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Abstract: This study aims to compare the variable selection strategies of different machine learning
(ML) and statistical algorithms in the prognosis of neck pain (NP) recovery. A total of 3001 participants
with NP were included. Three dichotomous outcomes of an improvement in NP, arm pain (AP), and
disability at 3 months follow-up were used. Twenty-five variables (twenty-eight parameters) were
included as predictors. There were more parameters than variables, as some categorical variables
had >2 levels. Eight modelling techniques were compared: stepwise regression based on unadjusted
p values (stepP), on adjusted p values (stepPAdj), on Akaike information criterion (stepAIC), best
subset regression (BestSubset) least absolute shrinkage and selection operator [LASSO], Minimax
concave penalty (MCP), model-based boosting (mboost), and multivariate adaptive regression splines
(MuARS). The algorithm that selected the fewest predictors was stepPAdj (number of predictors,
p = 4 to 8). MuARS was the algorithm with the second fewest predictors selected (p = 9 to 14). The
predictor selected by all algorithms with the largest coefficient magnitude was “having undergone
a neuroreflexotherapy intervention” for NP (β = from 1.987 to 2.296) and AP (β = from 2.639 to
3.554), and “Imaging findings: spinal stenosis” (β = from −1.331 to −1.763) for disability. Stepwise
regression based on adjusted p-values resulted in the sparsest models, which enhanced clinical
interpretability. MuARS appears to provide the optimal balance between model sparsity whilst
retaining high predictive performance across outcomes. Different algorithms produced similar
performances but resulted in a different number of variables selected. Rather than relying on any
single algorithm, confidence in the variable selection may be increased by using multiple algorithms.

Keywords: neck pain; statistics; prognosis; machine learning; variable selection

1. Introduction

Neck pain (NP) is a very common musculoskeletal pain disorder [1] that not only
results in considerable pain and suffering, but incurs a significant economic cost [2]. The
management of NP is complex given the multifactorial nature of the disorder [3]. Prognostic
factor research [4] is seen as key to disentangling the complexity of NP, by identifying
predictors of poor outcomes for treatment [5]. Recent systematic reviews have identified
several prognostic factors of poor outcome in NP, which include body mass index (BMI) [5],
fear [6], NP intensity at inception [6], and symptom duration [7], to name a few.

Multivariable statistical models are commonly used in prognostic factor research [8,9].
To identify the most important variables as predictors, the most common statistical strategy
is stepwise regression, where only variables where the statistical significance exceeds a
threshold are retained as predictors [10–13]. It has long been recognised that the standard
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errors of the coefficient estimates are underestimated when standard statistical tests, which
assume a single test of a pre-specified model, are applied sequentially like in a stepwise
regression [14]. This could result in variables being more likely to be retained because of an
artificially small p value. The potential that less important variables are included into the
model could reduce prediction performance in the testing (out-of-sample) data [14].

Increasingly, machine learning (ML) is being employed for prognostic modelling [15,16].
A significant barrier to embedding ML models into mainstream clinical care is its “black-box”
approach [17]. The lack of model interpretability means that a clinician cannot decide how
the model reached its final prediction. In contrast to ML, statistical methods like logis-
tic/linear regression are intrinsically interpretable, given that from the magnitude and sign
of the coefficient estimates of the included predictors, the predicted outcome can be deter-
mined. However, there are interpretable ML algorithms that perform automatic variable
selection during the model fitting process, such as model-based boosting (mboost) [18], the
least absolute shrinkage and selection operator (LASSO) [19], and multivariate adaptive
regression spline (MuARS) [20], to name a few. ML algorithms that perform intrinsic au-
tomatic variable selection are known as embedded strategies [21]. Filter-based strategies
reflect preprocessing steps that use a criterion not involved in any ML algorithms, to prese-
lect a subset of all candidate variables, to be used in ML [21]. An example of filter-based
strategies includes removing highly collinear variables before ML modelling. In wrapper-
based strategies, the variable selection is based on a specific ML algorithm, which follows a
greedy search by evaluating all possible combinations of variables against the evaluation
criterion [21]. An example of wrapper-based approaches includes stepwise selection using
the Akaike information criterion (AIC).

