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ABSTRACT

With the increasing global mobile data traffic and daily user engagement, technologies, such as mobile
crowdsensing, benefit hugely from the constant data flows from smartphone and IoT owners. However,
the device users, as data owners, urgently require a secure and fair marketplace to negotiate with the
data consumers. In this paper, we introduce a novel federated data acquisition market that consists of
a group of local data aggregators (LDAs); a number of data owners; and, one data union to coordinate
the data trade with the data consumers. Data consumers offer each data owner an individual price to
stimulate participation. The mobile data owners naturally cooperate to gossip about individual prices
with each other, which also leads to price fluctuation. It is challenging to analyse the interactions
among the data owners and the data consumers using traditional game theory due to the complex
price dynamics in a large-scale heterogeneous data acquisition scenario. Hence, we propose a data
pricing strategy based on mean-field game (MFG) theory to model the data owners’ cost considering
the price dynamics. We then investigate the interactions among the LDAs by using the distribution of
price, namely the mean-field term. A numerical method is used to solve the proposed pricing strategy.
The evaluations demonstrate that the proposed pricing strategy efficiently allows the data owners from
multiple LDAs to reach an equilibrium on data quantity to sell regarding the current individual price
scheme. The result further demonstrates that the influential LDAs determine the final price distribution.
Last but not least, it shows that cooperation among mobile data owners leads to optimal social welfare
even with the additional cost of information exchange.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mobile crowdsensing (MCS) is a crowd sourcing technique
that is empowered by the development of communication tech-
nologies and devices, such as smartphones and the Internet of
Things (IoT). Participants in the MCS contribute private informa-
tion, also known as personally identifiable information to the MCS
task initiators [ 1]. The MCS task initiators can use the information
to infer even more facts about the participants and predict the
behaviour of other individuals or groups. MCS participants are
becoming more and more aware that their data has more value
than it first seems even though there is usually a reward to stim-
ulate their participation. However, the cost of data proliferation
is so low that MCS task initiators can easily trade the data to an
advertisement company, for example. The data collecting process
is crucial to both the participants and the task initiators. However,
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the current mechanisms, typically involving implicit consent from
the MCS data owners by using a service that is also managed
by the MCS task initiator (data consumer) are far from ideal for
both parties. The end-users, data owners, are exploited by the data
consumers (i.e., MCS task initiators, the technology companies,
and advertisement companies); while if the data consumers are
limited to their direct customers they cannot benefit from wider
data gathering. Consequently, a proper marketplace for the data
owners and data consumers is urgently required to protect the data
owners’ welfare and allow data consumers access to a wider pool of
data.

In MCS applications, a data owner is interchangeable with a
participant. For a data acquisition framework, direct negotiation
between a massive number of individual data owners and the
data consumer is not realistic. Thus, we propose a federated
data acquisition market, where a data union interlinks the data
consumer and the local data aggregators (LDA) of data owners.
LDAs represent the data owners, they provide not only addi-
tional aggregation and encryption but also crucially, the collective
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negotiation power of the data owners. The proposed federated
data acquisition market is flexible at different scales: for a geo-
graphically constrained MCS task, the LDAs can be hybrid base
stations; for large-scale data acquisition tasks, the LDAs can be
mobile carriers, or other network service providers with a group
of subscribers as data owners.

The proposed federated data acquisition market aims to enable
large-scale data collection, data diversity, and privacy-preserving
data acquisition. Meanwhile, it provides a regulated marketplace
for data owners and data consumers, which also empowers a
new business model for data owners and consumers. However,
the federated data acquisition market brings a new challenge to
data consumers. For example, localised data may not serve well
in machine learning algorithms i.e., localised data could be an
isolated data island [2]. To accumulate more knowledge, the data
consumer will purchase data from multiple LDAs during a period
of time. The data consumers make an individual offer to the data
owners to gain access to the data. It is natural for the data owners
to gossip about the individual unit price to see if their data is
worth more than others. Hence, the individual unit price fluctu-
ates with the data demand quantity and the rest of the offers. One
LDA consists of several data owners who decide the quantity of
data to sell regarding the unit price and the influence of fellow
data owners from intra-, or even inter-LDA(s). Inevitably, the
data owners will share information to cooperate against the data
consumer, which ensures their data is fairly traded. To investigate
the pricing strategy in a large-scale and time-dependent scenario,
we, therefore, design the pricing strategy based on the mean-field
game theory (MFG) [3].

