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Abstract 

Objective. Recent studies have demonstrated that the analysis of brain functional networks 
(BFN) is a powerful tool for exploring brain aging and age-related neurodegenerative 
diseases. However, investigating the mechanism of brain aging associated with dynamic BFN 
is still limited. The purpose of this study is to develop a novel scheme to explore brain aging 
patterns by constructing dynamic BFN using resting-state functional magnetic resonance 
imaging (rs-fMRI) data. Approach. A dynamic sliding-windowed non-negative block-
diagonal representation (dNBDR) method is proposed for constructing dynamic BFN, based 
on which a collection of dynamic BFN measures are suggested for examining age-related 
differences at the group level and used as features for brain age classification at the individual 
level. Results. The experimental results reveal that the dNBDR method is superior to the 
sliding time window with Pearson correlation (SWPC) method in terms of dynamic network 
structure quality. Additionally, significant alterations in dynamic BFN structures exist across 
the human lifespan. Specifically, average node flexibility and integration coefficient increase 
with age, while the recruitment coefficient shows a decreased trend. The proposed feature 
extraction scheme based on dynamic BFN achieved the highest accuracy of 78.7% in 
classifying three brain age groups. Significance. These findings suggest that dynamic BFN 
measures, dynamic community structure metrics in particular, play an important role in 
quantitatively assessing brain aging. 

Keywords: dynamic brain functional network, resting-state fMRI, dynamic community structure, brain age classification 

 

1. Introduction 
Brain aging is a complex and inevitable process [1], 

influenced by both environment and genetic factors. Brain 
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aging exhibits significant differences among individuals. 
Some neurodegenerative diseases, such as Alzheimer's disease, 
are closely related to brain aging [2]. However, the 
mechanisms and dynamic reorganization processes of normal 
brain aging are still unclear. Therefore, developing an 
effective scheme to address this issue can advance our 
understanding of normal brain aging and provide theoretical 
support for the early diagnosis of neurodegenerations.  

Resting-state functional magnetic resonance imaging (rs-
fMRI) is an essential tool to effectively explore spontaneous 
brain functional activity by measuring the relative changes of 
blood oxygen level dependent (BOLD) signal [3]. fMRI can 
provide higher spatial resolution compared to 
Electroencephalogram (EEG) or Magnetoencephalography 
(MEG), such as fMRI with 3/4 mm isovoxel or 1.5/2.0 
isovoxel could be acquired, the former solution being more 
suitable at 3 Tesla and the latter at 7 Tesla. Because of its high 
spatial resolution, non-invasive nature, and no need of tasks 
for subjects to complete, rs-fMRI is widely used to study brain 
disease and cognition. 

Graph-based analysis is a promising approach in the study 
of brain function, which allows for quantitative 
characterization of the topological architecture and 
information communication, such as local efficiency, 
modularity, and small world. Mathematically, for a brain 
functional network (BFN), the brain regions are defined as 
nodes, and the interactions between them are represented as 
edges. These interactions are also called functional 
connectivity (FC) that reflects the temporal dependency of 
time series among different nodes. Various studies have 
investigated the cognition, disease, and aging of the brain by 
using the BFN analysis based on fMRI data [4], [5]. In most 
studies based on fMRI, the BFN is estimated using the whole 
scan time series under the assumption that the FC is 
temporally stationary [5], [6]. For instance, Zhai et al. [5] 
performed principal component analysis (PCA) on the static 
BFNs to obtain the principal components as features for brain 
age prediction. Although static BFN analysis provides insights 
into brain study to a certain extent, it ignores the fact that 
functional interactions fluctuate over time. Recently, a 
growing number of studies have indicated that the brain is a 
highly dynamic system [3], [7]. Some studies have 
demonstrated that the temporal alterations in brain 
connectivity may be influenced by mental states or behavior 
[8], [9], [10]. This kind of dynamic brain connectivity 
provides new insights into the pathophysiological 
mechanisms of associated diseases, such as post-traumatic 
stress disorder and Alzheimer’s disease [11]. 

To date, various methods have been proposed for 
constructing dynamic BFNs include the sliding window 
method [12], multiplication of temporal derivatives [13], and 
Hidden Markov models [14]. Among these, the sliding time 
window with Pearson correlation (SWPC) is the most 

commonly used method for studying dynamic BFN. However, 
the SWPC method has the disadvantage of only considering 
the association between pairs of nodes and ignoring the effects 
of other nodes [15]. Moreover, studies have shown that brain 
activity and functional connectivity are sparse [16], which 
improves topological efficiency in brain networks. However, 
the dense functional connectivity generated by the SWPC 
method leads to computationally intensive subsequent 
analysis. In addition to sparsity, the BFNs also exhibit 
modularity and adjacency [17]. However, how to characterize 
these network properties in dynamic BFNs has not yet been 
explored. 

Topology metrics play a key role in communication among 
brain regions and are usually calculated based on BFNs. In 
particular, community structure, as the mesoscale level of 
topology between local and global regions, is an essential 
hallmark of brain networks that balances functional 
integration and segregation among brain regions. Although 
there are many definitions for communities, it generally 
implies the presence of dense connections within the network 
but sparse connections between networks. Different 
communities are always associated with specific domains of 
brain function. Studies on functional networks have indicated 
that community strength is an important biomarker for 
detecting Alzheimer’s disease [18]. Measuring the topology 
metrics of dynamic BFN is a promising way of characterizing 
the temporally varying functional structure. However, few 
studies investigated the alterations of the dynamic topological 
structure of brain networks, such as fluctuating community 
organization across the lifespan [19], [20]. Furthermore, 
investigating dynamic graph-based metrics at the individual 
level, especially the dynamic community structure, to identify 
brain age is limited. We expect that the dynamic graph-based 
metrics, particularly dynamic community structure, will 
provide novel insights into the mechanisms of normal brain 
aging. 

The aim of this paper is threefold. Firstly, we propose a 
dynamic non-negative block-diagonal representation 
(dNBDR) method for constructing dynamic BFNs, using the 
sliding window method, wherein NBDR [17] is applied to 
each windowed segment. We evaluate the efficacy of our 
proposed method by measuring the sensitivity and fluctuations 
of the dynamic BFN structure in terms of functional 
connectivity and modularity. Secondly, we compare the 
alterations in dynamic topological structure among three age 
groups by calculating dynamic FCs and graph-based metrics 
from different perspectives, such as local, global, and 
mesoscale. In particular, the dynamic community structure is 
detected as mesoscale metric using the Generalized Louvain 
algorithm, from which node flexibility, recruitment 
coefficient, and dynamic network integration coefficient are 
calculated and analyzed. Thirdly, we investigate the potential 
of the dynamic FCs and graph-based metrics as features for 
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brain age classification. To the best of our knowledge, this is 
the first study to adopt dynamic FCs and graph-based metrics, 
particularly the dynamic community metrics, for brain age 
classification. The overall framework of our study is depicted 
in Fig. 1. 

In summary, our study designs a dNBDR method to 
construct dynamic BFNs and adopts graph-based metrics to 
investigate the mechanisms of brain aging. The contributions 
of this study are in three aspects: (a) the development of the 
dNBDR method for constructing dynamic BFNs. (b) the 

investigation of remarkable differences among three age 
groups using dynamic FC and dynamic graph-based metrics. 
(c) the proposal of a novel scheme for normal brain age 
classification, deploying dynamic FC and dynamic graph-
based metrics as features. We expect that our proposed 
dynamic BFN construction method and brain aging study 
scheme will provide deeper insights into understanding brain 
network reconfiguration related to brain aging and offer 
potential biomarkers for brain age classification.