We previously compared different “black-box” ML algorithms against traditional
statistical methods [22]. No studies to date have compared the differences in variables
selected and the magnitude and sign of their coefficient estimates between different ML
algorithms against traditional stepwise regression for NP prognostic factor studies. Hence,
the primary aim of this study is to compare how different ML and statistical algorithms
differ in the number of variables selected, and the associated magnitude and sign of the
estimated coefficients. Herein, we restricted the comparison to parametric ML algorithms
with embedded variable selection capacity, as well as wrapper methods [23]. The secondary
aim of this study is to compare how differences in the variables selected and their coeffi-
cient estimates between different ML and statistical algorithms influence the prediction
performance of these algorithms. We first hypothesised that traditional stepwise regression
using unadjusted p values would lead to the least sparse model. We also hypothesised that
the prediction performance of traditional stepwise regression using unadjusted p values
would be the poorest compared to the remaining ML algorithms assessed.

2. Materials and Methods
2.1. Design

This was a longitudinal observational study with repeated measurements at baseline
and at 3 months follow-up. This study follows the transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD) statement [24].

2.2. Setting

Forty-seven health care centres were invited by the Spanish Back Pain Research
Network to participate in this study [8]. According to Spanish law (Ley de Investigación
Biomédica 14/2007 de 3 de julio, ORDEN SAS/3470/2009, de 16 de diciembre-BOE núm.
310, de 25 diciembre [RCL 2009, 2577]-), no ethical approval was required due to the
observational design of this study.

2.3. Participants

The recruitment window spanned the period from 2014 to 2017 [8]. The inclusion
criteria were participants suffering from non-specific NP, with or without arm pain, seeking
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care for NP in a participating unit, and fluent in the Spanish language. The exclusion
criteria were participants suffering from any central nervous system disorders, and where
NP or arm pain were due to trauma or a specific systemic disease.

2.4. Sample Size

The sample size was established at 2934 subjects. There were no concerns about the
sample size being too large, due to the observational nature of the study. To analyse the
association of up to 40 parameters, the sample had to include at least 400 subjects who
would not experience improvement, following the 1:10 (1 parameter per 10 events) rule of
thumb [25].

2.5. Predictor and Outcome Variables

Data collected at baseline from participants included age, sex, duration of the current
pain episode (days), the time elapsed since the first episode (years), and work status. At
baseline and follow-up, participants were asked to report the intensity of their neck and
arm pain and neck-related disability. For pain intensity measurements, 10 cm visual analog
scales (VAS) were used (0 = no pain and 10 = worst imaginable pain). For disability, the
Spanish version of the Neck Disability Index (NDI, 0 = no disability and 100 = worst
possible disability) [26] was used (Table 1).

Table 1. Descriptive characteristics of participants (n = 3001). Continuous variables are summarised
as mean (one standard deviation). Categorical variables are summarised as count (% frequency).

Variable Total

Neck pain improvement
N-Miss 238

No 757 (27.4)
Yes 2006 (72.6)

Arm pain improvement
N-Miss 1061

No 568 (29.28)
Yes 1372 (70.72)

Disability improvement
N-Miss 1796

No 600 (49.79)
Yes 605 (50.21)
Sex

N-Miss 48
Male 726 (24.59)

Female 2227 (75.41)
Age (years)

N-Miss 21
Mean (SD) 50.29 (15.86)

Employment
N-Miss 376

Not applicable 1199 (45.68)
Not working 197 (7.5)

Working 1229 (46.82)
Pain duration (days)

N-Miss 165
Mean (SD) 493.4 (989.43)

Time since first episode (years)
N-Miss 120

<1 648 (22.49)
1–5 984 (34.15)
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Table 1. Cont.

Variable Total

5–10 677 (23.5)
>10 572 (19.85)

Chronicity
Acute 971 (32.36)

Chronic 2030 (67.64)
Baseline neck pain

N-Miss 28
Mean (SD) 6.56 (2.25)

Baseline arm pain
N-Miss 80

Mean (SD) 4.47 (3.38)
Baseline disability

N-Miss 1194
Mean (SD) 30.84 (22.41)

Xray diagnosis
No 2302 (76.71)
Yes 699 (23.29)

MRI diagnosis
No 2399 (79.94)
Yes 602 (20.06)

Imaging findings of disc degeneration
No 1666 (55.51)
Yes 1335 (44.49)

Imaging findings of facet degeneration
No 2771 (92.34)
Yes 230 (7.66)

