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Abstract: This paper presents a novel framework of hydraulic-driven biped robot. The target biped
robot is a humanoid robot NWPUBR-1 with 12 degrees of freedom (DOF), and its dimensions are
close to that of an average male. The joint axis adopts the modular structure design of sensor with
angle measurement, and the force sensor is deployed on the side of hydraulic actuator to facilitate
force and position control of the robot. Meanwhile, the finite element analysis of critical components
is conducted to meet the requirements of mechanical strength in motion. Based on the screw theory,
the forward kinematics and Jacobian matrix models are established, and the inverse kinematics of
robot is solved by using the analytical geometric method. To achieve real-time control of the robot gait
in 3D space, a three-dimensional linear inverted pendulum model (3D-LIPM) is built, and a 3D gait
model is generated by combining the zero-moment point (ZMP) theory. In the virtual environment of
MATLAB software, the results of programming simulation show that the biped robot can walk stably
in the virtual environment, which proves the correctness of 3D-LIPM.

Keywords: hydraulic-driven; biped robot; screw theory; LIP model; gait simulation

1. Introduction

In complex environments such as fields, mountains, hills, and battlefields, biped robots can
actively adjust their body height to adapt to complex changing terrains and different ground conditions,
and cross obstacles and ravines. Compared with the wheeled, crawler, and multi-legged robots,
the bipedal robots have stronger environmental adaptability.

In recent years, humanoid robots have achieved great progress, and researchers have successively
developed different types of biped robots and designed gait planning and balance control based on
solid models. The WABOT-1 robot was developed by researches from Waseda University in 1973,
which was the world’s first biped robot that can visually recognize the position, direction, and distance
of objects, and can receive commands through hearing. In 1986, Honda started to develop humanoid
robots with intelligence and mobility. Since then, a series of humanoid walking mechanisms had been
successively proposed. Honda developed seven biped robots which were designated E0 (Experimental
Model 0) through E6 [1], and ASIMO [2,3], respectively. As robots have been developed from the
“automatic machines” to the “autonomous machines” with decision-making capabilities, they can
provide increasingly more practical applications in an environment where people can coexist with them.
The HRP biped robot was developed by Kawada Industries from Japan, and the motor drive method
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was used in this product [4,5]. Each generation has shown new and exciting advances. Similarly,
KAIST developed KHR-1/2/3 (Hubo) [6], and Waseda continued its long and successful tradition to
build many different models such as Wabian-2R [7]. In the Italian Institute of Technology, the iCub
robot [8–11] was designed based on children, and it has 53 driving degrees of freedom. The LOLA
robot was developed by a team in the University of Munich, Germany [12], and this robot contains
actively driven toe joints, which has improved the stability of the robot’s feet on and off the ground.
Despite the progress achieved in the design of humanoids/bipeds, there are still some significant
barriers such as how to prevent robots (physical structure, materials, actuation, and sensing) from
emulating the physical performance of the human body. These limitations are particularly noticeable
during the physical interaction and impacts, and mechanical robustness.

The vast majority of biped robots are driven by electric motors, but a large number of practices
prove that the motor-driven method has some disadvantages which are difficult to overcome, such as
low power density, weak resistance to electromagnetic interference, and lack of adaptability to work in
the field environment. The hydraulic drive has the advantages of simple structure, large output force,
and high power-to-weight ratio, so it is used as one of the driving methods of biped robot. Because the
hydraulic drive has a large output force, it doesn’t need to use the deceleration device, so it has a very
simple drive structure, which can avoid the return clearance and other error caused by deceleration
device in motor drive and is beneficial to the force servo control. A research team from Carnegie
Mellon University in the United States developed a Sarcos Primus hydraulically driven biped robot
based on the underlying force servo control [13], and in this robot, the flexibility of force servo control
is utilized to improve the balanced capacity of biped robot movement. Boston Dynamics successively
developed two hydraulically driven biped robots PETMAN [14] and ATLAS [15], which have excellent
stability and highly dynamic performance. Atlas has been chosen as a working platform by more
than ten teams in the Robotics Challenge held by the Defense Advanced Research Projects Agency
(DARPA) in the past few years [16], and it has demonstrated a strong capability of dynamic balancing
and whole-body walking control in the competitions. In China, Wang Haiyan et al. from Shandong
University developed a heavy-duty hydraulic biped robot utilizing this advantage [17]. Yu Lei et al.
from Harbin Institute of Technology developed a 12-DOF hydraulically driven bipedal robot [18],
and Gan Chunbiao et al. from Zhejiang University designed a hydraulically driven bipedal robot [19].
There is still a big gap between these Chinese robot designs and their foreign counterparts in overall
performance indexes.

