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Abstract—BCIs facilitate seamless engagement between in-
dividuals with motor disabilities and their surrounding envi-
ronment by translating electroencephalography (EEG) signals
generated from Motor Imagery (MI). Crucial to this process
is the accurate classification of different types of MI tasks - a
challenge that calls for the consistent evolution and refinement of
reliable methodologies for EEG signal classification. This paper
introduces three innovative approaches: M1, employing a tempo-
ral block technique combined with Filter Bank Common Spatial
Pattern (FBCSP) and mutual information-based feature selection
with a Random Forest classifier; and M2 and M3, extending
M1 using Temporal Probability Fusion (TPF) and Probability
Difference-based Temporal Fusion (PDTF) respectively. These
methods aim to enhance MI EEG signal classification. The
effectiveness of M1, M2, and M3 was scrutinized under differing
scenarios including changing overlap sizes and channel choices.
The analysis highlights that our methods exhibit enhanced
performance under particular conditions, underlining the crucial
role of temporal information and channel selection. Comparison
with established methodologies verifies the superior efficiency of
our proposed strategies. This study foregrounds the considerable
potential of TPF and PDTF in MI EEG classification tasks,
with significant implications for the future development of BCI
systems.

Index Terms—Machine Learning, Motor Imagery Classifica-
tion, EEG, Brain-Computer Interface (BCI), Temporal Probabil-
ity Fusion (TPF), Probability Difference-based Temporal Fusion
(PDTF), Temporal Block Approach, Neurorehabilitation.

I. INTRODUCTION

MBrain-computer interfaces (BCIs) have received con-
siderable attention in the past few decades due to their

potential to assist individuals with severe motor disabilities,
offering a new communication channel that does not require
muscle movement [1], [2]. BCIs decipher and translate brain
signals into commands to control external devices, such as
wheelchairs [3], robotic arms [4], or computer cursors [5]. The
key to successful BCI operation lies in accurately interpreting
the brain’s activity, and for this, the motor imagery (MI)
paradigm has been widely adopted. MI refers to the mental
rehearsal of motor actions without any overt movement or
muscle activation [6].
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Motor imagery-based BCIs were first introduced by
Ramoser, Müller-Gerking, and Pfurtscheller, who developed
an optimal spatial filtering method for single-trial EEG during
imagined hand movement [1]. This landmark study has since
spurred many advancements in the field. Recent innovations
include controlling quadcopters in three-dimensional space
using a non-invasive MI-based BCI [6], which extends the
application of BCIs to novel and practical real-world scenarios.
For instance, Pichiorri et al. discussed the potential of BCI
for motor and cognitive rehabilitation after stroke [7], while
Philips et al. examined the use of topographical measures of
functional connectivity as biomarkers for post-stroke motor re-
covery [7]. Furthermore, BCIs have been studied for dysphagia
rehabilitation, with promising results [8].

Despite these advancements, several challenges remain in
MI-based BCI, such as the inherent non-stationarity of EEG
signals, the variability of user performance, and the require-
ment for extensive user training [6], [9]. To address these chal-
lenges, researchers have been exploring novel methodologies
for improving the classification accuracy of MI tasks. Some
researchers have used the temporal block-based approach to
capture the temporal dynamics of MI-related EEG features us-
ing the sliding window technique on common spatial patterns
and deep learning [10], [11] while some studies used feature
selection to find optimal time window [12].

In this paper, we contribute to the evolving discourse by
introducing two novel approaches: the Probability Difference-
based Temporal Fusion (PDTF) approach and the Tempo-
ral Probability Fusion (TPF) approach. They use prediction
probabilities and their differences over temporal windows for
class label determination. Both methods aim to leverage the
temporal dynamics of EEG signals and probabilistic classifier
information to improve the classification of MI tasks.

The PDTF approach focuses on the use of prediction
probabilities and their differences over temporal windows for
class label determination. This technique capitalizes on the
probabilistic information provided by the classifier to enhance
the classification accuracy of MI tasks.

On the other hand, the TPF approach takes into consid-
eration the weighted prediction probabilities of all temporal
blocks belonging to a single trial for class label determination.
This novel strategy seeks to further refine the classification
process by assigning weights to predictions based on their
temporal sequence, thus emphasizing the temporal structure
of MI tasks.

This paper presents a comprehensive analysis of the PDTF
and TPF approaches, demonstrating their potential to enhance
MI-BCI performance and contribute to the broader BCI field,
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including its application in rehabilitation contexts. Our find-
ings underline the potential of these novel methodologies in
improving the usability and effectiveness of MI-BCIs, driving
forward our understanding and application of this transforma-
tive technology.

To provide a comprehensive understanding of the proposed
approach, Section II provides an overview of related work in
MI-EEG classification, while Section III details our proposed
approach. In Section IV, we present the experimental results
and discuss the findings, and in Section V, we conclude the
paper and outline future research directions in this area.

II. BACKGROUND
In the realm of Brain-Computer Interfaces (BCIs), specif-

ically, those based on Motor Imagery (MI), significant ad-
vancements have been made in terms of feature extraction
and classification techniques. Among these advancements, the
Common Spatial Pattern (CSP) has emerged as a widely
utilized feature extraction method in EEG-based BCIs for MI
classification. Originally introduced by Ramoser et al. in 2000,
CSP optimally discriminates between two classes of EEG
data [1].

