, which points to a Gaussian PDF.
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5.4 Fitting method

The numerical PDFs can vary significantly depending on the number of bins used

to compute them, as we discussed in the previous section. As a result, we need

to select the optimum PDF from all of the available PDFs, which meets certain

criteria. In this context, our criteria are (1) the PDF must best fit the Gaussian

function for the chaotic case and the q-Gaussian function for the regular case with

the smallest possible error and (2) the PDF must have an area of 1.

Here, we describe the procedure to determine the parameters for the Gaussian

and q-Gaussian functions by using a curve fitting approach. For easy reference,

we rewrite the q-Gaussian distribution function as

Gq(x) = a
(
1− b(1−q)x2

) 1
1−q , (5.10)

where a,b,q are the distribution parameters. We aim to have as little inaccuracy as

possible when fitting the q-Gaussian distribution into the numerical PDF. At the

same time, we need to identify the parameters that would give us the area under its

function equal 1, which is a property of PDFs. We see this as a multi-optimisation

problem. Therefore, we define two objective functions f1(x) and f2(x) as follow

f1(x) =
∫
Ω(ϵ)

∣∣∣P(x)−Gq(x)
∣∣∣ dx, (5.11)

f2(x) =
∣∣∣∣∣1−∫

∞

−∞

Gq(x) dx
∣∣∣∣∣ , (5.12)
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where

Ω(ϵ) =[−L,−L+ϵ]∪ [L−ϵ,L].

In this context, 2L represents the length of the interval for the numerical PDF under

consideration. Furthermore, ϵ specifies the tail length of the numerical PDF. The

first objective function f1(x) measures the distance between P(x) and Gq(x), while

the second objective function f2(x) measures how close the area under Gq(x) is to

1. Our goal now is to find the distribution parameters (a,b,q) for Eq. (5.10) that

minimise these two functions with respect to all possible numerical PDFs, that

dependant on the bin width, as described in Sec (5.3).

Since Ω(ϵ) = [−L,L] when ϵ = L, the formula in Eq. (5.11) is the L1 norm in the

interval [−L,L] [79]. We use this norm as the error function to measure the distance

between P(x) and Gq(x) that we want to minimise. We choose this norm because it

gives us the most satisfactory results compared to other norm functionals or to

other goodness of fit measures such as sum of squares due to error (sse) or root

mean squared error (rmse). When 0 < ϵ < L, especially when ϵ is sufficiently small,

the first objective function f1(x) can be seen as the distance between P(x) and Gq(x)

on both tails. In our method, we solve the multi-objective optimisation problem by

starting with a small value of ϵ, i.e. fit P(x) with Gq(x) on both tail, and gradually

increase ϵ until it covers the whole interval, i.e. ϵ = L.
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Let

Λ =
{
(xi, yi) : yi = P(xi), where P is a numerical PDF of variable X

given in Eq. (5.9) for all possible bin widths w
}
.

We consider the multi-objective optimisation problem

min
{
f1(x) and f2(x)

}
(5.13)

where we want to minimise at the same time both f1(x) and f2(x) subject to

P(x) ∈Λ, (5.14)

ϵ ∈ [0,L]. (5.15)

This multi-objective optimisation problem is solved using a procedure described

in Algorithm 5. This algorithm relies largely on a genetic algorithm [80]. The

solver is called gamultiobj which is a function available in the global optimisation

toolbox in Matlab [81]. The solver will produce a set of non-inferior solutions,

which are solutions that cannot be improved in one objective without worsening it

in another.

An individual in the gamultiobj function is the vector with coordinate (a,b,q)

where a,b,q are the parameters for the q-Gaussian distribution given in Eq. (5.10).

A population consists of a collection of individuals. The first step in the gamultiobj

algorithm is creating an initial population, which is set to 500 in our computations.

This initial population is uniformly chosen within the individual bounds. As
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we consider the normalised PDF, we take a in the small interval around 1 and

b > 0. Additionally, the values of q lie on the interval [1,3] [40]. After the initial

population has been generated, the gamultiobj algorithm carries out iterations

according to the following main steps: [81]

1. Select parents for the next generation using the selection function on the

current population.

2. Create children from the selected parents by mutation and crossover.

3. Score the children by calculating their objective function values and feasibility.

4. Combine the current population and the children into one matrix, the

extended population.

5. Compute the rank and crowding distance for all individuals in the extended

population.

