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Abstract: The Principle of Indifference (‘PI’: the simplest non-informative prior in Bayesian prob-
ability) has been shown to lead to paradoxes since Bertrand (1889). Von Mises (1928) introduced
the ‘Wine/Water Paradox’ as a resonant example of a ‘Bertrand paradox’, which has been presented
as demonstrating that the PI must be rejected. We now resolve these paradoxes using a Maximum
Entropy (MaxEnt) treatment of the PI that also includes information provided by Benford’s ‘Law of
Anomalous Numbers’ (1938). We show that the PI should be understood to represent a family of
informationally identical MaxEnt solutions, each solution being identified with its own explicitly jus-
tified boundary condition. In particular, our solution to the Wine/Water Paradox exploits Benford’s
Law to construct a non-uniform distribution representing the universal constraint of scale invariance,
which is a physical consequence of the Second Law of Thermodynamics.

Keywords: scale invariance; quantitative geometrical thermodynamics; Lagrange multipliers; Bayesian
probability

1. Introduction

The ‘Principle of Indifference’ (PI) is the intuitive principle that (in the absence of other
evidence) an unbiased estimate of the outcome of a test will assign equal probabilities
to the various possible outcomes. This appears to be a self-evident idea which seems to
underpin all rational approaches to estimating probabilities. The idea of using ‘Maximum
Entropy’ (MaxEnt) to determine equilibrium states of systems is also now well-established,
as is (of course) Bayesian probability theory. It is, therefore, very disconcerting to find
that there exist some circumstances in which the Principle of Indifference appears to be
self-contradictory: if this is really the case, then a huge number of important results in all
the sciences would be undermined.

Here, we will resolve a representative specimen of this set of paradoxes. We will
show that for this set of ‘paradoxes’ (involving continuous possibilities rather than discrete
ones), the PI entails (counter-intuitively) a non-uniform distribution representing the prior
knowledge, nevertheless yielding a MaxEnt solution.

Benford’s Law [1] is the peculiar observation that in many real-life sets of numerical
data, the leading digit is likely to be small. It was first observed by Simon Newcomb
in 1881 [2], who commented: ‘That the ten digits do not occur with equal frequency must be
evident to anyone making much use of logarithm tables, and noticing how much faster the first
pages wear out than the last ones’. Although this is an expected statistical phenomenon [3],
the reasons for it are remarkably obscure, and there remain a number of open problems [4].
Benford’s Law has since generated significant interest, including treatments that highlight
its connections with entropy: Iafrate et al. (2015) [5] showed that the Law is derivable from
a statistical mechanics treatment, with Don Lemons (2019) [6] extending their treatment to
explicitly show the connection with thermodynamics.

It has become clear that Benford’s Law is associated with scale invariance, although
Berger and Hill [4] give a simple counterexample for the (false) statement that ‘To be Benford,
a random variable or dataset needs to cover at least several orders of magnitude’. Nevertheless,
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since we have demonstrated the validity of Quantitative Geometrical Thermodynamics
(QGT) with an Euler–Lagrange variational calculus framework underpinning its Maximum
Entropy (MaxEnt) approach to hyperbolic systems ranging over 35 orders of magnitude [7]
(or more [8]), we expect such scale invariance to be present whenever the Second Law
of Thermodynamics is at work. And we therefore also expect Benford’s Law, with its
logarithmic character, to be ubiquitous (consistent with the fundamental and universal
character of the Second Law) and indeed a ‘proxy’ for the Second Law complete with all
the entailed physical limitations and constraints.

The Principle of Indifference is the simplest non-informative prior in Bayesian proba-
bility, mandating that, in the absence of any relevant evidence to the contrary, all possible
outcomes should be treated as equally probable. ‘The Principle of Indifference is a symmetry
principle stating [that] logical symmetries should be reflected, in the absence of any discriminating
information, in uniform a priori probability distributions’ (Howson & Urbach, 2006 [9]).