However, CSP’s performance can be compromised in high-
dimensional and noisy data scenarios. To address this, several
enhancements and extensions of the CSP method have been
proposed. One of the most notable advancements is the Filter
Bank Common Spatial Pattern (FBCSP) [13], [14] proposed
by Ang et al. in 2008 and further developed in 2012. FBCSP
utilizes a filter bank to decompose the EEG signal into multiple
sub-bands and then applies CSP separately to each sub-band.
This approach allows the extraction of frequency-specific
information, resulting in a significant improvement in MI
classification accuracy. Moreover, Ang et al. demonstrated the
effectiveness of FBCSP on the BCI Competition IV dataset,
where they achieved the highest classification accuracy [14].

The success of FBCSP sparked further exploration into
optimizing the method. Thomas et al. (2009) proposed the Dis-
criminative Common Spatial Pattern (DCSP), which integrates
FBCSP with a Support Vector Machine (SVM) classifier [15].
The authors used an optimization algorithm to select the
most informative frequency sub-bands, resulting in DCSP
outperforming FBCSP in terms of classification accuracy.

In the quest for enhanced performance, Blankertz et al.
(2008) developed an algorithm to refine the spatial filters used
in FBCSP, which outperformed the standard CSP filters [16].
Additionally, Higashi and Tanaka (2013) proposed a joint op-
timization method for the filter bank and CSP spatial filters in
FBCSP, which resulted in further enhancement of classification
accuracy [17].

In terms of feature selection, Raza et al. (2015) compared
various methods for FBCSP, concluding that the forward addi-
tion of frequency sub-bands achieved the highest classification
accuracy [18]. Similarly, Wei and Wei (2015) proposed a
Binary Particle Swarm Optimization (BPSO) algorithm for
frequency sub-band selection in FBCSP, outperforming other
feature selection methods [19].

Furthermore, Zhang et al. (2017) introduced Sparse
Bayesian Learning (SBL), a method for obtaining sparse EEG

frequency band-based feature vectors in MI classification.
They applied SBL to FBCSP and found that it outperformed
other methods, including FBCSP, in terms of classification
accuracy [20].

Continuing the enhancement of FBCSP, Luo et al. (2019)
proposed the Class Discrepancy-Guided Sub-Band Filter-
Based Common Spatial Pattern (CD-FBCSP) method, which
significantly enhanced the discriminability of MI EEG sig-
nals [21].

Notably, Kumar et al. introduced the Discriminative Filter
Bank Selection (DFBS) method, which outperformed the
original FBCSP method by using mutual information to select
the top-ranked filter banks [22]. Mammone et al. (2023) [23]
introduced an extension of the Filter Bank Common Spa-
tial Patterns (FBCSP) algorithm, named AutoEncoder(AE)-
FBCSP, to take advantage of the ability of AE to map data
from the feature space to a latent space where classification-
relevant information is embedded. Hwang, Park, and Chi
(2023) [24] proposed a Long Short-Term Memory (LSTM)-
based classification framework to enhance the classification
accuracy of four-class MI signals. They used an overlapping-
band-based FBCSP to extract subject-specific spatial features.

Recently, Tang et al. proposed a new spatial-frequency
feature extraction method and a hybrid feature selection
method for MI EEG decoding [25]. They used CSP for spatial
filtering and dimensionality reduction, then decomposed the
filtered signals into multiple frequency sub-bands using a filter
bank. To select subject-specific spatial-frequency features, they
proposed a hybrid feature selection method based on the Fisher
score and SVM.

Despite the considerable advancements in the application
and optimization of FBCSP, a gap remains in the consider-
ation of overlapping frequency bands and temporal aspects
of MI. Current research on optimizing FBCSP for motor
imagery EEG primarily focuses on band selection and setup,
advancing EEG signal classification. However, there’s a no-
table gap regarding temporal patterns in motor imagery (MI)
tasks and their interaction with overlapping frequency bands.
Traditional FBCSP approaches treat EEG signals statically,
ignoring evolving brain activity during tasks. This oversight
hampers performance in tasks where temporal dynamics are
crucial, such as distinguishing between MI tasks or detecting
subtle changes over time. Additionally, overlapping frequency
bands further complicate the analysis, as motor imagery
tasks can activate multiple bands simultaneously. Existing
methodologies often assume non-overlapping bands or use
limited techniques to handle overlap, missing the richness of
neural dynamics. Our proposed method addresses these gaps
by integrating temporal aspects and overlapping bands into
feature extraction. Through a combined block technique with
FBCSP, our approach aims to enhance classification accuracy,
bridging gaps in understanding and pushing BCI technology
forward.

III. METHODOLOGY

1) Dataset-Stroke Patients: The dataset is from Clinical
Brain-Computer Interfaces Challenge that was held at the



IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. XX, NO. X, XXXX 20XX 3

2020 IEEE World Congress on Computational Intelligence
(WCCI) in Glasgow, Scotland [26]. The dataset for MI EEG
classification contains .mat files, and each training file contains
two variables, ”rawdata” and ”labels”. The ”rawdata” variable
is a 3-D matrix that represents the activity of 12 EEG channels
during 80 trials of 8 seconds each, recorded at a sampling rate
of 512 Hz. The ”labels” variable is a 1-D array containing the
labels for individual trials in the training data, with two classes
namely ”left motor attempt” and ”right motor attempt”.

