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Brain complexity and non-stationary nature of electroencephalography
(EEG) signal make considerable challenges for the accurate identifi-
cation of different motor-imagery (MI) tasks in brain–computer inter-
face (BCI). In the proposed Letter, a novel framework is proposed for
the automated accurate classification of MI tasks. First, raw EEG
signals are denoised with multiscale principal component analysis.
Secondly, denoised signals are decomposed by empirical wavelet
transform into different modes. Thirdly, the two-dimensional (2D)
modelling of modes is introduced to identify the variations of different
signals. Fourthly, a single geometrical feature name as, a summation of
distance from each point relative to a coordinate centre is extracted
from 2D modelling of modes. Finally, the extracted feature vectors
are provided to the feedforward neural network and cascade forward
neural networks for classification check. The proposed study achieved
95.3% of total classification accuracy with 100% outcome for subject
with very small training samples, which is outperforming existing
methods on the same database.
Introduction: Brain–computer interface (BCI) platform has many func-
tions, and it can allow individuals with disabilities to integrate with the
physical world by imagination simply. It picks up the brain impulses
generated from the cognitive processes and afterwards transforms
them through non-muscular channels to produce an output for specific
purposes [1]. Motor imagery (MI) is the major neurological audition
used for the BCI systems, in which attendees are oriented to envision
executing a complex motor initiative, including the trying to move a
foot or hand, but with no muscle strength. BCIs focusing on user MI
have received intensive significant attention over the past few years,
and MI-based electroencephalography (EEG) signal analysis has
become the most extensively used technology because of its relatively
inexpensive configuration, ease of use, and fairly innocuous essence [2].

To capture the MI information and categorisation is a crucial stage in
the formation of BCI so accurate categorisation of MI task is a key chal-
lenge. An EEG-based computer-aided MI BCI system consists of pre-
processing of raw EEG signals, feature extraction and identification of
respective tasks. In the literature [3], numerous linear extraction tech-
niques for features are designs that lack the inherent complexities of
EEG signals present due to dynamic characteristics, and so many
other methods [4–6] executed many experiments to take the best features
which are time consuming and hinder their feasibility for real-world
applications.

To resolve these deficits, we introduced a novel feature extraction
scheme focused on two-dimensional (2D) modelling of modes acquired
with the empirical wavelet transform (EWT). The concept of proposed
2D modelling is the transformation of the characteristics of a time
series into the topology of a geometric object enclosed in a space
wherein chaotic behaviour and dynamics of the system are represented.
With the emergence of event-related desynchronisation (ERD) and
event-related synchronisation (ERS), the path of EEG attractors
changes so the extracted features in 2D modelling contain more infor-
mation related to the MI instead of raw EEG signal. With this motiv-
ation, we extracted a geometrical feature known as a summation of
distance from each point relative to the coordinate centre (SDTC) and
input to two neural networks for the classification. In compliance with
our best understanding, this is the first research that developed a new
2D modelling of modes with the aid of the EWT. The suggested
approach is built to achieve higher accuracy by using a single feature
and reduce computational cost rather than taking into account a wide
number of features.

Methodology: The proposed framework consists of several sub-blocks
such as noise removal and channel selection, modes extraction, 2D mod-
elling of modes, geometrical feature extraction, and classification, as
shown in Fig. 1. The detail of sub-blocks are given as follows.

Noise removal and channel selection: For experimentation, we utilised
public available data set IVa from BCI competition III available at
(http://www.bbci.de/competition/iii/http://www.bbci.de/competition/iii/).
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In this data set, five participants ‘AA’, ‘AL’, ‘AV’, ‘AW’ and ‘AY’
contain different training and testing samples, and data is recorded
with 118 electrodes placed according to the 10–20 standard placement
on the scalp of each participant. There are a total of 280 trials for the
right hand (RH, class 1) and right foot (RF, class 2) movements,
and each trial was recorded for 3.5 s with a sampling frequency of
100 Hz [7].
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Fig. 1 Proposed methodology for the classification of MI EEG signals

We considered labelled data only and each signal length was taken as
400 samples. We utilised C3, CZ , and C4 channels out of a total of 118
channels as these three channels acquired maximum information related
to the hand and foot movements. The multiscale principal component
analysis (MSPCA) was implemented for the noise removal, where
wavelet levels were chosen empirically as 5, and Kaiser rule was
employed for the selection of principal components [1].