To generate a periodic walking gait, the 3D linear inverted pendulum (LIP) model has been
widely used for the control of bipedal walking robots. For instance, in [20] and [21], a control law
was introduced based on the capture point and the 3D LIP dynamics, and they used this method for
bipedal gait planning and control on uneven terrain. In [22], a whole-body dynamic walking controller
was implemented by using an approximate value function derived from the 3D LIP model. Recently,
in [23], the 3D LIP model was used to generate a biped walking pattern based on a new way of
discretization named spatially quantized dynamics (SQD). In [24], the 3D LIP model was incorporated
in their energy-optimal gait planning based on geodesics, and their results show that the 3D LIP model
is probably the simplest model, concentrating the whole mass of the robot to a point and modeling the
legs with massless inverted pendulums. It also provides analytical solutions and is widely used in
walking locomotions.

This paper innovatively designs the mechanism of a hydraulically driven biped robot and conducts
simulation analysis of gait. The rest of this paper is organized as follows. In Section 2, we design
the mechanical structure of the biped robot, the modular joint axis with angle measurement, and a
force sensor. The relationship between the expansion allowance of the hydraulic cylinder and the
joint rotation angle is calculated, and the finite element analysis of critical components is carried out.
In Section 3, the product of exponential (POE) formula is used to conduct the forward and inverse
kinematics analysis, and the velocity Jacobian matrix is obtained. In Section 4, we establish a 3D-LIP
gait model of a hydraulically driven biped robot. In Section 5, we conduct gait simulation using the
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MATLAB software. The conclusion and summarization are drawn in Section 6, and we also discuss
possible future works.

2. Mechanical Design

For the biped robots with fast humanoid walking capabilities, the specific requirements in terms
of kinematic structure, mass distribution, actuator, drive mechanism, sensor layout, and other aspects
should be comprehensively considered. The shape of the humanoid robot is similar to that of the
human body. To allow the biped robot to provide the motion range of the lower limbs of human body,
the structural dimensions are based on the standard of “Human dimensions of Chinese adults” (GB/T
10000-1988), when design the hydraulically driven biped robot.

The hydraulically driven biped robot has 12 DOF, as shown in Figure 1, including 3DOF of hip
joint, 1DOF of knee joint and 2DOF of ankle joint. To facilitate the calculation of the zero-moment
point (ZMP), four miniature load cells (JHBM-M2 (300 kg)) are arranged on the sole. The baffle-force
feedback electro-hydraulic flow control servo valve (FF102) is used as the three-position four-way
reversing valve adopts, which is arranged in a distributed way to reduce the number of pipelines and
the height of the robot’s center of gravity, thus effectively improving the robot’s walking stability.
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Figure 1. 12-DOF hydraulic-drive biped robot.

2.1. Modular Joint Axis Design

The degree of freedom of the robot is determined by the number of joints. By adopting the
modular structure of modular joint axis, it can reduce the cost of design and production, the modules
are interchangeable, and the assembly is also quick and easy, which is beneficial to the maintenance
and repair of the robot. Various joint shafts of the hydraulic biped robot adopt the same structure,
as shown in Figure 2. Joint link 2 is connected to the articulated shaft with set screws, which can
perform a relative rotational movement with Joint link 1. The magnitude of the rotational angular
displacement is measured by an incremental hollow sleeve type encoder (EB38K). The encoders are
installed on both ends of the joint axis.
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2.2. Design of Drive/Test Parts

For the robot knee joint, the hydraulic cylinder is used as the driving device, as shown in Figure 3.
To facilitate the measurement of the output force of the hydraulic cylinder, a bellows-type pull pressure
sensor (JLBM-2 (1 T tension and compression)) is installed at the end of the piston rod. The two ends
of the connecting rod are connected to the support lugs by joint bearings. Through the telescopic
movement of the hydraulic cylinder, the joint link 1 and the joint link 2 can be rotated around the
joint axis.
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2.3. The Relationship between the Displacement of Hydraulic Cylinder and the Rotation Angle of Joint Axis

The drive input of the robot joint is the linear displacement of the hydraulic cylinder, and the
position is detected by the rotation angle of the joint. In the robot controlling process, the relationship
between the displacement of the hydraulic cylinder and the rotation angle of the joint axis needs to be
calculated. The mechanism can be equivalent to a four-link mechanism, and taking the knee joint as an
example, the mutual relationship is as shown in Figure 4. The relationship between the displacement
of the hydraulic cylinder and the rotation angle of the joint axis is calculated as follows.
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B is the knee joint, BC is the thigh, and BO is the calf, ∠CBO = θ, lAO = 65 mm, lBO = 72 mm,
lBC = 385 mm, lDC = 45 mm. According to the actual structural relationship, we can obtain:
∠AOB = ∠BCD = 90◦, and further obtain,

lAB =
√

lAO2 + lBO2, lBD =
√

lBC2 + lDC2 (1)

∠ABD + ∠ABO + ∠CBD = θ, θ ∈ [50◦, 180◦] (2)

∠ABO = arc tan lAO
lBO

, ∠CBD = arc tan lDC
lBC

(3)

The length lAD of the joint link AD is determined by the expansion allowance of the hydraulic
cylinder, and we can get,

lAD =
√

lAB2 + lBD2 − 2lABlBD cos ∠ABD (4)