Each trial period in the calibration phase was of 8 seconds,
within which the first three seconds were the preparatory
phase, followed by a beep sound and a cue in the form of
a hand image on the screen. Participants were instructed to
perform a motor-attempt task of left or right-hand grasp based
on the appearance of the cue. The scalp EEG was recorded
with 12 electrodes covering specific areas, and the signals were
initially filtered with a 0.1 to 100 Hz pass-band filter and a
notch filter at 50 Hz during data acquisition [26].

A. Dataset-B: Healthy Subjects’ Dataset

The BCI Competition IV-2a dataset has been used to com-
pare the classification results of healthy individuals performing
MI tasks [27]. This dataset has been referred to as Dataset-B
for the rest of the paper. Nine healthy subjects performed MI
tasks on four body parts: left hand, right hand, feet, and tongue.
The training and test sessions were recorded for each subject
on separate days. There were 72 trials for each class, i.e., 288
total trials per subject. Signals are sampled at a frequency of
250 Hz with an initial bandpass filter between 0.5 Hz and
100 Hz with a notch filter at 50 Hz. There were 22 Ag/AgCl
electrodes following the 10-20 international system with a 3.5
cm inter-electrode distance. A trial lasts for 6 s, followed by a
short break period. A fixation cross and an auditory warning
were given during the first 2 s from the start of the trial.
After that, a cue was presented with an arrow sign to instruct
different MI tasks. Our algorithm uses the left- and right-hand
MI trials as classes for our binary classification problem. This
selection is made as we intend to study the performance of
the classification pipeline for an upper limb motor task.

B. Pre-Processing & Feature Extraction

The methods proposed in this paper have been summarized
in Fig. 1. After taking into account the buffer effect and iden-
tifying the relevant portion of the trial that corresponds to the
motor imagery (MI) phase, we created the temporal blocks
from the raw data, and then FBCSP was applied with mutual
information (MI) based feature selection. Next, the 3 variants
of the proposed method were formed such as M1, M2, and M3.
The M1 variant classifies the features using a random forest
algorithm without any post-processing. In contrast, a temporal
probability fusion (TPF) was applied as a post-processing step
for M2 while in the case of M3, we have used probability dif-
ference-based temporal fusion. All these techniques associated
with M1, M2, and M3 are now explained in detail as follows.

1) Temporal Block Approach: The block-based temporal
analysis method focuses on partitioning the time-series signal
into manageable and contiguous segments or blocks. This

Fig. 1. Processing steps of Method 1 (M1), Method 2 (M2) and Method 3
(M3).

segmentation allows for a detailed examination of each sep-
arate block, potentially unveiling short-lived patterns within
the signal which could be overlooked in a complete signal
analysis.

The implementation of this block-based temporal analysis
involves the segmentation of the time-series signal into N
distinct blocks, each possessing a length L. It’s important
to note that L is typically much less than the full signal
length. The formulation for these blocks can be mathematically
represented as:

Blocki = [y((i− 1) · T + 1),

y((i− 1) · T + 2), . . . , y((i− 1) · T + L)] (1)

In this equation, y represents the time-series signal, T
denotes the stepping size (which refers to the distance between
consecutive blocks), and i is a counter ranging from 1 to N. It’s
worth noting that the signal’s indices are shifted by a factor
of T for each subsequent block, resulting in the creation of
overlapping blocks. To be specific, we have considered data
starting from 3.5 s to the end of the trial at 8s, having a window
size of 1 s and a shift of 125 ms between two consecutive
windows. A buffer period of 500 ms after the cue was used
to prevent any edge artifacts.

2) Filter Bank Common Spatial Pattern: Upon the appli-
cation of the temporal block-based method to segment EEG
signals, we proceed with the employment of the Filter Bank
Common Spatial Pattern (FBCSP) [13], [14] approach. This
allows for the identification of spatial patterns related to the
task at hand and the corresponding frequency bands. The
process can be represented as:

Xblocki = FBCSP (Blocki) (2)

where Xblocki is the transformed signal for the i-th block,
and FBCSP represents the filter bank common spatial pattern
method applied to each block. This technique involves the
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partitioning of the EEG signal into distinct frequency bands
through a filter bank, subsequently employing the Common
Spatial Pattern (CSP) analysis on each band to facilitate feature
extraction. The CSP method serves to derive spatial filters
that augment the disparities between classifiable groups in the
frequency domain.