 
Fig. 1 Schematic diagram of brain age classification based on dynamic BFNs. A: Construction and validation of dynamic BFNs. The 
preprocessed fMRI time series are extracted using the automated anatomical labeling (AAL90) template. A dNBDR method is developed to 
construct dynamic BFNs. In addition, different metrics are used to validate the effectiveness of the proposed dynamic BFN method. B: The 
statistical analysis of dynamic BFNs. At the dynamic FC level, the variability of FC is calculated to measure the fluctuation between pairs of 
regions of interest (ROIs) for each subject, and variance FCs analysis is implemented among three groups. At the dynamic graph-based level, 
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the variabilities of local and global metrics are analysed among the three groups by one-way variance of analysis (ANOVA). In particular, 
the community structure is detected, and dynamic community metrics are calculated and analyzed among the three groups. C: Brain age 
classification based on dynamic BFNs. The dynamic FCs and graph-based metrics that showed significant differences among the three groups 
are selected as features. The PCA method is used to implement feature dimensionality reduction, and multi-classification is implemented 
based on four different classification models, i.e., K-nearest neighbor (KNN), support vector machine (SVM), linear discriminant 
analysis (LDA), and sparse logistic regression (SLR). 

2. Materials and method 

2.1 Data acquisition and preprocessing 

2.1.1 Data acquisition 
To validate our proposed scheme for constructing dynamic 

BFNs, we conduct experiments on a simulated fMRI dataset, 
the Midnight Scan Club (MSC) dataset, the simulated dataset 
derived from the MSC dataset, and the NKI/Rockland dataset. 

Simulated fMRI dataset 1 - The first simulated fMRI dataset 
is generated by Nestim sorftware based on a dynamic causal 
model and provided by Eavani et al. [21]. This simulated 
dataset comprises 40 subjects, with each subject's fMRI time 
series consisting of 50 nodes and 120 timepoints. These 50 
nodes are clustered into 9 modules with different sizes. 
Assume that the neighboring nodes are placed nearby each 
other in the network matrix. 

MSC dataset and its simulated dataset - The first real fMRI 
dataset used in this study is the openly available MSC dataset, 
which includes 10 subjects (5 females) with an age range of 
24-34. The MSC dataset can be accessed from 
https://openneuro.org/datasets/ds000224/versions/1.0.3. 
Each session of each subject in the MSC dataset consists of 
333 timepoints, with the following acqusition parameters: T1 
weighted (sagittal, TR = 2.4s, TE = 3.74ms, 224 slices, flip 
angle = 8 degrees), T2 weighted (sagittal, TR = 3.2s, 
TE=479ms, 224 slices), and functional (TR = 2.2s, TE = 27ms, 
flip angle = 90 degrees, 36 slices). Further details about the 
dataset can be found in Gordon et al. [22]. 

The simulated dataset derived from the MSC dataset is a 
surrogate multivariate time series of the original fMRI BOLD 
time series, which shares the covariance structure and mean 
spectral features with the MSC dataset. This simulated dataset 
was used to evaluate nonstationary features of the real BOLD 
data. Details of the generation process are provided in Gordon 
et al. [22].  

Nathan Kline Institute/Rockland (NKI/Rockland) dataset - 
The second real fMRI dataset used in our experiment consists 
of 149 subjects with an age range of 18-85 years, which is 
publicly available at 
http://fcon_1000.projects.nitrc.org/indi/pro/nki.html. All rs-
fMRI and sMRI imaging data are obtained from a 3T Siemens 
Trio scanner, using echo planar imaging (EPI) sequence 
(TR/TE = 2500/30ms; voxel size = 3 × 3 × 3mm3; matrix = 74 
× 74; field of view = 216mm; 260 volumes and 38 slices) and 
T1-weighted image sequence (TR/TE = 2500/3.5ms, FA = 8°, 
thickness = 1.0mm, slices = 192, matrix = 256 × 256, FOV = 

256mm). Detailed information about the NKI/Rockland 
dataset is provided at http://fcon_1000.projects.nitrc.org. 
Based on the age grouping criteria in [23], all the subjects were 
divided into three groups: 66 young adults (young group, age 
range 18-30, mean age: 23.91), 48 middle adults (middle 
group, age range: 31-59, mean age: 41.53), and 35 old adults 
(old group, age range: 60-85, mean age: 68.96). The 
NKI/Rockland dataset is used to analyse age-related brain 
alterations and implement brain age three-class classification. 

2.1.2 Data preprocessing 
The preprocessing step for the MSC dataset has been 

described in Gordon et al. [22]. The artifacts exclusion 
criteria in Power et al. [24] are followed. High motion 
framewise displacement (FD) > 0.2mm and uncensored 
segments of data lasting fewer than 5 contiguous volumes 
are excluded [22]. Subject MSC08 was excluded due to head 
motion. A group-level cortical parcellation described in 
Gordon et al. [25] was used to extract 333 ROIs. 

The NKI/Rockland dataset was preprocessed using the 
same pipelines as described in [6], [18] with the Statistical 
Parametric Mapping package (SPM 8) and the Data 
Processing Assistant for Resting-State fMRI (DPARSF) 
toolbox [26] in MATLAB 2020b. The preprocessing steps 
include: (a) The first 10 of the 260 echo planar imaging (EPI) 
volumes are discarded. (b) Slice timing and realignment are 
performed for the rest of the volumes. (c) Six motion 
parameters, including white matter, whole brain, and 
cerebrospinal fluid signals, are regressed out. (d) The T1-
weighted image is co-registered to the mean functional image 
and normalization to the Montreal Neurological Institute 
(MNI) space is performed using the DARTEL procedure. (e) 
Signals are spatial smoothed with a full-width half maximum 
(FWHM = 4 mm) Gaussian kernel and bandpass filtered at 
0.01-0.08 Hz. Head motion was corrected by using the motion 
scrubbing procedure [24]. No subject was excluded from the 
rs-fMRI data under the criteria that head motion is less than 2 
mm of translation or 2 degrees of rotation in any direction and 
the framewise displacement (FD) <0.2 mm. A t-test was 
utilized on the FD parameters between pairs of groups, and the 
results (p>0.05) indicate no significant difference in head 
movement. For each subject, time series of 90 ROIs are 
extracted according to the AAL 90 template [27], resulting in 
a data matrix with 250-time points by 90 brain ROIs. 

 2.2 Dynamic functional connectivity estimation 
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The sliding window framework is leveraged for estimating 
dynamic BFNs in this study, in which the non-negative sparse 
and low-rank matrix is calculated using the NBDR method 
within each time window. 

2.2.1 Sliding window analysis  
For each subject, dynamic BFNs are constructed by 

applying a sliding window method with a window length of L 
and a sliding step size of H. Specifically, the time courses of 
all ROIs are decomposed into multiple overlapping temporal 
windows with a length of L. Consequently, the ROI time 
courses with t time points will generate 𝑀 = (𝑡 − 𝐿)/𝐻+1 
sliding temporal windows. Within each temporal window, a 
n*n brain network matrix is estimated by the NBDR method, 
where n is the number of brain regions. Based on previous 
studies [28], [29], [30], [31], the window length L and step 
size H are set to 50 TRs (125s) and 20 TRs (50s), respectively, 
in NKI/Rockland dataset. And L and H are set to 50 TRs and 
10 TRs, respectively, in the first simulated dataset. 