The relationship between the displacement of the hydraulic cylinder and the rotation angle of the
joint axis is shown in Figure 5.
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2.4. Finite Element Analysis of Critical Parts

When the robot is walking, deformation and fracture of the mechanism tend to occur at the weak
link under the force of gravity and ground impact. The motion joint is the weakest link of the robot
mechanism, so it is necessary to conduct a finite element analysis of the critical components in order
to meet the application requirements. The material is 45# steel, the elastic modulus is 2.05 × 1011 Pa,
the Poisson’s ratio is 0.29, the shear modulus is 800 MPa, the mass density is 7.85 × 103 kg/m3, and the
yield strength is 530 MPa. The simulation module of SolidWorks software is used for finite element
analysis, the solid mesh type is selected, and the element size is 4.7 mm.
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The maximum ground impact force during human walking and running is about three times the
weight of the human body, and there is sufficient safety margin. The loading force is 5 kN. The analysis
results are listed in Figure 6. The finite element analysis results show that the maximum stress is
smaller than the yield stress, and the strength of critical components meets the requirements.
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3. Kinematics Analysis

The Denavit-Hartenberg (D-H) modeling method needs to establish a coordinate system for
each joint, and each coordinate system has different posture. When the robot configuration changes,
the model needs to be reestablished. Therefore, the D-H method involves a complicated process,
low calculation efficiency, and unclear geometric meaning [25]. To a certain extent, it’s easier to use the
screw theory to solve the kinematics of the humanoid robot is than to use the traditional D-H parameter
method, because it does not need to establish one coordinate system for each link, and the entire
system only has two coordinate systems (inertial coordinate system S and tool coordinate system T).
Therefore, when analyzing complex spatial mechanisms, the screw theory can be employed to simplify
and unify the description and solution of problems, which has more clear geometric meaning and
higher numerical stability [26]. Based on the screw theory, the forward kinematics equation is obtained
by using the product of exponential (POE) formula, and the velocity Jacobian matrix is derived.

3.1. Forward Kinematics

The coordinate system of the right leg is established in the form of the POE, as shown in Figure 7.
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ω is the rotation axis of the rigid body, r is any point on the axis, and Matrix [V] is the twist
produced by pure rotation, shown as:

[V] =

[
[ω] v
0 0

]
(5)

Here, the antisymmetric matrix [ω] ∈ so(3), v = −ω× r
The matrix index of the twist [V] is

e[V]θ =

[
R(θ) p(θ)

0 1

]
(6)

The rotation matrix is obtained by Rodrigues formula, namely

R(θ) = e[ω]θ = I + [ω] sinθ+ [ω]2(1− cosθ) (7)

The vector is calculated as follows:

p(θ) =
(
1− e[ω]θ

)
(ω× v) +ωωTvθ (8)

The directions of the line vectors of various joint axes are:

ω1 =


0
0
1

,ω2 = ω6 =


1
0
0

,ω3 = ω4 = ω5 =


0
1
0


[ω1] =


0 −1 0
1 0 0
0 0 0

[ω2] = [ω6] =


0 0 0
0 0 −1
0 1 0


[ω3] = [ω4] = [ω5] =


0 0 1
0 0 0
−1 0 0



(9)
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Take one point on various joint axes as

r1 =


0
−l1
0

, r2 =


0
−l1
−l2

, r3 =


0
−l1
−l2 − l3


r4 =


0
−l1

−l2 − l3 − l4

, r5 = r6 =


0
−l1

−l2 − l3 − l4 − l5


(10)

Under the shape and position when θ = 0, the transformation matrix of the tool coordinate system
{T} relative to the basic coordinate system {S} is:

S
TT(0) =


1 0 0 0
0 1 0 −l1
0 0 1 −l2 − l3 − l4 − l5 − l6
0 0 0 1

 (11)

The twists of various joints are:

e[V1]θ1 =


cosθ1 − sinθ1 0 −l1 sinθ1

sinθ1 cosθ1 0 −l1(1− cosθ1)

0 0 1 0
0 0 0 1

 (12)

e[V2]θ2 =


1 0 0 0
0 cosθ2 − sinθ2 −l1(1− cosθ2) − l2 sinθ2

0 sinθ2 cosθ2 l1 sinθ2 − l2(1− cosθ2)

0 0 0 1

 (13)

e[V3]θ3 =


cosθ3 0 sinθ3 (l2 + l3) sinθ3

0 1 0 0
− sinθ3 0 cosθ3 −(l2 + l3)(1− cosθ3)

0 0 0 1

 (14)

e[V4]θ4 =


cosθ4 0 sinθ4 (l2 + l3 + l4) sinθ4

0 1 0 0
− sinθ4 0 cosθ4 −(l2 + l3 + l4)(1− cosθ4)

0 0 0 1

 (15)

e[V5]θ5 =


cosθ5 0 sinθ5 (l2 + l3 + l4 + l5) sinθ5

0 1 0 0
− sinθ5 0 cosθ5 −(l2 + l3 + l4 + l5)(1− cosθ5)