In our methodology, we implement an overlapping fre-
quency band strategy to augment the efficiency of the FBCSP
technique. The selected frequency band for analysis spans
from 8 to 40 Hz, encapsulating both the mu (8-13 Hz) and
beta (13-30 Hz) bands. This frequency range has demonstrated
its efficacy in Motor Imagery (MI) EEG classification assign-
ments due to its capacity to capture a broad spectrum of
frequency components pertinent to motor imagery. Aiming to
elevate the FBCSP method’s performance, we segment the 8
to 40 Hz frequency band into sub-bands of 4 Hz each with a
2 Hz overlap. This step enables us to garner a more granular
understanding of the frequency components within each band,
which can enhance the precision of the classification process.
By integrating the FBCSP approach with the overlap frequency
band technique, we manage to extract features from the EEG
data that are more discriminatory in nature. This strategy has
been validated by existing literature [20], [28], confirming its
ability to enhance EEG data analysis.

3) Mutual Information: After extracting spatial features
using the CSP algorithm, we employ mutual information-
based feature selection [22], [29] to enhance the discriminative
power of selected CSP components. This technique measures
the dependence between features and class labels and selects
the most informative features for classification. The mutual
information score is calculated using the following equation:

MI(xi, yj) =
∑

(xi,yj)

p(xi, yj) log2

(
p(xi, yj)

p(xi)p(yj)

)
(3)

where MI(xi, yj) is the mutual information between feature
xi and class label yj , p(xi, yj) is the joint probability of xi

and yj , and p(xi) and p(yj) are the marginal probabilities of
xi and yj , respectively. A higher mutual information score
indicates that the feature provides more information about the
class label [22].

CSP components are selected as per their mutual informa-
tion score.

C. Method 1 (M1)

Upon the application of the FBCSP algorithm and mutual
information for spatial feature extraction and selection, the
ensuing step involves feeding the chosen CSP components into
a classifier. In our study, we selected the Random Forest (RF)
as the classifier of choice.

RF [30] functions as an ensemble learning technique, gen-
erating numerous decision trees during its training phase and
presenting the class that corresponds to the mode of the classes
from the individual trees. The utilization of an ensemble of
trees fosters superior generalization capabilities in contrast to
a single decision tree. RF can mitigate overfitting, thereby
enhancing the precision of the classification outcomes.

In the course of its training phase, RF generates a forest
of decision trees, each employing a random subset of input
features at each node. This strategy assists in decreasing the
correlation among the trees, thereby improving the comprehen-
sive performance of the forest. Furthermore, RF employs boot-
strap aggregating (also known as bagging) to create multiple
datasets by resampling the training set with replacement. Each
dataset is subsequently used to train a decision tree, which is
added to the forest.

The final classification decision is the culmination of ag-
gregating the predictions from all the decision trees within the
forest. In Method M1, the RF classifier is trained using feature
vectors derived post the application of FBCSP and mutual
information-based feature selection techniques. This trained
RF classifier is then employed to predict the class labels of
the testing data.

D. Method 2 (M2)

Method 2 (M2) extends the classification strategy employed
in Method 1 by integrating a temporal probability Fusion
mechanism, which takes into account the model’s uncertainty
about its predictions.

1) Temporal Probability Fusion: In the Temporal Probabil-
ity Fusion (TPF) approach, classification decisions are made
based on the weighted sum of prediction probabilities across
all temporal blocks belonging to a single trial. This approach
is particularly useful for EEG-based motor imagery tasks
with two classes, such as left-hand movement and right-hand
movement.

The approach can be summarized as follows: First, obtain
the prediction probabilities for each temporal block using
a classifier, such as a Random Forest. For each block, the
classifier outputs a probability for each class (in this case,
left-hand movement and right-hand movement). Next, for each
trial, compute the weighted sum of prediction probabilities for
each class across all temporal blocks. The weighted sum for
class i (i ∈ 1, 2) can be computed as:

Wi =

n∑
j=1

(Pij · wj) (4)

where Wi is the weighted sum for class i, Pij is the prob-
ability of class i in the j-th temporal block, wj is the weight
assigned to the j-th temporal block, and n is the number of
temporal blocks. It is to be noted that we assign equal weights
to all blocks within a trial. Each block contributes equally to
the combined prediction probabilities for each class. We made
this design choice to ensure simplicity and consistency in the
fusion process as we aim to give importance to all blocks
without introducing bias based on their position.

Finally, for each trial, assign the class with the highest
weighted sum as the predicted class label. Calculate the
accuracy of the TPF approach by comparing the predicted
class labels to the true class labels.

The TPF approach is advantageous because it takes into
account the prediction probabilities from all temporal blocks,
allowing the classifier to leverage the most informative features
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across time. By incorporating the prediction probabilities in a
weighted manner, the TPF method can potentially improve the
classification performance compared to considering only the
most discriminative temporal block or using a simple majority
vote.

E. Method 3 (M3)

Method 3 (M3) builds on the classification approach used
in Method 1 by incorporating probability difference-based
temporal fusion, which considers the model’s ambivalence in
its prediction outcomes.

1) Probability Difference-based Temporal Fusion: In the
Probability Difference-based Temporal Fusion (PDTF) ap-
proach, the goal is to classify trials into one of two classes:
left-hand movement or right-hand movement. This is achieved
by considering the differences in prediction probabilities
across all temporal blocks within a single trial and fusing them
together to make the final classification decision.

