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ABSTRACT Average causal effects are averages of (heterogeneous) individual treatment effects (ITEs)
taken over the entire target population. The estimation of average causal effects has been studied in depth,
but averages are insufficient for more individualised decision-making where ITEs are more appropriate.
However, estimating ITEs for every population member is challenging, particularly when estimation must
be based on observational data rather than data from randomised experiments. One potential problem with
observational data arises when there are large differences between the sample distributions of the input
features of the treated and control units. This problem is known as covariate shift. It can lead to model
misspecification the harmful effects of which can be severe for ITE estimation because point estimation
is highly sensitive to regions of the common support of the input space in which the number of treated or
control units is very small. Moreover, common solutions are often based on reweighing schemes involving
propensity scores which were originally designed for average effects and not ITEs. In this paper, we propose
Debiasing Generative Trees, a novel data augmentation method based on generative trees that debiases and
undersmooths causal estimators trained on augmented data. It encourages higher modelling complexity that
reduces misspecification and improves estimation of ITEs. We show empirically that our proposed approach
yields models of higher complexity and more accurate predictions of ITEs, and is competitive with traditional
methods for estimating average treatment effects. Our results confirm that reweighing methods can struggle
with ITE estimation and that the choice of model class can significantly impact prediction performance.

INDEX TERMS Conditional average treatment effect, observational data, covariate shift, model
misspecification, data augmentation, generative trees.

I. INTRODUCTION

In the absence of data from randomised experiments, analysts
must use observational data to make inferences about the
causal effects of interventions or treatments, that is, what
would happen if they intervened to change the treatment
status of individual units in a population. The estimation of
average causal effects — the average effect of the treatment
aggregated across every unit in a population — has been
studied in considerable depth. However, there is now growing
interest in estimating heterogeneous treatment effects for
individuals characterized by a possibly large number of input
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variables or covariates. If there is substantial heterogeneity
across units, such systems can unlock the analysis of targeted
interventions, for instance, in the form of personalised
healthcare based on patients’ symptoms and health histories.

The use of observational data creates challenges for the
estimation of heterogeneous causal effects. First, the analyst
must make assumptions, for example, that treatment selection
is strongly ignorable given the available covariates. We take
ignorability to hold throughout, and focus on the second
problem, namely, that nonrandom treatment selection can
lead to observed data in which the distributions of covariates
among the treated and untreated units are very different.
In practice, this can make it difficult for conventional learners
to learn the true relationship between the treatment effect and
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covariates across the entire support of the covariates, and so
result in poor performance when tested on other datasets.

More generally, this issue is known as ‘covariate shift’,
which in this setting means the learning target P(Y|X)
remains unchanged, while the marginal distributions of the
covariate inputs P(X) for treated and untreated can be very
different. Most existing methods attempt to transform the
observational distribution by sample reweighing schemes
usually based on propensity scores [1], [2], [3], [4], [5]
(but not exclusively, see e.g. domain adaptation methods).
However, reweighing seeks to standardise the observed
support of X for the treated and untreated groups, and
so generally performs well for estimating treatment effects
averaged across the common support of X, but less so for
estimating conditional average treatment effects at points
outside the observed support; in other words, as pointed out
by [6], reweighing does not address the problem of model
misspecification which can be detrimental when it comes to
estimating individualised treatment effects [7].

A promising alternative to these classical approaches is
undersmoothing, where the model is allowed to fit the data
very closely to capture P(X) in the two treatment groups, and
in doing so potentially produce more accurate individualised
predictions. Encouraged by suggestions elsewhere - [8,
footnote 3] and [9], [10] - in this paper, we develop a novel
approach to causal effect estimation that improves accuracy
by undersmoothing the observed data.

Specifically, we propose to undersmooth using fast and
straightforward generative trees [11] to augment the existing
data, and in doing so facilitate more robust learning of
downstream estimators of key causal parameters. The trees
are used to ‘discretise’ the input space into subpopulations
of similar units (subclassification); the distributions of
these groups are then modelled separately via mixtures of
Gaussians, from which we sample equally to reduce data
biases.

The concept of model misspecification comes from the
world of finite-dimensional parametric models [7] when the
analyst uses a parametric model family for prediction that
does not include the true prediction rule implied by the Data
Generating Process (DGP). In our context, where no such
family is specified, the data augmentation algorithm leads to
individualised predictions which can be viewed as coming
from an infinite-dimensional model family for statistical
functionals that, while not nonparametric, is richer than
those induced by existing alternative algorithms. We argue
that the implied model family is more likely to include the
DGP because data augmentation oversampling the under-
represented data regions is effectively performing targeted
undersmoothing and so reduces bias [9]. The practical upshot
of this should be that, even with covariate shift, learners
trained on data augmented by our method offer more accurate
predictions.

Data augmentation is a widely recognised data prepro-
cessing method of improving overall data quality through
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synthetic sample generation for better prediction perfor-
mance [12]. It has proven very effective in computer
vision [13], [14] which greatly influenced wider populari-
sation of data augmentation techniques. Data augmentation
constitutes an important part of dealing with imbalanced
tabular data [15], specifically by oversampling minority
classes in imbalanced classification problems [16], [17], [18],
[19]. Interestingly, causal notions and ability to simulate
interventions has been attributed to successes of data aug-
mentation [20]. This links to a specific type of augmentation
that focuses on generating counterfactuals (unobserved
outcomes), called counterfactual data augmentation, which
found its use in classification problems [21], [22] and
reinforcement learning [23]. Other methods focus on text
classification [24] or mitigating the effects of confound-
ing [25]. In our case, the method we propose could be seen
as oversampling underrepresented data regions instead of just
classes or specific outcomes like counterfactuals, making our
approach much more general.

Generative models have also been investigated in causal
inference literature, mostly in two major strands of work.
In one, generative models are used for benchmarking pur-
poses to create new synthetic data sets that closely resemble
real data but with access to true, though synthetically
generated, effects [26], [27]. The other branch of research
is concerned with generating causal effects [28], with
more recent works applied to bounding confounded average
effects [29], continuous treatments under confounding [30],
and longitudinal data [31]. In this work, unlike the two
strands above, we use generative modelling for targeted data
augmentation.

Arguably the closest work to ours that combines data
augmentation and generative models within the causal
inference setting is [32]. Despite a similar approach on a
high-level, that is, train downstream causal estimators on aug-
mented data, we believe our frameworks differ substantially
upon further examination. More precisely, [32] incorporates
neural network based generative models to specifically
generate counterfactuals and focuses on conditions where the
treatment is continuous. In this work, our proposed method:
a) is based on simple and widely-used decision trees, b) does
not specifically generate counterfactuals, but oversamples
heterogeneous data regions (more general), and c¢) works with
classic discrete treatments.

In terms of this paper’s contributions, we show empirically
that the choice of model class can have a substantial effect on
estimator’s final performance, and that standard reweighing
methods can struggle with individual treatment effect esti-
mation. Given our experiments, we also provide an evidence
that our proposed method increases data complexity, reduces
bias by training on augmented data (targeted undersmooth-
ing), and leads to statistically significant improvements in
individual treatment effect estimation, while keeping the
average effect predictions competitive. Our experimental
setup incorporates a wide breadth of non-neural standard
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causal inference methods and data sets. We specifically focus
on non-neural solutions as they are more commonly used by
practitioners.