0 0 0 1

 (16)

e[V6]θ6 =


1 0 0 0
0 cosθ6 − sinθ6 −l1(1− cosθ6) − (l2 + l3 + l4 + l5) sinθ6

0 sinθ6 cosθ6 l1 sinθ6 − (l2 + l3 + l4 + l5)(1− cosθ6)

0 0 0 1

 (17)

It can be obtained from the POE formula that:

S
TT(θ) = e[V1]θ1e[V2]θ2 · · · e[V6]θ6 S

TT(0) =
[

R(θ) p(θ)
0 1

]
(18)
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In the above formula, the values are: l1 = 125 mm, l2 = 258.5 mm, l3 = 164 mm, l4 = 520 mm,
l5 = 422 mm, l6 = 60 mm. The POE formula for the left leg can be established similarly as above.

3.2. Inverse Kinematics

For the kinematics model built based on the spin theory, its inverse solution is mainly solved
based on the Paden-Kahan subproblem. However, the simple Paden-Kahan sub-problem can only be
adopted to solve the inverse solution of humanoid robots with low degrees of freedom (no more than
three degrees of freedom) [27]. In this paper, the method of analytical geometry is used to solve the
inverse kinematics of the robot.

3.2.1. Sagittal Inverse Kinematics

In the sagittal plane, the knee joint angle of the right leg is θ4, and the position coordinates of the
hip and ankle joints are known, as shown in Figure 8.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 23 
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We get:

cos(θ4) =
R2
−l24−l25
2l4l5

(19)

From the inverse tangent function atan2, θ4 can be obtained

θ4 = a tan 2


√

1−
(

R2−l24−l25
2l4l5

)2
,

R2
−l24−l25
2l4l5

 (20)

where, R2 = (x3 − x5)
2 + (z3 − z5)

2.
The ankle angle θ5 is composed of θa and θb, θa = a tan 2(x3 − x5, z3 − z5),

and θb = a tan 2(l4 sinθ4, l5 + l4 cosθ4)

θ5 = θa + θb (21)

After calculating the knee joint angle θ4 and the ankle joint angle θ5, the next step is to calculate
the hip joint angle θ3. During the movement of the robot, the upper body needs to maintain a vertical
posture all the time, so the sum of the ankle joint angle, knee joint angle, and hip joint angle is zero,
and θ3 can be calculated by

θ3 = −θ4 − θ5 (22)
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The inverse kinematics of the left leg is obtained in a similar way as for the right leg, and we get:

θl4 = a tan 2


√

1−
(

R2
l −l24−l25
2l4l5

)2
,

R2
l −l24−l25
2l4l5

 (23)

θl5 = a tan 2(xl3 − xl5, zl3 − zl5) + a tan 2(l4 sinθl4, l5 + l4 cosθl4) (24)

θl3 = −θl4 − θl5 (25)

where, θl4 is the knee joint angle of the left leg, θl5 is the ankle joint angle, and θl3 is the hip joint angle.

3.2.2. Coronary Inverse Kinematics

In the coronal plane, as shown in Figure 9, θ6 is the ankle joint angle of the right leg, the height h of
the hip joint relative to the ankle joint is known, and the distance between the two feet is l. We can get,

θ6 = a tan 2(y2 − y6, h) (26)
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To ensure that the limb above the hip joint remains vertical, the angle of the knee joint in the
coronal plane should not change, so the sum of the ankle joint angle and the hip joint angle is π/2.
Therefore, the hip joint angle θ2 can be calculated by the following equation,

θ2 = π
2 − θ6 (27)

Similarly, the joint angle θl2 and ankle joint angle θl6 of left leg can be calculated.

θl6 = a tan 2(yl2 − yl6, h) (28)

θl2 = π
2 − θl6 (29)

3.3. Speed Jacobian Matrix Based on POE Method

The speed Jacobian matrix (hereinafter referred to as Jacobian) refers to the mapping matrix from
the speed of the driving joint to the speed of the end effector. As the core of the robot speed analysis,
the establishment of the Jacobian matrix is the basis for kinematics analysis, acceleration analysis,
accuracy analysis, static/dynamic analysis, and synthesis. The traditional way to describe a robot’s
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Jacobian matrix is to solve its forward kinematics using different equations, which involves a more
complicated solving process and results in general. The screw theory can be employed to clearly
describe the Jacobian matrix of the serial robot, which can highlight the geometric characteristics of the
robot, and avoid the deficiencies of using local parameters in the differential method [28].