2.2.2 Constructing BFN by the NBDR method 
In this paper, the NBDR method is adopted to estimate the 

BFN within each sliding window. The NBDR method has 
been described in our previous study [17] and is briefly 
summarized as follows: 

For each subject with n brain regions, let  𝑋 =
[𝑥ଵ, . . . , 𝑥 , . . . , 𝑥] ∈ 𝑹௧×  represent the fMRI time signal 
with t time points, where 𝑥  denotes the fMRI signal of the 𝑖-
th brain region. The fMRI signals of all the other brain regions, 
represented as 𝑋 = [𝑥ଵ, . . . , 𝑥ିଵ, 𝑥ାଵ. . . , 𝑥] ∈ 𝑹௧×ିଵ, were 
used as the dictionary to represent the 𝑖-th brain region with 
coding vector 𝑤  or �̃� , i.e., 𝑥 = 𝑋 ∗ 𝑤  or 𝑥 = 𝑋 ∗ �̃� . We 
extend 𝑤  (or �̃�  ) to 𝑤   (or 𝑧 ) by setting a zero at its i-th 
element, which denotes the connectivity between node I and 
itself. The BFN of one subject is formulated as an optimization 
problem with the following objective function [17]  

𝑚𝑖𝑛
ௐ,

ଵ

ଶ
‖𝑋 − 𝑋𝑍‖ଶ +

ఒ

ଶ
‖𝑍 − 𝑊‖ଶ + 𝛾‖𝑊‖      

             𝑠. 𝑡. 𝑑𝑖𝑎𝑔(𝑊) = 0, 𝑊 ≥ 0, 𝑊 = 𝑊்              (1) 

where both 𝑊 = [𝑤ଵ, 𝑤ଶ, . . . 𝑤] ∈ 𝑹× and 𝑍 =

[𝑧ଵ, 𝑧ଶ, . . . 𝑧] ∈ 𝑹×  represent the coding coefficient 
matrices, 𝜆 > 0 and 𝛾 > 0  are regularization parameters, 
‖𝑋 − 𝑋𝑍‖ଶ  denotes the data fitting term, the intermediate-

term 
ఒ

ଶ
‖𝑍 − 𝑊‖ଶ  is used to alleviate the restriction of the 

representation capability of 𝑊 owing to the restrictions on it, 
and ‖𝑊‖  = ∑ 𝜆(𝐿ௐ)

ୀିାଵ  is the -block diagonal 

regularizer, which is defined as the sum of the q  smallest 

eigenvalues of WL . 𝐿ௐ is the Laplacian matrix of the affinity 

matrix W and 𝜆(𝐿ௐ), 𝑖 = 1, . . . , 𝑛, are the eigenvalues of 𝐿ௐ 

in decreasing order. Only when 𝜆(𝐿ௐ){ୀ,   ୀିାଵ,....
வ,   ୀଵ,...,ି, , the 

affinity matrix 𝑊  has 𝑞  connected components. The block-
diagonal matrix structure induced regularizer ‖𝑊‖   pursues 

the block-diagonal matrix, which can guarantee that the 
affinity matrix W has sparsity and modularity.  

To solve the optimization problem described by (1), the 
nonconvex term ‖𝑊‖   needs to be solved. First, ‖𝑊‖   is 

reformulated using the property about the sum of eigenvalues 
by Ky Fan [32]. Then, the alternating minimization solver is 
used to implement the final optimization. For the resulting 
NBDR solution 𝑊 and 𝑍, we select 𝑊 as the final coefficient 
matrix is this work. The BFN matrix for one subject is finally 
obtained by 𝑊 = (𝑊 + 𝑊்)/2. 

Compared to the commonly used Pearson Correlation 
method, the NBDR method considers the association between 
a node and the other nodes instead of the pairwise association. 
Mathematically, the NBDR method can construct BFNs with 
sparsity, modularity, and spatial adjacency properties. 

Three parameters need to be determined in the NBDR 
method. First, the parameter q estimated according to [33]. 
Then, the parameters 𝜆 and 𝛾 are set according our previous 
study [17]. 

2.2.3 Evaluation metrics of dynamic BFNs 
In the experiment based on the first simulated fMRI 

dataset, the connections between the underlying network 
nodes are known, which means that they have ground truth 
standards. Therefore, we compare the constructed BFNs 

with the truth standards. In this study, we calculate the 
sensitivity metrics [34] of the dynamic BFNs to evaluate 
the accuracy of FCs, which is depicted in Supplementary 
Material 1.  

In addition, we investigate the relationship between 
network structure and cofluctuation on the MSC dataset and 
the simulated dataset based on MSC [35]. The modularity in 
each window is also calculated [36]. This two metrics are 
depicted in Supplementary Material 1. 

2.3 Dynamic BFN analysis 

2.3.1 Variability of dynamic FC 
To quantify the temporal fluctuations of functional 

interaction between pairs of regions at the group level, the 
mean variability of the network connectivity is calculated for 
each group on the NKI/Rockland dataset. Specifically, the 
variability of FC for each subject is formulated as follows: 

𝑉𝑎𝑟 = ට
ଵ

ିଵ
∑ (𝑊௨(𝑖, 𝑗) − 𝑊)ଶ

௨ୀଵ            (2) 

where 𝑊௨(𝑖, 𝑗) is the connectivity strength between regions i 
and j at time window u, and U is the total number of time 

windows for each subject. 𝑊 =
ଵ


∑ 𝑊௨(𝑖, 𝑗)

௨ୀଵ  denotes 

q
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the mean connectivity strength between region i and j within 
U time windows. It results in an n*n variability matrix of FC 
for each subject, and thus the mean variability matrix of FC 
averaged over the subjects of each group can be calculated. 

2.3.2 Graph-based metrics of dynamic BFNs 
To examine the trend of topological characteristics in 

dynamic BFNs over time, we calculate the variabilities of 
local and global metrics on the NKI/Rockland dataset to 
further investigate the dynamic community structure. 

2.3.2.1 Variability of local and global metrics 
For dynamic BFNs within each sliding window of each 

subject, local and global metrics are calculated to characterize 
the influence of nodes and the network architecture as a whole, 
respectively. The local metrics include node degree [37], 
clustering coefficient [38], local efficiency [39] and 
betweenness [40]. The global metrics consist of global 
efficiency [39], density [41], assortativity [42], and network 
resilience [43]. To evaluate the dynamic characteristics of 
graph-based metrics, we calculated the variability of each 
local or global metric of each subject over time as follows 

𝑉𝑎𝑟 = ට
ଵ

ିଵ
∑ (𝑉(𝑢) − 𝑉𝑚𝑒𝑎𝑛)ଶ

௨ୀଵ                 (3) 

where 𝑉  is the value of the global or local metric of each 
network within each sliding window, 𝑉 =
ଵ


 𝑉



௨ୀଵ
(𝑢)  represents the mean value of graph-based 

metric among all U sliding windows. Finally, the mean 
variability matrix of local or global metrics is obtained for 
each group, respectively. 

2.3.2.2 Mesoscale metrics 
Changes in the brain network organization with age can be 

investigated from a mesoscale aspect. Firstly, the dynamic 
community of the network is detected. After that, the node 
flexibility, recruitment, and dynamic network integration as 
the mesoscale community metrics are estimated to 
quantitatively describe the dynamic network community. 

Multilayer community detection: The Generalized 
Louvain algorithm is adopted to recover the dynamic 
community structure from the estimated network. The 
dynamic multi-slice(multi-window) community is quantified 
by modularity Q as follows [44]: 

𝑄(𝜀, 𝜔) =
ଵ

ଶƞ
∑ [(𝑊௨ − 𝜀௨

ೠೕೠ

ଶௗೠ
)𝛿(𝑀௨ , 𝑀௨) + 𝛿(𝑖, 𝑗) ⋅௨

𝜔௨] 𝛿(𝑀௨, 𝑀)
 
(4) 

where 𝑊௨ is the network connectivity weight between node 

i and j at the u slice (time window). ƞ =
ଵ

ଶ
∑ Ƙ௨௨  denotes the 

sum of connectivity weight, including the intraslice strength 
of node j in slice u represented by 𝑘௨ and interslice strength 

of node j in slice u represented by 𝑐௨ . 
ೠೕೠ

ଶௗೠ
 represents the 

Newman-Girvan null model within u slice, and 𝑑௨  denotes 
sum edge weight at the u slice. 𝜀௨  denotes the topological 
resolution parameter of the u slice, 𝜔௨  is the temporal 

coupling parameter for node j between the r and u slices. 
𝛿(𝑀௨, 𝑀௨) and 𝛿(𝑀௨ , 𝑀) are 1 if node i and j are in the 
same community (M), and 0 otherwise. By adjusting the 
spatial resolution parameter 𝜀  and temporal resolution 
parameter ω the assortative communities at different scales 
are identified. The parameter 𝜀  determines the number and 
size of the detected communities, with smaller values of 𝜀 
resulting in smaller number and larger size communities. The 
parameter ω  reflects the strength of connectivity across 
different layers. Lower values of ω  produce increased 
network switching. The value ranges of parameters 𝜀 and ω 
are set as 𝜀 = [0.7,0.8,0.9,1.0,1.1,1.2]  and ω =
[0.5,0.6,0.7,0.8,0.9,1.0,1.1], respectively, same as in [44]. 