Game theory is an effective tool to analyse the interactions
(such as competition and cooperation) between participants [4].
However, it is challenging to analyse large-scale problems when
the number of participants approaches infinity in a dynamic
environment. Every individual is constantly generating data and
involved in the data collection process. Additionally, the pro-
posed federated data acquisition market is facing the dynamic
problem that there are not only interactions within a local data
aggregator but also with other adjoining local data aggregators.
MFG is an ideal tool to investigate both the optimal strategy
of the data owners and the evolution of the pricing regarding
the interactions. MFG was first proposed by Lasry et al. [3]. It
utilises both the Hamilton-Jacobi-Bellman (H]B) equation and the
Fokker-Planck-Kolmogorov (FPK) equation to capture the opti-
mal strategy and the state evolution, respectively. The mean-field
term is crucial in MFG, which describes the probability density of
the players’ states. We will explain the details of the MFG-based
pricing strategy in Section 5.

In the proposed marketplace for an MCS task, the data con-
sumer first notifies all the data owners of their individual price
schemes. Individual price schemes value different data at differ-
ent times for different data owners to stimulate the willingness
of data trading. Once data owners receive the offers, it is natural
for them to compare the offers with other data owners first
before deciding the quantity of data/privacy to sell. For example,
if data owner A talks to data owner B and finds out that B’s unit
price is higher, then A chooses to reduce the data quantity for
trading, and vice versa. This natural tendency of gossip in the
marketplace leads to unit price fluctuation, namely cooperation.
The data owners seek the optimal data quantity during a period
of trading time with a specific data consumer considering the
data sharing cost, information exchange cost, and the income of
data trading. According to the analysis, we model this problem
as a partial differential equation (PDE)-constrained optimisation
problem, which aims to minimise the cost of the data owners dur-
ing trading with the data consumer. Since data consumers collect
data from different LDAs to achieve better data diversity, data
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owners are influenced not only by the data owners within the
LDA, but also by the ones from other LDAs. Hence, we generalise
the problem to multiple LDAs. We adopt a numerical method,
namely the finite difference method with gradient descent, to
solve the proposed pricing strategy. The main contributions of
this paper are summarised as follows:

e We design a federated data acquisition market, which provides
a solution for large-scale data trading. We design the data
trading workflows among the data consumer, Data Union, and
data owners.

e We propose a mean-field-based pricing strategy to capture the
dynamics in the proposed market. The mathematical model
first considers the dynamic of price, information exchange
(namely cooperation) cost, and data trading income of a single
data owner when interacting within the LDA. Then, we gener-
alise the model into multiple LDAs by using the distribution of
the unit price in each LDA.

e We adopt a numerical method to solve the mathematical model.
The simulation demonstrates first, that through the coopera-
tion among the data owners, the optimal data quantity reaches
equilibrium. Second, the influential local data aggregators show
a dominant effect over the other local data aggregators. Third,
cooperation of data owners leads to higher social welfare.! Last,
but not least, the proposed algorithm achieves good efficiency.

In the following, we first review related works on data mar-
ketplaces in Section 2. Then, in Section 4, we introduce the
architecture and the workflow of the proposed federated data
acquisition marketplace. Next, we provide the considered math-
ematical model of the proposed pricing strategy in Section 5. We,
then, solve the model using the numerical method in Section 6.
Our solution is evaluated extensively in Section 7 to get an under-
standing of the price evolution and optimal data quantity. Finally,
we draw attention to the future data marketplace in Section 8.

2. Overview of the data marketplace

Smart data pricing (SDP) [5] has been introduced as an ap-
proach to solve network resource management, pricing, and al-
location issues in the computer science realm. Researchers tend
to use economic approaches to analyse data and digital products
as common commodities. Data and digital product marketplaces
are usually equivalent to traditional marketplaces, i.e., monopoly,
duopoly, oligopoly, and a competitive market. The data pricing
strategies according to the data quantity [1,6], quality [7,8], pri-
vacy [9,10], and learning performance [11] have been widely
investigated.

Quantity driven pricing strategies: In a data trading mar-
ket, it is widely accepted that the income of a data owner is
proportional to the amount of data it owns. IoT applications are
commonly enabled by pervasive sensors to contribute data. Data
quantity is one of the essential factors to the accuracy of the
applications. In [1] a monthly-pay and instant-pay sensory data
pricing strategy based on data quantity was proposed to ensure
a constant data contribution from the monthly/instant-pay sen-
sors. Opting in as monthly- or instant-pay participation grants
flexibility in the MCS participation to some extent. However, the
data and digital products markets desire more dynamic pricing
strategies. In [6], the buyers’ social relationships and network
resources of the buyers are studied in the digital product (mobile
data plan) marketplace. By leveraging the network effect of the
buyers, a dynamic pricing strategy is proposed to maximise the
utilities of the seller and the buyers.