The rest of the document is structured as follows.
In Section II, we revisit fundamental concepts that should
aid understanding of the technical part of the paper. Next,
we formally discuss the problem of model misspecification
(Section III), followed by a thorough description of our
proposed method in Section IV. We then present our
experimental setup and results (Section V). Next section
provides further discussion on the results (Section VI),
and considered limitations of the method (Section VII).
Section VIII concludes the paper.

Il. PRELIMINARIES
This section gives a brief overview of the essential
background deemed relevant to this work. For a more
extensive review, we refer the reader to classic positions
on causal analysis [33], [34], and recent surveys on causal
inference [35], [36].

A. TREATMENT EFFECT ESTIMATION
Given two random variables 7' and Y, investigating effects
of interventions can be described as measuring how the
outcome Y differs across different inputs 7. Real-world
systems usually contain other background covariates, denoted
as X, which have to be accounted for in the analysis as well.
To formally approach the task, we take Rubin’s Potential
Outcomes [37] perspective, which is particularly convenient
in outcome estimation without knowing the full causal graph.
We start by defining the potential outcomes y}”, that is,
the observed outcome when individual i receives treatment
t = 0, 1. Given this, the Individual Treatment Effect (ITE)
is formulated as the difference between the outcomes under
treatment (y{’) ) and no treatment (J)(()’)), as in (1).

ITE; = )\ — V. M)

Thus, to compute such a value for individual i, we need access
to both potential outcomes, y}” and J”, but only one, called
the factual, is observed: the other potential outcome, called
the counterfactual, cannot be observed. The fact that we only
observe factuals but also need the counterfactuals to properly
compute causal effects is known as the fundamental problem
of causal inference: ITEs are not identified by the observed
data.

However, parameters such as the Average Treatment Effect
(ATE) and Conditional Average Treatment Effect (CATE) are
identified, defined in (2) and (3) respectively.

ATE = E [ — 0l 2

CATE = E [V |1X = x] — E[DblX = x], 3

where E[.] denotes (statistical) expectation over the target
population. The ATE in (2) is essentially the average ITE for

the entire population (hence the expectation operator and no
index i); the CATE in (3) is the average ITE for everyone
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in the subpopulation characterised by X = x. The ATE is
not meaningful if there is substantial heterogeneity of the
ITEs between subpopulations. In such circumstances, CATE
is more informative about ITEs as it allows the effect to be
conditioned on the subpopulation of interest. The ITE can be
thought of as a special case of CATE where individual i is
the only member of the subpopulation. While ITE; cannot be
identified, CATE for the subpopulation X = x which includes
individual i will be better estimate of it than ATE (under the
reasonable assumption that between-subpopulation variation
in ITEs is greater than that within subpopulations).

B. COMMON ASSUMPTIONS

When it comes to causal effect estimation, there are three
common assumptions about the data generating process that
many estimators build upon. These are: SUTVA, ignorability
and positivity. As we assume the three throughout the paper,
we include their brief description for completeness.

Assumption 1 (Stable Unit Treatment Value Assumption
(SUTVA)): The potential outcomes of any unit (individual)
do not affect the treatment assignment of any other unit.
Furthermore, there are no different levels or forms of the
same treatment. In short: a) no inter-unit interaction, and b) no
hidden treatment variations.

Assumption 2(Ignorability): Given background covariates
X, potential outcomes ) are independent from observed
treatment 7. Thatis, )1, Yy 1L T|X. In practice, it means that
for individuals with the same X their treatment assignment 7'
can be perceived as random because there are no unmeasured
hidden variables (confounders), which is why this assumption
is often referred to as unconfoundedness.

Assumption 3 (Positivity): Treatment assignment 7 is not
deterministic for all individuals X. That is, P(T = t|X =
x) > 0 for all ¢ and x. Informally, it requires the existence
of potential outcomes for all treatments and individuals (and
their combinations). Ignorability and positivity together form
strong ignorability.

C. COVARIATE SHIFT

The covariate-shift problem generally occurs when there
are distributional discrepancies in input variables X among
certain groups of data samples. These differences lead to
‘gaps’, that is, regions of the common support of X where
the observed data are non- or weakly informative about the
target parameter. As a result, point estimates of the target (e.g.
ITEs or CATEs) in these gaps are inaccurate. Note this issue
is not as severe for population-level estimates (e.g. ATEs)
because these are averages across the entire support of X
and so more robust to gaps. The problem varies depending
on the characterisation of the groups of data among which
the covariate shift occurs. In Machine Learning (ML), this
problem is often realised when there are differences between
training and test (target) distributions. These can happen
due to, for instance, different circumstances between data
collection and model deployment. In causal inference, on the
other hand, said distributional discrepancies exist between
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treated and control units. For example, in a study of smoking
effects on health, the observational data at hand may include
very little to no information about young smokers. Methods
of dealing with covariate shift comprise data adaptation [38],
importance sample reweighing (see Section II-D below),
or causal effect estimation in general (see Section II-E below).

Covariate shift falls under a broader category of dis-
tribution shifts, in which a second major shift problem
occurs due to changes in the conditional distribution Y|X
between the target and input covariates. Specific reasons
behind may involve confounding but also a change in
subject behaviour over time [39]. Regardless of the nature
of data shifts, they have been shown to have a clear
impact on prediction performance [39], [40], and the fact
that real-world data sets often suffer from not one but a
mixture of types of shifts only adds importance to this
issue. Robustness to data shifts is also discussed from the
perspective of out-of-distribution generalisation [41], a topic
researched with renewed interest in ML recently partly
due to still unresolved issues with model inaccuracies after
deployment.

D. CLASSIC REWEIGHING
Reweighing methods seek to transform the observed support
of input covariates for the treated and control groups
via propensity scores. These are simply defined as unit’s
probability of receiving the treatment, that is, e(x;)) =
P(ti]x;). One straightforward way of using such scores to
aid the aforementioned covariate shifts between treated
and untreated units is called Inverse Propensity Weighting
(IPW) [3], also known as Inverse Probability of Treatment
Weighting (IPTW), which defines weight w; for sample i that
depends on treatment status #; and propensity e(x;), as in (4).
L B )
e)  T—e(x)
The weight in (4) can be also perceived as sample importance.
The higher the weight, the more impact that sample should
have on the estimator during training. Its inverse nature
refers to the weight and probability of treatment being
inversely proportional. Thus, assuming treated units are less
numerous as compared to the untreated ones, this approach
assigns higher weights to treated samples hence providing a
balancing effect.

The main drawback of this approach is its heavy reliance
on the accuracy of the propensity scores. To counteract
this, Doubly Robust [2] proposes to mix IPW and outcome
regression, resulting in a method robust to misspecifications
of either (but not both). An alternative improvement is
to use propensity scores to balance not only samples but
covariates as well [42]. IPW can also result in extremely
small scores, making the entire estimation very unstable. One
possible solution is trimming, that is, to eliminate samples
with propensity scores lower than a specified threshold [43].
Another way of improving and stabilising propensity score
models is post-calibration [44].