At the spatial scale, it is expected that the number of 
communities would correspond to the number of subnetwork 
systems reported in studies[45], [46], [47]. Therefore, the 𝜀 
values are tuned by examining the number and size of 
communities. When 𝜀 = 1.0, 6~8 communities are identified, 
which is closest to the number of functional systems in 
previous studies. At the temporal scale, the variation of 
information (VI) matrix was calculated as in previous analysis 
[48], which measures the distance between pairs of networks. 
To ensure that the communities have more similarities along 
consecutive network layers and more variations between more 
distant network layers, ω = 0.7 was adopted. Given the above 
consideration, 𝜀 = 1.0  and ω = 0.7  were selected to 
investigate the multilayer community structure. The 
modularity Q ranges from 0 to 1. where a higher Q value 
indicates a higher segregation of the network. 

Node flexibility: Node flexibility is the ratio of the number 
of switches between different communities of a node to the 
total number of network windows (slices). It allows us to 
measure how frequently a node reconfigures its community 
over time [49]. 

𝑓(𝑖) =
ଵ


∑ 𝛿(𝑀௨ , 𝑀)௨ஷ ,   𝑢, 𝑟 = 1,2, … , 𝑈.       (5) 

where (𝑀௨ , 𝑀) equals 1 if node i belongs to the same 
community in slices u and r, and 0 otherwise. The more 
frequently a node switches between different communities 
across windows, the higher the node flexibility is. 

Module allegiance: Dynamic community detection enables 
the representation of the community membership status of a 
given node 𝑖 in different windows. To explore the dynamics 
of community assignments, community allegiance is 
calculated. It quantifies the percentage of nodes 𝑖 and 𝑗 that 
are grouped in the same community over different network 
layers and reflects the dynamic roles of the network system 
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[50].  

𝐴 =
ଵ

ை
∑ ∑ 𝑐,

,
௨ୀଵ

ை
ୀଵ                             (6) 

where O is the number of optimizations of the dynamic 
community detection method (100 in our study). U is the 

number of slices, for each optimization o and slice u, 𝑐,
, = 1 

if node i and j are in the same community 𝑘, otherwise 𝑐,
, = 

0.  
The relationship between the detected community structure 

and known functional systems of interested measures how 
often regions from the functional system are assigned to the 
same module. Firstly, the subnetwork corresponding to the 
community is detected using the community mining algorithm 
[45] based on fMRI data from healthy subjects [46], [47], and 
each region is assigned to one of the six network systems: 
sensorimotor network (SEN), subcortical network (SUB), 
visual network (VIS), auditory network (AUN), default mode 
network (DMN), and attention network (ATN). These 
network systems are identified by pattern decomposition 
technology to describe the system-specific functional 
interactions. It should be noted that the subcortical network is 
one of the sub-network functional systems, which refers to the 
subcortical neural modulatory centers that dominate the 
subcortical functions-dependent control of cortical functions 
in this study. Next, the recruitment and dynamic network 
integration based on the module allegiance ijA can be 

calculated, which reflects the relationship of the network 
systems to the detected communities. 

Recruitment coefficient: The recruitment coefficient 
measures the probability of the nodes within functional 
systems being grouped into the same community. The 
recruitment coefficient is quantified as [49] [50] 

𝑅ௌ =
ଵ

ೄ
మ ∑ ∑ 𝐴∈ௌ∈ௌ                         (7) 

where sn  denotes the number of regions in system S. 

Dynamic network integration coefficient: Similarly, the 
dynamic network integration coefficient is defined as the 
probability of a node being grouped into the same community 
as other nodes belonging to other different functional systems. 
Dynamic network integration is expressed as [50] 

𝐼ௌ =
ଵ

ೞ(ேିೞ)
∑ ∑ 𝐴∉ௌ∈ௌ                           (8) 

where N is the number of nodes. 

2.4 Statistical analysis 
To measure the alterations in dynamic BFN structure with 

age, the variability of dynamic FC and dynamic graph-based 
metrics are compared among three groups on the 
NKI/Rockland dataset. 

2.4.1 Variability analysis of dynamic FC 
The analysis of dynamic FC variability is used to assess its 

statistical significance (p<0.05) among the three age groups. 
The Fisher's Z transform is first carried out on variability 
matrices of dynamic FC for all subjects. Then, a one-way 
ANOVA is conducted to uncover the significant age-related 
changes in the variability of FC, and the false-discovery rate 
(FDR) is used to correct the multiple comparisons at a q-value 
of 0.05. There are 4005 functional edges (the number of nodes 
is 90). Therefore, 4005 comparisons are performed before 
FDR correction to analyse dynamic FC variability. The 
statistical analysis is implemented using MATLAB functions. 
Two-sample t-test is conducted by using the function 
“ttest2()”, one-way ANOVA is implemented by using the 
function “anova1()” and FDR correction by using the function 
“mafdr()”. 

2.4.2 Analysis of dynamic graph-based metrics 
Similarly, the three age groups can be compared in terms of 

the variability of graph-based metrics in three aspects. 
Specifically, for the four global metrics, a one-way ANOVA 
is used to reveal statistically significant differences (p < 0.05) 
among the three age groups. For the five local metrics and 
three mesoscale metrics, the FDR is performed for multiple 
comparisons during variance analysis. 

2.5 Brain age classification 
In addition to statistical analysis, machine learning methods 

are also used to implement a three-group classification on 
normal brain aging using the NKI/Rockland dataset. The 
classification framework mainly includes the following steps: 
(a) Dynamic FCs and graph-based metrics are calculated as 
features that are concatenated to form feature vectors. 
Specifically, the dynamic FCs, local and global metrics with a 
significant difference, and all dynamic community metrics are 
extracted as features for each subject. (b) Four different 
classifiers, KNN, SVM, LDA and SLR, are employed to 
examine the discriminative ability of variability of dynamic 
FC and dynamic graph-based metrics among three age groups. 
The one vs. rest strategy is used to train multiple binary 
classifiers for multi-class classification problems. The SVM is 
implemented using LIBSVM toolbox with linear kernel 
function and tolerance = 0.1. The parameter settings for the 
SLR model are as follows: solver is set as “lbfgs”, tolerance = 
1, penalty = L1, and the parameter “multi_class” is set as 
“multinational”. LDA and KNN are implemented by 
Classification Learner with default parameters in MATLAB 
2020b. (c) A five-fold cross-validation strategy is adopted for 
each of the classifiers to evaluate classification performance. 
Final classification performance is obtained by averaging over 
all folds. (d) To remove redundant features, PCA is adopted in 
each fold to implement feature dimensionality reduction for 
effective classification. (e) To eliminate the influence of scales 
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of different feature vectors, normalization method is used to 
map feature data between 0 and 1. (f) The permutation test is 
repeated 1000 times to evaluate whether the classification 
accuracy is obtained by chance. 