However, Joseph Bertrand showed in 1889 [10] that the PI leads to apparent paradoxes
for problems that have infinite sets of possible outcomes. Nicholas Shackel (2007) [11]
analysed Bertrand’s Paradox (including Jaynes’ treatment of it [12]), concluding that in
such cases, it continues to refute the PI. Of course, the first of the ‘plague of infinities’ of
the PI is introduced at the outset since a uniform probability distribution entails a MaxEnt
distribution characterised by an infinite temperature (since the temperature is inversely
proportional to the Lagrange multiplier of the MaxEnt formulation: see Technical Discus-
sion below).

The Wine/Water Paradox was introduced by Von Mises (1928) [13] as a resonant
example of a ‘Bertrand paradox’ and has recently been re-analysed by Mikkelson [14], who
concludes that the paradox is resolved if the symmetries of the problem are taken properly
into account.

Briefly, an instance of the ‘Wine/Water Paradox’ is given by Mikkelson [14] as:

There is a certain quantity of liquid. All that we know about the liquid is that it
is composed entirely of water and wine and that the ratio of wine:water (w) is
between 1/3 and 3. So 1/3 ≤ w ≤ 3. Now, what is the probability that w ≤ 2?

Different ways of stating the Principle of Indifference give different answers to this
question, and so the Wine/Water Paradox apparently represents an important counterex-
ample to the PI, playing ‘a curiously pivotal role in this discussion. Everyone seems to agree
[that the Wine/Water Paradox] has no solution [and therefore that the PI] has fallen into serious
disrepute among probability theorists’ [14], even suggesting ‘that the principle of indifference must
be totally rejected’ (Jaynes 1973 [12]; although he also says: ‘the principle of indifference has been
unjustly maligned in the past; what is needed was not blanket condemnation, but recognition of the
proper way to apply it’). Bas van Fraassen also thinks there is a fundamental failure of the PI:
‘Probability is not uniquely assignable on the basis of a Principle of Indifference’ [15].

In the language of Bayesian analysis, if a problem definition is to be considered
complete and self-consistent, then it requires a complete specification of the prior information
as well as the data, such that logical analysis from different points of view should lead to
exactly the same solution.

Howson and Urbach [9] have stated that the PI ‘is a symmetry principle’, and associated
with this property is Jaynes’ [12] idea of transformation group theory being applied to statisti-
cal problems invoking the PI; in particular, the assumption that changing the parameters
(including the scale) of a problem should not change the state of knowledge. Such symme-
try principles underlie both Special and General Relativity, where the hyperbolic rotations
associated with Minkowski space-time form such a transformation group.

There are curious parallels with the statistical mechanical calculation of the thermody-
namic entropy of a physical system, which depends on the granularity chosen to analyse the
system under consideration. Elements of the system smaller than the graining represent
the microstates of the system, which can be ignored since their permutations do not change
the value of the entropy calculated. It is the macrostates of the system that represent the
observational structure of the system.
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In any case, when discussing the ignorance of a system, it is the Principle of Maxi-
mum Entropy (MaxEnt) that is important, particularly when a system is considered to be
underdetermined. From a thermodynamical perspective, this is equivalent to the associ-
ated Lagrange multipliers being assigned a value of zero, which should be recognised as
equivalent to assuming an infinite system temperature (as briefly mentioned above and
elaborated in the Technical Discussion below). Such an assumption is both unphysical and
also unjustified per se on informational grounds (since if we are completely ignorant of the
temperature, we cannot assume any definite value). The MaxEnt principle is applied to
systems associated with the minimum of information. Howson and Urbach [9] make a clear
statement to this effect: ‘Jaynes’s [MaxEnt treatment] appeals. . .to the criterion. . .of minimum
information: . . .the least information. . . or. . . the fewest assumptions. . .’ As Jaynes himself puts
it, ‘How do we find the prior representing ‘complete ignorance’? . . . the maximum entropy principle
will lead to a definite, parameter-independent method of setting up prior distributions [such that]
we express complete ignorance by assigning a uniform prior probability density’ [12].