1 i.e., benefit to all the data owners
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Quality driven pricing strategies: Though data quantity in-
tuitively plays a vital role in the data marketplace, it is not
sufficient for an elaborate pricing strategy to only consider one
feature. Data quality is defined variously in different applications.
In [oT applications, the response time of data collection is vital. To
reflect the freshness of the data, an auction-based profit-driven
data acquisition in the MCS, namely VENUS [7], was proposed.
Data quality can also be verified by machine learning algorithms.
[8] defined data quality based on the size, completeness, types,
and combinations of data in the dataset, while also incorporating
the data owners’ willingness to sell.

Privacy driven pricing strategies: The value of privacy can
be defined as the difference between the original data and the
data after the e-differential privacy operation, as defined in [9].
This metric considers both the privacy leakage (negative) and the
network effect (positive) in the MCS; it also proposes a reverse
“privacy” auction, which implicitly provides a solution for the
privacy pricing strategy. However, it is not very easy to define
the value of private data. For example, the value may vary from
different use cases, timing, and cognition. Therefore, it remains
an open question.

Learning performance-driven pricing strategies: With ma-
chine learning development, the role of data sets has drawn
more and more attention since it is essential for algorithmic
training [12]. Yoon et al. [13] propose a data valuation scheme
aided by reinforcement learning. This work studied the value
of datasets by proposing joint learning of the predictor and the
value/weights of the data elements in the data set. This paper
aims to provide a guideline for future data collection. Yuetal. [11]
introduce a data pricing strategy in federated learning to enable
fairness awareness among data owners.

3. Rethinking the existing market

In the previous works, data and digital product marketplaces
are usually equivalent to traditional marketplaces, i.e., monopoly,
duopoly, oligopoly, and a competitive market. However, the rigid
market structures do not fit the current world, where hetero-
geneous individuals/devices are constantly generating data dis-
tributively. In this paper, the proposed federated data acquisition
market distributively collects data from the local aggregators.
Local data aggregators represent the local data owners whose
data is limited due to geographical/logical partition. Local data
aggregators can be seen as isolated data islands, which compels
the data consumer to purchase data sets from different local data
aggregators to achieve a better outcome. This vertical market
structure and pricing strategy can ultimately add resiliency in dig-
ital product markets and empower data owners to gain benefits
and control their contributions.

There exist a few works related to mean-field-based data
pricing strategies. Wang et al. [14] proposed a dynamic pricing
strategy to ensure the freshness of the information. Deep learning
was adopted by [15] to solve the equilibrium of a double auction
market and was modelled by a mean-field game. Different from
the previous works, this paper elevates the status of the data
owners in the data marketplace by providing a natural habi-
tat, namely the proposed federated data acquisition framework,
which enables cooperation among the data owners to maximise
social welfare. Compared to the related works that assume the
IoT devices contribute data willingly, the proposed framework
considers privacy-concerning individuals as data owners who
naturally care about privacy and exchange opinions with their
social connections. The main advantages of the proposed pricing
strategy include: first, it enables a customised price plan for every
data owner; second, a mean-field based pricing strategy reveals
unit pricing evolution when data owners cooperate with each
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Fig. 1. The architecture of federated data acquisition framework.

other, which can direct the data consumers towards a better
individual reward in the future. Then, cooperation enables better
social welfare among the data owners. Fourth, the MFG-based
pricing strategy does not require the details of all the information
exchanges among the data owners, which further preserves the
privacy of the data owners. Last but not least, the algorithm is
fairly lightweight and thus suitable for a real-time scenario.

4. Federated data acquisition market

In this section, we introduce the architecture and the work-
flow of the proposed market as depicted in Fig. 1. Additionally,
we propose new use cases empowered by the new marketplace.

4.1. Structure and entities

Data Consumer: According to historical data, a data consumer
is aware of the required key features of the data sets [13]. The
data consumer communicates with the Data Union to acquire
data sets with key features. It demands data sets from different
data owners to support the MCS tasks with individual price
schemes. Data sets need to be diverse to ensure the best learning
outcome.