3. Results  

3.1 Dynamic brain functional network 
The dNBDR method was validated first before it was used 

to examine age-related differences and classify brain age. The 
validation results are provided in Supplementary Material 2. 

3.2 Statistic analysis based on dynamic FC and dynamic 
graph-based metrics 

To quantify the alterations in dynamic BFN structure with 
age, we conducted an analysis of the variability of dynamic 
FC and dynamic graph-based metrics among the three age 
groups on the NKI/Rockland dataset. According to the sliding 
window method, 11 windows were used to cover the time 
courses. 

3.2.1 Analysis of FC variability 
The variability of dynamic FC directly reflects the 

fluctuation of the FCs between pairs of brain regions. To 
assess the age-related alterations in the fluctuation of dynamic 
FC, the variability matrices were calculated using Eq. (2) for 
each subject based on the dynamic BFNs estimated by the 
dNBDR and SWPC methods, respectively. The mean 
variability matrices were then obtained by averaging over the 

young, middle, and old groups, respectively, as shown in Fig. 
2. Finally, a significant age-related difference (p < 0.05, FDR 
corrected, 4005 comparisons are performed) was found in the 
mean variability matrices among the three groups using the 
ANOVA tests. Furthermore, a t-test was conducted to 
compare differences in FC variability between pairs of groups. 
The results revealed that the middle group exhibits 
significantly higher FC variability compared to the young 
group (p < 0.05). This result suggests that the stabilities of the 
FCs between these brain regions are altered with age. Fig. 3 
visualizes the FCs with significant variability among the three 
age groups. The nodes in Fig. 3A represent the brain regions 
involved in FC variability with significant differences among 
the three age groups. A total of thirty-two edges are involved, 
mainly distributed in the prefrontal and occipital lobes. The 
comparison of average variability among the three age groups 
with respect to the dynamic FC is shown in Fig. 3B. The 
average FC variability values are significantly different 
among the three age groups, and the old group has higher 
average FC variability than the young and middle groups (p < 
0.01, FDR corrected). 

3.2.2 Analysis of dynamic graph-based metrics 
The dynamic graph-based metrics were calculated to 

characterize the patterns of time-varying topological 
structures. Subsequently, ANOVA was performed on the 
variability of local and global metrics to investigate whether 
the fluctuations of dynamic topological architectures are 
statistically different among the three age groups of subjects. 

 

 

Fig. 2 Variability matrices of dynamic FC. A: Vavriance matrix based on dNBDR for one randomly selected subject. Panels B, C, and D 
correspond to the mean variability matrices derived from dNBDR averaged over the young, middle, and old groups, respectively. 
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Fig. 3 Analysis of variability of dynamic FC. A: Visualization of significant difference (p < 0.01) in the variability of the FC. The red 
nodes denote brain regions with significant differences, and the black links are the FCs between the two brain regions. B: Comparison of 
average variability among the three age groups with respect to the dynamic FC. The red star on the top represents that there is a significant 
difference (p < 0.05) between the two groups. 

(a) Variability analysis of local metrics  
Significant differences (p < 0.05, FDR corrected, 90 

comparisons are performed) were found in the variability of 
local metrics among the three age groups, including node 
degree, betweenness, and clustering coefficient. Fig. 4A 
illustrates the variations of the three local metrics over time 
windows for one randomly selected subject, while the 
involved brain regions with significant differences can be seen 
in Fig. 4B. The fluctuation of node degree and betweenness 
could reflect the dynamic reconfiguration of node centrality, 
and the change in the clustering coefficient indicates the 
alterations in the level of local neighborhood clustering of a 
network. The comparison of average variability among the 
three age groups with respect to the three metrics is shown in 
Fig. 4C. The old group shows lower average variability in 
node degree (p < 0.05, FDR corrected) and higher average 
variability in betweenness (p < 0.05, FDR corrected) and 
clustering coefficient (p < 0.05, FDR corrected). Furthermore, 
the variability of these three graph-based metrics between 
pairs of groups displayed a significant difference (p < 0.05, t-
tests). Specifically, we found that the old group demonstrated 
significantly higher variability of node degree (p < 0.05) than 
both the young group and middle group. In addition, the old 
group exhibited significantly lower variability of betweenness 
and clustering coefficient compared to the young group. These 
results reveal that the variability of the three local metrics in 
these brain regions altered with age.  

(b) Variability analysis of global metrics  

Significant differences (p < 0.01) were found in the 
variability of global network metrics among the three age 
groups, including network density and network resilience. Fig. 
5A shows the variability matrices of network density and 
network resilience of the three age groups, which reflect the 
fluctuation of these global metrics over time windows. The 
results reveal that the mean variability of the network density 
in the old group (0.000130) is higher than that in the middle 
group (0.000084) and the young group (0.000075). Network 
density measures the degree of connection among brain 
regions. It means that the connection relationship between 
nodes in the brain network exhibits a significantly unstable 
state with the increase of age. A similar pattern was found in 
the mean variability of network resilience among the old 
(0.000402), middle (0.000374), and young groups (0.000381). 
Network resilience measures the ability of a network to 
quickly recover from an attack on the network. This finding 
suggests that the old group shows more fluctuation in 
withstanding network attacks than the young and middle 
groups. 

(c) Analysis of dynamic mesoscale metrics 
To quantify the changes in community structure with age, a 

total of six communities were first detected in different time 
windows (network layers) using the Generalized Louvain 
algorithm. The node flexibility, recruitment, and dynamic 
network integration coefficient were then calculated and 
analyzed based on the dynamic community.
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Fig. 4 Dynamic local metrics. A: Time-varying local metrics for one randomly selected subject, including node degree, betweenness, and 
clustering coefficient. B: Brain regions corresponding to the variability of these network properties with the significant difference among 
the three age groups. C: Comparison of average variability among the three age groups with respect to the node degree, betweenness, and 
clustering coefficient. The red star on the top represents that there is a significant difference (p < 0.05) between the two groups. 

 

Fig. 5 Dynamic global metrics. A: Time-varying global network properties of the three age groups, including network density and 
network resilience metrics. B: Variability distributions of network density (left panel) and network resilience (right panel) of the three age 
groups where red dots represent the mean respectively.

Analysis of the flexibility: To examine which brain regions 
are more likely to change community membership, the node 

flexibilities for all subjects were calculated. Fig. 6 shows the 
node flexibility matrix for one randomly selected subject, 
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where different colors represent different communities. For 
each node, the greater the number of communities assigned 
among different network layers, the higher the flexibility of 
the node, and the lower otherwise.  

 

Fig. 6 Visualization of community switching status within 11 
windows of all brain regions for one randomly selected subject. 
The column represents the time windows, and the row represents the 
brain region index in the matrix. The elements with different colours 
in the matrix are the representation of various communities. 

Fig. 7A shows the average flexibilities of the 90 brain 
regions from the three age groups for networks with 11 time 
windows. Overall, the node flexibility values are in the range 
[0.10, 0.23]. Fig. 7B shows the average flexibility of six 
functional systems of the three age groups. It can be seen from 
Fig. 7B that the regions in the orbitofrontal cortex, most of 
which are in SUB and ATT, tend to show relatively high 
flexibilities, while the brain regions belonging to VIS and 
AUN have low flexibilities. Moreover, the mean flexibilities 
of AUN in the young, middle, and old groups are 0.1269, 
0.1512, and 0.1552, respectively, indicating an increase in 
mean flexibility with age. In addition, it was found that the 
network systems have high flexibility in the young group and 
remain high flexibility in the middle and old groups. These 
results align with previous work [49], [51]. Finally, an 
ANOVA was used to investigate significant differences in 
flexibilities for different network systems among the three age 
groups. Significant differences were found in four network 
systems, i.e., SUB (p < 0.01, F-value = 1.0397, FDR corrected, 
20 comparisons are performed), AUN (p < 0.01, F-value= 
1.3864, FDR corrected, 12 comparisons are performed), DMN 

(p < 0.01, F-value = 2.540, FDR corrected, 20 comparisons 
are performed), and ATT (p < 0.01, F-value = 1.6429, FDR 
corrected, 16 comparisons are performed ).  