The screw theory and POE method can be used to easily solve the robot’s Jacobian matrix.
The POE formula of the robot kinematics equation is as follows:

S
TT(θ) = e[V1]θ1e[V2]θ2 · · · e[V6]θ6 S

TT(0) =
[

R(θ) p(θ)
0 1

]
(30)

The instantaneous space velocity of the foot can be obtained.[
S
TVs

]
= S

T

.
T(θ)S

TT−1(θ) (31)

According to the characteristics of the POE formula of the kinematics equation, we get:

[
S
TVs

]
=

n∑
i=1

(
∂(S

TT)
∂θi

.
θi

)
S
TT−1(θ) =

n∑
i=1

(
∂(S

TT)
∂θi

S
TT−1(θ)

)
.
θi(i = 1 · · · 6) (32)

The twist coordinate can be represented as:

S
TVs = S

T Js(θ)
.
θ (33)

where, the matrix S
T Js(θ) ∈ R6×n is the spatial Jacobian matrix of the foot.

S
T Js(θ) =

(∂(S
TT)
∂θ1

S
TT−1(θ)

)∨(
∂(S

TT)
∂θ2

S
TT−1(θ)

)∨
· · ·

(
∂(S

TT)
∂θ6

S
TT−1(θ)

)∨ (34)

The operator [ · ] in square bracket indicates an antisymmetric matrix, and ∨ is its inverse operator.
It maps the joint velocity vector to the corresponding twist coordinate of the foot. Let [Vi] ∈ se(3)

be the unit twist, so any column of the spatial Jacobian matrix is as follows.

∂(S
TT)
∂θi

S
TT−1(θ) = e[V1]θ1e[V2]θ2 · · · e[Vi−1]θi−1 ∂

∂θ1

(
e[Vi]θi

)
e[Vi+1]θi+1 · · · e[V6]θ6 S

TT(0)S
TT−1(θ)

= e[V1]θ1e[V2]θ2 · · · e[Vi−1]θi−1 [Vi]
∂
∂θ1

(
e[Vi]θi

)
e[Vi+1]θi+1 · · · e[V6]θ6 S

TT(0)S
TT−1(θ)

= e[V1]θ1e[V2]θ2 · · · e[Vi−1]θi−1 [Vi]
∂
∂θ1

(
e[Vi]θi

)
e−[Vi−1]θi−1 · · · e−[V1]θ1

(35)

Convert it to twist coordinates:(
∂(S

TT)
∂θi

S
TT−1(θ)

)∨
= AdV

(
e[V1]θ1e[V2]θ2 · · · e[Vi−1]θi−1

)
Vi (36)

Then, the space Jacobian matrix of the robot can be obtained:

S
T Js(θ) =

[
V1
′ V2

′
· · · V6

′
]

(37)

Vi
′ = AdV

(
e[V1]θ1e[V2]θ2 · · · e[Vi−1]θi−1

)
Vi(i = 1 · · · 6) (38)

By conducting adjoint transformation to the twist coordinate Vi of the robot’s i-th joint, the i-th
column Vi

′ of the Jacobian matrix can be obtained.

Vi
′ =

[
r1
′
×ω1

′

ω1
′

]
(39)
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where, ri
′ is the position vector of a point on the lower axis of current configuration, and ωi

′ is the unit
vector of the joint axis direction of current configuration.

ωi
′ = e[ω1]θ1e[ω2]θ2 · · · e[ωi−1]θi−1ωi(i = 1 · · · 6) (40)[

ri
′

1

]
= e[V1]θ1e[V2]θ2 · · · e[Vi−1]θi−1

[
ri(0)

1

]
(i = 1 · · · 6) (41)

Here, ri(0) is the position vector of a point on the lower axis of the initial configuration.

4. Gait Model

Humanoid robot systems are complex three-dimensional systems. To better understand their
dynamic behavior, many simplified models have been proposed. The linear inverted pendulum (LIP)
model proposed by S. Kajita [29] is often used to study gait. The model assumes that the vertical
acceleration of the centroid is zero, thereby defining the analytical expression of the centroid and
decoupling the sagittal and coronal equations.

In three-dimensional space, we approximately simplify the biped robot into a virtual
three-dimensional linear inverted pendulum model (3D-LIPM), which is composed of the robot’s
centroid m and the legs connected to the centroid whose mass is ignored, as shown in Figure 10.
Assuming the inverted pendulum can rotate freely around the support point, the length of the leg can
change according to the support force f.
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4.1. Dynamic Modeling

The motion equation of the centroid is:
m

..
x = x

r f = fx
m

..
y =

y
r f = fy

m
..
z = z

r f −mg = fz −mg
(42)

where, r is the distance from the centroid to the support point, and x, y, and z are the projection
lengths of r in the three directions of the coordinate axis. When controlling the centroid of the robot,
a constraint plane needs to be added. The equation is:

z = kxx + kyy + zc (43)
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To make the centroid move along the plane, the acceleration of the centroid needs to be orthogonal
to the normal vector of the constraint plane, so we get

[
fx fy fz −mg

]
−kx

−ky

1

 = 0 (44)

Solve the equation, substitute it into Equation (43), and we can get

f = mgr
zc

(45)

By ensuring that the supporting force f is proportional to the leg length r, the centroid can move
along the constraint plane, as shown in Figure 11.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 23 
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Figure 11. State of a support leg exchange.