Imaging findings of scoliosis
No 2866 (95.5)
Yes 135 (4.5)

Imaging findings of spinal stenosis
No 2938 (97.9)
Yes 63 (2.1)

Imaging findings of disc protrusion
No 2731 (91)
Yes 270 (9)

Imaging findings of disc herniation
No 2483 (82.74)
Yes 518 (17.26)

Clinical diagnosis
Disc protrusion/herniation 665 (22.16)

Spinal stenosis 63 (2.1)
Non-specific 2273 (75.74)

Pharmacological: analgesics
No 1042 (34.72)
Yes 1959 (65.28)

Pharmacological: NSAIDS
No 1175 (39.15)
Yes 1826 (60.85)

Pharmacological: steroids
No 2811 (93.67)
Yes 190 (6.33)

Pharmacological: muscle relaxants
No 2265 (75.47)
Yes 736 (24.53)

Pharmacological: opioids
No 2949 (98.27)
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Table 1. Cont.

Variable Total

Yes 52 (1.73)
Pharmacological: other

No 2328 (77.57)
Yes 673 (22.43)

Nonpharmacological treatment
No 2587 (86.2)
Yes 414 (13.8)

Neuroreflexotherapy
No 421 (14.03)
Yes 2580 (85.97)

Abbreviations: N-miss—number of missing data, SD—one standard deviation.

Data collected at baseline from clinicians included diagnostic procedures provided for the
current episode (e.g., X-rays, computed tomography (CT) scans, magnetic resonance imaging
(MRI)), radiological reports of the current or previous episodes (e.g., facet joint degeneration,
spinal stenosis), clinical diagnosis (pain caused by disc herniation, spinal stenosis or “non-
specific NP”), and treatments received by the participant (e.g., drugs—analgesics, NSAIDs;
physiotherapy and rehabilitation; neuroreflexotherapy intervention; surgery) (Table 1).

Three binary outcomes were analysed in this study: NP, AP, and NDI improvements
(yes/no), all at the 3rd month follow-up. Most of the improvements in people with spinal
pain disorders occur within the first 3 months. Also, there is a substantial attrition of
patients after 3 months’ follow-up [27,28]. Hence, the primary outcomes were collected
on the 3rd month follow-up. An improvement was defined if the reductions in VAS or
NDI scores between the baseline and follow-up assessments were greater than the minimal
clinically important change (MCIC), i.e., a minimum value of 1.5 for VAS and 7 NDI
points [26].

2.6. Preprocessing and Missing Data Handling

Figure 1 provides a schematic illustration of the workflow in this study. Twenty-five
variables were included in the present study. The data (n = 3001) were split into a training set
(80%, n = 2402) and testing set (20%, n = 599) for validation. Multiple imputation by chained
equations method [29] was performed given that no systematic patterns of missing data
were noted. Multiple imputations on the training set were performed. The imputed model
was then used to impute missing data in the testing set. All five continuous predictors
were scaled to have a mean of zero and a standard deviation (SD) of one. All 20 categorical
variables were transformed into integers using one-hot encoding. Altogether, there were
28 parameters included as predictors in the model, without considering the intercept.

2.7. ML Algorithms

The codes used for the present study are included in the lead author’s public repository
(https://github.com/bernard-liew/spanish_data_repo accessed on 18 September 2023).
Eight algorithms were compared in the present study and their details can be found in
the Supplementary Material: (1) stepwise logistic regression based on p values with no
adjustment (stepP) [30]; (2) stepwise logistic regression based on p values with adjustment
(stepPAdj) [31]; (3) stepwise logistic regression based on AIC (stepAIC) [32]; (4) best
subset regression (BestSubset) [33]; (5) LASSO [19,24]; (6) Minimax concave penalty (MCP)
regression; (7) model-based boosting (mboost) [18]; and (8) MuARS [20]. Both LASSO and
mboost produce coefficients that are biased towards zero [18]. Hence, the predictors selected
by LASSO and mboost were refitted with a simple logistic regression model to retrieve
the unbiased coefficients. Stepwise regression methods were selected as they represent
the most traditional methods used in spinal pain research for variable selection [34,35].
Regularised regression methods (e.g., LASSO, MCP, boosting) have been advocated as
preferable techniques used for variable selection by TRIPOD [24]. MuARS was selected

https://github.com/bernard-liew/spanish_data_repo
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based on its optimal balance between model sparsity and prediction performance in prior
research in a similar disease cohort [36]. BestSubset was used based on prior research on its
superior predictive performance and quicker computational speed compared to traditional
regularised methods [37].
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2.8. Validation