We regard this unjustified implicit assumption of infinite system temperature as being
at the root of the disrepute of the PI and intend to approach the problem rather differently,
invoking Benford’s Law as an explicit ‘proxy’ for a more physical application of the Second
Law allowing the relevant MaxEnt parameters (including the Lagrange multiplier, but see
Technical Discussion) to be properly determined and entailing physically consistent solutions.

It is interesting that Benford’s Law has not (to our knowledge) yet been applied to this
class of problems. It is curious that Jaynes, who did so much to propose and support the
principle of Maximum Entropy, neither saw the contradiction of effectively employing a
specific (infinite) temperature for the assumption of a uniform prior probability density
nor exploited Benford’s Law (which he was clearly aware of, citing it multiple times in his
book on probability theory [16]).

2. Resolution of the Wine/Water Paradox

We want to know what is the median ratio W of the wine:water volume ratios v/u,
v′/u′ (choosing two representative ratios from the distribution), where for convenience
(and without any loss of generality) we assume v, v′, u and u′ are appropriately integer
quantities, such that there is an equal probability of the wine:water ratios being above
and below that median point. The key issue here is that an equivalent answer must be
obtained for the symmetrical problem expressed using the inverse water:wine ratios, u/v
and u′/v′. For convenience, we assume v′/u′ > v/u, but of course, the inverse (symmetrical)
assumption v′/u′ < v/u may also be made. The wine:water ratio w can therefore be placed
between the following limits:

v/u ≤ w ≤ v′/u′ (1a)

If the original statement of the problem does not employ integer values in Equation (1a)
for the limits of w (such as in Mikkelson’s example), then it can be transformed by a common
multiplication factor so that the limits are integers. Multiplying the wine:water ratio w by
uu′, so as to define a transformed variable x = wuu′, then the limits of the scaled variable x
(which no longer represents a ratio quantity) are given by:

u′v ≤ x ≤ uv′ (1b)

For any number system of base B, Benford’s Law states that the leading digit N for
any number represented in that base B has a relative probability p(N) of occurrence of:

p(N) = logB

(
1 +

1
N

)
(2a)

Since we also need to analyse the reciprocal quantities, we choose our base B as
the product:

B = (u + 1)
(
u′ + 1

)
(v + 1)

(
v′ + 1

)
(2b)
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The limit quantities P≡ u′v and Q≡ uv′ (seen, in effect, in Equation (1b)) may be taken
without any loss of generality to be, respectively, their own leading digit representation in
the base B, so that using Benford’s Law, the natural probabilities of occurrence of P and
Q are

p(P) = logB

(
1 +

1
P

)
(3a)

p(Q) = logB

(
1 +

1
Q

)
(3b)

We can immediately write the ratio of these two probabilities as

p(P)
p(Q)

=
logB(1 + 1/P)
logB(1 + 1/Q)

=
ln(1 + 1/P)
ln(1 + 1/Q)

(4)

where, for convenience, we employ the natural logarithm. The most basic MaxEnt distribu-
tion (that is, the probability distribution with the fewest possible extraneous assumptions
or constraints) is the negative exponential distribution so that the MaxEnt probability
distribution for the scaled variable x is

p(x) = Aexp(−λx) (5a)

where λ is indistinguishable from a Lagrange multiplier. That is to say, the parameter λ can
be considered here to represent the physical constraint of scale invariance that has been
introduced into the problem formulation by the ubiquitous influence of the Second Law of
Thermodynamics. For x lying between the two numbers P and Q (as per Equation (1b)),

Q∫
P

Ae−λxdx = 1 (5b)

hence:
A =

λ

e−λP − e−λQ (5c)

It is clear that the MaxEnt distribution Aexp(−λx) is under-determined since it has
two variables, A and λ, but only one constraint (Equation (5b)). This under-determination
for Aexp(−λx) can be thought to have generated the Wine/Water Paradox since a unique
designation for each of A and λ was not available. But, asserting Benford’s Law and
recasting Equation (4) with the help of Equation (5a):

p(P)
p(Q)