6. Trim the extended population to have a population with the same number as

the initial population by retaining the appropriate number of individuals of

each rank.

The selection, mutation, and crossover operators are binary tournament, Gaussian

mutation, and crossover scattered, respectively. We stop the iteration if it exceeds

the maximum number of iterations, which is set to 104. In addition, we also set the

function tolerance to 10−4 as the second stopping criteria. We have experimented

with various combinations of the maximum number of iterations and the function

tolerance. This option offers the most optimal numerical fitting and computational

efficiency.
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In our computations, L is set to 150 for regular cases and 2 for chaotic cases. In

addition, we select the bin width within the interval [1,150], as the bin width less

than 1 will result in a highly fluctuated curve and the bin width larger than 150

will lead to a curve that will be far from the optimum solution.

Algorithm 5 q-Gaussian distribution fitting procedure.

Input: Variables X j as given in Eq. (5.9), length of the fitting interval L, bin width
minimum wmin, bin width maximum wmax.

Output: q-Gaussian distribution parameters (a,b,q), objective functions value f1(x)
and f2(x).

1: S← ∅
2: for ϵ = 0 to L do
3: for w = wmin to wmax do
4: Generate numerical PDF with bin width w.
5: Solve Eq. (5.13) subject to (5.14)-(5.15) using genetic algorithm multi-

objective solver.
6: Store all solutions (a,b,q) inN .
7: end for
8: for k = 1 to length(N) do
9: f L

1 (x)← f1(x) for x ∈Ω(L), using parametersN(k)
10: P(k)← f L

1 (x)+ f2(x), using parametersN(k).
11: end for
12: Compute min {P}. Store the corresponding set of parameter fromN to S.
13: end for
14: for k = 1 to length(S) do
15: for ϵ = 0 to L do
16: f opt

1 (x)← f1(x) for x ∈Ω(ϵ), using parameters S(k)
17: P

opt(k)← f opt
1 (x), using parameters S(k).

18: end for
19: end for
20: Compute min {Popt

}. Report the corresponding set of parameter from S as the
optimum solution Sopt.

21: Compute f1(x) and f2(x) using set of parameters in Sopt.
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Figure 5.8. The numerical PDF of the standard map (turquoise curve) and its correspond-
ing q-Gaussian function (dashed black curve) for K = 2 (panel (a)) and K = 10 (panel
b). Note that the initial conditions of all trajectories are located in the chaotic region.
The Gaussian distribution parameters are b = 3.14673 and q = 1.00218 in panel (a) and
b = 3.14208 and q = 1.00021 in panel (b).

5.5 Results

5.5.1 Chaotic case

In the case of chaotic dynamics, we expect to see a Gaussian distribution given by

Eq. (5.6). The parameters that we acquire for Eq. (5.10) for K = 10 are b = 3.14208

and q = 1.00021. These values are quite similar to the Gaussian distribution

parameter values that are given in Eq. (5.6), which are b = pi and q = 1. For

K = 2 where the initial conditions are taken from the chaotic sea, the Gaussian

distribution parameter values are b = 3.14673 and q = 1.00218, which again give an

excellent agreement with the parameters of the theoretical Gaussian distribution.

Figure 5.8 shows the plot of the numerical PDFs with their respective Gaussian

distribution where the parameters were obtained numerically. The values of the

objective function for K = 2 are f1(x) = 1.20393×10−3 and f2(x) = 8.83192×10−7,

and for K = 10 are f1(x) = 8.0878×10−4 and f2(x) = 7.0957×10−9.



5.5 Results 124

-150 -100 -50 0 50 100 150

10
-6

10
-4

10
-2

10
0

(a) K = 0.2

-150 -100 -50 0 50 100 150

10
-6

10
-4

10
-2

10
0

(b) K = 2 Stable only

Figure 5.9. The numerical PDF of the standard map and its corresponding q-Gaussian
function for K = 0, K = 0.2 and K = 2. Note that the initial conditions of all trajectories are
located in a stable region.

5.5.2 Regular case

First, we report the result for K = 0.2. The q-Gaussian distribution parameter

values are given by a = 1, b = 8.10219 and q = 1.88153. The optimum objective

function values are f1(x) = 5.74158×10−02 and f2(x) = 1.11022×10−15.