According to Equations (42) and (43), the dynamic equation of the centroid at the horizontal plane
can be obtained { ..

x =
g
zc

x
..
y =

g
zc

y
(46)

This equation is a linear equation about zc, and the intersection with the constraint plane is used
as the only parameter. The slope parameter kx, ky of the constraint plane does not affect the plane
motion of the centroid.

Solving the first formula of Equation (46), we can obtain: x(t) = x(0) cosh(ωt) + 1
ω

.
x(0)sinh(ωt)

.
x(t) = ωx(0)sinh(ωt) +

.
x(0) cosh(ωt)

(47)

where, ω =
√

g
zc

is the reciprocal of the support time constant T of the gait cycle, which is related to the
height of the centroid and the acceleration of gravity.

The displacement and velocity in the y-direction can be obtained using the same method.

4.2. Gait Support Time

In the walking process, the time required by the centroid from the moment when foot falls on
the ground to the moment when foot leaves the ground needs to be found out. Assuming that the
initial conditions (x0,

.
x0) and termination conditions (x1,

.
x1) are known, then we can get according

to Equation (47):
x1 = x0 cosh(ωτ) + 1

ω
.

x0sinh(ωτ)
.

x1 = ωx0sinh(ωτ) +
.

x0 cosh(ωτ)
(48)
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By utilizing the following hyperbolic function relation:

cosh(x) = ex+e−x

2 , sinh(x) = ex
−e−x

2 (49)

Equation (48) can be written as follows

x1 =
x0+

1
ω

.
x0

2 eωτ +
x0−

1
ω

.
x0

2 e−ωτ
.

x1 = ωx0+
.

x0
2 eωτ − ωx0−

.
x0

2 e−ωτ
(50)

From Equation (50), we get,

x1 +
1
ω

.
x1 =

(
x0 +

1
ω

.
x0

)
eωτ (51)

By solving the (51), we can get

τ = 1
ω ln ωx1+

.
x1

ωx0+
.

x0
(52)

4.3. Orbital Energy

If the initial speed is insufficient, the centroid of the inverted pendulum will return without
reaching the position directly above the support point; if the initial speed is sufficient, the centroid
of the inverted pendulum will continue to move forward after reaching the position directly above
the support point. Therefore, the centroid reaches the support point at the minimum speed, that is,
the robot centroid reaches directly above the ankle joint, and the relationship between the potential
energy and the centroid motion can be calculated at this position.

Multiply both sides of the first formula of Equation (46) by
.
x, and obtain the following equations

by integration:
.
x
( ..
x− g

zc
x
)
= 0 (53)∫ .

x
( ..
x− g

zc
x
)
dt = constant (54)

we can get
1
2

.
x2
−

g
2zc

x2 = constant = E (55)

where, E is the sum of kinetic energy and potential energy, which is called the orbital energy. The first
term on the left is kinetic energy, and the second term is potential energy. In this calculation, it is
assumed that unit mass has energy, so the mass of the centroid is ignored. When E ≤ 0, the centroid
will return before reaching the support point. When E > 0, we can get the velocity of the centroid
passing directly above the support point. ∣∣∣ .

xtop
∣∣∣ = √2E (56)

4.4. Exchange of Support Legs

Although the motion of a linear inverted pendulum is determined only by its initial condition,
we can still control its speed, because the initial condition can be modified by the ground-contact
time. For walking with fixed step, the support exchange of quickened ground-contact will decelerate
the walking speed, while the support exchange of a delayed ground-contact will accelerate the
walking speed.

The relationship between the exchange of support legs and the movement of inverted pendulum
can be calculated. As shown in Figure 11, the step size is s, the position of the centroid relative to the
previous support point is xf, and the speed of the centroid during the exchange is vf. The support is
exchanged instantly, so vf is both the final speed of the previous support phase and the initial speed of
the new support phase.
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By defining the orbital energies before and after the exchange as E1 and E2 respectively, we can get:

E1 = 1
2 v f

2
−

g
2zc

x f
2 (57)

E2 = 1
2 v f

2
−

g
2zc

(
x f − s

)2
(58)

when the orbital energies E1 and E2 were given, we can calculate the necessary exchange condition by
eliminating vf from Equations (57) and (58):

x f =
z
gs (E2 − E1) −

s
2 (59)

The speed at the exchange moment can be calculated by (57), and we get:

v f =
√

2E1 +
g
zc

x f
2 (60)

4.5. Generation of 3D Gait Model

Assuming that the robot walks at a constant support exchange speed, Tsup represents the support
period of each step. A trajectory of the centroid during the support period is shown in Figure 12, which
is symmetric around the y-axis, and the support time is [0 Tsup]. The end position is (x, y), the end
speed is (vx, vy), according to the characteristics of symmetry, the initial condition along the x-axis is
(−x, vx), and the end position is x. According to the analytical solution of the linear inverted pendulum,
we can get:

x = −x cosh(ωt) + 1
ωvxsinh(ωt) (61)
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Solve the above equation to obtain the end velocity vx:

vx =
ωx(1+cosh(ωt))

sinh(ωt) (62)

Similarly, the initial condition along the y-axis is
(
y,−vy

)
, and the end position is y. We can get the

end velocity:
y = y cosh(ωt) + 1

ω

(
−vy

)
sinh(ωt)

vy =
ωy(cosh(ωt)−1)

sinh(ωt)

(63)

4.6. Walking Parameters

In real situations, such as climbing stairs or avoiding obstacles, it is often necessary to directly
specify the position of the feet.