Let’s break down the PDTF approach used in the provided
code with mathematical details:

For each instance in the test set, obtain the prediction
probabilities using the classifier model:

P (C1|xi): Probability of instance xi belonging to class 1
(left-hand movement)

P (C2|xi): Probability of instance xi belonging to class 2
(right-hand movement)

Calculate the probability difference for each instance in the
test set:

D(xi) = P (C1|xi)− P (C2|xi) (5)

Assign the class label for each instance based on the
probability difference:

If D(xi) > 0, assign class label 1 (left-hand movement)

If D(xi) < 0, assign class label 2 (right-hand movement)

If D(xi) = 0, use the previous instance’s class label

For each trial, aggregate the probability differences across
all temporal blocks:

Ak =

n∑
j=1

Dkj (6)

Where Ak is the aggregated probability difference for trial
k, n is the number of temporal blocks in a trial, and Wkj is
the probability difference for temporal block j in trial k.

Make the final class label decision for each trial based on
the aggregated probability differences:

If Ak > 0, assign class label 1 (left-hand movement)

If Ak < 0, assign class label 2 (right-hand movement)

The connection between formulas (5) and (6) becomes
evident when we consider that the individual probability differ-
ences (D(xi)) calculated using equation (5) for each instance
becomes the basis for the probability differences (Dkj) in
equation (6) which are then calculated for each block within
a trial. By summing these temporal probability differences,
we obtain Ak, which represents the aggregated probability
difference, for the trial.

In order to make informed decisions around class labels,
capturing temporal information is key. The PDTF approach
does just that by aggregating probability differences across all
temporal blocks within a trial, effectively incorporating timing
into its final classification decision. This technique could prove
especially useful when dealing with complex data sets where
capturing nuances in timing can make all the difference.

IV. RESULT & DISCUSSION

To gain insight into hand functional disability following
hemiparetic stroke, we conducted a study on a sample of
10 patients. To collect data, we observed participants as
they attempted grasp movements using both their left and
right hands while EEG recordings were taken. We only used
the training files for analysis as the labels for the original
evaluation files were not known to us.

To evaluate our system’s capabilities, we employed a rigor-
ous method known as 5-fold cross-validation on our dataset.
This meant that we fragmented it into five identical pieces
with only one section being used for verification purposes
every time while others confined themselves to training duties
alternately. By measuring performance metrics in each fold
and subsequently combining them together using averages, a
general overview accurately encapsulates how proficiently our
model functions.

Incorporating 5-fold cross-validation into research method-
ology presents numerous benefits including minimizing vari-
ation, optimizing hyperparameters, and delivering a more
precise gauge of the effectiveness of a model. Within the
research community, this approach has gained traction for
assessing models.

A. Model Evaluation

1) Channel Selection Analysis and Implications: Achiev-
ing optimal performance in EEG-based motor imagery (MI)
classification is heavily dependent on the proper selection of
EEG channels. Our study investigates the impact of channel
selection on the classification accuracy of these methods: M1,
M2 (Temporal Probability Fusion, TPF), and M3 (Probability
Difference-based Temporal Fusion, PDTF).

We first examined how the classification accuracy varied
with the number of channels used. Specifically, we considered
subsets of 3, 5, 6, 9, and 12 channels selected based on
their mutual information. The results indicate that the mean
accuracy for M1, M2, and M3 methods generally improved
as the number of channels increased as shown in Fig. 2.
M1 demonstrated mean accuracies of 0.6571, 0.7112, 0.6994,
0.7163, and 0.7437, and M2 has accuracies of 0.7589, 0.7849,
0.792, 0.816, and 0.8579, while M3 showed accuracies of
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Fig. 2. Channel-wise accuracy comparison of three methods: M1, M2, and
M3. .

0.756, 0.786, 0.7969, 0.813, and 0.8599 for 3, 5, 6, 9, and
12 channels, respectively.

It’s becoming increasingly clear that adopting a wider range
of channels to record motor cortex activity during MI tasks is
crucial. This trend supports the notion that enhancing clas-
sification accuracy requires capturing a more comprehensive
view of the activity at play.

We then considered two specific sets of channels, Set A (C3,
C4, CPz) and Set B (F3, FC3, C3, CP3, P3, F4, FC4, C4, CP4),
which have been associated with MI EEG of the left and right
hand [31], [32]. The M1 method achieved mean accuracies
of 0.6527 and 0.7369 for Set A and Set B respectively, M2
achieved 0.744 and 0.835 for Set A and Set B respectively,
while the M3 method showed mean accuracies of 0.742 and
0.834 for Set A and Set B respectively.

The improved performance of the methods with Set B
corroborates the importance of including more channels for
higher accuracy. The channels in Set B, which span a broader
area of the motor cortex, provide a more comprehensive view
of the neural activity, facilitating more accurate differentiation
between left and right-hand MI tasks.

However, the slight edge of M2 over M3 for both channel
sets suggests that the TPF approach, with its probability-
Fusion mechanism, might be slightly more effective in han-
dling the spatial information from multiple channels.

B. Overlap Size and its Impact

When analyzing EEG signals, it’s important to consider the
element of time. The patterns found in EEG signals are com-
plex and understanding them is key to comprehending brain
activity. Scientists have developed two approaches to aid in this
understanding: TPF assigns weights based on temporal occur-
rence while PDTF harnesses the model’s uncertainty through
differences in class probabilities. This differential approach
can be considered an indirect measure of the signal’s temporal
information, and it provides a potentially more sophisticated
representation of the temporal dynamics.