Modes extraction with EWT: To capture the MI information from non-
stationary nature of EEG signals, we used EWT by implementing the
following steps [6]:

† Each signal frequency spectra (0 to p) was obtained by using a fast
Fourier transform.
† The boundary detection method was implemented to acquire segments
of the Fourier spectrum.
† Empirical wavelets were introduced as band-pass filters to all spec-
trum segmentations. The concept of Meyer’s wavelets and
Littlewood–Paley theory was used for such purpose in this Letter.

By using the aforementioned procedure, we extracted ten modes from
each EEG signal as we found in our earlier work [6] that these modes
attain sufficient MI information.

2D modelling of modes: For the illustration of the proposed 2D model-
ling, consider s(n) represents an EEG signal with n samples such as
s(n) = s1, s2, . . . , sn{ }. The square of the s(n) is computed as s2(n) =
s21, s

2
2, . . . , s

2
n

{ }
. A 2D illustration S(n) for s2(n) can be define as

S(n) = s2(n)−M , (−M )n
[ ] = Sxn, S

y
n

[ ]
(1)

whereM represents the mean value of s2(n), Sxn and S
y
n indicate the x and

y coordinates of the nth point of S(n), respectively. As an example,
the 2D plot of a mode is shown in Fig. 2. Let A(n) is a sequence for
consequence angles between three successive points of S(n) and
formulated as

A(n)=
Sxn+1 − Sxn
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The quantification of variation of the input signal is measured as
follows:

D(n) = diff s2(n)
( ) = s2n+1 − s2n

[ ]
(3)

Finally, the input signal s(n) in 2D is plotted by using the following
formulation:

2D(n) = [X (n), Y (n)] (4)
56 No. 25 pp. 1367–1369

http://crossmark.crossref.org/dialog/?doi=10.1049%2Fel.2020.2509&domain=pdf&date_stamp=2020-10-06


 1350911x, 2020, 25, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/el.2020.2509 by T

est, W
iley O

nline L
ibrary on [19/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

o

where X (n) and Y (n) can be defined by angles A(n) and distances D(n)
as follows:

X (n) = D(n)× cos (A(n)) (5)

Y (n) = D(n)× sin (A(n)) (6)

Feature extraction: Fig. 2 represents a typical pattern of 2D plot of
single mode for RH (blue colour) and RF (red colour) classes. It is
notice that the distance of each point to coordinate centre shows a sig-
nificant difference among both classes. Considering this motivation in
mind, we computed the summation of distance from each point relative
to the coordinate centre (SDTC) as a feature. Fig. 3 displays the SDTC
as a feature, which is defined as follows:

SDTC =
∑m
n=1

����������������
X (n)2 + Y (n)2

√
(7)
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Fig. 2 2D plot of mode, the blue colour represents the RH class where RF
class is denoted with red colour
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Fig. 3 Graphical representation of SDTC feature

Classification: For the classification of RH and RF class features, we
implemented cascade forward neural network (CFNN) and feedforward
neural network (FFNN) as classifiers. In this Letter, we use the tan-
sigmoid transfer function, single hidden layer with empirically chosen
ten neurons and Levenberg–Marquardt algorithm for fast training.

Performance evaluation: The efficacy of the proposed methodology is
measured with many performance evaluation parameters like accuracy,
sensitivity, specificity, precision, recall, F1 score and kappa value.