VOLUME 12, 2024

E. MODERN ESTIMATORS

Many modern approaches to causal effect estimation continue
to incorporate propensity scores in one form or another but
they are not necessarily their main feature or contribution.

Perhaps the simplest and most naive approach that does not
involve reweighing is regression adjustment, where a single
regressor ((x, t) is used to estimate potential outcomes from
which causal effects 7(x) can be calculated, such that t(x) =
u(x, 1) — pu(x, 0). Due to distributional differences between
treated and untreated, using separate regressors (;(x) per
treatment arm ¢+ = 0, 1 might be preferable, resulting in
T(x) = pi1(x) — pox). The two approaches have been
formalised as S-Learner and T-Learner respectively [4], with
the authors also proposing their own X-Learner that combines
the ideas of T-Learning with propensity scores e(x) that
control the degree of contribution of each arm’s model in the
final estimation step.

Further, a general parametric CATE framework was
introduced as part of Double Machine Learning [1] which
combines Neyman-orthogonal equations and cross-fitting to
reduce estimation bias of the nuisance parameters w(x) and
e(x). The R-Learner further generalises this approach to
nonparametric CATEs [45], of which the X-Learner has been
shown to be a special case as well. All these procedures can
be categorised more generally as Orthogonal Learners [46].

Ensemble methods have also been explored in causal
effect estimation. Targeted Maximum Likelihood Estimation
(TMLE) realises this approach via its “‘super-learning” and
use of influence functions [47], [48]. Causal Forests [5]
build an ensemble of “honest” decision trees that are
based on causal effect heterogeneity as a splitting strategy.
Ensembles of small Neural Networks (NNs) also showed
great promise [49].

Recent successes of neural networks also resulted in
NN-specific solutions to treatment effect estimation. Many
build on the basic principles of feed-forward NNs, but
modify their loss functions to encourage representations
of treated and control groups that are balanced [50], [51].
More advanced architectures often employ a so-called “‘two-
head” approach wherein each NN output is dedicated to a
separate treatment arm [52]. A solution with three heads
was also proposed, in which the third output optimises for
propensities e(x) that are used for weighting purposes [53].
Interestingly though, sample importances have been shown
to have negligible effect on deep networks [54]. In terms
of generative NNs, both Variational Autoencoders [28] and
Adversarial Networks [55] have been successfully explored
as well.

The latest developments show even greater diversity in
proposed methodologies and are a testament of continued
research interest in the causal estimation problem. Neural
architectures are still being explored in this line of work, most
recently in the form of normalising flows that target CATE
distribution modelling instead of expected values, providing
uncertainty quantification as a consequence [56]. Another
research front continues the developments concerned with
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metalearners. One important example includes the addition of
the conformal prediction framework on top of metalearning
that enables predictive intervals for ITEs as opposed to
CATE point estimates [57]. Conformal learning indeed has
been gathering increased interest in causal estimation as
it found its way into offline off-policy prediction prob-
lems as well [58]. B-Learner constitutes another proposed
metalearner that tackles the hidden confounding problem
and provides bounds on predicted CATEs [59]. Some other
notable work involves forecasting treatment outcomes over
time [60] and a comparative study on performance differ-
ences between parametric and nonparametric causal effect
modelling [61].

Ill. MODEL MISSPECIFICATION

The choice of model class occurs at some point in any
learning task. Such a decision is made based on available
data, usually the training part of it, while the environment
of the actual application can be different, a scenario often
mimicked via a separate test set. The occurring discrepancies
between those two data sets are known as covariate shift
problem. Within causal inference, this manifests as differ-
ences between observational and interventional distributions,
ultimately making effect estimation extremely difficult. More
formally, given input covariates x, treatment #, and outcome
v, the conditional distribution P(y|x, ) remains unchanged
across the entire data set, whereas marginal distributions
P(x, t) differ between observational and interventional data.
This is where model misspecification occurs as the model
class is selected based on available observations only, which
does not generalise well to later predicted interventions.

Let us consider a simple example as presented in Fig. 1.
It consists of a single input feature x, output variable y
(both continuous), and binary treatment . For convenience,
let us denote this data set as D. Note the effect is clearly
heterogeneous as it differs in D(x < 0.5) and D(x > 0.5).
Furthermore, the two data regions closer to the top of the
figure, that is, D(x < 0.5,# = 1) and D(x > 0.5, = 0),
are in minority with respect to the rest of the data. By many
learners these scarce data points will likely be treated as
outliers, resulting in lower variance than needed to provide
accurate estimates. Thus, naively fitting the data will lead
to biased estimates, an example of which is depicted on the
figure as Biased T and Biased C. However, what we aim for
is an unbiased estimator that captures the data closely while
still generalising well, a scenario showcased by Unbiased T
and Unbiased C on the figure.

For ITE estimation, fitting the data closely is especially
important. Although in case of average effect estimation the
difference between biased and unbiased estimators can be
negligible, the individualised case usually exacerbates the
issue. For instance, in the presented example, the difference
in ATE error is 0.44, but it grows to 0.77 in ITE error.

In this work, instead of altering the sample importance,
as many existing methods do, we aim to augment provided
data in a way that underrepresented data regions are no longer
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FIGURE 1. An example highlighting model misspecification issue. T =
Treated, C = Control. The difference in ITE error is almost twice as in ATE.

dominated by the rest of the samples, leading to estimators no
longer treating those data points as outliers and fitting them
more closely, ultimately resulting in less biased solutions,
decreased misspecification, and more accurate ITE estimates.
The following section describes our proposed method in
detail.

IV. DEBIASING GENERATIVE TREES

As described in the previous section, model misspecification
can be caused by underrepresented or missing data regions.
Reweighing partially addresses this problem, but struggles
with ITE estimation, not to mention propensity score approx-
imators are subject to misspecification too. To avoid these
pitfalls, we tackle misspecification through undersmoothness
by augmenting the original data with new data points that
carry useful information and help achieve the final estimators
better ITE predictions. As the injected samples are expected
to be informative to the learners, the overall data complexity
increases as a consequence. Moreover, because this is a data
augmentation procedure, it is estimator agnostic, that is, it can
be used by any existing estimation methods. It is also worth
pointing out that simply modelling and oversampling the
entire joint distribution would not work as the learnt joint
would include any existing data imbalances. In other words,
underrepresented data regions would remain in minority, not
addressing the problem at hand.