=
exp(−λP)
exp(−λQ)

=
ln(1 + 1/P)
ln(1 + 1/Q)

(6)

Thus, Equation (6) represents a new independent relation allowing for the unique
determination of the exponential parameter λ, and therefore the most likely (MaxEnt)
distribution for the parameter x, since Equation (5c) can then be used to uniquely determine
A. Note that it is clear that λ 6= 0 unless P = Q; that is to say, only the trivial case (and,
in effect, a null wine/water proposition) leads to what might be considered the uniform
probability distribution (with λ = 0) conventionally associated with the PI.

Thus, the initial aspect of von Mises’ conundrum can now be straightforwardly solved;
that is to say, the value for the median probability is given by the value x = X, where X
(with P ≤ X ≤ Q) is uniquely determined by the following condition:

X∫
P

Ae−λxdx =

Q∫
X

Ae−λxdx =
1
2

(7a)
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using the LHS of Equation (7a) leads to a closed solution for X:

X =
−1
λ

ln
(

e−λP − λ

2A

)
(7b)

Transforming back into the ratio w leads to a median wine:water ratio given by
W = X/uu′:

W =
−1

uu′λ
ln
(

e−λP − λ

2A

)
(7c)

Considering now the reciprocal ratios, and in particular the reciprocal variable y (≡1/w),
then the relative proportions of water and wine are now considered to be u/v and u′/v′,
such that for u/v > u′/v′, we have:

u′/v′ ≤ y ≤ u/v (8a)

Then, as before, we may, without any loss of generality, multiply the appropriate
relative inverse ratios u/v and u′/v′, by the factor vv′ so as to ensure integer quantities
obeying Benford’s law as per Equation (3), and thereby consider the scaled variable z ≡ vv′y,
such that (assuming again a MaxEnt probability distribution for z)

u′v ≤ z ≤ uv′ (8b)

or indeed
P ≤ z ≤ Q (8c)

with
p(z) = Cexp(−Λz) (8d)

With the resulting limit quantities P ≡ u′v and Q ≡ uv′ still applying and the MaxEnt
equation Equation (8d) equivalent to Equation (5a), it is also now clear that C ≡ A and
Λ ≡ λ, such that it is also clear that the median point corresponds to the same equation
Equation (7b). That is, the problem has the same solution (as required) as its inverse
(mutatis mutandis).

3. Technical Discussion

In applying this theory to the Wine/Water Paradox using Mikkelson’s parameters
(1 ≤ x ≤ 9, transferring to integer numbers simply by multiplying Mikkelson’s range by
a factor 3), we now have the means to find the value of W such that there is an equal
probability of the actual ratio being above or below W. The above analysis reveals that the
solution to the Water–Wine Paradox is given by (solving Equation (6))

λ = 0.235481801 (9a)

with the associated value for A given by

A = 0.35142409 (9b)

and a median value W found from Equation (7c):

W = 1.11420745 (9c)

This median value of the probability distribution represents the ratio of wine/water
such that there is an equal probability of the actual ratio being above or below that value.
As required, the inverse problem has the same median value.

It is of interest to note that the median probability point associated with W is not
unity (that is, equal quantities of water and wine). This result is an interesting aspect of the
wine/water problem that invites some comment. In particular, we note that in our integer
terms of P and Q, then Mikkelson’s parameters are equivalent to the range lying between
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1 and 9, with a mid-point of 3, corresponding to the ‘geometric’ mid-point. Clearly, the
general result that W be unity would, in turn, imply that the solution for W is the geometric
mean, which is attractive since it appears scaleless. However, the geometric mean does not
actually conform to the logarithmic (hyperbolic) nature of the universe, as exemplified by
the entropic basis of the Second Law (see Eq.1b of Parker & Jeynes 2019 [17]). Equation (1)
shows that Benford’s Law is also ‘logarithmic’ in the same way, which is why we called it a
‘proxy’ for the Second Law. When considering the median probability from the perspective
of physical quantities, the logarithmic calculation for W (as per Equation (7c)) is the more
meaningful physical approach.