For K = 2 where all the initial conditions are taken randomly from the region of a

stability island, the parameters of the q-Gaussian distribution are a = 1, b = 8.23001

and q = 1.89159. The optimum objective function values are f1(x) = 6.74877×10−2

and f2(x) = 4.77706×10−9. Figure 5.9 shows the plot of the numerical PDF with its

corresponding q-Gaussian distribution for K = 0.2 and K = 2.

Now, we turn our attention to the case when K = 0. This is an example of an

integrable map and has been reported in [82] to obey the q-Gaussian distribution

with q = 2. Here, we consider two cases with different number of initial conditions,

namely with M = 108 and M = 109 initial conditions. The parameter values for

M = 108 are a = 1, b = 8.42148 and q = 1.90619. The optimum objective function

values are f1(x) = 6.14898×10−02 and f2(x) = 3.64456×10−8. Next, for M = 109 we
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(a) K = 0 with 108 initial conditions
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(b) K = 0 with 109 initial conditions

Figure 5.10. The numerical PDF of the standard map and its corresponding q-Gaussian
function for K = 0 for (a) M = 108 initial conditions and (b) for M = 109 initial conditions.

obtain a = 1, b = 8.46807 and q = 1.90966. The optimum objective function values

are f1(x) = 5.56503×10−02 and f2(x) = 5.67387×10−7. We present the corresponding

plot in Fig. 5.10.

It is worth noting that the q values here is very close to the analytical value

provided in [82]. Furthermore, as we increase the number of orbits utilised to

generate the variables X j, as described in equation (5.9), the corresponding value

of q also increases, even though by a small margin. This observation might mean

that obtaining an accurate distribution with q = 2 might require an extremely high

number of orbits.

5.6 Conclusion

In this chapter, we have examined the PDF derived from the standard map in both

chaotic and regular cases. The aim was to develop a comprehensive procedure

for determining the parameters of the q-Gaussian function, which serves as an

effective tool for fitting the numerical PDF obtained from regular and chaotic areas

of the phase space of the standard map.
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To accomplish this, we employed a multi-objective optimisation approach

utilising a genetic algorithm. This approach allowed us to address the challenge

of finding the optimal set of parameters for the q-Gaussian function, which would

result in a well-fitted representation of the numerical PDF. By formulating the

problem as a multi-objective optimisation task, we were able to simultaneously

consider multiple objectives, such as minimising the difference between the fitted

q-Gaussian function and the numerical PDF, while also fulfilling the property of a

probability distribution function.

Through the utilisation of the genetic algorithm, we iteratively searched for

the optimal set of parameters that yielded the best fit to the numerical PDF. This

involved generating candidate solutions (individuals) with different parameter

combinations and evaluating their fitness based on the defined objectives. The

genetic algorithm’s ability to explore the parameter space and converge towards

promising solutions allowed us to obtain a set of parameters for the q-Gaussian

function that provided a highly accurate fit to the numerical PDF from phase space

of the standard map.

By employing this procedure, we were able to effectively model the statistical

properties of the regular and chaotic phase space of the standard map and obtain

a comprehensive understanding of its behaviour. The well-fitted q-Gaussian

function serves as a valuable tool for analysing and characterising the probability

distribution within the phase space, enhancing our understanding of the dynamics

and statistical properties of the standard map.



Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis presents initially a comprehensive and systematic study of the dis-

ordered FPUT-α lattice system, focusing on two different models. Firstly, we

investigate the system with disorder in the nonlinear coupling terms. The mo-

tivation behind this study is rooted to the observation that in the absence of

variability, introducing nonlinearity alone does not ensure energy equipartition.

By incorporating disorder into the nonlinear coupling terms, we demonstrate its

impact on breaking the recurrence phenomenon. Furthermore, we discover the

existence of a tolerance threshold, beyond which the system’s solution experiences

blow-up within a finite time. To explain the localisation of energy, we derive a

two normal-mode system that explains the underlying mechanism and provide a

bifurcation diagram illustrating the system’s parameters. In terms of chaotic be-

haviour, we find that introducing variability enhances the possibility of observing

127
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chaotic trajectories. This highlights how disorder in the system can significantly

alter the nature of solutions from regular to chaotic.

The second model studied is the FPUT-α Hamiltonian with variability. At a

fixed energy level, we observe that increasing the percentage of variability leads

to energy localisation. We also derive a two normal-mode system when energy

localization occurs and provide a bifurcation diagram in the parameter space,

further elucidating on the localisation phenomenon. The chaotic behaviour of

this system exhibits a complex nature as we vary the lattice size and percentage

of variability. Generally, we observe that variability enhances the likelihood of

observing chaotic trajectories for small lattice sizes. However, the behaviour

becomes more intricate for medium lattice sizes, and there appears to be a reversal

of the effect for large lattice sizes.