As shown in Figure 13, the position of a simple walking foot is represented by length and width
of the step. For a normal person, the step length is generally within the range 500~800 mm, and the
step width is within 80 ± 35 mm. The used data are listed in Table 1.
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Table 1. Foot position data.

n 0 1 2 3 4 5

s(n)x 0 0 500 500 500 0

s(n)y 0 100 100 100 100 100

In Table 1, sx represents the step length in the walking direction, sy represents the step width in
the lateral direction, superscript (n) represents the n-th step, and the position of foot at the n-th step
can be expressed as (p(n)x , p(n)y ):  p(n)x

p(n)y

 =
 p(n−1)

x + s(n)x

p(n−1)
y − (−1)ns(n)y

 (64)

where,
(
p(0)x , p(0)y

)
is the position of the first supporting foot, and Figure 13 shows the right foot. If the

first supporting foot is the left foot, then −(−1)n needs to be replaced with +(−1)n in the formula.
The foot position at n-th step is:

 x(n)

y(n)

 =


s(n+1)
x

2
(−1)ns(n+1)

y
2

 (65)

It is worth noting that the foot position at the n-th step is determined by the step length and step
width of the (n + 1)-th step, which is necessary for proper adjustment of the foot position and walking
movement. The velocity formula at the end point is: v(n)x

v(n)y

 =

ω(1+cosh(ωt))

sinh(ωt) x(n)

ω(cosh(ωt)−1)
sinh(ωt) y(n)

 (66)

4.7. Modification of Foot Placements

For a robot walking with a fixed gait cycle, its speed can be controlled by adjusting the foot
placements. Define the adjusted foot drop position as Px, which is also the zero-torque point (ZMP) in
the x-direction, and the centroid position is xc, as shown in Figure 14.

From Equation (42), the dynamic equation along the x-direction is

..
xc =

g
zc
(xc − px) (67)

Its analytical solution is, xc(t) = (x(n)i − px) cosh(ωt) + 1
ω

.
x(n)i sinh(ωt) + px

.
xc(t) = ω(

.
x(n)i − px)sinh(ωt) +

.
x(n)i cosh(ωt)

(68)
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Equation (68) is written in the form of a state equation, and the relationship between the position
px and the end state of the n-th step can be obtained x(n)f

.
x(n)f

 =
[

cosh(ωt) 1
ωsinh(ωt)

ωsinh(ωt) cosh(ωt)

] x(n)i
.
x(n)i

+ [
1− cosh(ωt)
−ωsinh(ωt)

]
px (69)

Here, ω =
√

g
zc

is the reciprocal of the support time constant T of the gait cycle. x(n)i and
.
x(n)i are

the initial position and velocity of the n-th step, which are called the initial conditions.
As the target state, it can be represented by the end state in the ground coordinate system. xd

.
xd

 =  p(n)x + x(n)

v(n)x

 (70)

The calculated final position of the foot is close to the target position, and the evaluation function
defined below is adopted,

N = a(xd
− x(n)f )

2
+ b(

.
xd
−

.
x(n)f )

2
(71)

where, a and b are positive. By substituting (69) into the evaluation function, let ∂N/∂px = 0, and we
can get the position of the foot when N is minimum.

px = −
a(C−1)

a(C−1)2+bω2S2

(
xd
− x(n)i C− 1

ω
.
x(n)i S

)
−

bωS
a(C−1)2+bω2S2

(
.
xd
−ωx(n)i S−

.
x(n)i C

) (72)

where, it is assumed that C = cosh(ωt), and S = sinh(ωt).
The method of walking pattern generation can be organized as an algorithm shown as follows.

Step 1. Set support period Tsup and walk parameters sx, sy. Set initial position (x, y) of CoM and initial

foot placement
(
px, py

)
= (p(0)x , p(0)y ).

Step 2. T = 0, n = 0.
Step 3. Integrate the linear inverted pendulum Equation (67) (and the equation for the y-axis) from T

to T + Tsup.
Step 4. T = T + Tsup, n = n + 1.

Step 5. Calculate the position (p(n)x , p(n)y ) for next foot using (64).

Step 6. Set the ideal position parameter (x(n), y(n)) for next step using (65) and (66).

Step 7. Calculate the target state (xd,
.
xd
) using (70), and calculate the target state (yd,

.
yd
) using

corresponding equation.
Step 8. Calculate the modified foot position

(
px, py

)
by (72) (as well as y component).
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Step 9. Go to Step 3.

