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Abstract: The aim of the present study is to investigate the multiple slip effects on
magnetohydrodynamic unsteady Maxwell nanofluid flow over a permeable stretching sheet with
thermal radiation and thermo-diffusion in the presence of chemical reaction. The governing nonlinear
partial differential equations are transformed into a system of coupled nonlinear ordinary differential
equations with the aid of appropriate similarity variables, and the transformed equations are then
solved numerically by using a variational finite element method. The effects of various physical
parameters on the velocity, temperature, solutal concentration, and nanoparticle concentration profiles
as well as on the skin friction coefficient, rate of heat transfer, and Sherwood number for solutal
concentration are discussed by the aid of graphs and tables. An exact solution of flow velocity, skin
friction coefficient, and Nusselt number is compared with the numerical solution obtained by FEM
and also with numerical results available in the literature. A good agreement between the exact
and numerical solution is observed. Also, to justify the convergence of the finite element numerical
solution, the calculations are carried out by reducing the mesh size. The present investigation is
relevant to high-temperature nanomaterial processing technology.

Keywords: MHD; finite element method; nanofluid; Maxwell fluid; thermo-diffusion; multiple slip

1. Introduction

The investigation of unsteady Maxwell nanofluid flow over a stretched surface has significantly
expanded in recent decades due to several applications in engineering and physical processes.
These include microelectromechanical systems (MEMS), advanced nuclear system, combustion
chambers, nuclear plants, aircraft, nanoelectromechanical systems (NEMS), fuel cells, glass fiber,
and paper production, which play an important role in our daily lives. Daily, several vehicles and
devices generate a large quantity of energy, which influences the general activities of the vehicles and
devices. Due to energy loss and the requirement to maintain the daily use of the appliance, we need a
system which can achieve maximum productivity with minimum wasted expense. The concept of
nanofluid (nanoparticles) was first introduced by Choi [1], to describe that base fluid (water, kerosene,
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biofluids, and ethylene–glycol mixture) enhance thermal conductivity when nanoparticles are added.
The thermal conductivity increases when nanoparticles are added, as described by the authors of [2–5].
Rashidi et al. [6] examined the Brownian and thermophoresis effects on the thermal boundary layer.
Akbari et al. [7] examined the influence of nanoparticles on non-Newtonian nanofluids, and they
described that the thermal conductivity enhances due to the increase in nanoparticle number. Similar
nanoparticle behavior was examined by Mohyud-Din et al. [8] and Hayat et al. [9].

The investigation of nonlinear thermal radiative fluid flow is an area of interest for researchers
because of its applications in many engineering processes. Especially, the thermal radiation impact
assumes an essential job in controlling the heat transfer process in the polymer processing industry [10].
Raza et al. [11] investigated the entropy generation in the presence of nanoparticles and nonlinear
thermal radiation. Mahanthesh et al. [12] investigated the nonlinear thermal radiation effects on
magnetohydrodynamic Casson fluid flow. Ismail et al. [13] examined the nonlinear radiation effects
on nanofluid slip flow in porous media. The study of nonlinear radiation heat transfer plays an
important role in industrial applications at high temperature [14]. Slip condition on stretching surfaces
is important in several manufacturing processes. It was found that when the flow pressure is low,
the slip boundary condition is necessary. A slip condition on stretching or shrinking surfaces is used
by several researchers [15–19]. Ramaya et al. [15] analyzed the nanofluids through a stretching sheet.
They observed that the velocity of fluid increases when slip parameter values enhance and slip
condition is helpful to control fluid velocity. Khalil et al. [20] conducted a numerical solution of
magnetohydrodynamics Casson nanofluid flow. The effect of thermal radiation on the velocity and
temperature of a stretching porous thin sheet was studied by Asmat et al. [21]. Chamkha et al. [22]
carried out an investigation on heat and mass transfer in a porous medium with a chemical reaction.
They obtained a similarity solution for unsteady flow.

The study of magnetohydrodynamics (MHD) with heat transfer flow over a permeable stretching
or shrinking sheet is important in many manufacturing processes in the industry, such as in
specific applications like polymer processing technology and laser devices used in medical treatment.
Daniel et al. [23] studied the free or mixed convection magnetohydrodynamic flow over a sheet.
They investigated the numerical solution of free convection and the effects of various physical
parameters of interest using the homotopy analysis method. Dhanai et al. [24] conducted multiple
solutions of magnetohydrodynamic heat transfer and boundary layer flow over a permeable sheet
with viscous dissipation. Gireesha et al. [25] use a dusty fluid to check the flow and heat transfer
of magnetohydrodynamic fluid. Haile et al. [26] studied the heat and mass transfer fluid flow in
the presence of nanoparticles. They consider unsteady 2D flow and fluid passing along a vertical
stretching sheet.