Data Union: The Data Union acts as a broker in the proposed
market. It is a trusted third entity that assists in the negotiation
and trading between the data consumers and the LDAs. The Data
Union provides first verification of the identity and legitimacy of
the data consumers before they launch the data trading require-
ments to the data owners. This mitigates the negative impact
of malicious data consumers who may try to obtain the data
without paying by requesting a deposit. The Data Union at the
same time monitors the price dynamics of the LDAs and the data
consumer’s requirements. The statistical information is useful in
the future trading process. Additionally, the LDAs only need to
reveal the statistics instead of the detailed data information to
protect privacy.

LDAs with data owners: We introduce LDAs to enable a
feasible implementation of the proposed market, since a fully
distributed negotiation with the data owners and consumers
is not trivial. LDAs can collect, sort, and anonymise data from
the data owners. Additionally, LDAs represent data owners and
interact with the Data Union. The concept of LDAs can also assist
the modelling process, which allows a natural division of a large
number of data owners. Note that LDAs and the data owners
can be both geographical and virtual: geographical LDAs (such
as mobile base stations) classify the data owner according to a
physical location, i.e., community, campus; virtual LDAs (such as
mobile carriers and network service provider) host the data from
their subscribers who are in geographically diverse locations.
Though the Data Union and LADs provide essential functions and
enable the proposed market, in this paper, we focus on modelling
the interaction between the data consumers and owners.
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Fig. 2. Workflow of the federated data acquisition market: 1. Data consumers request the data features and offer individual unit prices; 2. Data Union receives
the request and announces it to the LDAs; 3. LDAs start to recruit data owners in their domain; 4. Data owners collect and forward the data sets after gossipping
and evaluating the given price; 5. LDAs calculate the distribution of individual unit prices; 6. forward the information to the Data Union; 7. Data Union checks the
statistics and negotiates with the data consumer; 8. Data Union and data consumer reach an agreement, and data is delivered.

4.2. Workflow of the federated data acquisition market

In Fig. 2, we illustrate the workflow of the proposed market:
first, the data consumers propose the request to the Data Union;
then, the Data Union announces the request to the data owners
through the corresponding LDAs; third, LDAs recruit data owners
and gather the data sets. They sort the raw data sets according
to the features and then send the metadata, i.e., the features and
their quantity, to the Data Union. Additionally, LDAs compute the
distribution of price and coordinate with the Data Union. Last but
not least, the Data Union gathers data from the LDAs and saves
the statistics for future negotiation with the data consumers.

4.3. New market empowering new use cases

The new market has the potential to regulate data trading,
which also empowers new use case scenarios. For example, 2020
brought new data collection and workflows in the context of
the Covid-19 pandemic. To evaluate the policy before deploying
it in real life, a digital city twin [16] is proposed by simulat-
ing cities individually according to local data. Machine learning
shows that the digital city twin desires joint data from different
individuals and cities to evaluate various policies. The proposed
data market can assist the policy-making procedure on a large
scale and help to form a global treaty of crisis containment.
Furthermore, the proposed federated data acquisition market fol-
lows and will strengthen, the General Data Protection Regulation
(GDPR). The data union can serve as a proxy of GDPR in Europe,
which can also deploy a series of branch local data aggregators.
This approach scales up the federated data acquisition market
to fulfil the global data market scenario. More importantly, the
proposed data structure and the pricing strategy allow technology
focuses on human behaviours, such as cooperation, homophily,
and information exchanges (see Table 1).

5. Data pricing strategy: problem formulation

In this section, we first introduce the pricing strategy of one
data owner interacting with its neighbours within one local data
aggregator. Then, we generalise the problem into multiple LDAs
interacting with each other. Last, we solve the pricing strategy

Table 1

Notation and descriptions.
Description Parameter
Data owners iev={1,....N}
Neighbours of i N;
Mean-field term m;
Cost function L;
Data quantity of i qi
Weights of price dynamics B, B2
Brownian factors o, W;
Value function v;
Unit price of i Di
Weights of cost o, oy, o3
Drift term fi
Aggregated mean-field term m

for the general case using mean-field game theory. Note that we
assume that all the data owners are distributed randomly and
that they can interact freely with their contacts.