Although not exactly the same, the velocity addition rule of Special Relativity offers
a related (hyperbolic) means to combine two velocities. Similarly, the addition of optical
Fresnel-based reflection amplitudes (with phase properties) for the overall probability
amplitude of the reflection from a multilayer dielectric stack also follows a hyperbolic
tangent (tanh) addition formalism (see Corzine et al. [18]). That is, neither a geometric
nor an arithmetic addition occurs in either of these cases. As is well-known, the science
of probability has always tended to defy intuition by offering unexpected and surprising
solutions: the Monty Hall problem (see Enßlin et al. 2019 [19]; Enßlin & Westerkamp
2019 [20]) is just one example of many; Edwin Jaynes also delighted in exploiting the
Maximum Entropy machinery to objectively solve problems (such as the loaded dice; see
Jaynes 1978 [21], Jaynes 1982 [22]) in a manner aimed at disconcerting those unfamiliar
with these methods.

Jeffrey Mikkelson [14] considers that he has ‘dissolved’ the Wine/Water Paradox by
‘epistemically’ distinguishing between ‘primary’ and ‘derivative’ facts. We have shown
that explicitly invoking Benford’s Law yields a more clear-cut (and satisfactory) resolution.

Marc Burock [23] does not like Mikkelson’s solution since he regards it as silently
introducing extra information. Instead, he draws attention to ‘the joint sample space of a ratio
and its inverse’ and claims that applying the PI to this space resolves the paradox. In our
opinion, this can be regarded as a sort of scale invariance that we implement explicitly using
Benford’s Law.

For the question ‘What is the probability P* that w≤ 2?’, we again multiply Mikkelson’s
parameters by three and calculate the integrated probability for P ≤ x ≤ 6, with P = 1:

P∗ =
6∫

P

Ae−λxdx =
−A

λ

[
e−λx

]6

P
=
−Ae−λP

λ

{
e−(6−P)λ − 1

}
= 0.81595117 (10)

Michael Deakin published a sophisticated discussion [24] of both Mikkelson’s and
Burock’s conclusions. He points out that Mikkelson finds P* = 5/6 = 0.833, whereas
Burock finds P* = 0.764 (from Equation (10) above, we find P* = 0.816). He concludes that
the problem as posed may have any solution in the interval 1

2 ≤ P* ≤ 1. We regard the
problem as rather better-posed than he thinks it is, with a definite solution supplied by
the extra information intrinsic to Benford’s Law. Gerville-Réache [25] also discusses both
Mikkelson’s and Burock’s treatment, concluding (with Deakin) that the problem as posed
admits multiple solutions (including his preferred P* = 15/16 = 0.9375).

John Norton comments, very plausibly, ‘If our initial ignorance is sufficiently great,
there are so many ways to be indifferent that that the resulting equalities contradict the
additivity of the probability calculus. We can properly assign equal probabilities in a prior
probability distribution only if our ignorance is not complete and we know enough to be
able to identify which is the right partition of the outcome space over which to exercise
indifference’ [26]. His is a paper on ‘probabilistic epistemology’, but here we prefer to avoid
epistemological questions in favour of explicit physics (although it is not always possible
to avoid metaphysics [27]).

We have used Benford’s Law to generate a non-uniform (but still MaxEnt) prior to our
fully Bayesian inference, resolving the ‘Paradox’. One might ask (and thanks to another
anonymous referee for pointing this out) whether other priors might also be used. Simkin
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and Roychowdhury (2011) [28] describe a variety of other ‘power law distributions’ (such
as the heuristic Zipfian distribution) which show similar scale-independent behaviours.
It turns out that these are all related both to each other and to Shannon’s information
entropy. We have chosen to use Benford’s Law since it is sufficiently general and well-
founded statistically.