This observation led us to a conclusion that there is
a need to identify smaller data regions, or clusters, and
model their distributions in separation instead, giving us
control over which areas to sample from and with what
ratios. To achieve this, we incorporate recently proposed
Generative Trees [11], which retain all the benefits of
standard decision trees, such as simplicity, speed and
transparency. They can also be easily extended to ensembles
of trees, often improving the performance significantly.
In practice, a standard decision tree regressor is used to
learn the data. Once the tree is constructed, the samples can
be assigned to tree leaves according to the learnt decision
paths, forming distinct subpopulations that we are after. The
distributions of these clusters are then separately modelled
through Gaussian Mixture Models (GMMs). Similarly to
decision trees, we again prioritise simplicity and ease of use
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Algorithm 1 Debiasing Generative Trees

Input: X - data set, E - estimator

Parameter: N - number of generated samples

Output: Ep - debiased estimator

: Let Xg = @.

: Split X into treated and control units (X7 and X¢).

: Train a Decision Tree regressor on X7.

Map X7 to tree leaves. Obtain subpopulations S.

: Let Ng = N /(2 x len(S)).

: for S;in S do

Model S; with Gaussian Mixture Models. Obtain G;.
Draw Ng samples from G;. Store them in Xg.

: end for

: Repeat steps 3-9 for Xc.

: Merge X and X into a single data set Xpy.

: Train estimator E on X);. Get debiased estimator Ep.
: return debiased estimator Ep

—_— e =
W N = O

here, which is certainly the case with GMMs. The next step is
to sample equally from modelled distributions, that is, to draw
the same amount of new samples per each GMM. In this way,
we reduce data imbalances. A merge of new and original data
is then provided to a downstream estimator, resulting in a
less biased final estimator. Through experimentation, we find
that splitting the original data at the beginning of the process
into treated and control units and learning two separate trees
for each group helps achieve better overall effect. A step-by-
step description of the proposed procedure is presented in
Algorithm 1.

As ensembles of trees almost always improve over simple
ones, we incorporate Extremely Randomised Trees [62] for
an additional performance gain. The procedure remains the
same on a high level, differing only in randomly selecting
inner trees at the time of sampling. Overall, we call this
approach Debiasing Generative Trees (DeGeTs) as a general
framework, with DeGe Decision Trees (DeGeDTs) and DeGe
Forests (DeGeFs) for realisations with Decision Trees and
Extremely Randomised Trees respectively.

There are a few important parameters to take care of
when using the method. Firstly, depth of trees controls the
granularity of identified subpopulations. Smaller clusters
may translate to less accurate modelled distributions, whereas
too shallow trees will bring the modelling closer to the entire
joint that may result in not solving the problem of interest at
all. The other tunable knob is the amount of new data samples
to generate, where more data usually equates to a stronger
effect, but also higher noise levels, which must be controlled
to avoid destroying meaningful information in the original
data. Finally, the number of components in GMMs is worth
considering, where more complex distributions may require
higher numbers of components.

As our method encourages higher modelling complex-
ity, it is important to consider overfitting, which can be
taken care of through the standard practice of tuning the
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above-mentioned hyperparameters and cross-validation. This
can be done by using a downstream estimator’s performance
as a feedback signal as to which parameters work the best,
which can also be tailored to a specific estimator of choice.
The number of GMM components can be alternatively
optimised through Bayesian Information Criterion (BIC)
score. In order to make this method as general and easy
to use as possible, we instead provide a set of reasonable
defaults that we find work well across different data sets and
settings. Default parameters: max_depth = [logy Ny | — 1,
where Ny denotes the number of input features, n_samples =
0.5 x size(training_data), n_components € [1, 5] — pick the
one with the lowest BIC score.

In addition, we observe the fact that DeGeTs framework
goes beyond applied Generative Trees and GMMs. This is
because the data splitting part can, in fact, be performed by
other methods, such as clustering. Consequently, GMMs can
be substituted by any other generative models.

V. EXPERIMENTS

We follow recent literature (e.g. [50], [51], [52]) in terms of
incorporated data sets and evaluation metrics. We start with
defining the latter as different data sets use different sets of
metrics. The source code that allows for a full replication of
the presented experiments is available online! and is based on
the CATE benchmark.”

There are a few aspects we aim to investigate. Firstly, how
the established reweighing methods perform in individual
treatment effect estimation. Secondly, how the choice of
model class impacts estimation accuracy (misspecification).
Thirdly, how our proposed method affects the performance
of the base learners, and how it compares to other methods.
Finally, we also study how our method influences the number
of rules in pruned decision trees as an indirect measure of data
complexity.

Although we do perform hyperparameter search to some
extent in order to get reasonable results, it is not our goal to
achieve the best results possible, hence the parameters used
here are likely not optimal and can be improved upon more
extensive search. The main reason is the setups presented as
part of this work are intended to be as general as possible.
This is why in our analysis we specifically focus on the
relative difference in performance between settings rather
than comparing them to absolute state-of-the-art results.

A. EVALUATION METRICS

The main focus of utilised metrics is on the quantification of
the errors made by provided predictions. Thus, the metrics
are usually denoted as €y, with error € made with respect
to prediction type X (lower is better). In terms of treatment
outcomes, y,“) and j}ﬁl) denote true and predicted outcomes
respectively for treatment ¢ and individual i. Thus, following
the definition of ITE in (1), the difference Y\ — Y gives

1 https://github.com/misoc-mml/undersmoothing-data-augmentation
2https:// github.com/misoc-mml/cate-benchmark
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a true effect, whereas 5)(1") — &g) a predicted one. Following

this, we can define Precision in Estimation of Heterogeneous
Effect (PEHE), which is the root mean squared error between
predicted and true effects, as given in (5).

1< . .
€PEHE = | Z(y?) - )’8) - (yfl) - y(()l)))z. )
i=1

Following the definition of ATE in (2), we measure the
error on predicted ATE as the absolute difference between
predicted and true average effects, formally written as in (6).
Note, instead of expected values used in (2), here we switch
to sample averages as the data sets used in experiments are of
finite size, denoted in (6) with n.

n n
€At = %Z@ﬁ” — 30— %Z(yf” | )
i=1 i=1

Given a set of treated subjects T that are part of sample
E coming from an experimental study, and a set of control
group C, we can define the true Average Treatment effect
on the Treated (ATT) as per (7). It is a difference between
the average outcome of the treated units and the average
outcome of control units that come from experimental data.
Note that |A| denotes the cardinality of a set A and A N B is
the intersection of sets A and B.

1 : 1 ,
— 0 _ 0]
ATT_|T|§y |CDE|_§ . (7

ieT ieCNE

The error on predicted ATT is then defined as the absolute
difference between the true and predicted ATT as in (8).

1 , .
earr = |ATT = oo > G = 50 @®)
ieT
To measure the risk (or regret) of a policy (or treatment
assignment) recommendation, let us define policy n that
depends on background features x such that 7(x) = 1 if
y1 — Yo > 0; m(x) = 0 otherwise. Following such policy
means recommending the treatment to any individual who
will benefit (positive effect) from it based on predicted
outcomes. The risk of applying such policy is defined as
policy risk Rpo; in (9).

Rpot = 1 = E V1|7 (x) = 1]P(@(x) = 1)
+ E Dbl (x) = 0] P(r(x) = 0)), ®

with mathematical expectation [E[.] being switched to sample
averages on data sets of finite size.