Results and discussions: The proposed strategy is experimented on
dataset IVa and only trials with class labels were chosen from five sub-
jects. For each subject, experiments were performed individually. From
each subject, we selected 400 samples from each EEG trial and only 3
channels out of total 118 to acquire MI information only. The MSPCA
applied on each trial samples to obtain clean signals and 2D modelling
were implemented on modes acquired with the EWT. The 2D plot of
each mode showed significant variation among different classes and rep-
resented a geometric pattern thus we extracted one geometric feature
define earlier as SDTC. We selected 10 modes of each channel empiri-
cally and in total we have 30 modes (10 modes× 3 channels) for each
class. Since we extracted only one feature from each mode, so, in
total we have 30 feature vectors of every class. Figs. 4a and b show
the probability (p) values of extracted feature vectors (lower p values
represent the statistical significance of feature), and mean with standard
deviation among different classes, respectively.

Based on the statistical significance of the feature parameters, we fed
these features as an input to the CFNN and FFNN, and utilised ten-fold
cross-validation method for several performance measures. Figs. 5a and
b show each subject and average results of CFNN and FFNN classifiers,
respectively. It is noted in Fig. 5a, the average accuracy, sensitivity, and
ELECTRONICS LETTERS 10th D
specificity of 95.3, 95.2, and 96% is achieved with the CFNN where
subjects ‘AA’, ‘AL’, and ‘AY’ yield 99.4, 98.7, and 100% classification
output. Similarly, the sensitivity and specificity results for these subjects
are remarkable. These outcomes indicate that the proposed method pro-
vides the effective results for subjects (‘AA’ and ‘AL’) with sufficient
training samples and achieved 100% outcome for subject (‘AY’) with
very small training samples. It is noted that the proposed method is
fairly stable in the detection of RH and RF classes as the difference
between sensitivity and specificity is very less. Similar behaviour is
observed with FFNN and difference of results with CFNN and FFNN
is not much different as shown in Fig. 5b. The kappa value for CFNN
and FFNN is 95.5 and 94.3% representing the un-biased nature of clas-
sifiers in detection of both classes.
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Fig. 4 Statistical significance of extracted features.

a P values of features
b Mean and standard deviation among RH and RF class features
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The execution time is an integral part for the design of real-time BCI
application, thus we provide the training and testing time of the pro-
posed design. As shown in Fig. 6, the proposed method provide training
time (which is collected by considering all trials) in Fig. 6a and testing
time for single trial is shown in Fig. 6b. As notice, the proposed system
testing time for single trial is less than 1 s which indicate that the system
is perfect candidate for real-time applications.

In the end, we compared the proposed study with other suggested
studies experimented on dataset IVa. As shown in Table 1 we
mention the classification accuracy of each subject as well as total
ecember 2020 Vol. 56 No. 25 pp. 1367–1369
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classification accuracy obtained by all subjects. The highest scores are
highlighted in bold font. Furthermore, the amount of channels and fea-
tures used in each study is also noted. It is shown in Table 1 that the pro-
posed method achieves the highest classification accuracy of 95.3% in
comparison with all other studies. In our earlier study [6], we achieved
95.2% classification accuracy but we utilised 18 channels with 10 fea-
tures for each subject, however, in this study, we utilised only 3 channels
and single feature to obtained the highest score. It is also noted that sub-
jects ‘AA’ and ‘AY’ ranked at number one in terms of classification
accuracy with 99.4 and 100% scores, whereas subject ‘AL’ rated as
second with score of 98.7%. It is concluded that the proposed method
can be used to develop a subject-specific BCI platform.
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Conclusion: In this Letter, we suggested a new platform for classifi-
cation of MI EEG signals by 2D modelling of modes acquired with
the EWT and extraction of single feature only. The average classification
performance of 95.2%, whereas 100% outcome is achieved for subject
with very few training samples. The suggested approach is a new con-
tribution in BCI field as 2D modelling help to visualise the changes
in different MI signals. This Letter also showed the significance of
single feature which outperform other studies. In future, we intend to
extend the proposed method for multi-class MI classification.
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