The primary measure of model performance was the area under the curve (AUC) of
the testing set [22]. AUC ranges from 0 to 1, with a value of 1 being when the model can
perfectly classify all the improvements and no improvements correctly. The secondary
measures of performance were classification accuracy, precision, sensitivity, specificity, and
the F1 score, as described in a prior study [22]. We were also interested in exploring the
sparsity of each modelling algorithm, and whether the number of selected coefficients, its
coefficient magnitude, and sign were similar across algorithms.

3. Results

The descriptive characteristics of participants can be found in Table 1. Across the
three outcomes, the algorithm that selected the fewest predictors was stepPAdj (number of
predictors, p = 4 to 8), whilst the algorithm that selected the greatest number of predictors
was LASSO for the outcomes of AP and disability (p = 21 to 28) and the best subset for NP
(p = 28) (Tables 2–4, see Supplementary Figure S1). MuARS was the algorithm with the
second fewest predictors selected (p = 9 to 14) (Tables 2–4, Figure S1). For the outcomes of
NP, AP, and disability, three, three, and six predictors were selected by all eight algorithms
(Tables 2–4). Two variables that were not selected by either of the two p-value-based
stepwise regressions were selected by the remaining six algorithms for the outcome of NP;
eight variables followed the same trend for the outcome of AP; and four variables followed
this trend for disability (Tables 2–4, Figure S1).
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Table 2. Beta coefficients of selected variables for the outcome of neck pain.

Variables stepP stepPAdj stepAIC Best Subset LASSO LASSO Refit MCP mboost mboost Refit MuARS Number

Sex—female −0.244 −0.200 −0.198 −0.149 −0.210 −0.198 −0.128 −0.210 6
Age (years) 0.090 0.019 0.070 0.090 0.002 0.070 4

Employment—not working −0.461 −0.521 −0.538 −0.497 −0.437 −0.495 −0.498 −0.416 −0.495 −0.531 8
Employment—working 0.150 0.127 0.163 0.210 0.141 0.180 0.210 0.125 0.180 7
Duration of pain (days) 0.084 0.084 0.030 0.071 0.084 0.017 0.071 5

Time since first episode (years)—1–5 −0.359 −0.366 −0.388 −0.144 −0.241 −0.387 −0.112 −0.241 6
Time since first episode (years)—5–10 −0.233 −0.234 −0.270 −0.269 4
Time since first episode (years)—>10 −0.569 −0.599 −0.648 −0.314 −0.469 −0.648 −0.260 −0.469 −0.312 7

Chronicity—chronic −0.555 −0.540 −0.527 −0.411 −0.536 −0.528 −0.366 −0.536 −0.537 7
Baseline intensity of neck pain 0.163 0.236 0.225 0.178 0.222 0.225 0.161 0.222 0.240 7
Baseline intensity of arm pain −0.165 −0.163 −0.115 −0.162 −0.163 −0.099 −0.162 −0.182 6

Baseline disability −0.247 −0.237 −0.224 −0.217 −0.201 −0.216 −0.217 −0.193 −0.216 −0.270 8
Diagnostic procedure: X-ray—yes 0.211 0.212 0.167 0.205 0.212 0.153 0.205 5

Diagnostic procedure: MRI-yes −0.052 −0.052 2
Imaging findings: disc

degeneration—yes −0.242 −0.293 −0.191 −0.144 −0.185 −0.191 −0.129 −0.185 6

Imaging findings: facet joint
degeneration—yes −0.449 −0.427 −0.358 −0.441 −0.426 −0.331 −0.441 −0.414 6

Imaging findings: scoliosis—yes 0.447 0.469 0.301 0.460 0.469 0.247 0.460 5
Imaging findings: spinal

stenosis—yes 0.133 0.132 2

Imaging findings: disc
protrusion—yes −0.275 −0.228 −0.207 −0.234 −0.227 −0.198 −0.234 5

Imaging findings: disc
herniation—yes −0.313 −0.302 −0.253 −0.234 −0.258 −0.253 −0.223 −0.258 −0.305 7

Pharmacological treatment:
analgesics—yes 0.007 1

Pharmacological treatment:
NSAIDs—yes 0.161 0.146 0.082 0.137 0.149 0.063 0.137 5

Pharmacological treatment:
steroids—yes −0.207 −0.047 −0.161 −0.206 −0.012 −0.161 4

Pharmacological treatment: muscle
relaxants—yes 0.136 0.054 0.127 0.137 0.029 0.127 4

Pharmacological treatment:
opioids—yes 0.251 0.102 0.305 0.252 0.037 0.305 4
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Table 2. Cont.