5.1. Within one local data aggregator

According to the architecture of the proposed market, there
exists the interaction, namely information exchange, of the data
owners. Human nature is such that individuals tend to influence
each other by communication; the influence of one individual
to another is essentially information exchange. We consider data
owneri € V = {1,...,N} in a LDA. The data owner decides the
quantity of data, g;, to sell based on the unit price, p;, offered by
the data consumer. The data price fluctuates during the gossip,
i.e.,, when a data owner knows its neighbours are offered higher
prices, it will lower the quantity of data to sell. We define data
owner i’s neighbours at time t as N;(t). The notations and de-
criptions are in Table 1. The interaction of i and its neighbours
is time-dependent, which leads to the dynamic of the unit price.
Hence, we have

dpi(t) = [B1Ni(t) — pi(t) + B2qi(t)]dt + odW(t) (1)

where 1, B, are positive weights; o and W; use Brownian move-
ment [17] to model the randomness of the price fluctuation.
As shown in Eq. (1), the price dynamics not only relate to the
neighbours’ prices but also the quantity of personal data, which
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indicates the concern of privacy loss. The data owner aims to min-
imise the cost during the trade by choosing an optimal quantity
pi during the time in the data market. The cost includes the loss
of privacy, information exchange cost with the neighbours, and
the gain from trading the data. Hence, we have the cost function
of data owner i as

1011(11'2(” -

Li(q, p, Ni, t) = 3 aopi()gi(t) + as(pi(t) — Ni(£))*  (2)

where o1, o, and «3 are positive weights. The first term of the
above reflects the cost of sharing data and is quadratic such
that when the cost is used later the law of diminishing returns
applies [18]. The second term is the income from selling data.
The third term is the information exchange cost, i.e., when the
offered price is identical to the neighbours, there is no informa-
tion exchange cost. All the variables are time-dependent, which
indicates that the data consumers make individual offers to each
data owner during a period of time to obtain rich data. The
accumulated cost of data owner i trading with a certain data
consumer during a period of time is defined as

T1
]i=[ [5061%2(0—azpi(f)Qi(f)+a3(Pi(f)—Nz‘(t))zldf (3)
0

Data owner i’s cost is constrained by the price fluctuation caused
by information exchange defined in Eq. (1). Hence, we define the
minimisation problem of data owner i in its own LDA.

.
1
min; = / [Sead; () = copi(€)ai(t) + as(pi() = Ni() 1t (4)
i 0
s.t. dpi(t) = [B1Ni(t) — pi(t) + Boqi(t)]dt + odW (L)

The problem in (4) is a PDE-constrained minimisation problem,
which aims to find the optimal data quantity for the data owner i.
We can solve this using a Lagrangian function and Karush-Kuhn-
Tucker (KKT) conditions [19]. We will introduce the solution of
the general case in the next section.

5.2. Multiple local data aggregators

Since there are multiple LDAs with multiple data owners in
it, it is not trivial to consider the interaction between each data
owner like the traditional game theory [20]. Therefore, to cap-
ture the states of the neighbours, we introduce the mean-field
term, m;, of data aggregator i, namely the probability density
of the price. Mean-field term was first introduced in physics to
represent the behaviour of systems of large numbers of particles
when the number of particles approaches infinity. Considering
the neighbour’s neighbours in the proposed market, the inter-
action can be captured by the mean-field term. All the data
owners aim to minimise the cost. Hence, the data owner i can
also represent the LDA i. The expected cost function of LDA i is
defined as

T
1
Ji= / mi[iouq%(t) — api(t)gi(t) + as(pit) — m)*1dt (5)
0

where m is the aggregated mean-field term, which is defined as
m= ZjeM m;(t), where M; is a set of i's neighbours. Note the
first m; indicates the expected cost of the LDA i. We can also refine
the price dynamic

dpi(t) = [Bim — pi(t) + Baqi(t)ldt + oidWi(t)

dpi(t) = fidt 4+ oy dWi(t) (6)
where f; is the drift term, which is the influence of the other
LDAs on LDA i during the gossip. The price state p; of LDA i is

affected by the drift term and the randomness. To model the
evolution of price states of multiple LDAs, we introduce the
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Fokker-Planck-Kolmogorov (FPK) equation from statistical me-
chanics, which describes the evolution of the particle velocity
probability density under the influence of forces [21]. In our case,
the FPK function of the LDA’s price probability density dynamics
over time is related to the combined effect of the expected
dynamic change rate (defined by drift term) and the randomness,
which is shown in the equation below:

317’1,' 0_2 Bmiz

= —div(fm:) + —
Y iv(fim;) + 2 op?