5. Simulation Analysis

Based on the above model and algorithm analysis, simulation was conducted in the MATLAB
software through programming. The simulated virtual environment is flat ground without any barrier,
and the simplified model has the weight of 27.13 kg, the height of 1.42 m and the centroid height of
0.76 m. In the simulation, the following parameters are set: the step size is 0.5 m, the stride width is
0.25 m, the foot swing height is 0.05 m, the static friction coefficient between foot bottom and ground is
1, and the dynamic friction coefficient is 0.8. The generated centroid and the feet trajectory are shown
in Figure 15. During the walking process, the angle changes of various joints are presented in Figure 16.
Through simulation, it was found that the biped robot can walk steadily, as shown in Figure 17, which
verifies the correctness of kinematics and 3D-LIPM and has laid the foundation for further analysis
of stability.
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6. Discussion

The hydraulic biped robot with innovative design has the characteristics of simple structure, fast
motion speed and strong load capacity. The configuration of distributed hydraulic valve and valve
block has effectively reduced the height of centroid and improved the walk stability of biped robot,
and the position or force feedback of robot can be realized using this configuration. The shortage is that
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the overall weight of robot is higher. Restricted by the structural size, the motion range of mechanical
joints has not completely reached the motion range of human joins at present.

For the forward kinematics solution of robot, if the D-H method is used to establish the coordinate
system, it involves a complicated process, low efficiency, and no universality. Therefore, we employ the
product of exponentials (PoE) method based on the screw theory to build the forward kinematics model
of robot, which is easy to understand with clear geometric significance. When solving the inverse
kinematics of robot, in order to prevent excessive dependency on the Paden-Kahan sub-problem,
the analytical geometry method is adopted when the motion trail of hip joint and ankle joint is
known, which can easily obtain the inverse kinematics solution. This method has provided a reference
for the forward kinematics and inverse kinematics solutions of similar biped robots, which has
great universality.

For the gait analysis of humanoid robot, the 3D-LIPM with broad application is used, and the
ZMP theory is combined for gait planning. This method has simplified the model to a certain extent.
Through simulation, the problems in the mathematical model and 3D model can be found in a timely
manner, so that corresponding modification and improvement can be made. In order to demonstrate
the simulation program in a physical model, and the model also needs to be further optimized.
In addition, falling-prevention measures should also be taken to prevent damaging the robot.

7. Conclusions and Future Works

7.1. Conclusions

We propose a new hydraulic-driven biped robot, and because it involves too many components,
we only conduct finite element analysis of the critical components at modular joints under bigger force
and with relatively weaker structure. The loading force is the maximum impact on the robot during
walking, and certain safety factors are kept. According to the analysis results, the maximum stress on
critical components is lower than their allowable stress, which satisfies the strength condition.

The forward kinematics and Jacobian matrix formulas are inferred based on the screw theory.
The analytical geometry method is adopted to easily obtain the inverse kinematics solution, which has
provided the mathematical basis for gait planning and simulation. This method can also be used in
biped robot models with similar structures.

A three-dimensional linear inverted pendulum model (3D-LIPM) is built for gait planning in the
3D space. Based on the MATLAB software platform, programming and simulation are adopted to
verify the accuracy of kinematics and 3D-LIPM. The simulation results show that this biped robot
can walk steadily on flat ground, which has not only laid down the basis for further verification in a
physical model, but also provided basic data to conduct gait training of biped robot based on deep
reinforcement learning theory in the future.

7.2. Future Works

7.2.1. Design of Mechanical Structure

The varus and valgus motions of ankle joint is underactuated, and in order to improve the
controllability of mechanism, we will consider adding this actuation device in the next step. The angle
sensor of modular joint is external, although it can satisfy the measurement requirement, it affects
the appearance of structure, and the sensor might also be damaged if the robot falls, so we consider
designing a built-in sensor in the next step.

7.2.2. Gait Model

The gait model was only simulated on flat ground, and further gait planning should also be
conducted on slope, turning, stairs and uneven ground to improve the theoretical model. The 3D-LIPM
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model will be used for simulation in complicated environment, the stability research will be conducted,
and the external environment for biped robot will be simulated in a more realistic way.

7.2.3. Simulation Model

The simulation model is a simplified version of a real robot, the hydraulic cylinder-driven part
and the specific internal structure of joint are left out, and factors such as joint friction and joint space
are not considered either. These factors will be included in subsequent simulations to more realistically
simulate the actual state of biped robot.

7.2.4. Experimental Verification

Based on improvement of mechanical structure and optimization of gait mode, the control program
will be generated for verification in physical model, so that the shortages of the theoretical model
and physical model during the walking process can be found, the theoretical model and mechanical
structure can be further optimized, and the biped robot can have better robustness.

8. Patents

Lower limb mechanism of a position and force controlled hydraulic biped robot, ZL201922274258.1.
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