We have above repeatedly alluded to the issue of Lagrange multipliers, an issue which
highlights an apparently unphysical aspect of the most basic form of the Principle of Indiffer-
ence (PI). The point here is that the Maximum Entropy method looks for stationary solutions
of the Lagrangian system given the constraints. These constraints may be represented
by the (constant scalar) ‘Lagrange multipliers’. It is a standard result (see, for example,
Equation (5.38) in Caticha 2008 [29]) that, for the Boltzmann distribution, the Lagrange
multiplier representing the energy conservation constraint is inversely proportional to the
temperature, and our Equation (5a) features the parameter λ that is indistinguishable from
such a Lagrange multiplier.

It is also obvious that for uniform distributions (as are usually implied by the PI:
for such systems, the relevant probability distributions are independent of particular
constraints), the Lagrange multipliers must be zero. This, in turn, implies an (unphysical)
infinite system temperature. Here, we draw attention to this problem while using Benford’s
Law to select one of the families of Maximum Entropy solutions, one with a parameter that
is equivalent to a non-zero Lagrange multiplier. This problem has a solution not given by a
uniformly distributed probability function, such as one would intuitively expect from the
PI. Perhaps this has been such a persistent Paradox precisely because the simplest form of
the Principle of Indifference as applied to the Wine/Water Paradox entails a trivial solution
(P = Q) even though the probability functions of sensible solutions are not distributed
uniformly, even as they remain MaxEnt solutions.

It is worth mentioning (with thanks to the anonymous referee who pointed this out)
that the standard way of measuring the entropy S of a system is to measure its chemical
potential µ and then use the appropriate Maxwell relation (∂S/∂n)T = (∂µ/∂T)n, where the
number of particles n in the system is assumed to be very large so that the infinitesimals
are approximated reasonably well. In this way, one can obtain an ‘entropy per particle’ for
the system [30]. But again, to obtain the chemical potential, one usually uses a Lagrange
multiplier method and sets it to zero (to effect the ‘equilibrium’ condition). But as Baerends
(2022) [31] insists, ‘The crux of the Lagrange multiplier method is that it allows one to use full
derivatives. This requires that the full derivative is defined . . .’, which, strictly speaking, it is not.
This is another way of emphasising that the methods we use assume the validity of the
differential calculus, which for finite systems, can be only an approximation.

4. Philosophical Discussion

The question raised by anonymous referees is, ‘what is the claimed practical consequence
of this result?’ Practically, it gives us a new security in the validity of the Principle of
Indifference! The Water/Wine Paradox (and other related paradoxes) have plagued the
analytical treatment of logical inference for over a century now. So, being assured of the
resolution of this disconcerting question lurking at the very foundations of our methods
of logical inference must be a significant advance. After all, we need to know that logical
inference really is as logical as it is claimed to be. Physicists often use mathematical methods
rather casually, but in the end, they always want to know that the mathematicians have
correctly sorted out the details.

Since we have invoked the Second Law of Thermodynamics repeatedly, another
question raised is, ‘what specifically have these results to do with the Second Law?’ The Maximum
Entropy techniques ubiquitous today presuppose the Second Law, and our resolution
of the Paradox is demonstrably MaxEnt (and therefore depends fundamentally on the
Second Law).
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That is to say, the Wine/Water situation poses a rather clearly defined estimation
problem which has been widely discussed. Up to now, it has seemed that there was no clear
solution to this estimation problem that did not stray into metaphysical treatments. But
we have shown that metaphysics is not required, only the explicit introduction of an extra
prior, a prior that is clearly and universally valid. This prior (Benford’s Law) is actually a
mathematical statement of a general truth about any numerical representation of things
so that it is logically necessary (and always applicable): it is not a contingent (physical)
truth. The reason that it is so powerful in our application is that it may be validly thought
of as a proxy for scale invariance, which expresses the (relativistic) idea that a universal truth
should be valid at any scale. We assert that thermodynamics is also scale-invariant, and
we have physically demonstrated this invariance by showing that our thermodynamics is
valid over at least 35 orders of magnitude, from the subatomic to the cosmic [7]. That is,
Benford’s Law can also be thought of as a proxy not only for scale invariance but also for
priors required by thermodynamics itself.