The boundary layer fluids flow caused by the stretching/shrinking surface is an important type of
flow occurring in engineering and chemical industries flow processes. These include paper production,
liquid metal, glass fiber, and polymer sheet synthesis. The manufacture of non-Newtonian fluids,
including lubricants, physiological liquids, paints, colloidal liquids, biological liquids, biopolymers,
and foodstuffs, plays an important role in our daily lives. Ashraf et al. [27] investigated the micropolar
fluid flow toward a shrinking surface and also studied the radiation effects on thermal conductivity.
Dhanai et al. [28] conducted multiple solutions of MHD heat transfer flow with viscous dissipation.
The study of unsteady an axisymmetric flow and heat transfer of non-Newtonian fluid over a radially
stretching sheet has considered by Shahzad et al. [29]. They also studied the radiation effects on
the thermal boundary layer. Ashraf et al. [30] examined the magnetohydrodynamic flow and heat
transfer in a micropolar fluid using the stretchable disk. They obtained the numerical solution of
an axisymmetric flow over a stretchable disk. Azeem et al. [31] analyzed the heat transfer of an
axisymmetric viscous fluid over a nonlinear radially stretching sheet.

The study of free convection or mixed convection flow is important in the electronics cooling
process, heat exchangers, etc. Chen [32] examined the laminar mixed convection flow over a
continuously stretching sheet. Many researchers engaged in analyzing the mixed convection flow of
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non-Newtonian fluids [33–37]. Elahi et al. [38] described the numerical solution of mixed convection
heat transfer over a stretching sheet. Hayat et al. [39] considered the magnetohydrodynamic flow
of non-Newtonian nanofluid flow with the convective condition. They investigated the slip effects
on MHD flow of non-Newtonian with a stretching surface. They also found radiation effects on
velocity, temperature, and concentration profiles. Baag et al. [40] studied the stagnation point of
a magnetohydrodynamic non-Newtonian fluid subject to the chemical reaction and heat source.
Singh [41] examined the effects of viscous on free convection non-Newtonian fluid in the presence of
chemical reaction. Mabood et al. [42] discussed steady non-Newtonian fluid with a chemical reaction
through a porous medium. Hayat et al. [43] discussed a non-Newtonian fluid with chemical aspects
and they investigated a numerical solution. Seth et al. [44] examined a chemically reacting nanofluid
over a permeable vertical plate.

Motivated by the above literature and the range of applications discussed therein, the study of
Unsteady Maxwell Nanofluid Flow and thermo-diffusion with regard to the multiple slips in the
presence of chemical reactions has not been discussed before, to best of the authors’ knowledge.
The main aim of the present study was to extend the recently published work of Nayak et al. [45].
The governing nonlinear PDEs are transformed into a set of highly nonlinear ODEs with the aid of
suitable similarity transformations, and the nonlinear coupled ODEs are solved numerically with
the most popular FEM. The influences of the various physical parameters on the fluid velocity,
temperature, and solutal and nanoparticle volume fraction functions are examined in detail for specific
cases. An exact solution of flow velocity, skin friction coefficient, and Nusselt number is compared
with the numerical solution obtained by FEM and also with numerical results available in the literature.
Further, the convergence table of the finite element method is discussed with reference to different
mesh sizes.

2. Mathematical Formulation

We consider the unsteady two-dimensional MHD flow of an electrically conducting
incompressible viscous flow immersed in nanofluid with the presence of thermal radiation and
first-order chemical reaction over a permeable stretching surface. The x-axis is chosen along with
the sheet and the y-axis is taken normal to it, as shown in Figure 1. It is assumed that the sheet is
moving with nonuniform velocity U(x, t) = ax/(1− λt), chosen along the x-axis. Where a is the
stretching rate of sheet and λ is the positive constant with the property λt < 1. The magnetic field
of strength B(x) = B0x

−1
2 is assumed to be applied in normal direction with B0 6= 0. The magnetic

Reynolds number Rex is taken to be very small for most of the fluids in industrial applications so that
induced magnetic field is ignored. Let T∞,C∞,T∞, and χ∞ be the ambient temperature, ambient solutal
concentration, and ambient nanoparticle concentration, respectively. Tw(x, t),Cw(x, t), and χw(x, t) are
the temperature of the sheet, the concentration, and the nanoparticle volume fraction, respectively,
at the surface. Tw(x, t),Cw(x, t) and χw(x, t) are assumed to be of the following form (see the work by
the authors of [46]).

T_w = T_∞ + T_0
(

ax
2ν(1− λt)2

)
C_w = C_∞ + C_0

(
ax

2ν(1− λt)2

)
χw = χ∞ + χ0

(
ax

2ν(1− λt)2

)
where T0, C0, and χ0 are the reference temperature, reference solutal concentration, and reference
nanoparticle concentration, respectively, such that 0 ≤ T0 ≤ Tw,0 ≤ C0 ≤ Cw and 0 ≤ χ0 ≤ χw.
The above expressions are valid if (1− λt) > 0.
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Figure 1. Physical configuration and coordinate system.

Under the above assumptions, the governing boundary layer equations for the flow problem are
as follows (see the works by the authors of [9,19,37,46]).