(7)

where m;(p;, t) is a function of the price state and time; and
div(fym;) represents the divergence of the probability density of
all of the other prices with respect to the current price probability
density m; and drift term. In Eq. (7 ) the divergence term can
be derived as div(fim;) = a{; m; + f; a';’ We propose the LDA i’s
minimisation problem with the constraint of the dynamic of the

probability density of the price state

T
4 1
rr})mJi = f mf[iaqu — aypiqi + as3(p; — m)*]de (8)
i 0
Bm,- . (72 amiz
s.t. = —div(fim; —
ot vim) 5

The problem in (8) is a PDE-constrained optimisation problem.
Hence, we write the Lagrangian function

0'2 amiz
v + div(fim;) — ) dtdp 9)
/pgp/ ’ ( 2 op?

where v; is value function vi(p;, t) = infyeq Ji, which is the value
of the cost attained by the optimal data quantity. To obtain the
optimal quantity q;, it needs to satisfy the KKT conditions

dL; aL; 9L;

—0, —o, Ei_p (10)
0q; am; v

First, we solve : M’ =0

aL; oL, dv; (am;  of; om;  of 3*m;
=Li+m; +omitfi— — —-
am; om;  om; \ ot api api 2 0p;
aL; A L, v of; A o? 3%v;
= — 4L . - _ t
om; ot thitmit T ap; Im; mi+ ap,»f' 2 9p?
av; JaL; 8v, af; ov; cr 3%v;
——=Li+m — — - 11
o —Litmits +8p,8m, mi+ - f 2 op? (11)

We note that Eq. (11) is effectively the HJB equation [22], which is
used to solve the optimal control with respect to the cost function

in the control theory. Then, we solve =l =0

om; A(fm; 2 am;?
m; n (fim:) 9 m12 (12)
at ap; 2 op;

Finally, we solve the optimal data quantity, following 3 M‘ =

dL; av;

— =mi(a1qi — az) + B —m; =0

aq; opi

. av;

q; :(azpi—ﬂza*p:)/al (13)

We can use Eq. (11), (12), and (13) jointly to solve the optimal
data quantity and the price evolution among multiple LDAs. A
numerical method is adopted to obtain the final solution.
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Algorithm 1: Solving the mean-field game
Input : M7, Q°, V[
1 while iter < or Err > ¢ do
fori=0,..., N do
fort=0,...,T do
if U/ =0 then
L M = Mt
1 1
Solve mean field term using Eq. (16)

@ w oA WN

8 fort=T,...,0do

9 L Solve adjoint variable using Eq. (15)
10 fori=0,..., N do

1 fort=0,..., T do

12 L Update control using Q/ <« aQ + (1 — a)%
13 | Compute err

15 fort=0,...,T do
16 L Update the optimal data quantity using Eq. (17)

6. Solution of the MFG pricing strategy

As observed in Eq. (11) the HJB consists of partial differential
derivations of the value function v; with respect to time t and
price p;. Hence, we adopt the finite difference method (FDM) [23]
to solve the above partial differential equations. The key idea of
FDM is to “replace derivatives in a differential equation with ap-
proximations” [24]. This method can be described as the “Forward
in Time, Centred in Space” (FTCS) scheme. By this method, the
derivative can be replaced with

OF(x.t) _ FiH— MFL, +FL)
ot At

OF(x.t) _ Fiyy —FL,
ax 2Ax

O°F(x,t)  Fiy —2F +F, (14)
ax: 4Ax?

where F(x, t) is a function of variable x and t (such as the mean-
field term m; and the value function v;), Ax is the step size, i is
the number of the step.

To solve (11), (12), and (13), we first discretise the time
interval [0, T] and price space [0, 1]. We define X and Y as the
step size of time and state, respectively. The step sizes of time
and state space are denoted as At = % and Ap = % respectively.
Before applying the FTCS scheme, we define the discrete mean-
field term, value function, and data quantity as M/, V/, and Q/,
respectively, where i is the ith price state and t is the tth time
step. We obtain the value function v; and the mean-field term m;

vl 1(vf + Vi) + AtA+ At — (VL — VLB
i 2 i+1 2A p i+1 i—1

Ato?
T 8ap? Tz Vin —Vi+Viy) (15)
At
Mt = (Mlt+1 +Mi_,)— E(fiin i —fLME)
Ato?
T 8ap g Mi, = M{ + M) (16)
[ (VE, — Vi)
Q; = (aapi — B2 ) e (17)

24p

where A = L; + m; + ;L‘ and B = Bym; + fi. (15) and (16) are
solved by backward iteration and forward 1terat10r1 respectively.
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Fig. 3. A full picture of the price dynamic from t = 0 to T: the blue price
dynamic is LDA 1 with u; = 0.3 and the green price dynamic is LDA 2 with
na =0.7.