Fig. 3. Overlap size-wise accuracy comparison of three methods: M1, M2,
and M3. .

The performance of M1, M2, and M3 methods was evalu-
ated under various overlap sizes in temporal blocks, namely,
256, 128, 96, and 64 with all 12 channels as shown in Fig. 3.

The relationship between overlap size and classification ac-
curacy is intricate and demands deliberate analysis. Including
the right degree of overlap is vital as it keeps signal continuity
and context intact. Nonetheless, it’s essential to recognize that
there exists an ideal threshold for overlap beyond which advan-
tages diminish, leading to probable drawbacks like redundancy
and overfitting. On the other hand, inadequate overlap may not
maintain the temporal dependencies intrinsic in EEG signals
effectively, consequently affecting classifier performance.

In our study, an overlap size of 64 exhibited superior results
with both Temporal Probability Fusion (TPF) and Probability
Difference-based Temporal Fusion (PDTF) techniques. This
suggests that the judicious selection of overlap size plays a
critical role in improving the classification performance. A
discernible trend is a rise in accuracy scores as the overlap size
decreases, potentially due to the introduction of more distin-
guishable features that can enhance the differentiation of left
and right motor imagery EEG signals.

It’s also worth noting that PDTF (M3) consistently outper-
formed TPF (M2) across varying overlap sizes, exhibiting par-
ticularly pronounced advantages as the overlap size decreased.
This could indicate that PDTF is more adaptable to fluctuations
in overlap size. The difference in performance might be at-
tributed to PDTF’s sensitivity to changes in temporal structure,
allowing it to more effectively leverage the variation in features
introduced by different overlap sizes.

C. Overall Comparison of Methods

We compared the accuracies of methods M1, M2, and M3
as shown in Table I. In our Random Forest (RF) criterion
selection process, we delved into two distinct criteria: ’gini’
and ’entropy,’ in order to assess their influence on the model’s
performance. As for the determination of the number of trees
in the Random Forest ensemble, we conducted experiments
using three different values: 100, 150, and 200. Concerning
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the maximum depth of each individual decision tree within
the Random Forest ensemble, we conducted tests with three
depth values: 10, 20, and 30. Once we completed this grid
search we carefully analyzed the results obtained. Our findings
revealed that using ’entropy’ as the criterion while setting
the Number of Estimators to 200 and Maximum Depth to
20 yielded maximum accuracy, for our classification task. M2
achieved an accuracy of 85.5% while M3 achieved an accuracy
of 85.4%.

TABLE I
CLASSIFICATION ACCURACIES FOR M1, M2, AND M3 METHODS FOR THE

STROKE PATIENTS’ DATASET AFTER RF PARAMETER TUNING AND
COMPARISON WITH FBCNET. THE Cohen’s-d VALUES AT THE BOTTOM

ROW SHOW THE COMPARISON OF EACH METHOD WITH M1

Accuracy (%)

SubID M1
(FBCSP)

M2
(M1+TPF)

M3
(M1+PDTF) FBCNet

P01 83.56 98.00 97.00 85
P02 83.92 85.00 87.00 92.5
P03 79.52 80.00 81.00 82.5
P04 80.84 98.00 96.00 87.5
P05 83.4 91.00 90.00 85
P06 85.08 87.00 87.00 88.75
P07 82.2 79.00 79.00 83.75
P08 77.84 81.00 80.00 91.25
P09 77.96 67.00 67.00 66.25
P10 82.32 89.00 90.00 87.5

Mean 81.664 85.50 85.40 85
Std 2.53 9.38 8.96 7.31

Cohen’s-d 0.53 0.59 0.58

TABLE II
CLASSIFICATION ACCURACIES FOR M2, AND M3 METHODS FOR BCI

COMPETITION IV-2A DATASET AND COMPARISON WITH OTHER METHODS.
THE Cohen’s-d VALUES AT THE BOTTOM ROW SHOW THE COMPARISON OF

EACH METHOD WITH M2 OR M3

Accuracy(%)
SubID M2 M3 SW-LCR SS-MEMDBF EEG-CSAC

A01 88.19 88.19 86.81 91.49 90.28
A02 70.49 70.49 64.58 60.56 57.64
A03 88.54 88.89 95.83 94.24 95.14
A04 90.28 90.63 67.36 76.72 65.97
A05 89.24 90.28 68.06 58.52 61.11
A06 80.56 81.60 67.36 68.52 65.28
A07 79.17 79.51 80.56 78.57 61.11
A08 93.40 92.71 97.22 97.01 91.67
A09 91.67 90.97 92.36 93.85 86.11

AVG 85.73 85.92 80.02 79.94 74.92
Std 7.44 7.29 13.45 15.00 15.43

Cohen’s-d 0.5 0.46 0.85

We can also observe from Table I that the performance of
M2 (average CA 85.5%) and M3 (average CA 85.4%) is higher
(the Cohen’s d value of 0.53 and 0.59 shows a moderate to
high effect size for these comparisons) than M1 or FBCSP
(average CA 81.66%) by more than 3.7% while as compared
to FBCNet [33] (average CA 85%) their performance is found
to be comparable. Apart from the higher accuracy, another
advantage of using M2 and M3 methods is that, unlike the deep
learning methods, the extracted features are more interpretable
as they are statistical and also it would require much less

computational resources to implement and deploy. We also
observed that incorporating the difference in classification
probabilities through PDTF might boost effectiveness for some
subjects as compared to M2. Notably, subjects 1, 5, 6, and 8
display particularly compelling results within this context as
they got higher accuracy in M3 than in M2. Overall, taking
into account nuanced indicators of decision-making processes
appears to offer higher levels of accuracy.