Variables stepP stepPAdj stepAIC Best Subset LASSO LASSO Refit MCP mboost mboost Refit MuARS Number

Pharmacological treatment: other
treatments—yes 0.089 0.089 2

Nonpharmacological
treatments—yes −0.059 −0.059 2

NRT 1.987 2.343 2.239 2.186 2.031 2.136 2.186 1.987 2.136 2.296 8

Number 11 6 18 28 22 22 27 22 22 9

Text in bold indicates variables selected by all algorithms. Abbreviations. stepP: stepwise logistic regression based on p values with no adjustment; stepPAdj: stepwise logistic
regression based on p values with adjustment; stepAIC: Stepwise logistic regression based on AIC; BestSubset: best subset regression; LASSO: least absolute shrinkage and selection
operator; MuARS: multivariate adaptive regression spline; MCP: Minimax concave penalty; mboost: model-based boosting; MRI: magnetic resonance imaging; NSAIDS: nonsteroidal
anti-inflammatory drug: NRT: neuroreflexotherapy.

Table 3. Beta coefficients of selected variables for the outcome of arm pain.

Variables stepP stepPAdj stepAIC Best Subset LASSO LASSO Refit MCP mboost mboost Refit MuARS Number

Sex—female 0
Age (years) 0

Employment—not working −0.538 −0.454 −0.429 −0.364 −0.481 −0.458 −0.312 −0.486 −0.429 7
Employment—working 0.189 −0.008 0.026 −0.025 3
Duration of pain (days) 0.010 0.055 0.013 2

Time since first episode (years)—1–5 −0.261 −0.064 −0.273 −0.262 −0.003 −0.260 4
Time since first episode (years)—5–10 −0.533 −0.350 −0.314 −0.559 −0.538 −0.238 −0.539 −0.350 6
Time since first episode (years)—>10 −0.726 −0.542 −0.511 −0.762 −0.732 −0.430 −0.729 −0.542 6

Chronicity—chronic −0.529 −0.538 −0.462 −0.572 −0.541 −0.425 −0.536 −0.538 6
Baseline intensity of neck pain −0.428 −0.407 −0.384 −0.384 −0.318 −0.381 −0.381 −0.296 −0.381 −0.384 8
Baseline intensity of arm pain 0.623 0.608 0.744 0.742 0.689 0.748 0.744 0.666 0.747 0.742 8

Baseline disability −0.336 −0.339 −0.334 −0.363 −0.346 −0.321 −0.360 −0.339 6
Diagnostic procedure: X-ray—yes 0
Diagnostic procedure: MRI—yes 0

Imaging findings: disc
degeneration—yes −0.307 −0.317 −0.271 −0.280 −0.300 −0.260 −0.293 −0.317 6

Imaging findings: facet joint
degeneration—yes −0.038 −0.068 −0.029 −0.071 2

Imaging findings: scoliosis—yes 0.082 0.198 0.014 0.044 0.191 3
Imaging findings: spinal

stenosis—yes −0.220 −0.304 −0.149 −0.187 −0.321 3
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Table 3. Cont.

Variables stepP stepPAdj stepAIC Best Subset LASSO LASSO Refit MCP mboost mboost Refit MuARS Number

Imaging findings: disc
protrusion—yes 0.131 0.242 0.133 0.098 0.229 3

Imaging findings: disc
herniation—yes −0.353 −0.350 −0.308 −0.358 −0.355 −0.292 −0.351 −0.350 6

Pharmacological treatment:
analgesics—yes 0.329 0.321 0.191 0.234 0.288 0.177 0.229 0.321 6