To further investigate the differences between the network 
systems among the three age groups, a t-test was conducted 
between pairs of groups. The results are presented in Table 1. 
Significant differences were found in AUN and DMN when 
comparing the young group with the middle group, in SUB 
and ATT when comparing the young group with the old group, 
and in SUB, DMN, and ATT when comparing the middle 
group with the old group. 

The global mean flexibility averaged over all brain regions 
for each subject was examined as well. The scatter plot in Fig. 
8A displays a positive correlation between brain age and 
global mean flexibility (r = 0.4193, p = 1.027×10-7). This 
finding is consistent with previous studies that have 
investigated brain aging based on Power’s 264-node 
functional atlas [52]. 

Analysis of recruitment: The recruitment coefficient was 
utilized to further investigate whether a brain region belongs 
to its corresponding functional system. As shown in Fig. 9A, 
the recruitment coefficients of brain regions in the three age 
groups range from 0.13 to 1.0. Fig. 9B illustrates the 
recruitment of each functional system, with VIS and AUN 
demonstrating higher recruitment coefficients than other 
functional systems. This finding is consistent with a previous 
study that examined age-dependent community changes 
during memory tasks [50], which also found that VIS and 
somatosensory have particularly high recruitment coefficients. 
Furthermore, consistent with our flexibility findings, SUN and 
ATT have the lowest recruitment, indicating that they are the 
systems most inconsistently grouped together in communities 
across time windows. Moreover, the mean recruitment for VIS 
and AUN decreased gradually from the young group and 
middle group to the old group, with values of 0.7283, 0.6800, 
and 0.6305 for VIS and 0.5316, 0.4900, and 0.4418 for AUN 
in the three age groups, respectively. Finally, significant 
differences were found among four network systems by using 
ANOVA: VIS (p = 0.0327, F-value = 6.6405, FDR corrected, 
14 comparisons are performed), AUN (p = 0.0026, F-value = 
3.1909, FDR corrected, 12 comparisons are performed), DMN 
(p = 0.0011, F-value = 5.6475, FDR corrected, 20 
comparisons are performed), and ATT (p = 0.0007, F-value = 
4.3870, FDR corrected, 16 comparisons are performed). 
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Fig. 7 Flexibility comparison among the three age groups. A: Average flexibilities of each brain region of the three age groups. Brain 
regions are colored from blue to pink proportional to their flexibility values. B: Box-scatter plot showing the average flexibility of each 
functional system of three age groups, and its distribution over subjects. In particular, SUB and ATT have relatively high average flexibilities. 

 

Fig. 8 Scatter plot of different mesoscale metrics. Brain age is associated with increased global mean flexibility, decreased global mean 
recruitment, and increased global mean dynamic network integration. The global mean mesoscale metrics are averaged over all brain regions 
for each subject. 

 

Fig. 9 Recruitment coefficient comparison among the three age groups. A: Average recruitment of each brain region of the three age 
groups. Brain regions are colored from blue to yellow proportionally to their recruitment coefficient values. B: Box-scatter plot showing the 
mean recruitment of each functional system of three age groups, and its distribution over subjects.  
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Table 1. Comparison of different network systems between pairs of groups in terms of flexibility (FDR corrected) 

Groups/results SUB AUN DMN ATT 

p-value t-value p-value t-value p-value t-value p-value t-value 

Y vs. M 0.2515 - 0.0368* -1.5749 0.0175* -2.3574 0.2038 - 

Y vs. O 0.0718 - 0.2600 - 0.7860 - 0.0053**  2.9307 

M vs. O 0.0067**  -2.9549 0.6201 - 0.0072**  2.6873 0.0480 -1.7983 

Note: Y represents Young group. M represents Middle group. O represents old group. * indicates that there is a significant 
difference between the two group with p<0.05, and ** indicates p<0.01. 

Table 2. Comparison of different network systems between pairs of groups in terms of recruitment coefficients (FDR corrected) 

Groups/results VIS SUN DMN ATT 

p-value t-value p-value t-value p-value t-value p-value t-value 

Y vs. M 0.2084 - 0.0003** -2.5754 0.0004** -2.0061 0.0857 - 

Y vs. O 0.0071** -3.0346 0.2312 - 0.0424* -4.0464 0.0002** -3.1831 

M vs. O 0.1854 - 0.9562 - 0.0946 - 0.0256* 1.1527 

 

 

Fig. 10 Dynamic network integration coefficient comparison among the three age groups. A: Average dynamic network integration of 
each brain region of the three age groups. Brain regions are coloured from blue to yellow proportionally to their dynamic network integration 
coefficient values. B: Box-scatter plot showing the mean recruitment of each functional system of three age groups, and its distribution over 
subjects 

Table 3. Comparison of different network systems between pairs of groups in terms of integration coefficients (FDR corrected) 

Groups/results SEN SUN ATT 

p-value t-value p-value t-value p-value t-value 

Y vs. M 6.7893 × 10-4** 1.2675 5.3020 × 10-4** 1.6519 0.6115 - 

Y vs. O 1.4752 × 10-7** 3.519 0.0355*  3.4951 0.0585 - 

M vs. O 5.7898 × 10-6** 2.0526 0.0885 - 0.0043 3.4053 
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Similar to the flexibility analysis, a t-test was conducted on 
the recruitment coefficients between pairs of groups, and the 
results are shown in Table 2. Significant differences were 
found in SUN and DMN between the young group and middle 
group, in VIS, DMN, and ATT between the young group and 
old group, and in ATT between the middle group and the old 
group. 

The global mean recruitment coefficient averaged over all 
brain regions for each subject was further investigated. From 
Fig. 9B, a negative relationship between age and recruitment 
coefficient is observed (r = -0.43516, p = 1.1001×10-5).  

Analysis of integration: The correspondence between the 
community structure and known functional systems [46] [47] 
was further investigated by analyzing the dynamic network 
integration coefficients, which reflect the probability that a 
region is not assigned to its relevant cognitive system. Fig. 
10A shows the dynamic network integration coefficients of 
the brain regions of the three age groups. Fig. 10B illustrates 
the dynamic network integration of each functional system. 
Contrary to the findings regarding recruitment, SUN, and 
ATT exhibit the highest dynamic network integration, 
suggesting that they are the systems most consistently grouped 
together in communities across time windows. Significant 
differences were found in three network systems by using 
ANOVA: SEN (p = 4.1968×10-9, F-value = 6.0840, FDR 
corrected, 8 comparisons are performed), SUB (p = 0.0017, F-
value = 8.4701, FDR corrected, 20 comparisons are 
performed), and ATT (p = 0.0612, F-value = 10.1325, FDR 
corrected, 16 comparisons are performed).  

Moreover, a t-test between pairs of groups was performed, 
and the results are shown in Table 3, which indicate that 
significant differences are in SEN and SUN between the 
young group and middle group, in SEN and SUN between the 
young group and old group, and in ATT and SEN between the 
middle group and old group. 

Similar to the global mean flexibility, brain age is 
positively related to the global mean dynamic network 
integration (r=0.2986, p=2.1619×10-4), as shown in Fig. 9C, 
which reflects the association between brain age and global 
mean dynamic network integration. 