It should be noted that although PDTF typically leads to
superior results when compared with TPF methodologically
speaking, this does not hold true across all test subjects. In
specific instances such as subjects 2, 7, and 10, the perfor-
mances of both methods prove largely similar. In fact, PDTF
appears to lead to negative outcomes (compared with TPF) for
subjects 3,4, and 9 in this particular study. These discrepancies
may be connected with differences in each individual’s brain
signals as well as their alignment with one strategy or the
other.

Our investigation delved deeper into the competency of
Methods M1, M2, and M3 against other leading techniques.
In 2021, the results of the CBCIC 2020 were published with a
ranked list of methods that yielded the highest accuracies in the
competition [26]. The winner in the within-subject category
achieved an average accuracy of 78.44% using Riemannian
manifold + functional connectivity-based features and ensem-
ble learning. In contrast, the proposed M2 and M3 methods
outperformed this approach significantly, achieving average
accuracies of 87.37% and 86.75%, respectively. Worth noting
is that both M2 and M3 are considerably simpler than the
competition’s winning method, leading to reduced computa-
tional complexity and easier implementation. Another notable
method for classifying motor imagery signals in the past two
years is the sliding window CSP with longest consecutive
repetition (SW-LCR) published in 2021 [10]. The average
classification accuracy achieved by SW-LCR for the CBCIC
2020 dataset was 73.5%, significantly lower than the accuracy
achieved by M2 and M3. Subsequently, in 2023, the sliding
window technique was combined with the popular EEGNet-
based deep learning architecture (SW-EEGNet) for motor
imagery classification and was tested on the same CBCIC 2020
dataset [11]. The SW-EEGNet yielded an average accuracy
of 76.94%, still nearly 10% lower than that of M2 and M3.
We ensured a just evaluation by employing datasets P01 to
P08 that were formerly used in a benchmark publication [34].
By using these datasets, we were able to evaluate the perfor-
mance of M1, M2, and M3 methods against other established
approaches. The comparison was done using accuracy as a
metric, and the results are illustrated in Fig. 4. The purpose
of the comparison was to determine which method performs
better in terms of classification accuracy and which method
is more stable. We have also compared our method with a
recently published paper on the same dataset which achieved
an accuracy of 79.25±7.73% [35]. As compared to this the
proposed method (M2 and M3) achieved superior performance
as the average accuracy is more than 6% higher for M2 and
M3 with a moderately high effect size (Cohen’s = 0.74).

Additionally, we have given the results of the proposed
methods of M2 and M3 on publicly available and one of
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Fig. 4. A comparison of the performance between the proposed method and
existing methods.

Fig. 5. Cross-subject classification accuracies for stroke patient dataset using
M2 and M3 and comparison with EEGNet and SW-EEGNet.

the most popular BCIC IV 2a dataset. To keep the parity
with the stroke patients dataset we have chosen the left and
right motor imagery classes as a binary classification problem
from BCIC IV 2a dataset. Table II describes the results and
comparison with some previously published results. From
Table II we can see that the average CA for M2 and M3 on
BCIC IV-2a were 85.73% and 85.92% which outperformed
the other competitive methods such as SW-LCR [10], SS-
MEMDBF [36], and EEGCSAC [37]. For example, as com-
pared to the multivariate empirical mode decomposition based
on the Riemannian geometry-based method (SS-MEMDBF)
which yielded an average CA of 79.94% the proposed M2 and
M3 achieved more than 5.79% accuracy while as compared
to the covariate shift adaptation technique (EEGCSAC) the
increment in accuracy was more than 10.81%. We have also
compared the performance of M2 and M3 on BCIC IV-2a with

the recent SW-LCR (average CA 80.02%) method where the
enhancement in accuracy in favour of the proposed methods
was more than 5.71%.

We have also calculated the cross-subject classification ac-
curacies of the proposed M2 and M3 methods on the stroke
patients’ dataset and compared it with the previously published
results on EEGNet [37] and SW-EEGNet [11] which is de-
picted in Fig. 5. The average classification accuracies across
all the subjects for M2 and M3 were 70.18% and 69.43%
respectively which outperformed the results obtained by EEG-
Net (average classification accuracy, 64.5%) and SW-EEGNet
(67.5%) on the same dataset for inter-subject classification.
Thus we can argue that the results obtained by the proposed
M2 and M3 methods are promising not only in subject-specific
decoding but also in cross-subject decoding.