Pharmacological treatment:
NSAIDs—yes 0.227 0.111 0.141 0.063 0.099 0.134 4

Pharmacological treatment:
steroids—yes 0

Pharmacological treatment: muscle
relaxants—yes 0.059 0.104 0.039 0.042 0.108 3

Pharmacological treatment:
opioids-yes 0.792 0.793 0.605 0.792 0.731 0.547 0.796 0.793 6

Pharmacological treatment: other
treatments—yes −0.262 −0.310 2

Nonpharmacological
treatments—yes 0.008 0.053 1

NRT 2.639 2.695 3.525 3.447 3.218 3.549 3.534 3.101 3.554 3.447 8

Number 7 4 14 12 21 21 19 20 20 12

Text in bold indicates variables selected by all algorithms. Abbreviations. stepP: stepwise logistic regression based on p values with no adjustment; stepPAdj: stepwise logistic
regression based on p values with adjustment; stepAIC: stepwise logistic regression based on AIC; BestSubset: best subset regression; LASSO: least absolute shrinkage and selection
operator; MuARS: multivariate adaptive regression spline; MCP: Minimax concave penalty; mboost: model-based boosting; MRI: magnetic resonance imaging; NSAIDS: nonsteroidal
anti-inflammatory drug: NRT: neuroreflexotherapy.

Table 4. Beta coefficients of selected variables for the outcome of disability.

Variables stepP stepPAdj stepAIC Best Subset LASSO LASSO Refit MCP mboost mboost Refit MuARS Number

Sex—female 0.232 0.108 0.096 0.108 0.099 0.063 0.108 5
Age (years) 0.193 0.159 0.198 0.204 0.186 0.203 0.201 0.137 0.203 0.157 8

Employment—not working 0.149 0.042 −0.327 −0.312 −0.291 −0.310 −0.310 −0.236 −0.309 7
Employment—working 0.422 0.397 0.276 0.276 0.264 0.278 0.278 0.223 0.278 0.252 8
Duration of pain (days) −0.151 −0.135 −0.139 −0.139 −0.142 −0.141 −0.129 −0.142 −0.158 7

Time since first episode (years)—1–5 −0.431 −0.440 −0.394 −0.438 −0.438 −0.265 −0.438 5
Time since first episode (years)—5–10 −0.385 −0.395 −0.341 −0.393 −0.393 −0.188 −0.393 5
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Table 4. Cont.

Variables stepP stepPAdj stepAIC Best Subset LASSO LASSO Refit MCP mboost mboost Refit MuARS Number

Time since first episode (years)—>10 −0.474 −0.482 −0.421 −0.479 −0.477 −0.251 −0.479 5
Chronicity—chronic −0.389 −0.400 −0.386 −0.400 −0.397 −0.345 −0.400 −0.405 6

Baseline intensity of neck pain 0.096 0.090 0.084 0.089 0.088 0.068 0.089 5
Baseline intensity of arm pain −0.175 −0.386 −0.394 −0.381 −0.393 −0.394 −0.344 −0.393 −0.359 7

Baseline disability 0.426 0.433 0.421 0.433 0.432 0.387 0.433 0.447 6
Diagnostic procedure: X-ray—yes 0.357 0.305 0.296 0.289 0.299 0.298 0.257 0.300 0.294 7
Diagnostic procedure: MRI—yes 0.270 0.000 0.011 2

Imaging findings: disc
degeneration—yes −0.338 −0.319 −0.303 −0.318 −0.322 −0.256 −0.319 −0.296 6

Imaging findings: facet joint
degeneration—yes −0.820 −0.756 −0.770 −0.790 −0.766 −0.790 −0.786 −0.699 −0.790 −0.776 8

Imaging findings: scoliosis—yes 0.588 0.653 0.547 0.543 0.509 0.540 0.538 0.417 0.540 0.493 8
Imaging findings: spinal

stenosis—yes −1.420 −1.331 −1.777 −1.761 −1.703 −1.763 −1.758 −1.540 −1.761 −1.628 8
Imaging findings: disc

protrusion—yes −0.640 −0.654 −0.676 −0.679 −0.669 −0.683 −0.684 −0.631 −0.682 −0.692 8
Imaging findings: disc

herniation—yes 0.211 0.211 0.187 0.209 0.212 0.114 0.212 5

Pharmacological treatment:
analgesics—yes −0.075 −0.030 −0.039 −0.001 −0.039 3

Pharmacological treatment:
NSAIDs—yes −0.060 −0.069 −0.076 −0.037 −0.068 3

Pharmacological treatment:
steroids—yes 0.297 0.271 0.296 0.293 0.198 0.296 0.419 5