∂u
∂x

+
∂u
∂y

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 − k0(u2 ∂u2

∂x2 + v2 ∂u2

∂y2 + 2uv
∂u2

∂x∂y
)

−σB2(x)u
ρ

+ gβT(T − T∞) + gβC(C− C∞) + gβχ(χ− χ∞)− ν

κ′
u (2)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α

(
1 +

16T3
∞σ∗

3k∗κ

)
∂2T
∂y2 + τDB

∂χ

∂y
∂T
∂y

+ τ
DT
T∞

(
∂T
∂y

)2
+ DTC

∂C2

∂y
(3)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DS
∂2C
∂y2 − k1(C− C∞) + DCT

∂2T
∂y2 (4)

∂χ

∂t
+ u

∂χ

∂x
+ v

∂χ

∂y
= DB

∂2χ

∂y2 +
DT
T∞

∂2T
∂y2 (5)

and the boundary conditions are (see the works by the authors of [46,47])

u = U(x, t) + Uslip, v = vw, T = Tw(x, t) + Tslip, C = Cw(x, t) + Cslip,

χ = χw(x, t) + χslip at y = 0 (6)

u→ 0, T → T∞, C → C∞, χ→ χ∞, as y→ ∞, (7)

where u and v are the velocity components along x and y, respectively; α,ν, σ, and ρ are the
thermal diffusivity, kinetic viscosity, electrical conductivity, and density of fluid, respectively; g is
the acceleration due to gravity; βT is thermal expansion coefficient; βC is the solutal concentration
expansion coefficient; βχ is the nanoparticle concentration expansion coefficient; T is the temperature;
C is the solutal concentration; χ is the nanoparticle concentration; DM is the molecular diffusivity;
DT is the thermal diffusivity; DB is the Brownian diffusivity; σ∗ is the Stefan-Boltzmann constant; k∗ is
the mean absorption coefficient; DCT and DTc are the Soret and Dufour diffusivity, respectively; and k1

is the chemical reaction.
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In order to solve Equations (1)–(5), we introduce the following similarity transformations (see the
works by the authors of [19,46]).

η =

√
a

ν(1− λt)
y, ψ =

√
aν

(1− λt)
x f (η), θ(η) =

T − T∞

Tw − T∞
,

φ(η) =
C− C∞

Cw − C∞
, γ(η) =

χ− χ∞

χw − χ∞
(8)

In view of the similarity transformation in Equation (8), the partial nonlinear differential equations,
Equations (1)–(5), transform into the following system of nonlinear ODEs,

f ′′′ + f f ′′ − f ′2 − σ(
η

2
f ′′ + f ′)−M f ′ − β( f 2 f ′′′ − 2 f f ′ f ′′) + λ1θ + λ2φ + λ3γ− kp f ′ = 0, (9)

(1 + R)
1

Pr
θ′′ − f ′θ + f θ′ − σ

(η

2
θ′ + 2θ

)
+ Nbγ′θ′ + Ntθ′2 + Ndφ′′ = 0 (10)

1
Sc

φ′′ − f ′φ + f φ′ − σ
(η

2
φ′ + 2S

)
+ Srθ′′ − kcφ = 0 (11)

γ′′ − Ln
[

f ′γ− f γ′ + σ
(η

2
γ′ + 2γ

)]
+

Nt
Nb

θ′′ = 0 (12)

and the transformed boundary conditions, Equations (6) and (7), are

f (0) = fw, f ′(0) = 1 + S f f ′′(0), θ(0) = 1 + Sθθ′(0), φ(0) = 1 + Sφφ′(0),

γ(0) = 1 + Sγγ′(0), (13)

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, γ(∞)→ 0, (14)

The primes shows the differentiation with respect to η. The parameters in Equations (9)–(12) are
defined as

M =
√

σ(1−λt)
ρa B0, Pr = ν

α , Nb = τDB(χw−χ∞)
ν , Nt = τDT(Tw−T∞)

νT∞
, β = k0a

1−λt , Sc = ν
DS

, Ln = σ
DB

,

R = 16σ∗T3
∞

3k∗K , σ = λ
a , λ1 = gβT T0

2aν , λ2 = gβCC0
2aν , λ3 =

gβχχ0
2aν , Sr = DCT T0

νC0
, Nd = DTcC0

νT0
, kc = k1(1−λt)

a ,

kp = ν(1−λt)
a , fw = −vw(

√
(1−γt)

νa ),

where σ is the unsteadiness parameter; M is the magnetic field parameter; Pr is the Prandtl number;
Nb is the Brownian motion parameter; Nt is the thermophoresis parameter; β is the Deborah number;
Sc is the Schmidt number; Ln is the Lewis number; R is the thermal radiation parameter; λ1,λ2, and λ3

are the buoyancy parameters; kp is the permeability parameter; kc is the chemical reaction parameter;
Nd is the Dufour parameter; Sr is the Soret parameter; and fw is the Suction/injection parameter.