3.3 Classification performance based on dynamic 
graph-based metrics 

Although the statistical analysis results have revealed 
differences in the dynamic FC matrices and dynamic graph-
based metrics among the three age groups on the 
NKI/Rockland dataset, it is important to make inferences at 
the individual level. To further examine the utility of dynamic 
FC and dynamic graph-based metrics as features for brain age 
classification, multi-class classification models were 
employed to identify the brain age groups of subjects on the 
NKI/Rockland dataset. In particular, it is interesting to 

examine the role of dynamic mesoscale metrics in brain age 
classification. 

 

Fig. 11 Average classification accuracies achieved with dynamic 
FC and dynamic local, global graph-based metrics as features 
using four classifiers. The diagonal elements in the confusion 
matrices represent the rates of correct classification, while others 
represent the probabilities of misclassification. 

 

Fig. 12 Average classification accuracies achieved with dynamic 
FC and local, global and mesoscale metrics as features using four 
classifiers. The diagonal elements in the confusion matrices 
represent the rates of correct classification, while others represent the 
probabilities of misclassification.  
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Fig. 13 Average classification accuracies achieved with mesoscale 
metrics as features using four classifiers. The diagonal elements in 
the confusion matrices represent the rates of correct classification, 
while others represent the probabilities of misclassification.  

To examine the discriminative power of dynamic FC and 
dynamic graph-based measures, particularly the mesoscale 
measures, three sets of classification experiments were carried 
out. In the first experiment, the metrics with significant 
differences, including variabilities of dynamic FCs (32 edges), 
dynamic local (90 nodes 3 local metrics=270 features) and 
global (1 2 global metrics = 2 features) graph-based metrics, 
were concatenated as features (in total, 304 features) for brain 
age classification. For feature dimensionality reduction, the 
PCA method was used. The components contributing more 
than 90% to feature data information were retained and fed to 
four classifiers for three-group classification. The 
classification performances are shown in Fig. 11. Among the 
four classifiers, the highest accuracy of 72.3% is achieved by 
LDA. In contrast, the highest accuracy achieved by the other 
classifiers ranged from 52.00 to 70.60. In the second 
experiment, the mesoscale measures (90 nodes * 3 mesoscale 
measures = 270 features) were added to dynamic FC, global 
and local metrics as features (in total, 574 features). The same 
feature dimensionality reduction method and classifiers were 
used as in the first experiment, and the classification 
performances are shown in Fig. 12. Overall, the classification 
performances were improved with the addition of the 
mesoscale metrics as features. Specifically, the highest 
accuracy of 78.70% is achieved by KNN, and the accuracy 
achieved by the other classifiers is above 61.10%. In the third 
experiment, to investigate the classification performance of 
using the mesoscale measures alone, only the mesoscale 
measures were used as features (90 nodes * 3 mesoscale 
measures = 270 features). The PCA method was used for 
feature dimensionality reduction, and the classification 
performances are presented in Fig. 13. Although the 
classification accuracy achieved was not higher than that 
achieved when dynamic FC and graph-based measures were 

used as features, it achieved a good classification accuracy of 
74.50% by the LDA classifier. These results indicate that our 
proposed feature extraction scheme is effective in classifying 
brain age groups, and the mesoscale metrics play an essential 
role in multi-class classification of brain age. 

4. Discussions 

This study aims to investigate the changes in dynamic 
BFNs derived from rs-fMRI data across young, middle, and 
old groups of subjects. Firstly, dynamic BFNs were 
constructed by the dNBDR method across sliding windows, 
and dynamic FC and dynamic graph-based metrics were 
calculated based on the dynamic BFNs. Statistical analysis 
was then conducted to examine group-level differences using 
dynamic FC and dynamic graph-based metrics. Finally, the 
significant dynamic BFN measures were extracted for brain 
age classification using four different classifiers. The results 
showed the importance of the dynamic BFNs measures, 
especially the dynamic community structure, in the 
development of biomarkers for brain aging. 

4.1 Dynamic BFNs 
Recent studies investigated the alteration of stationary 

BFNs with age [5], [53], [54], [55]. However, the human brain 
is a complex dynamic interactive system even in the resting 
state when it is not performing any task [56], [57]. Dynamic 
BFNs can characterize the functional activities of the brain 
more accurately than static BFNs. In addition, previous 
studies have shown that BFNs exhibit many properties, such 
as sparsity [15], modularity [51], [58], adjacency [59], etc. 
Therefore, this paper proposes a dNBDR method to construct 
dynamic BFNs. Fig. S1A and Fig. S1B show the dynamic 
BFNs constructed on the first simulated dataset using the 
SWPC and dNBDR methods, respectively. It can be observed 
that dynamic functional interactions occur among regions with 
different sliding windows. The reason is that spontaneous 
fluctuations are the manifestation of the dynamic 
reorganization of the brain network. In addition, the dynamic 
BFNs constructed by the SWPC method are dense by 
calculating the association between pairs of nodes. In contrast, 
the dynamic BFNs generated by the dNBDR method are 
sparse, adjacent and can consider the association among all 
brain regions. 

Compared with the SWPC method, the dNBDR method 
constructs dynamic BFNs with higher sensitivity, which can 
more accurately describe connections between nodes. 
Moreover, the structure properties of the dynamic BFNs have 
been replicated on the MSC dataset and its simulated data. The 
experimental results in this paper suggest that the modularity 
of the BFN in each window constructed by the dNBDR 
method is higher than that by the SWPC method, which 
indicates that the dNBDR method can simultaneously cluster 
nodes with related function. 
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It is noteworthy that head motion has a significant impact 
on the construction of BFNs, and it is crucial to reduce motion 
artifact by using the head motion correction models in data 
preprocessing. The variation of the dynamic BFNs and the 
motion parameters of all subjects were compared with a t-test 
to examine the impact of head movements. The result reveals 
that all subjects have significant differences (p < 0.05) 
between the variations of the dynamic BFN and FD. On 
account that head motion parameters have no effect on the 
construction of BFNs, it implies that the head motion 
processing on the subject data is sufficient. 

4.2 Statistical analysis of dynamic FC 
Dynamic FC and graph-based metrics were derived from 

rs-fMRI data to explore the fluctuations in the BFNs among 
young, middle, and old groups. At the FC level, significant 
differences were found among the three age groups in terms 
of the variability of dynamic FCs. Fig. 3A shows that the 
fluctuations of FCs among the brain regions in VIS, ATN, and 
DMN systems have significant differences among the three 
age groups. Interestingly, previous studies that investigated 
brain aging using static BFNs also found differences in ATT 
and DMN [5], [60]. This finding may imply that there is a 
certain relationship between static and dynamic patterns, and 
the static pattern provides a template for the diverse dynamic 
pattern. In addition, Fig. 3B shows that the old group has a 
higher average variability of FC than the young and middle 
groups. This finding indicates that the young and middle 
groups have relatively stable functional connections acorss 
time windows compared to the old group. 

4.3 Statistical analysis of dynamic graph-based metrics 
Graph-based metrics are common and effective tools to 

help us understand network organization. The structure of a 
BFN is continuously and dynamically reconfigured [61]. To 
investigate the change in dynamic topology structure across 
the lifespan, we calculated metrics at three scale levels: 
dynamic local, global, and mesoscale. 

The variability of local metrics reflects the extent to which 
the nodes’ attributes fluctuate over time windows. In this study, 
all of the local metrics displayed fluctuations over sliding time 
windows. In particular, the variability of node degree, 
betweenness, and clustering coefficient metrics from certain 
regions exhibited significant differences among the three age 
groups. Fig. 4 shows that most of these brain regions belong 
to the prefrontal, temporal, and association. Both node degree 
and betweenness reflect nodal centrality, indicating that the 
fluctuation of the nodal centrality from these brain regions 
changes across age groups. On the other hand, the clustering 
coefficient is a measure of functional segregation, which 
means that functional segregation also changes with age. 