Pharmacological treatment: muscle
relaxants—yes 0.373 0.227 0.227 0.225 0.239 0.235 0.180 0.239 6

Pharmacological treatment:
opioids—yes −0.226 −0.190 −0.224 −0.134 −0.089 −0.224 4

Pharmacological treatment: other
treatments—yes 0.262 0.198 0.193 0.201 0.198 0.166 0.203 5

Nonpharmacological
treatments—yes −0.203 −0.225 −0.200 −0.222 −0.223 −0.141 −0.220 5

NRT 1.200 1.254 1.224 1.252 1.253 1.141 1.253 1.238 6

Number 12 8 22 26 28 28 26 27 27 14

Text in bold indicates variables selected by all algorithms. Abbreviations. stepP: stepwise logistic regression based on p values with no adjustment; stepPAdj: stepwise logistic
regression based on p values with adjustment; stepAIC: stepwise logistic regression based on AIC; BestSubset: best subset regression; LASSO: least absolute shrinkage and selection
operator; MuARS: multivariate adaptive regression spline; MCP: Minimax concave penalty; mboost: model-based boosting; MRI: magnetic resonance imaging; NSAIDS: nonsteroidal
anti-inflammatory drug: NRT: neuroreflexotherapy.
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For the outcome of NP, the difference in predictive performance between the best and
worst algorithms was small, with a difference of 0.01, 0.02, 0.04, 0.03, and 0.01 for accu-
racy, AUC, precision, sensitivity, and specificity, respectively (Figure 2A, see Supplementary
Table S1). For the outcome of AP, the difference in predictive performance between the best
and worst algorithms was 0.01, 0.02, 0.03, 0.06, and 0.03 for accuracy, AUC, precision, sensitiv-
ity, and specificity, respectively (Figure 2B, Table S1). For disability, the difference in predictive
performance between the best and worst algorithms was 0.09, 0.09, 0.07, 0.23, and 0.07 for
accuracy, AUC, precision, sensitivity, and specificity, respectively (Figure 2C, Table S1).
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Figure 2. Predictive performance of eight algorithms for the clinical outcomes of (A) neck pain
improvement, (B) arm pain improvement, and (C) disability improvement. Abbreviations. stepP:
stepwise logistic regression based on p values with no adjustment; stepPAdj: stepwise logistic
regression based on p values with adjustment; stepAIC: stepwise logistic regression based on AIC;
BestSubset: best subset regression; LASSO: least absolute shrinkage and selection operator; MuARS:
multivariate adaptive regression spline; MCP: Minimax concave penalty; mboost: model-based
boosting; area under the receiver operating characteristic curve (AUC).
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The coefficient magnitudes of LASSO and mboost were on average 31.8% and 42.7%
smaller than its refitted magnitudes for the outcome of NP (Table 2); 33.6% and 45.9% for
AP (Table 3); and 10.6% and 29.1% for disability (Table 4). The predictor that was selected
by all algorithms with the largest coefficient magnitude was NRT intervention (β = from
1.987 to 2.296) for the outcome of NP (Table 2); NRT intervention (β = from 2.639 to 3.554)
for the outcome of AP (Table 3); and imaging findings: spinal stenosis (β = from −1.331 to
−1.763) for the outcome of disability (Table 4).

4. Discussion

Variable selection remains a crucial methodological tool in prognostic factor research
when building statistical models [12,38]. Despite the emergence of ML algorithms in
modern prediction analytics, few studies have compared newer ML algorithms with
traditional stepwise regression in their difference in variable selection and influence on
prediction performance. In contrast to our first hypothesis, stepwise regression using
unadjusted p values did not result in the densest model. Also, the model with the poorest
prediction performance was stepwise regression with adjusted p values, particularly for
the outcome of disability. Qualitative inspection of the performance metrics and coefficient
selection suggests that MuARS provides the optimal balance between model sparsity and
high predictive performance.