3. Finite Element Method Solutions

Equations (9)–(12) under the boundary conditions (13)–(14) have been solved numerically
using the finite element method (FEM). The FEM has been applied to study different problems
in computational fluid dynamic and extremely efficient method to solve different nonlinear
problems [48–50]. Reddy [51] described an excellent general detail of variational finite element method.
It has been found that the finite element method is exclusively employed in commercial software
like ADINA, ANSYS, MATLAB, and ABAQUS. Swapna et al. and Rana et al. [52,53] described
that variational finite element method solves boundary value problem very effectively, quickly,
and accurately. We employe the finite element method to the solve nonlinear differential equations,
Equations (9)–(12), with the boundary conditions (13)–(14), first we consider

f ′ = h. (15)
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The Equations (9)–(12) thus reduce to

h′′ + f h′ − h2 − σ(
η

2
h′ + f )−Mh + λ1θ + λ2φ + λ3γ− β( f 2h′′ − 2 f hh′)− kph = 0, (16)

(1 + R)
1

Pr
θ′′ − hθ + f θ′ − σ

(η

2
θ′ + 2θ

)
+ Nbγ′θ′ + Ntθ′2 + Ndφ′′ = 0, (17)

1
Sc

φ′′ − f ′φ + f φ′ − σ
(η

2
φ′ + 2φ

)
+ Srθ′′ − kcφ = 0, (18)

γ′′ − Ln
[

hγ− f γ′ + σ
(η

2
γ′ + 2γ

)]
+

Nt
Nb

θ′′ = 0, (19)

The corresponding boundary conditions reduce to the following form,

f (0) = fw, h(0) = 1 + S f h′(0), θ(0) = 1 + Sθθ′(0), φ(0) = 1 + Sφφ′(0),

γ(0) = 1 + Sγγ′(0), (20)

h(∞)→ 0, θ(∞)→ 0, S(∞)→ 0, γ(∞)→ 0, (21)

3.1. Variational Formulations

The variational form associated with Equations (15)–(19) over a linear element Ωa = (ηa, ηa+1) is
given by ∫ ηa+1

ηa

s1{ f ′ − h}dη = 0, (22)∫ ηa+1

ηa

s2{h′′ + f h′ − h2 − σ(
η

2
h′ + f )−Mh + λ1θ + λ2φ + λ3γ− β( f 2h′′ − 2 f hh′)− kph}dη = 0, (23)∫ ηa+1

ηa

s3{(1 + R)
1

Pr
θ′′ − hθ + f θ′ − A

( η

2
θ′ + 2θ

)
+ Nbγ′θ′ + Ntθ′2 + Ndφ′′}dη = 0, (24)∫ ηa+1

ηa

s4{
1
Sc

φ′′ − hφ + f φ′ − A
( η

2
φ + 2φ

)
+ Srθ′′ − kcφ}dη = 0, (25)∫ ηa+1

ηa

s5{γ′′ − Ln
[

hγ− f γ′ + A
( η

2
γ′ + 2γ

)]
+

Nt
Nb

θ′′}dη = 0, (26)

where s1, s2, s3, s4 and s5 are arbitrary shape function or trial functions.

3.2. Finite Element Formulations

The equation of finite element model is obtained by replacing finite element approximation of the
following form in Equations (22)–(26).

f̄ =
3

∑
j=1

f̄ jψj, h̄ =
3

∑
j=1

h̄jψj, θ̄′ =
3

∑
j=1

θ̄′jψj, φ̄′ =
3

∑
j=1

φ̄′j ψj, (27)

with s1 = s2 = s3 = s4 = s5 = ψi(i = 1, 2, 3), where the shape function, ψi, for a line element,
Ωe = (ηa, ηa + 1), is given by

ψ1 = (ηa+1−ηa−2η)(ηa+1−η)
(ηa+1−ηa)2 , ψ2 = 4(η−ηa)(ηa+1−η)

(ηa+1−ηa)2 , ψ3 = − (ηa+1−ηa−2η)(η−ηa)
(ηa+1−ηa)2 , ηa ≤ η ≤ ηa+1. (28)

The FE model equations are, therefore, given by
W11 W12 W13 W14 W15

W21 W22 W23 W24 W25

W31 W32 W33 W34 W35

W41 W42 W43 W44 W42

W51 W52 W53 W54 W55




f
h
θ

φ

γ

 =


b1

b2

b3

b4

b5

 (29)
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where Wmn and bm (m, n = 1, 2, 3, 4, 5) are defined as

W11
ij =

∫ ηa+1

ηa
ψi

dψj

dη
dη, W12

ij = −
∫ ηa+1

ηa
ψiψjdη, W13

ij = W14
ij = 0, W15

ij = W21
ij = 0,

W22
ij = −

∫ ηa+1

ηa

dψi
dη

dψj

dη
dη +

∫ ηa+1

ηa
f̄ ψi

dψj

dη
dη −

∫ ηa+1

ηa
h̄ψiψjdη − A

η

2

∫ ηa+1

ηa
ψi

dψj

dη
dη

− β
∫ ηa+1

ηa
f̄ f̄

dψi
dη

dψj

dη
dη + 2β

∫ ηa+1

ηa
f̄ h̄ψi

dψj

dη
dη −

∫ ηa+1

ηa
h̄ψiψjdη

− A
∫ ηa+1

ηa
ψiψjdη −M

∫ ηa+1

ηa
ψiψjdη + kp

∫ ηa+1

ηa
ψiψjdη

W23
ij = λ1

∫ ηa+1

ηa
ψiψjdη, W24

ij = λ2

∫ ηa+1

ηa
ψiψjdη, W25

ij = λ3

∫ ηa+1

ηa
ψiψjdη,

W31
ij = 0, W32

ij = 0,

W33
ij = −(1 + R)