B. DATA

The baseline data sets we incorporate in our experiments
are well-established and commonly used in the causal
inference literature (see e.g. [28], [50], [51], [52]) to
evaluate and compare estimation performances. We provide
brief descriptions for each of the data sets; see respective
references for additional details. These are also summarised
in Table 1 and openly accessible online [63].
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It is worth noting that real-world causal inference obser-
vational data sets are naturally “‘broken” as they inherently
suffer from selection biases and covariate shifts, often in
the form of distributional differences between treated and
untreated units. Thus, in order to test causal estimators
in conditions similar to real-world situations, a common
practice is to purposefully “‘break’ existing data sets by
introducing biases and shifts. Our experiments incorporate
such data sets as overcoming said data challenges, and
measuring the degree of success via appropriate evaluation
metrics, is the goal of this work.

TABLE 1. Summary of incorporated data sets.

dataset  # samples (t/c)® # features  outcome
IHDP 747 (139/608) 25 continuous
JOBS 3,212 (297/2,915) 17 binary
NEWS 5,000 (2,289/2,711) 3,477 continuous
TWINS 11,984 (5,992/5,992) 194 binary

2t = treated, ¢ = control.

IHDP: Introduced by [64], based on Infant Health Devel-
opment Program (IHDP) clinical trial [65]. The experiment
measured various aspects of premature infants and their
mothers, and how receiving specialised childcare affected
the cognitive test score of the infants later on. We use a
semi-synthetic version of this data set, where the outcomes
are simulated through the NPCI package® (setting ‘A’) based
on real pre-treatment covariates. Moreover, the treatment
groups are made imbalanced by removing a subset of the
treated individuals. We report errors on estimated PEHE and
ATE (epggr in (5) and e47g in (6) respectively) averaged over
1,000 realisations and split the data with 90/10 training/test
ratios.

JOBS: This data set, proposed by [66], is a combination
of the experiment done by [67] as part of the National
Supported Work Program (NSWP) and observational data
from the Panel Study of Income Dynamics (PSID) [68].
Overall, the data captures people’s basic characteristics,
whether they received a job training from NSWP (treatment),
and their employment status (outcome). Here, we report €471
(see (8)) and Rpo; (see (9)) averaged over 10 runs with 80/20
training/test ratio splits.

NEWS: Introduced by [50], which consists of news articles
in the form of word counts with respect to a predefined
vocabulary. The treatment is represented as the device type
(mobile or desktop) used to view the article, whereas the
simulated outcome is defined as the user’s experience.
Similarly to THDP, we report eppyr (see (5)) and eare
(see (6)) errors for this data set, averaging over 50 realisations
with 90/10 training/test ratio splits.

TWINS: The data set comes from official records of twin
births in the US in years 1989-1991 [69]. The data are
preprocessed to include only individuals of the same sex
and where each of them weight less than 2,000 grams.

3 https://github.com/vdorie/npci
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The treatment is represented as whether the individual is
the heavier one of the twins, whereas the outcome is the
mortality within the first year of life. As both factual
and counterfactual outcomes are known from the official
records, that is, mortality of both twins, one of the twins
is intentionally hidden to simulate an observational setting.
Here, we incorporate the approach taken by [28], where
new binary features are created and flipped at random
(0.33 probability) in order to hide confounding information.
We report €47 (as in (6)) and epggg (as in (5)) for this data
set, averaged over 10 iterations with 80/20 training/test ratio
splits.

C. SETUP
We incorporate the following estimators.

Base Learners: Linear methods: Lasso (11) and Ridge
(12). Simple Trees: pruned Decision Trees, Extremely Ran-
domised Trees (ET) [62]. Boosted Trees: CatBoost [70],
LightGBM [71]. Kernel Ridge regression with nonlinearities.
Dummy regressor returning the mean as a reference only.

Reweighing Methods: Causal Forest [5], Double Machine
Learning (DML) [1], and Meta-Learners [4] in the form of T
and X variations.

Debiasing Generative Trees: Our proposed method.
We include the stronger performing DeGeF variation.

A general approach throughout all conducted experiments
was to train a method on the training set and evaluate it
against appropriate metrics on the test set. 5 base learners
were trained and evaluated in that way: 11, 12, Simple Trees,
Boosted Trees and Kernel Ridge. DML and Meta-Learners
were combined with different base learners as they need
them to solve intermediate regression and classification tasks
internally. This resulted in 3 x 5 = 15 combinations of
distinct estimators. Similarly, DeGeF was combined with the
same 5 base learners to investigate how they react to our data
augmentation method. Causal Forest and dummy regressor
were treated as standalone methods. Overall, we obtained
27 distinct estimators per each data set. In terms of Simple
and Boosted Trees, we defaulted to ETs and CatBoost
respectively. For NEWS, due to its high-dimensionality,
we switched to computationally less expensive Decision
Trees and LightGBM instead.

As our DeGeF method is a data augmentation approach,
it affects only the training set that is later used by base
learners. It does not change the test set in any way as the
test portion is used specifically for evaluation purposes to
test how methods generalise to unseen data examples. More
specifically, DeGeF injects new data samples to the existing
training set, and that augmented training set is then provided
to base learners.

Hyperparameter search was also performed wherever
applicable, though not too extensive to keep our study as
general and accessible as possible. The following is a list
of base learners and their hyperparameters we explored.
ETs: max_leaf nodes € {10, 20, 30, None}, max_depth €
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{5, 10, 20}. Kernel Ridge: alpha € {0, le—1, le—2, 1le — 3},
gamma € {le — 2,1e — 1,0, 1e + 1, le + 2}, kernel €
{rbf, poly}, degree € {2, 3, 4}. CatBoost: depth € {6, 8, 10},
12_leaf reg € {1,3,10,100}. LightGBM: max_depth €
{5,7, 10}, reg_lambda € {0,0.1,1,5, 10}. Causal Forest:
max_depth € {5, 10, 20}. For ETs, CatBoost, LightGBM
and Causal Forest we set the number of inner estimators to
1000. To find the best set of hyperparameters, we performed
5-fold cross-validation. When it comes to DeGeF, we set
the number of estimators to 10. The other parameters, like
number of new samples, tree depth and GMM components,
were set to defaults as recommended in the description of
the framework. All randomisation seeds were set to a fixed
number (1) throughout all experiments.

Most of our experimental runs were performed on a
Linux based machine with 12 CPUs and 60 GBs of RAM.
More demanding settings, such as NEWS combined with
tree-based methods, were delegated to one with 96 CPUs
and 500 GBs of RAM, though such a powerful machine is
not required to complete those runs.

D. RESULTS

We incorporate the following estimator names throughout
the presented tables: 11 - Lasso, 12 - Ridge, kr - Kernel
Ridge, dt - Decision Tree, et - Extremely Randomised
Trees, cb - CatBoost, Igbm - LightGBM, cf - Causal Forest,
dml - Double Machine Learning, xI - X-Learner, degef
- our DeGeF method. Combinations of the methods are
denoted with a hyphen, for instance, ‘dml-11". All presented
numbers (excluding relative percentages explained below)
denote means and 95% confidence intervals.