A further question raised is, ‘under what conditions has this result empirical meaning?’
Could we perform an experiment and measure these probabilities? Yes, we could. But it
would be as pointless to ‘confirm’ the result ‘experimentally’ as it would be to ‘confirm’
the equiprobability of heads/tails in a coin-toss ‘experiment’. Can the rules of logical
inference be confirmed ‘experimentally’? No, they cannot. To interpret the meaning of any
experiment, the rules of logical inference must be assumed. The metrologists have made this
very clear. The Guide to the Expression of Uncertainty in Measurement (the ‘GUM’, published
under the aegis of the BIPM [32]) states, ‘A measurand is in many cases not measured directly,
but is indirectly determined from other quantities to which it is related by a measurement model. The
measurement model is a mathematical expression (or a set of such expressions), comprising all the
quantities known to be involved in a measurement. It enables a value of the measurand to be provided
and an associated standard uncertainty to be evaluated’. The GUM explicitly depends on the
VIM (the International Vocabulary of Metrology [33]), which carefully states, ‘The objective of
measurement is not to determine a “true value” as closely as possible. Rather, it is assumed that
the information from measurement only permits assignment of an interval of reasonable values
to the measurand, based on the assumption that no mistakes have been made in performing the
measurement’. Note that the empirical fact permanently confronting metrologists is that
uncertainty is unavoidable. What conclusions can be validly drawn in the ubiquitous
presence of uncertainty?

One does not usually associate metrology with philosophical ideas like ontology and
epistemology; nevertheless, Mari et al. (2013) [34] are metrologists who have drawn a
careful philosophical distinction between being a quantity and being measurable. They
point out that this distinction is an ontological one and, moreover, that ‘measurement is
primarily an epistemic process’. It should be recognised that the very idea of ‘empirical
meaning’ is itself heavily and irreducibly philosophical.

5. Conclusions

We have shown that the value of λ obtained explicitly (Equation (6)) resolves the
Water/Wine Paradox, being based on a more physically realistic expression of the Principle
of Indifference, and which remains valid even when the problem is expressed in a different
(but symmetrical) manner.

The ‘paradox’ is one famous example of a class of paradoxes described by Bertrand, and
its resolution here for one case is expected to resolve the other cases, too, mutatis mutandis.

We regard the ‘paradox’ as appearing paradoxical because it is ostensibly under-
determined, as stated, so that different solutions seem valid for an apparently well-posed
problem. This underdetermination is an expression of unrecognised and unstated priors
disturbing the analysis, while it is, of course, well-known that a correct Bayesian analysis
must also correctly state all the prior knowledge of the system.
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We solve the ‘paradox’ by explicitly supplying the missing prior (in the form of
Benford’s Law): namely, the condition of scale invariance. Other commentators have also
noticed this prior but have treated it metaphysically. Here, we treat it physically.

Our treatment shows that the Principle of Indifference does not necessarily imply the
uniform probability distribution one usually expects. This is because a uniform distribution
implies a null Lagrange multiplier, which in turn implies an (unphysical) infinite system
temperature. But it is important to note that a null Lagrange multiplier also implies
independence of relevant constraints; this independence has been (illegitimately) smuggled
in as a further (unacknowledged) implicit assumption. We have shown rigorously that
the explicit assumption of scale invariance required by the Second Law and implemented
using Benford’s Law allows a distinct and consistent Maximum Entropy solution to the
wine/water problem with a non-zero Lagrange multiplier explicitly evaluated.

This has wider importance because the Principle of Indifference underlies all Maximum
Entropy (Bayesian) analysis, and the suggestion that this Principle is invalid in general
(with specific supposed counterexamples) undermines the usefulness of the Maximum
Entropy methods that are now ubiquitous. But we have constructively demonstrated the
validity of this Principle by explicitly resolving the (alleged) Paradox.
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