The variability of global metrics characterizes the changes 
in properties of the brain function as a whole in the entire 
network. It was found that the density and network resilience 

metrics significantly differ among the three age groups. 
Furthermore, Fig. 5B indicates that the old group has a 
relatively high variability of network density and network 
resilience compared to the young and middle groups, which 
means that the old group has higher fluctuation in terms of 
network vulnerability to insult than the young and middle 
groups. This may be due to the brain in the old group changing 
its network structure to adapt to balance the functional 
segregation and integration. These changes in the network 
structure over time demonstrate that the human brain has 
adjusted dynamically to maintain information transmission 
and communication among the brain regions. 

A dynamic detection algorithm was adopted in this paper 
to identify the dynamic nonoverlap communities. Previous 
studies demonstrated that community architecture exhibited 
neurobiological meaning [18], [49], [62]. For instance, Han et 
al. [18] employed the community as a biomarker for 
Alzheimer's disease identification. Bassett et al. [50] used 
community architecture to explore the learning processes. 
This study has extended prior studies that detected the 
community structure based on stationary BFNs and introduced 
an analysis of three novel metrics originating from dynamic 
community structure. 

The results of this study reveal that the mean flexibilities in 
SUB, DMN, and ATT of the old group are significantly higher 
than those of the young and middle groups, as shown in Fig. 
7, indicating that the brain regions from these network systems 
are more intended to switch community allegiance in the old 
group. Fig. 7B shows that the brain regions which reconfigure 
the most among the three age groups are located mainly in 
SUB and ATT. Fig. 8A shows that the mean flexibility at the 
global level is positively correlated with age, indicating that 
community structure is more prone to reconfigure with age. 
This finding aligns with the report in previous studies [51]. 
Comparing Fig. 8A and Fig. 8C, high global mean flexibility 
and a significant relationship between dynamic network 
integration and age can be observed, although these regions 
reconfigure in different ways. The brain regions in SEN, SUB, 
AUD, and ATT are more integrated with age. Consistent 
findings pointed out that the old group tends to increase 
dynamic network integration of network systems, with 
functional connectivity decreased within-network systems and 
increased between-network systems [63]. Interestingly, the 
increased fragmented communities with age can explain the 
high flexibility in the old group. In addition, SUB and ATT 
displayed not only high flexibility values but also high 
dynamic network integration coefficients. Previous 
observations demonstrated that older group are more likely to 
change modular structure compared to younger group, and the 
flexibility of nodes in inferior temporal cortex increases with 
age [51]. The opposite happens for VIS, AUD, and SEN, 
whose recruitment coefficients are relatively high in the young 
group. The global mean recruitment is negatively corrected to 
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age. This finding aligns with the previous report that the old 
group is prone to have decreased communications within 
network systems and increased communication between 
network systems. These phenomena can be explained by the 
fact that the old group tends to have weak functional 
specificity and increased functional dynamic network 
integration [52], [64]. These alterations were found to 
underpin the opinion that normal aging was accompanied by 
alterations in the functional specificity and information 
interaction of the network systems. Several studies explained 
the phenomena using the dedifferentiation hypothesis, which 
suggested that selective recruitment of brain regions decreases 
with age during task performance [41], [65], [66]. Collectively, 
the decreased recruitment and increased dynamic network 
integration reflect that the functional network architecture 
alters with age, thus causing changes in information 
processing during brain aging.  

The dynamic BFN was characterized at different 
topological scales. Statistical analysis revealed that the 
methods proposed in this paper have extended traditional 
stationary methods and revealed that dynamic BFNs showed 
fine-grained modularity changes with age. 

4.4 Performance of brain age classification 
In addition to the statistical group-wise analysis among 

young, middle, and old groups, the machine learning 
framework was used to implement individual-level brain age 
classification. Based on the constructed dynamic BFNs, the 
variability of dynamic global and local metrics and the 
dynamic community structure metrics were calculated as 
features for brain age classification, which obtained the 
highest classification accuracy, higher than 72.3%. The best 
three-class classification accuracy achieved was 78.5% when 
using the combination of all metrics. Notably, the highest 
accuracy of was 74.5% when only using mesoscale metrics. 
Previous studies [23], [67] usually used statistical analysis 
methods to examine whether there were significant 
differences in the brain networks among subjects of three age 
groups, but studies of three-group classification of brain age 
have hardly been studied. Searching for studies on brain age 
classification in the past ten years has found that only Vergun 
et al. [68] implemented the three-group classification of brain 
age based on static FCs, with a classification accuracy of 57%. 
Compared with the results in Vergun et al. [68], the brain age 
classification performance has been significantly improved to 
78.7% in this paper, showing the strong advantage of the 
proposed scheme. Recently, numerous studies have designed 
different frameworks to implement brain age classification 
based on static brain networks derived from neuroimage data 
such as rs-MRI or fMRI [6], [54], [55]. However, many 
studies have indicated that the brain network is not static but 
instead undergoes the processes of dynamic reconfiguration 
even in rest states [69], [70]. In this study, the dynamic BFN 

was constructed by the proposed dNBDR method. In addition, 
the dynamic FC and dynamic graph-based metrics were 
extracted as features for brain age classification, which can 
achieve not only high classification accuracy but also have 
reasonable neurophysiological significance. The promising 
brain age classification results suggest that the dynamic graph-
based metrics, particularly the dynamic community structure 
metrics, have the potential to form an essential biomarker for 
brain age classification. 

Despite the new insights into brain age classification 
introduced in this study, limitations still exist. Firstly, the AAL 
90 template represents a relative rough whole brain 
parcellation method, which results in a relatively coarse 
division of the network system. While various studies on brain 
aging have utilized different functional network systems, 
these studies generally encompass network systems such as 
visual, sensorimotor, default mode, attention, and subcortical 
networks [49], [61], [71], [72], [73], [74]. In this study, these 
network systems are also included by using the community 
mining algorithm [45], [46], [47]. Nonetheless, the network 
systems detected by this algorithm are relatively coarse and do 
not encompass significant networks such as the salience and 
executive control networks. Additionally, there is only one 
unique attention network whereas usually a dorsal and a 
ventral attention network are reported. In future work, finer 
parcellation templates and more precise network system 
detection algorithm should be considered to achieve more 
robust results. Secondly, although this method can ensure 
convenient subsequent calculation of graph-based metrics, it 
ignores the anticorrelation relationship between brain regions. 
In our future research, we aim to investigate the possibility of 
removing the non-negativity constraint on 𝑊. In addition, we 
will explore alternative methods for calculating graph-based 
metrics, which may not require the non-negativity of the BFNs 
when detecting the community structure. Finally, different 
parameters in the dNBDR method and different window 
lengths may produce different statistical and classification 
results. In this study, the parameters λ and γ were selected 
based on our previous study [17]. In future studies, the 
influence of different parameters on the results can be 
investigated. Furthermore, the settings for window lengths and 
step sizes in this study could be adjusted to achieve finer 
granularity. In future study, window lengths and step sizes at 
different scale level will be set via experiments to evaluate the 
impact of the different number of dynamic networks on the 
results. 

5. Conclusion  

This paper proposes a novel scheme to investigate age-
related alterations in dynamic BFNs, focusing on dynamic 
community structure. The dNBDR approach is designed to 
construct dynamic BFNs and analyze various measures of 
dynamic BFNs. This study has found significant differences 
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in the dynamic BFN measures among the young, middle, and 
old age groups, including the dynamic community structure 
and variability of dynamic local and global metrics. A 
machine learning framework was also deployed for brain age 
classification based on dynamic BFN measures with five-fold 
cross-validation. Promising classification results have 
provided evidence to support the effectiveness of including 
dynamic BFN measures, especially dynamic community 
structure metrics, for assessing brain aging. This study 
provides a new framework for investigating brain aging 
mechanisms and brain age calssification, and offers new 
insights into biomarkers of brain aging. 
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