Estimation performance. Tables 2 - 5 present the main
results, where we specifically focus on: a) relevant to a given
data set metrics, and b) changes in performance relative
to a particular base learner. The latter is calculated as
((rg — rp)/rp) x 100%, where r, and r, denote results of
advanced methods and base learners respectively. The reason
for analysing these relative changes rather than absolute
values is because in this study we are specifically interested
in how more complex approaches (including ours) affect the
performance of the base learners, even if not reaching state-
of-the-art results. For example, if a relative change for x/-et
reads ‘—20’, it means this estimator decreased the error by
20% when compared to plain et learner for that particular
metric. Changes greater than zero denote an increase in errors
(lower is better).

Data Complexity: Table 6 shows the number of rules
obtained from a pruned Decision Tree while trained on
original data and augmented by degef. The purpose of this
experiment is to explain the mechanism through which
our method affects estimation performance of downstream
learners. Here, we interpret the number of induced tree rules
as a model complexity level required to fit the data accurately.
Since our goal is bias reduction and undersmoothing,
an increase in model complexity after data augmentation
would be desirable. Thus, by measuring model complexity
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TABLE 2. Results for IHDP data set.

TABLE 3. Results for JOBS data set.

name €EATE A% €PEHE A%a name EATT A% Rpol A%2
dummy 4.408 £ .103 - 7.898 + 473 - dummy 0.029 = .000 - 0.326 %+ .000 -
cf 0.397 4 .045 - 3.387+.318 - cf 0.025 = .000 - 0.294 %+ .000 -
11 0.981 4 .106 - 5790 + .514 - 11 0.005 = .000 - 0.296 % .000 -
dml-11 0.3874+.043 —60.52 7.7824.691  34.42 dml-11 0.0124.000  146.75  0.366 % .000 23.43
tl-11 0.2734.033 —72.19 7.8584.678  35.73 tl-11 0.0124.000  140.15  0.374 %+ .000 26.10
xI-11 0.2824.034 —71.27 7.6604.678  32.31 xI-11 0.0224.000  361.49  0.356 %+ .000 20.16
degef-11 1.051 +.107 7.15  5.809 + .514 0.33 degef-11 0.0544.012  1010.26  0.296 + .000 0.00
12 0.974 + .104 - 5.786+ .514 . 12 0.034 £ .000 - 0.296 % .000 -
dml-12 0.3814.040 —60.91 7.8594.691  35.82 dml-12 0.008 +.000 —77.14  0.374 %+ .000 26.20
t1-12 0.2734.034 —72.02 7.8104.679  34.99 tl-12 0.007 +.000 —79.25  0.370 + .000 24.75
xI-12 0.287 +.034 —70.53 7.7234+ .678  33.47 xI-12 0.011+.000  —67.37  0.361 +.000 21.91
degef-12 1.093 £ .107 12.16  5.820+ .514 0.58 degef-12 0.056 = .009 62.76  0.296 % .000 0.00
dt 0.636 + .084 - 4.025 + .402 - dt 0.029 £ .000 - 0.365 % .000 -
dml-dt 1.262 + .116 98.50 6.6794.570  65.95 dml-dt 0.149 4+.000  408.57 0.336 +.000  —7.80
tl-dt 0.406 +.044 —36.22 8.0124.698  99.07 tl-dt 0.035 £ .000 21.07 0.351+£.000 —3.68
x1-dt 0.529 + .065 —16.81 7.317+ .653 81.79 x1-dt 0.037 £ .000 27.98 0.296 £.000 —18.75
degef-dt 0.542 +£.075 —14.83 3.8824.384 —3.55 degef-dt 0.048 +.014 64.01  0.335 £ .015 —8.12
kr 0.356 4+ .031 - 2276+ .170 - kr 0.017 4 .000 - 0.400 £ .000 -
dml-kr 0.616 £ .059 73.06 8.174+.728 259.16 dml-kr 0.0074+.000 —61.39 0.374+.000  —6.52
tl-kr 0.167 +.010 —53.02 8.024 +.706 252.60 tl-kr 0.005 £ .000 —70.54 0.3054+.000 —23.81
xl-kr 0.247 4+.023  —30.65  7.847 £.698  244.82 xI-kr 0.0034+.000  —80.58 0.279£.000 —30.32
degef-kr 0.316 £.031 —11.18 2.1494.181 —5.58 degef-kr 0.019 +.012 11.82 0.299+.013  —25.16
et 0.519 + .074 - 3.093 + .322 - et 0.006 £ .000 - 0.276 £ .000 -
dml-et 0.869 £ .082 67.61 6.532+.563 111.23 dml-et 0.099 +.000 1686.11  0.353 £.000 27.66
tl-et 0.306 +.042 —41.01 7.4454.643  140.75 tl-et 0.010 & .000 86.50  0.295 % .000 6.81
xl-et 0.453 £.053 —12.63 6.8754.597 122.32 xl-et 0.004 +.000  —36.17 0.235+.000 —14.87
degef-et 0.394 + .052 —24.03 2.818+.273 —8.89 degef-et 0.015+£.009  167.98 0.270+.014  —2.24
cb 0.404 + .038 - 2179+ .210 - cb 0.026 £ .000 - 0.308 +.000 -
dml-cb 1.123 £.052  177.88 6.976 £.580 220.18 dml-cb 0.010+.000  —60.23  0.368 +.000 19.42
tl-cb 0.224 + .027 —44.48 T7.715+ .664 254.10 tl-cb 0.026 £ .000 —0.50 0.250£+.000 —18.86
xl-cb 0.388+.044  —3.97 6.894+.604 216.42 xI-cb 0.045 £.000 72.93  0.239+.000 —22.56
degef-cb 0.328 +.032 —18.73 2.0134.190 —7.63 degef-cb 0.019+.007  —26.61 0.257+.030 —16.51
lgbm 0.412 + .052 - 2.866 + .273 _ Igbm 0.029 £ .000 - 0.247 £ .000 -
dml-Igbm 1.516 + .142 268.30 7.544 4+ 632 163.25 dml-lgbm 0.191 4 .000 555.20  0.387 £ .000 56.81
tl-lgbm 0.2554.028 —38.10 8.0024.678 179.25 tl-lgbm 0.004+.000  —86.33  0.305 +.000 23.62
xl-lgbm 0.435 + .046 553 7.602+ .650 165.29 xl-lgbm 0.021 4+ .000 —29.31  0.297 4+ .000 20.20
degef-lghm  0.397 +.051  —3.54 2.691+.250 —6.09 degef-lgbm  0.021+.007  —27.62 0.283 +£.024 14.83

Metrics are mean £ 95%CI (lower is better).
A% = change over the baseline (negative means improvement).

this way we can inspect the existence and strength of
such desirable properties. Note that sensitivity to noise and
overfitting are not the subjects of interest in this particular
experiment.