We then initiate the discrete mean-field term at time 0 as M?, the
value function at time T, VT and the data quantity at time 0 QT
for all the price states. The _]Oll‘lt solution of the pricing strategy is
shown in Algorithm 1, where error ¢ = 0.01. We update the data
quantity according to the equation in Algorithm 1 to obtain the
mean-field term and the value function, where « is the learning
rate. The iteration runs until the error reaches the satisfaction or
the maximum iteration limitation. We obtain the value function
V! and the mean-field term M/ at all the states and time steps at
the end of the iteration. Then, the optimal data quantity can be
calculated using Eq. (17).

7. Simulation

In this section, we evaluate the proposed data pricing strat-
egy in the federated data acquisition market. We assume that
there are two LDAs interacting with each other, and the data
owners within each LDA can freely interact with data owners
in the same LDA and the other LDA. The two LDAs follow the
normal distribution with means 0.3 and 0.7. We assume the LDAs
have the same diffusion parameter ¢ = 0.002 to simplify the
problem. The choice of the time steps and the state steps fol-
low the Courant-Friedrichs-Lewy (CFL) condition [25] to ensure
convergence.

We first investigate the price dynamic when two LDAs interact
with each other, as shown in Fig. 3. The blue and green surfaces
represent LDA 1 and LDA 2, respectively. At the beginning of the
interaction, the mean of LDA 1’s price distribution is u; = 0.3,
and the mean of LDA 2’s price distribution is u, = 0.7. While
the interaction progresses, the data owners exchange information
with each other, which forms cooperation. At the end of the
interaction, it demonstrates that the final price distributions of
both LDA 1 and 2 differ strongly from the beginning due to the
cooperation. In addition, the price distribution reaches equilib-
rium. This indicates that the LDAs can reach an agreement under
cooperation. In the current setting, the optimal price distribution
is with a mean of about 0.3.

We then evaluate the pricing dynamic over time and influence
factor B, in Fig. 4. The influence factor 8 in Eq. (1) indicates how
influential the data owners neighbours are, i.e., when interacting
with the influential neighbour LDA (i.e., bigger ), the price
distribution evolves towards to the influential LDA’s distribution.
In Fig. 4, we illustrate how LDA 2 with different influence factors
B affects the pricing distribution of LDA 1 over time. We sampled
t = 0,25,50 from the beginning t = 0 till the end of the
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Fig. 4. Price evolution with respect to different influence factors B;: how
different influence factors of LDA 2 affect LDA 1's price dynamics. (a) LDA 2
low influence factor By = 0.1. (b) LDA 2 high influence factor 8; = 1.

interaction t = T for both LDAs. With 8; = 0.1 in Fig. 4(i), LDA 1
and 2 move to the optimal price distribution as shown in Fig. 3.
With 8; = 1in Fig. 4(ii), first LDA 1 and 2 both show resistance to
reach optimal price distribution; second, LDA 1 shows a tendency
to move to LDA 2’s price distribution. This is because, with a
higher influential factor of LDA 2, LDA 1 values the information
from LDA 2 more and tends to act the same.

In Fig. 5, we then demonstrate the optimal data quantity with
respect to the data owners’ privacy sensitivity. «; in the cost
function is the privacy cost weight, i.e., higher «; leads to a
higher cost of privacy, which also represents the data owner's
privacy sensitivity. We sample the optimal data quantity with
respect to price every 10 time steps fromt = O tot = 75. It
first shows that the optimal data quantities of both LDAs reach
equilibrium due to cooperation, as shown in the bold blue lines.
Then, the optimal data quantity in Fig. 5(i) is higher than it is in
Fig. 5(ii) with respect to unit price. This is due to the sensitivity
of privacy: higher sensitivity leads to higher cost to sell the
data. We further consider the impact of the neighbour LDA with
B1 = 1.5 in Fig. 5(iii). Compared to Fig. 5(i) and (ii), the data
quantity fluctuates for a longer period to settle down due to
the influential LDA. However, the optimal data quantity follows
the same pattern as in previous cases. In Fig. 5, we examine
the internal factor (i.e., privacy sensitivity) and external factor
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(i.e., influential LDAs) and demonstrate that the internal factors
drive the final data quantity for trading and the external factors
affect the duration of reaching stability.