From the statistical tests we can see that both M2 and
M3 have moderately high effect sizes (Cohen’s d = 0.69 and
0.74 respectively) when the average accuracy is compared
against the recently published SCSP-3 method where M2 and
M3 achieved more than 6% higher average accuracy. M2
and M3 have also significantly outperformed EEGNet with
p-values 0.03 and 0.02 respectively (Cohen’s d = 1.08 and
1.11 respectively). For the cross-subject comparisons using the
stroke patients dataset M2 and M3 outperformed the recently
published SW-EEGNet method with a moderate effect size
of Cohen’s d = 0.49 and 0.42 respectively. On the healthy
subjects’ dataset (BCI competition IV-2a) the M2 and M3
methods outperformed the previously obtained results using
SW-LCR with a moderate effect size of Cohen’s d more
than 0.5 while the higher performance as compared to SS-
MEMDBF was also observed with a moderate effect size of
Cohen’s d more than 0.47. The M2 and M3 methods also
achieved significantly (p-value¡0.05) higher performance as
compared to the EEGCSAC method with a high effect size
of Cohen’s d = 0.85.

The moving window approach coupled with CSP and
SVM [13], [34] presents a different pathway for EEG sig-
nal analysis. This method incorporates a moving window to
extract features from the EEG signals, enhances the relevant
features via CSP filtering, and finally classifies the signals
using the SVM algorithm. The extraction of time-frequency
characteristics in the Wavelet Transform Common Spatial
Pattern (WT-CSP) [38] method involves a dual approach.
This entails utilizing wavelet transform-based decomposition
techniques such as the Discrete Wavelet Transform (DWT)
and Wavelet Packet Decomposition (WPD) which incorporate
multistage sub-band filters that implement both high pass and
low pass filtering at every stage. In contrast, the PSD with
SVM [34] approach calculates the power spectral density
of the EEG signals, extracts the relevant features, and then
employs an SVM algorithm for classification. On the other
hand, EEGNET [39], a deep learning-based method for EEG
classification, uses a convolutional neural network (CNN) to
learn the distinguishing features from EEG data.

In our methods, M2 has a standard deviation of 6.22,
and M3 has a standard deviation of 5.20. These figures are
substantially lower than those observed in the state-of-the-art
methods. For instance, CSP+SVM has a standard deviation of
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9.1, PSD+SVM has 9.4, and EEGNET has 6.6. Lower standard
deviation in our methods signifies more consistent and reliable
performance across different subjects and trials.

Our proposed methods, M2 and M3, stand out with their
superior mean accuracy and improved consistency when com-
pared to other methods. For example, the statistical test
between M3 and the baseline CSP+SVM method [34]; and
between M2 and the baseline CSP+SVM method [34] revealed
that in both the cases the improvement in results in favour
of M2 and M3 were statistically significant (p−value<0.01).
Their high level of accuracy coupled with lower variability
makes them highly robust and reliable in classifying MI
EEG. These methods perform effectively on average and are
relatively stable.

Comparatively, the M1 method, although it presents
lower accuracy than others such as CSP+SVM, PSD+SVM,
WT+CSP and EEGNET, exhibits a markedly lower standard
deviation. This outcome implies a higher degree of stabil-
ity and consistency in M1’s performance across different
subjects.Such a characteristic is invaluable in practical appli-
cations where the predictability of the system’s behavior is
critical [40].

V. CONCLUSION

In order for BCI systems to achieve their desired outcomes,
accurate classifications of MI tasks are critical. The reason is
that how well a system can interpret brain signals determines
its ability to transform them into understandable actions.
Developing EEG classification methods that are both depend-
able and precise when it comes to capturing these signals
is therefore paramount. Such advancements will strengthen
the potential for wider implementation and efficacy across
different domains including neurorehabilitation.

Our proposed method, M1 used a temporal block approach
on the EEG data, followed by Filter Bank Common Spatial
Pattern (FBCSP) with an overlap frequency band, feature
selection with the highest mutual information, and Random
Forest as a classifier. The TPF (M2) method, with its em-
phasis on probability-weighted decision-making, proved to
be adept at handling the spatial information gleaned from
multiple channels. Conversely, the PDTF(M3) method focused
on leveraging model uncertainty and showcased robustness in
situations where model predictions are ambiguous. Through
experiments, we demonstrated that our proposed methods
outperformed existing methods in classifying MI EEG data
from subjects.

Although the results are promising, it’s crucial to acknowl-
edge that there’s still ample room for further advancement
and investigation. To enhance outcomes, upcoming studies
could employ sophisticated machine learning and deep learn-
ing models, experiment with hybrid methods that merge the
strengths of TPF and PDTF, and devise adaptive approaches
for overlap size and channel selection. Deep learning mod-
els, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), could be particularly
effective due to their ability to handle temporal sequences
and high-dimensional data, which are inherent to EEG signals

although the need for large training data is always a problem
for deep learning as it is time-consuming to record [41].
Additionally, exploring different kinds of EEG signals like
cognitive tasks related ones or those associated with sleep
stages or emotions through the use of TPF and PDTF methods
could be an interesting avenue for research. Moreover, it would
be intriguing to test the validity of applying these techniques
in real-time situations - especially concerning their usage
within Brain-Computer Interface (BCI) systems designed for
neurorehabilitation purposes or gaming-related activities like
virtual reality experiences.
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