VI. DISCUSSION

In terms of IHDP data set (Table 2), the classic methods
(dml, tl, and xI) strongly improve in ATE, but can also be
unstable as it is the case with dml, specifically dml-cb and
dml-lgbm. Against PEHE, the situation is much worse as
those methods significantly decrease in performance when
compared to the base learners, not to mention catastrophic
setbacks in the worst cases (deltas above 200%). Note that
not a single traditional method improves in PEHE (all deltas
positive). Our degef, on the other hand, often improves in both
ATE and PEHE (see negative deltas). Even in the worst cases
with /] and 12, degef is still very stable and does not destroy
the predictions as it happened with the other approaches.
Thus, our method clearly offers the best improvements in
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Metrics are mean + 95%CI (lower is better).
A% = change over the baseline (negative means improvement).

PEHE and competitive predictions in ATE while providing
a good amount of stability.

In the JOBS data set (Table 3), classic methods again
achieve strong improvements in average effect estimation
(ATT) in best cases, though they can be substantially worse
as well (e.g. dml-ef). In policy predictions, an equivalent of
ITE, traditional techniques are even less likely to provide
improvements, except the X-Learner. With respect to degef,
it can also worsen the quality of predictions in ATT, as shown
with degef-11, though it does not get as bad as with dml-et.
However, even in that worst example, policy predictions are
not destroyed. The best cases in degef, on the other hand,
achieve strong improvements in policy. Similarly to IHDP,
here degef provided solid improvements in ITE predictions
(policy), while staying on par with traditional methods in
ATT, obtaining reasonable improvements and keeping the
worst cases still better than the worst ones in the other
methods, proving again its stability.
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TABLE 4. Results for TWINS data set.

TABLE 5. Results for NEWS data set.

name €EATE A% €PEHE A%a name €ATE A% €PEHE A%2
dummy 0.033 &+ .002 - 0.318 £.004 - dummy 2.714 + 212 - 4.381 £ .361 -
cf 0.064 £ .001 - 0.323+.005 - cf 0.544 + .089 - 3.907 + .481 -
11 0.042 4 .000 - 0.319 +.004 - 11 0.244 4 .068 - 3.3704.365 -
dml-11 0.028 £.003 —33.55 0.318+.004 —0.29 dml-11 0.233 & .062 —4.50 2469+ .269 —26.73
tl-11 0.052 4 .001 23.80  0.324 £ .005 1.59 tl-11 0.298 4 .052 22.13  2.166 +£.201 —35.74
xI-11 0.053 4 .001 25.46  0.322 £ .004 0.71 xI-11 0.220 +.045 —9.75  2.152+.186 —36.14
degef-11 0.064 + .004 53.10  0.323 % .004 1.18 degef-11 0.225 4 .048 —7.86  3.370 £.361 0.00
12 0.047 £ .002 - 0.320 +.004 - 12 0.260 + .068 - 3.3714.366 -
dml-12 0.0424.001 —11.32  0.334 4.009 4.25 dml-12 0.236 + .080 —9.08 5.108 +.394 51.52
t1-12 0.042 £.000 —10.47 0.337 £.011 5.19 t-12 0.1734+.030  —33.33 4.182 4 .343 24.06
xI-12 0.042 +.001 —10.95 0.335+.010 4.83 xI-12 0.174+.036  —33.09 4.162 +.345 23.45
degef-12 0.067 % .004 41.28  0.324 4 .004 1.10 degef-12 0.178 +.041  —31.64 3.366+.362  —0.16
dt 0.004 +.005 - 0.319+.004 - dt 0.344 + .076 - 2717+ 277 -
dml-dt 0.070 +.011 1859.14  0.327 & .002 2.53 dml-dt 4.523 +.783 1216.23 5.875+.676  116.18
tl-dt 0.062 4.000 1631.81  0.334 4 .004 4.67 tl-dt 0.329 £ .062 —4.12  2.638+.222  —2.92
xI-dt 0.059 +.000 1549.54  0.323 4 .004 1.20 xI-dt 0.290 +.060 —15.47 2.639+.263  —2.87
degef-dt 0.064 +.013  1697.62  0.349 4 .005 9.37 degef-dt 0.355 £ .080 3.22 2.727 £ .266 0.35
kr 0.045 4+ .001 - 0.320+.004 - kr 0.715 4+ .133 - 3.316 £ .367 -
dml-kr 0.055 + .028 20.87 0.323 +.012 0.99 dml-kr 2.544 4 .256 255.79  4.186 + .399 26.25
tl-kr 0.050 4 .000 9.18  0.334 + .006 4.45 tl-kr 0.198 &+ .150 —72.27 2.6774+.290 —19.26
xl-kr 0.043 + .002 —4.96  0.3254.007 1.73 xI-kr 0.229 +£.112  —68.00 2.695+.297 —18.72
degef-kr 0.033+.004 —27.17 0.320 £.004 0.15 degef-kr 0.582+.102 —18.61 3.256+.349  —1.80
et 0.027 + .006 - 0.322+.003 - et 0.276 £+ .051 - 2.063 £ .200 -
dml-et 0.047 £ .002 74.36  0.320 £.005 —0.32 dml-et X - X -
tl-et 0.051 4 .000 87.25  0.327 & .006 1.76 tl-et X - X -
xl-et 0.050 + .001 85.14  0.323 £ .006 0.53 xl-et X - X -
degef-et 0.054 + .007 96.91  0.335 % .002 4.23 degef-et 0.290 £ .052 513 2.013+.167  —2.40
cb 0.039 + .000 - 0.319 +.004 - cb 0.127 £ .029 - 1.880+.179 -
dml-cb 0.078 4 .011 99.66  0.328 4 .002 2.65 dml-cb X - X -
tl-cb 0.051 + .000 31.77  0.331 +.008 3.65 tl-cb X -oX -
xl-cb 0.048 + .002 22.63  0.323 +.006 1.04 xl-cb X -oX -
degef-cb 0.051 4 .003 31.48  0.326 £ .004 2.06 degef-cb X - X -
lgbm 0.038 %+ .000 - 0.327+.005 - Igbm 0.162 4+ .045 - 2,074+ .241 -
dml-Igbm 0.034+ .007 —10.56 0.362 =+ .008 10.90 dml-1gbm 1.461 £ .181 799.12  3.240 £+ .386 56.27
tl-lgbm 0.042 + .002 9.79  0.3934.009  20.34 tl-lgbm 0.161 +.033 —0.81 1.861+.138 —10.25
xl-lgbm 0.039 + .002 2.02  0.366 + .009 12.18 xl-lgbm 0.131 £.042  —19.41 2.005 % .228 -3.31
degef-lgbm  0.042 +.002 8.61  0.328 & .006 0.56 degef-lgbm  0.151 +.042 —6.78 2.038+.228  —1.71

Metrics are mean £ 95%CI (lower is better).
A% = change over the baseline (negative means improvement).

TWINS data set (Table 4), proved to be very difficult for all
considered methods when it comes to PEHE, though they did
not worsen the predictions as well. Some good improvements
in ATE can be observed, but also noticeable decreases in
performance in the worst cases (combinations with df).
Our method behaves similarly to the classic ones, offering
occasional gains and keeping the decreases in reasonable
bounds. The stability of degef is especially noticeable in
PEHE as the worst decrease (degef-dt) is still better than in
other methods.