1
Pr

∫ ηa+1

ηa

dψi
dη

dψj

dη
dη −

∫ ηa+1

ηa
h̄ψiψjdη +

∫ ηa+1

ηa
f̄ ψi

dψj

dη
dη

− A
η

2

∫ ηa+1

ηa
ψi

dψj

dη
dη − 2A

∫ ηa+1

ηa
ψiψjdη + Nb

∫ ηa+1

ηa
γ̄′ψi

dψj

dη
dη

+ Nt
∫ ηa+1

ηa
θ̄′ψi

dψj

dη
dη, W34

ij = −Nd
∫ ηa+1

ηa

dψi
dη

dψj

dη
dη, W35

ij = 0, W41
ij = W42

ij = 0,

W43
ij = −Sr

∫ ηa+1

ηa

dψi
dη

dψj

dη
dη,

W44
ij = − 1

Sc

∫ ηa+1

ηa

dψi
dη

dψj

dη
dη +

∫ ηa+1

ηa
f̄ ψi

dψj

dη
dη −

∫ ηa+1

ηa
h̄ψiψjdηdη

− A
η

2

∫ ηa+1

ηa
ψi

dψj

dη
dη − 2A

∫ ηa+1

ηa
ψiψjdη − kc

∫ ηa+1

ηa
ψiψjdη,

W45
ij = W51

ij = W52
ij = W54

ij = 0, W53
ij = − Nt

Nb

∫ ηa+1

ηa

dψi
dη

dψj

dη
dη

W55
ij = −

∫ ηa+1

ηa

dψi
dη

dψj

dη
dη + Ln

∫ ηa+1

ηa
f̄ ψi

dψj

dη
dη − Ln

∫ ηa+1

ηa
h̄ψiψjdηdη

− LnA
η

2

∫ ηa+1

ηa
ψi

dψj

dη
dη − 2LnA

∫ ηa+1

ηa
ψiψjdη, (30)

and

b1
i = 0, b2

i = −(ψ dh
dη

)
ηa+1
ηa , b3

i = −(1 + R)
1

Pr
(ψ

dθ

dη
)

ηa+1
ηa − Nd(ψ

dφ

dη
)

ηa+1
ηa ,

b4
i = − 1

Sc
(ψ

dφ

dη
)

ηa+1
ηa − Sr(ψ

dθ

dη
)

ηa+1
ηa ,

b5
i = −(ψ dγ

dη
)

ηa+1
ηa − Nt

Nb
(ψ

dθ

dη
)

ηa+1
ηa , (31)

where f̄ = ∑3
j=1 f̄ jψj, h̄ = ∑3

j=1 h̄jψj, θ̄′ = ∑3
j=1 θ̄′jψj and φ̄′ = ∑3

j=1 φ̄′j ψj are supposed to be known.
After the assembly of the element Equation (30), the obtained equations are nonlinear,along these lines
this requires the utilization of an iterative plan for an effective solution. The functions f̄ , h̄, θ̄′, and φ̄′

are assumed to be known at a lower iteration level to linearize the system and the Gaussian quadrature
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technique is used to solve the integral. The computations for functions velocity, temperature, solutal
and nanofluid volume fraction profile are then completed for higher level, continued until the desired
precision of 0.00005 is obtained. The whole algorithm is executed in MATLAB software. To ensure
mesh independence, a mesh affectability practice has been performed. No significant variation in the
results is noticed for η > 10. Therefore, η has been fixed at 10. To check the convergence of the results,
we calculated the number of elements that increased at n = 300, 600, 900, 1200, 1500, 1800, and 2100.
The outcomes are delineated in Table 1. It is observed that as n increases beyond 1800, no significant
change in the values of velocity, temperature, solutal, and nanoparticles concentration functions is
revealed; in this manner, the last outcomes are reported for n = 1800 elements.

Table 1. Convergence results of the finite element method (FEM) (Pr = 1, M = σ = β = 0.2, λ1 =

λ2 = λ3 = 0.2, S f = Sθ = Sφ = Sγ = 0.5, fw = Sr = R = 0.5, kP = kc = Nd = Nt = Nb = 0.1, Sc =

10, Ln = 5,).