We also compare the social welfare of the proposed pricing
strategy in Fig. 6. Social welfare is defined by using the aggregated
cost of data owner in LDAs. Additionally, we defined natural
cooperation where data owners from different LDAs interact with
each other freely, “no cooperation” (NC) where the gossip does
not exist. Note that cost is negative when the price reaches a
certain level. This means there is profit for the data owners to
sell the data. It demonstrates that cooperation leads to a higher
cost compared to the 'no cooperation’ scenario, which is due to
the extra cost of information exchange. However, the cooperation
leads to higher social welfare for the data owners, which proves
to be a leverage when negotiating with the data consumers. The
proposed pricing strategy leads to higher social welfare in the
higher-price states.

Last but not least, in Fig. 7, we show that the proposed pric-
ing strategy converges under an acceptable number of iterations
when the error is set to 0.01 in the current setting. However, in
practice, the number of iterations to reach satisfactory conver-
gence highly depends on the parameters of the finite difference
method. Consequently, when implementing the technique it is
necessary to monitor the convergence rather than simply relying
upon a fixed number of iterations.

8. Challenges in the future data market

In this paper, we propose a novel federated data acquisition
system with local data aggregators and a data union presenting
the data owners to negotiate with the data consumer. Despite
the advantages of the proposed data pricing strategy, we still face
challenges in future practice.

Sensible decision making of human beings: Though this
work introduces agents, i.e., data unions, to represent data own-
ers, the ideal solution still remains to be solved. The agents
usually charge markups to serve as a broker. Data owners should
be able to decide the value of the data and trade directly with the
data consumer in a distributed fashion. This brings a challenge
to data owners to make a sensible decision regarding the data
value [26]. Indeed, multiple factors affect the data value as it can
vary for example: according to different applications; usage of
the data consumer; or even different application preferences of
the data owner. Consequently, data owners may need nudges or
cues to understand the data value as it is hard for human beings
to evaluate the true value of the data and trade with the data
consumers.

Regulation and law: With the establishment of the General
Data Protection Regulation (GDPR) in Europe in 2016, data pri-
vacy has been widely discussed. Data protection not only brings
positive effects, such as clear rights for the data subject but also
leads to some drawbacks [27]. For example, it will be harder for
high-tech companies to provide customised services. The govern-
ment is not able to have a macro view of society during resource
allocation, such as vaccine distribution. The flexibility of data
trading is still required in the regulation.

New market structure: As we mentioned, the structures of
the data market are limited. One of the promising directions is
a fully distributed market structure aided by distributed ledger
technology (DLT) [28]. It allows peer-to-peer interactions be-
tween the data owner and the data consumer. More importantly,
with the increase of smart cities and IoT applications, micro-
transactions can also be implemented via DLT. Additionally, an
incentive mechanism is desirable in balancing the power [29] and
creating a healthy marketplace for information systems.
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Fig. 5. Optimal data quantity evolution with respect to privacy cost weight «y: the solid lines and the dotted lines are the data quantity evolution of LDA 1 and LDA
2, respectively. The final optimal data quantity is shown in the bold blue lines. (a) LDAs with «; = 0.5 (setting: o, = 0.5, @3 = 0.1, 81 = 0.1, B, = 0.3.). (b) Privacy
sensitive LDAs with «; = 0.9 (setting: oy = 0.5, a3 = 0.1, B; =0.1, B, =0.3.). (c) LDAs with influential neighbours 8; = 1.5 (setting: oy = 0.5, ap = 0.5, a3 = 0.1, B

=0.3).
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Fig. 7. Algorithm convergence with error set as 0.01.

9. Conclusion

This paper proposes a novel federated data acquisition frame-
work with a data pricing strategy based on mean-field game
theory. We first analyse the current data trading solution and
then introduce the architecture of the federated data acquisition
framework and its pricing strategy. For evaluation, we demon-
strate the evolution of the price distributions of multiple local

data aggregators. Additionally, the proposed pricing strategy en-
ables data owners to achieve optimal social welfare with equi-
librium in the data quantity that is traded. Last but not least, we
have presented challenges in the future data market. For our fu-
ture work, we will consider a pricing strategy with multiple data
consumers and owners in the proposed federated data acquisition
market.
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