The last data set, NEWS (Table 5), showed the traditional
approaches can provide some improvements in PEHE as
well, at least in their best efforts, though performance
decreases are also noticeable in the worst ones. They also
offer quite stable improvements in ATE, except extremely
poor dml-dt. The X-Learner performs particularly well across
both metrics (most deltas negative). Our proposed method
offers reasonable gains in ATE as well, while keeping
performance decreases at bay even in the worst efforts.
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Metrics are mean + 95%CI (lower is better).
Estimators marked with ‘x’ — no results due to excessive training time.
aA% = change over the baseline (negative means improvement).

Even though degef provides little improvement in PEHE,
it does not destroy individualised predictions either. Overall,
this data set showcases superior stability properties of degef
particularly well, making it a preferable choice if small but
safe performance gains are desirable over potentially higher
but riskier improvements.

In general terms, the results show that performance can
vary substantially depending on the model class, even within
the same advanced method (dml, xI, degef). For instance,
DML proved to work particularly well with L/ and L2
as base learners, whereas X-Learner often outperforms
T-Learner, adding more stability to the results as well. Our
proposed technique usually offers significant improvements
in ITE predictions in best cases, often better than traditional
methods, while keeping the predictions stable even in the
worst examples. Classic methods are clearly strong in ATE
estimates, but can struggle in individualised predictions.
Overall, these methods (dml, xI) proved to be less stable
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than ours, where the worst cases can perform quite poorly,
especially dml. This makes degef a safer choice on average
when considering various estimators, even more so when
achieving the best possible performance is not considered
a priority.

The observation that the choice of model class can
significantly impact estimation performance opens up a
more general question about possible reasons behind said
performance differences. We investigated this question
closely from the perspective of hyperparameters in another
study [72], which offers rather surprising lessons. We have
found that hyperparameter selection plays a significant
role in this in the sense that, if done optimally (with
access to a tuning oracle), the performance differences
among individual estimators become small, rendering model
selection secondary and suggesting that free lunches are
possible under the right conditions. A wider implication of
this is that causal estimators are generally comparable with
respect to potential performance (only potential performance
because optimal tuning is impossible in practice) and that
some of the performance differences we found can be
attributed to imperfect model evaluation, which in turn
suffers from the same challenges as causal estimation itself
— missing counterfactuals and covariate shifts. As a result,
while theoretically many estimators are capable of similar
performance levels, the best one can do in practice is to
perform hyperparameter tuning as thoroughly as possible
(which we do in our experiments here) to reduce the influence
of model evaluation imperfections.

We also investigate the number of rules in pruned Decision
Trees as a proxy for data complexity and required model
complexity to accurately fit the data. As presented in Table 6,
degef significantly increases the amount of rules across all
data sets, translating to an increase in data complexity. This
proves that augmented data encourages richer model families
that are more likely to include the true DGP, subsequently
leading to reduced bias, undersmoothing, and decreased
misspecification. In addition, we observe that modest data
complexity increases in [IHDP and JOBS correlate with strong
degef gains in ITE estimation in those two data sets, whereas
a much bigger difference in TWINS (from 9.6 to 59.1)
correlated with considerably lower prediction performance
gains (Table 4). This suggests there is a practical limit
to increased data complexity beyond which performance
benefits decrease.

After combining all the results together, we can observe
that degef: a) improves effect predictions (Tables 2 - 5),
and b) increases data complexity (Table 6). Both points
essentially demonstrate the positive effects our method has on
prediction performance (point (a)) and specific mechanisms
enabling such benefits (point (b)). More specifically, degef
encourages higher modelling complexity (undersmoothing)
through increased complexity of the augmented data (point
(b)). This reduces bias and misspecification, which in
practical terms improves prediction performance, even under
covariate shift (as per point (a)). In terms of theoretical

38572

TABLE 6. Number of rules in a pruned decision tree.

dataset  original data  augmented data A%
IHDP 33.6+2.0 53.3+2.6 58.63
JOBS 6.0+0.0 11.3£5.3 88.33
TWINS 9.6 £0.9 59.1 £11.9 515.63
NEWS 19.4 + 2.5 32.0+4.7 64.95

Numbers are mean + 95%CI.

We interpret number of tree rules as a proxy for model complexity
required to fit the data (more rules, more complex model), which is
an indirect proof for increased data complexity as a result of degef data
augmentation (A% column), confirming the desired undersmoothing
effect and reduced model misspecification have been achieved success-
fully.

guarantees, we rely on [7] and [9], which provide a thorough
formal analysis of the problem of model misspecification and
undersmoothing respectively.

VII. LIMITATIONS

In terms of possible limitations of our method, we assume
the data sets we work with have relatively low noise levels.
This is because in noisy environments, the inner GMMs
would likely pick up a lot of noise and thus sampling
from them would result in even more noisy data samples.
The result would be the opposite of what we aim for, that
is, to increase data complexity and bring new informative
samples, not to introduce bias in the form of noise. Thus,
our method would likely worsen base learners’ performances
in such environments. Furthermore, we expect extremely
high-dimensional data sets may cause computational issues
due to the increasing depth of the inner trees. This is
partly why setting a reasonable depth limit is important.
Our proposed method is also subject to the standard
set of assumptions (SUTVA and strong ignorability; see
Section II-B). Thus, scenarios that violate those are outside
the applicability of the method.

VIil. CONCLUSION

In this work, we proposed Debiasing Generative Trees
(DeGeTs), a novel data augmentation method based on
generative trees for improved estimation of heterogeneous
causal effects. Data augmented by DeGeTs through over-
sampling underrepresented data regions reduces bias and
undersmooths causal estimators trained on the data. Higher
modelling complexity of downstream learners achieved this
way enriches the model family that is more likely to include
the true DGP and hence reduces model misspecification. This
in practice results in more accurate predictions, even with
covariate shift, especially in individualised estimation where
the consequences of misspecification are exacerbated.

Our key finding is that our proposed approach offers
significantly better performance improvements in individual
effect estimation as compared to traditional reweighing
procedures while staying competitive on average effect tasks.
Our method also exhibits better stability in terms of provided
gains than other approaches, rendering it a safer option
overall. Furthermore, we show through our experiments that
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the choice of model class can significantly affect achieved
performance, and that reweighing methods can struggle on
individualised estimation tasks. This links with our recent
research on hyperparameters suggesting that tuning alone can
be a source of major differences between performances [72].
Note, however, that hyperparameter optimisation is highly
non-trivial in causal settings as it suffers from the same
challenges as causal estimation itself.

In terms of possible future directions, it might be interest-
ing to investigate the feasibility of replacing generative trees
with neural networks to handle extremely high-dimensional
problems. Another direction would be to instantiate DeGeT's
framework with alternative methods, such as standard
clustering and generative neural networks. Furthermore,
extending our approach to data sets with high degree of noise
could increase its applicability to a wider set of real-world
tasks. In addition, an in-depth theoretical analysis of specific
mechanisms behind increased estimation robustness of the
proposed method may further explain its effectiveness.
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