Number of Elements h(3) θ(3) φ(3) γ(3)

300 0.12365 0.18517 0.06336 0.02773
600 0.12390 0.18506 0.06332 0.02772
900 0.12399 0.18503 0.06331 0.02771

1200 0.12403 0.18501 0.06330 0.02770
1500 0.12406 0.18500 0.06330 0.02770
1800 0.12408 0.18499 0.06330 0.02770
2100 0.12409 0.18499 0.06330 0.02770

The precise of the existing results, a comparison of the flow velocity is made with the exact
solution given by Crane [54] as f (η) = 1− exp(−η), under the special case (M = 0, σ = 0, β =

0, λ1 = 0, λ2 = 0, λ3 = 0, S f = 0, fw = 0, kp = 0). The FEM results are a decent concurrence with the
exact solution which affirms the validity of FEM. It is clearly seen in Table 2.

Table 2. Comparison of the exact solution of Crane [54] and FEM for the flow velocity f ′(η).

η
Crane [54] FEM Error in %

η
Crane [54] FEM Error in %

(a) Exact Solution (b) (Our Results) |( b−a
a )| × 100 (a) Exact Solution (b) (Our Results) |( b−a

a )| × 100

0 1.0000 1.00000 0.00000 5 0.0067 0.00670 0.00000
1 0.1379 0.13786 0.02901 6 0.0025 0.00251 0.40000
2 0.1353 0.13531 0.00739 7 0.0009 0.00091 1.11111
3 0.0498 0.04978 0.04016 8 0.0003 0.00033 3.33333
4 0.0183 0.01831 0.05464 9 0.0001 0.00011 10.0000

4. Results and Discussion

Computations have been performed for quantities of interest like velocity, temperature, and
solutal and nanofluid volume fraction for various values of physical parameters. In Table 3,
the skin friction coefficient − f ′′(0) obtained by FEM is compared with the numerical results
of Gireesha et al. [25] and the exact solution of Mudassar et al. [55], under special case
(σ = 0, β = 0, λ1 = 0, λ2 = 0, λ3 = 0, S f = 0, fw = 0, kp = 0). An excellent correlation
has been achieved and grid invariance test has been conducted to maintain 4 decimal point accuracy.
To ensure the accuracy of the existing numerical results, the skin friction coefficient − f ′′(0) for steady
and unsteady flow obtained by the finite element. We have seen an excellent agreement between our
solution and that of the already published research articles; this confirms the validity and accuracy of
the present results (see Table 4).
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Table 3. Comparison of skin friction coefficient for various values of M.

M Gireesha et al. [25] Mudassar et al. [55] FEM Error in %
β = 0 (a) Exact Dolution (b) (Our Results) |( b−a

a )| × 100

0.0 1.000 1.000000 1.0000080 0.00080
0.2 1.095 1.095445 1.0954458 0.00007
0.5 1.224 1.224745 1.2247446 0.00003
1.0 1.414 1.414214 1.4142132 0.00006
1.2 1.483 1.483240 1.4832393 0.00005
1.5 1.581 1.581139 1.5811384 0.00004
2.0 1.732 1.732051 1.7320504 0.00003

Table 4. Comparison of − f ′′(0) for various values of M and σ ( fw = λ1 = λ2 = λ3 = kp = S f = 0;).

M [56] [46] FEM (Present) σ [22] [46] FEM (Present)

0 −1.000008 −1.0000084 −1.0000082 0.2 - - 1.068027
1 1.4142135 1.41421356 1.41421353 0.4 - - 1.134687
5 2.4494897 2.44948974 2.44948963 0.6 - - 1.199118

10 3.3166247 3.31662479 3.31662463 0.8 1.261512 1.261042 1.261042
50 7.1414284 7.14142843 7.14142839 1.0 - - 1.320522
100 10.049875 10.0498756 10.0498751 1.2 1.378052 1.377724 1.377724
500 22.383029 22.3830293 22.3830283 1.4 - - 1.432836

1000 31.638584 31.6385840 31.6385833 1.6 - - 1.486039

Table 5 depicts the results of heat transfer rate obtained by FEM compared with the results of
pervious studies and exact solution of Ishak et al. [57] under special case (Nt = Nb = 0). We noticed
that our numerical results are in complete agreement and that the grid invariance test has been
conducted to maintain 4 decimal point accuracy. In Table 6, the local skin friction coefficient − f ′′(0),
the rates of heat transfer −θ′(0) and mass transfer -φ′(0) at the surface obtained by FEM is also
compared with the already publish research work. A good correlation has been achieved.

Table 5. Comparison of −θ′(0) for various values of Pr (M = fw = Sθ = σ = λ1 = λ2 = λ3 = R =

Nd = kp = S f = 0;).