In addition to the FPUT-α system, we also applied q-Statistics to study the

chaotic behaviour of the standard map for both chaotic and regular cases. We

developed a systematic procedure to obtain the parameters of the q-Gaussian

function that best fits the numerical probability distribution of the standard

map. Employing a genetic algorithm approach, we successfully solved the multi-

objective optimisation problem and determined the optimal parameters of the

q-Gaussian function.

6.2 Future work

The field of nonlinear dynamics has witnessed substantial advancements since the

pioneering experiments conducted by Fermi, Pasta, Ulam, and Tsingou in 1950s.
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As a result, numerous avenues for future investigations have emerged, reflecting

the extensive potential for further research in this field.

In the realm of 1D lattice systems, there are exciting opportunities for future

research in exploring the disordered FPUT-β lattice system, which exhibits a distinct

nature compared to the FPUT-αmodel. There are two key areas of investigation

that can be pursued.

Firstly, investigating the impact of introducing variability in the FPUT-β lattice

system as the initial energy of the system is gradually increased. This exploration

can shed light on how the behaviour of the system, such as energy redistribution,

recurrence phenomenon, and chaotic dynamics, is influenced by varying degrees

of variability.

Next, exploring the effects of exciting different modes to initiate the FPUT-β

lattice system. This analysis can provide insights into the system’s response,

energy localisation, mode coupling, and the emergence of patterns and structures

as different modes are selectively excited.

In the field of q-Statistics, there is a promising option for future research that

involves analysing the probability distribution function in the weakly chaotic

region of the standard map. The identification of the region in the phase space of

the standard map that corresponds to weakly chaotic behaviour is a fundamental

component of this research. This can be performed by applying well-established

chaotic indicators such as the Lyapunov exponent or Smaller Alignment Index

(SALI). Such indicators may identify the specific trajectories associated with weakly

chaotic dynamics. Then, we can investigate the probability distribution of this

system using a method similar to that used in this thesis.
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Appendix: Duffing equation

We compare the solution to Duffing equation using Poincaré-Lindstedt series [83]

and multiple-scale analysis [58]. The undamped, unforced Duffing equation is

given by

ẍ+x+ϵx3 = 0, (1)

for t > 0, with 0 < ϵ≪ 1. Consider the initial conditions

x(0) = 1, ẋ = 0. (2)

The solution to this problem using Poincaré-Lindstedt method is given by [83]

x(t) = cos
((

1+
3
8
ϵ
)
t
)
+O(ϵ2). (3)

Now, we will solve the problem using multiple-scale analysis [58]. Let

x(t) = x0(T, t)+ϵx1(T, t)+O(ϵ2), (4)
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with T = ϵt being the long time scale in multiple-scale expansion. At ϵ0 we have

∂2x0

∂t2 +x0 = 0, (5)

and the general solution is given by

x0 = A(T)eit+A∗(T)e−it. (6)

At ϵ1 we have

2i
∂2x0

∂T∂t
+
∂2x1

∂t2 +x1+x3
0 = 0, (7)

2i
∂A
∂T

eit
−2i
∂A∗

∂T
e−it+

∂2x1

∂t2 +x1+x3
0 = 0 (8)

Noting that

x3
0 = A3e3it+A∗3e−3it+3A2e2itA∗e−it+3AeitA∗2e−2it (9)

and applying the standard solvability condition to avoid the secular terms, we

obtain

∂A
∂T
=

3
2

iA2A∗. (10)

The solution to Eq. (10) is given by

A(T) = A(0)e3/2iTA2(0). (11)
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Substituting Eq. (11) into Eq. (6), we obtain

x(t) = 2A(0)cos((1+3/2ϵA2(0))t)+O(ϵ2). (12)

where we have used T = ϵt in this equation. Using initial condition x(0) = 1, we

obtain A(0) = 1/2, and the solution becomes

x(t) = cos
((

1+
3
8
ϵ
)
t
)
+O(ϵ2). (13)

Note that Eq. (13) is similar to Eq. (3), which shows that multiple-scale method

also gives frequency correction in the solution as in the Poincaré-Lindstedt method.
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