The only studies that have compared different variable selection strategies in clinical
predictive modelling have done so in diabetes (n = 803) [23], paediatric kidney injury
(n = 6564) [39], and general hospitalised patient (n = 269,999) research [39]. One study
reported that both forward and backward selection using p-value thresholds resulted in the
sparsest model, compared to filter-based and wrapper-based (e.g., Stepwise AIC) selection
methods [23]. This is in line with the findings of the present study, where we found that
stepwise regression using p values, adjusted or unadjusted, resulted in a sparser model
than using AIC. One study reported that gradient-boosted variable selection resulted in the
sparsest model when compared to stepwise regression using p-value [39]. However, the
gradient-boosted variable selection algorithm used a forest model with 500 trees, making it
difficult to assess the univariate effects of the predictors [39]. No comparison was performed
against other embedded methods like in the present study [23].

Some predictors were selected by the six algorithms that were not identified by either
of the two p-value based methods, which was supported by a previous review reporting
that a significance level of only 0.05 used in stepwise regression could miss important
prognostic factors in the model [10]. For example, the predictor of “Time since first episode
(years)—10 years” was not selected using stepPAdj for the outcome of NP, but a longer
duration of complaints at baseline has been reported to have strong evidence as a prognostic
factor for persistent pain [7]. Also, baseline disability was identified by six algorithms other
than either of the two p-value based methods, and this was supported by a review that
found strong evidence for the role of baseline functional limitations as a prognostic factor
for persistent disability [7]. A disadvantage of a sparse model is not only that important
prognostic information may be lost, but the predictive performance of the model also
suffers, like the stepPAdj for the outcome of disability.

Our findings that the number of variables selected was closely similar between LASSO
and BestSubset was supported by a previous study [40]. Another study reported that AIC
selection mimics p-value selection, but with a significance level of roughly 0.15 (instead
of 0.05), and so is more conservative with removing variables [41], which we found in the
present study. Both MCP and LASSO try to approximate the best subset selection [40],
whilst mboost is also a form of LASSO if the step size (learning rate) goes to zero (becomes
very small) [42]. MuARS in turn performs a very similar procedure to mboost (but also
with a backward step) [20]. The added backward step in MuARS could result in more
variables removed, compared to mboost.

Uncertainty in any variable selection method is selection stability [43]. Combining
bootstrap resampling or subsampling with any statistical or ML algorithm has been used
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in past research to determine the frequency of selection of different variables on a different
random subset of the original sample [8]. In the present study, we propose another method
of quantifying selection stability by determining the frequency of variables selected using
different algorithms [44]. In the original study, the predictors of “having undergone a
NRT intervention”, “chronicity”, “baseline arm pain”, and “employment status” had a
frequency of ≥90% of being selected across 100 bootstrapped samples [8]. These highly
stable predictors were similarly selected with a high frequency across the investigated
algorithms, which suggests that highly important variables will get selected more frequently
across different samples and algorithms. Future studies investigating ensemble methods to
combine multiple strategies to understand variable selection stability will be essential as a
means of building prediction models that balance predictive performance and sparsity.

The present study did not investigate all possible types of ML algorithms with em-
bedded variable selection capacity. A notable exclusion is classification or regression
trees [45,46]. Although tree-based models are interpretable, the present study focuses on
parametrically based algorithms to provide a comparison of not only the selection of the
variable but also the magnitude and sign of the beta coefficients. A potential disadvantage
of tree-based models in prognostic models is the poorer generalisability to new data, i.e.,
high variance compared to other algorithms [45,46]. Both mboost and MuARS can model
nonlinear relationships and include interactions between variables during the model fitting
process, which may further optimise the balance between predictive performance and spar-
sity in prognostic modelling. In the present study, we did not provide statistical inference
results (e.g., standard error, confidence intervals) on the selected variables [47,48]. Valid
post-selection inference is challenging and still a very active area of research, given that the
use of data-driven methods introduces additional uncertainty, which invalidates classical
inference techniques [47,48].

5. Conclusions

Different statistical and ML algorithms produced similar prediction performances
but resulted in a different number of variables selected. Traditional stepwise regression
based on p-values could miss selecting variables selected by all other ML algorithms. The
MuARS appears to provide a good balance between model sparsity whilst retaining high
predictive performance across outcomes. Algorithms like MuARS and mboost can model
(non)linear relationships, as well as predictor interactions, which could better estimate the
relationship between prognostic factors and clinical outcomes. Rather than relying on any
single algorithm, confidence in the variable selection may be increased by using multiple
algorithms.
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