Pr Aii Fazle et al. Ishak et al. Dulal Pal. Haile et al. Ishak et al. [57] FEM Error in %
[58] [46] [57] [10] [26] (a) Exact solution (b) (Our results) |( b−a

a )| × 100

0.72 0.8058 0.8088 - - - 0.8086313498 0.8086339299 0.0003
1.00 0.9691 1.0000 1.0000 1.0000 1.0004 1.000000000 1.0000080213 0.0008
3.00 1.9144 1.9237 1.9237 1.9236 1.9234 1.923682594 1.9236777221 0.0003
10.0 3.7006 3.7207 3.7207 3.7207 3.7205 3.720673901 3.7206681683 0.0002
100 - - 12.2941 12.2940 12.2962 12.294083260 12.294051659 0.0003

Table 6. Comparison of − f ′′(0), −θ′(0), and −φ′(0) for various values of Pr and Sc (M = σ = λ3 =

β = R = Nb = Nt = Nd = Sr = 0, fw = 0.5, λ1 = kp = kc = 1, λ2 = 2, S f = Sθ = Sφ = Sγ = 0).

Pr Sc Chamkha et al. [22] FEM (Our Results)
− f ′′(0), −θ′(0), −φ′(0) − f ′′(0) −θ′(0) −φ′(0)

0.71 0.22 0.27377 1.158393 0.740140 0.27371 1.158389 0.740160
0.60 0.49677 1.101087 1.312248 0.49669 1.101082 1.312192
0.94 0.59941 1.076931 1.713443 0.59935 1.076899 1.713358

0.3 0.62 0.38639 0.621980 1.355045 0.38655 0.621892 1.355036
0.71 0.50438 1.099032 1.337571 0.50429 1.099018 1.337267
1.0 0.55244 1.384875 1.331027 0.55237 1.384753 1.331856
3.0 0.69042 2.966999 1.316710 0.69036 2.966894 1.316382
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Figure 2 shows the effect of M on the velocity function with no hydrodynamic slip (Figure 2a)
and with hydrodynamic slip (Figure 2b). The results show that the velocity component decreases with
the increment of M in both cases. Physically, the M produced Lorentz force slowed the motion of the
fluid. However, the presence of the hydrodynamic slip, as shown in Figure 2b, decreases the velocity
boundary layer. Figure 2 also shows that suction, fw, causes a reduction in the momentum boundary
layer thickness, and thus it provides control over this momentum boundary layer thickness.
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Figure 2. Influence of M and fw on f ′. (a) No hydrodynamic slip. (b) With hydrodynamic slip.

Figures 3 and 4 illustrate that the velocity increases with the increment in values of the
buoyancy parameters in presence of no hydrodynamic slip (Figures 3 and 4a) and hydrodynamic slip
(Figures 3 and 4b). Expanding the estimations of the buoyancy parameters leads to growth of the
velocity profile. Physically, the buoyancy supporting forces are strengthened with these increments in
buoyancy parameters. We additionally see in Figure 3 that the velocity profile declines reciprocally to
as the unsteadiness parameter. It is noticed that the increment in radiation parameter R causes the
profile of velocity to enhance. Also increment in hydrodynamic slip causes the profile of the velocity
to decrease (Figures 3 and 4b).

A similar behavior of nanoparticle concentration is noticed for buoyancy parameter buoyancy
parameter (λ3), unsteadiness parameter, and hydrodynamic slip is observed in Figure 5. The influence
of varying the permeability parameter kp on the velocity profile is depicted in Figure 6. We observe in
Figure 6 that, as the permeability kp increases, it causes a decrease in the velocity profile. However,
the presence of the hydrodynamic slip, as noticed from Figure 6b decreases the velocity boundary layer.
We also observe in Figure 6 that suction reduce the momentum boundary layer thickness. A similar
behaviour of Deborah number, β, is observed in the velocity profile, as in Figure 7.
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Figure 3. Influence of λ1 and σ on f ′. (a) No hydrodynamic slip. (b) With hydrodynamic slip.
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Figure 4. Influence of λ2 and R on f ′. (a) No hydrodynamic slip. (b) With hydrodynamic slip.
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Figure 5. Influence of λ3 and σ on f ′. (a) No hydrodynamic slip. (b) With hydrodynamic slip.
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Figure 6. Influence of kp and fw on f ′. (a) No hydrodynamic slip. (b) With hydrodynamic slip.
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Figure 7. Influence of β and fw on f ′. (a) No hydrodynamic slip. (b) With hydrodynamic slip.

Figure 8 demonstrates the influence of M on the temperature profile with no thermal slip
(Figure 8a) and thermal slip (Figure 8b). The figure shows that the temperature profile increases
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with the increase of M. Physically, applying the magnetic field warms up the liquid and in this way
diminishes the warmth and mass exchange rates from the boundary causing increments in liquid
temperature. Figure 8a,b also demonstrates that suction, fw, and thermal slip decrease the thermal
boundary layer thickness. A similar behaviour of Brownian motion is observed on temperature profile
as in Figure 9. Brownian motion will be more prominent and Nb will have large values for small size
nanoparticles. Consequently, we see that temperatures are upgraded with higher Nb values.
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Figure 8. Influence of M and fw on θ. (a) No thermal slip. (b) With thermal slip.
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Figure 9. Influence of Nb and fw on θ. (a) No thermal slip. (b) With thermal slip.

Figure 10 shows that decreases of the solutal profile are associated with the increase of kc.
Expanding estimations of the unsteadiness parameters lead to decline in concentration profile.
We additionally see in Figure 10b that the concentration profile decline as the solutal slip parameter
increments. Figure 11 demonstrates the influence of Soret parameter Sr on the solutal profile. It is clear
from Figure 11 that the boundary layer of solutal profile increases with an increment in Sr. A similar
behavior of unsteadiness parameter, and solutal slip is observed in Figure 11.
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Figure 10. Influence of kc and σ on φ. (a) No solutal slip. (b) With solutal slip.
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Figure 11. Influence of Sr and σ on φ. (a) No solutal slip. (b) With solutal slip.

Figure 12 shows the influence of Nt on the nanoparticle volume fraction profile with no
nanoparticle concentration slip (Figure 12a) and nanoparticle concentration slip (Figure 12b).
The nanoparticle volume fraction profile decreases with the increase of Nt. The effects of σ over
the nanoparticle volume fraction profile is also depict in Figure 12b and it is observed that nanoparticle
volume fraction profile decreases in unsteady cases. We also see in Figure 12b that the nanoparticles
concentration profile decline as the Sγ incremented. Figure 13 demonstrates the influence of Lewis
number Ln, slip parameter Sγ and suction parameter fw on nanoparticle volume fraction profile is
observed, and some interesting observations of nanoparticle volume fraction profile are made. It is
clear from Figure 13 that the boundary layer of nanoparticle volume fraction profile decreases with an
increment in Ln, fw, and Sγ. Figure 14 shows the influence of M, σ, S f , λ1,λ2 and fw on the skin friction
coefficient. It is clear from the Figure 14 that skin friction coefficient decreases with increasing values
of the slip parameter and buoyancy parameter but skin friction coefficient increases with increasing
values of the magnetic, unsteadiness, and suction parameters. The Nusselt number increases with
increasing values of magnetic and thermal buoyancy parameters and decreases with increasing values
of thermal slip, solutal buoyancy, suction and radiation parameters. It is clearly seen in Figure 15.
Figure 16 illustrate the influence of M,Sc,Sr,Sφ,σ and fw on the reduced Sherwood number. It is clear
from Figure 16 that the Sherwood number increases with increasing values of the Schmidt number,
unsteadiness, and suction parameters, whereas a reduced Sherwood number decreases with increasing
values of the Soret number, magnetic, and solutal slip parameters.
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Figure 12. Influence of Nt and σ on γ. (a) No nanoparticles concentration slip. (b) With nanoparticles
concentration slip.
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Figure 13. Influence of Ln and fw on γ. (a) No nanoparticles concentration slip. (b) With nanoparticles
concentration slip.
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Figure 14. Influence of M, σ, S f , λ1, λ2, and fw on the skin friction coefficient. (a) No hydrodynamic
slip and with hydrodynamic slip. (b) No thermal buoyancy and with thermal buoyancy.
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Figure 15. Influence of M, R, Sθ , λ1, λ2, and fw on the reduced Nusselt number. (a) No thermal slip and
with thermal slip. (b) No thermal buoyancy and with thermal buoyancy.
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Figure 16. Influence of Sc, Sr, M, Sφ, σ, and fw on the reduced Sherwood number. (a) No solutal slip
and with solutal slip. (b) No suction and with suction.

5. Conclusions

The present study analyzes the multiple slip effects on magnetohydrodynamic unsteady Maxwell
Nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence
of chemical reaction. By using the appropriate similarity transformation, the control nonlinear PDEs
are transformed into a set of highly nonlinear ODEs, and the nonlinear coupled ODEs are solved by
using robust and verified variational finite element method under the realistic boundary conditions.
The computations have been performed for velocity, temperature, solutal and nanofluid volume
fraction functions for various values of physical parameters. The key conclusions of this work are
as follows.

• The velocity profiles decrease with increasing values of suction, slip, unsteadiness, magnetic,
Deborah number, and permeability parameters, but the influence is opposite for increasing values
of buoyancy parameters and thermal radiation.

• Increments in magnetic field and Brownian motion parameters enhance the fluid temperature.
However, the opposite influence is experienced with increasing values of suction and
slip parameters.

• The solutal profle reduces with increasing values of the chemical reaction parameter, unsteadiness
parameter, and slip parameter, but the solutal profile is enhanced with increasing values
Soret number.

• Increasing the values of the thermophoresis, suction, slip, Lewis number, and unsteady parameters
leads to the deceleration of the nanoparticles volume fraction profile.

• The skin friction coefficient increases with increasing rates of magnetic, suction, and unsteadiness
parameters, whereas the skin friction coefficient decreases with the higher values of the slip and
buoyancy parameters.

• Increments in magnetic field and thermal buoyancy parameters enhance the fluid Nusselt number
but the opposite influence is experienced with increasing values of slip, solutal buoyancy, suction,
and thermal radiation parameters.

• The Sherwood number increases with increasing values of Schmidt number, unsteadiness,
and suction parameters, but reduces with increasing values of the Soret number, magnetic,
and slip parameters.
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