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Abstract

This thesis focuses on the use of wearable sensors (WS) and machine

learning (ML) algorithms in post-stroke rehabilitation assessment. The

conventional approach to rehabilitation involves subjective clinical assess-

ments and frequent therapy sessions, which are time-consuming, costly,

and often limited in availability. To address these limitations, WS have

emerged as a portable and cost-effective solution, enabling patients to

perform rehabilitation exercises at home. These sensors provide quantita-

tive data on patients’ movements, allowing for continuous monitoring and

assessment. Additionally, ML algorithms offer the potential to enhance

the accuracy and efficiency of rehabilitation assessment by processing the

data collected from WS.

The research presented in this thesis first aims to analyse recent develop-

ments in WS-based post-stroke rehabilitation assessment, identify limita-

tions in the field, and propose state-of-the-art ML algorithms to improve

assessment performance. The primary motivation is to provide a more

comprehensive, personalised, and objective evaluation of motor function

and mobility, leading to improved rehabilitation outcomes and quality of

life for stroke survivors.

Chapter 2 provides a comprehensive literature review that examines the

current state-of-the-art in post-stroke rehabilitation assessment, specifi-

cally focusing on the utilisation of wearable sensors and machine learning

techniques. The review encompasses a thorough examination of commonly
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employed sensors, targeted body limbs, outcome measures, study designs,

and machine learning approaches. Furthermore, the review highlights the

limitations encountered by researchers in the field, particularly pertaining

to the accuracy of assessment algorithms and the availability of data.

Subsequent chapters in this thesis address these identified limitations by

proposing innovative solutions. Chapter 3 presents an approach aimed at

enhancing the accuracy of assessment algorithms by adapting widely used

computer vision algorithms to the time-series domain. This adaptation

enables more precise and reliable analysis of the collected time-series data,

thereby improving the assessment process.

In Chapter 4, a novel methodology is introduced, which involves the trans-

formation of time-series data into images and the subsequent utilisation

of computer vision algorithms for assessment purposes. Furthermore, a

linear interpolation methodology is implemented to adjust the size of the

encoded images, allowing for an increase or decrease in dimensions. A

comprehensive comparative analysis is then conducted to evaluate the

impact of image size on the performance of the assessment algorithm.

Finally, Chapter 5 introduces a novel algorithm that generates hetero-

geneous and realistic data, which serves to enhance the rehabilitation

assessment process. By generating synthetic data that closely resembles

real-world scenarios, this algorithm addresses the limitation of limited data

availability, ultimately leading to more robust and accurate assessments.

The contributions of each chapter provide insights into the current state-

of-the-art in WS-based rehabilitation assessment, algorithm optimisation,

data encoding techniques, and data augmentation strategies. The findings

of this research aim to advance post-stroke rehabilitation outcomes and
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contribute to a more accurate and personalised assessment for stroke

survivors.
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Chapter 1
Introduction

1.1 Background

On a global scale, more than 13.7 million cases of stroke occur each year, and it is

important to note that around one-quarter of individuals above the age of 25 will

experience this health issue at some point in their lives [1]. A stroke is a brain attack

that occurs when blood flow is cut off to a part of the brain, subsequently resulting

in the death of brain cells [2, 3]. There are three main types of stroke [4]: Transient

Ischemic Attack (TIA) [5], ischemic stroke [6], and hemorrhagic stroke [7].

1. TIA is caused by a temporary interruption to the blood supply to the brain and

may result in no lasting neurological deficit, it is considered to be a precursor

and warning of a future stroke.

2. Ischemic stroke which is estimated at 87 per cent of strokes [8], occurs when a

blood vessel supplying blood to the brain is obstructed.

3. Hemorrhagic stroke happens when a blood vessel ruptures [9].

Brain damage caused by stroke - if not deadly - will influence how the body functions

including instigating temporary or permanent paralysis [10, 11]. Subsequently, some

stroke survivors will make a quick recovery, while others will need help and more time

to recuperate, and relearn skills they lost [12, 13].

To speed up the process of recovery, and to regain their independence, post-stroke
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Chapter 1. Introduction 2

patients ought to engage in physical therapy or rehabilitation [14, 15]. The conventional

approach is for physical therapists to evaluate the physical activities of patients through

visual observation, clinical impression, or tests and measures [16–18]. Rehabilitation

activities might include:

• Motor skill exercises: to ameliorate the strength of the muscles and body

coordination [19].

• Mobility training: in order to relearn functional activities including walking

which may include the use of, mobility aids, such as walkers, wheelchairs and

canes to help support the body’s weight [20].

• Constraint-induced rehabilitation or forced-use therapy: to improve limb function,

where the patients practise using the affected limb while the unaffected one is

held still [21].

• Active or passive Range Of Motion (ROM): to help patients regain the ROM of

the affected body joints [22].

However, this approach presents many limitations [23], indeed the availability of

therapy may be limited and the patients need regular consultations in order to achieve

their goals [24], moreover the additional expense of public and private transport

from and to hospitals are an additional burden to the patient’s finances [25]. Also,

transportation to hospitals may cause discomfort and pain to post-stroke patients who

lack the mobility and energy to leave their houses and periodically visit their doctors

for training sessions [26]. Besides, doctors and therapists are overwhelmed with the

workload with sessions lasting more than half an hour - on average - with a cadence of

many sessions per week [27].

To tackle these issues, researchers have developed applications to assess rehabilitation

outcomes using novel technologies namely “Wearable Sensors” (WS) [28], which provide

a high level of portability and low price giving researchers and therapists a plethora of

possibilities and solutions [29]. Indeed, WS allow patients to execute their exercises
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at home relieving them of the drain of transportation. Subsequently, several types of

sensing devices are used in applications extending from monitoring subjects’ physio-

logic responses like Electromyography (EMG) [30], Electrocardiogram (ECG) [31], or

glucose level in the blood [32] to evaluating kinematics of the individuals: gait, ROM,

balance using Inertial Measurement Units (IMU) [33]. These sensors are employed in

conjunction with clinical tests and outcome measures, such as sit-to-stand [34], Timed

Up and Go (TUG) [35] to give an objective assessment and monitoring of the patient

condition [36].

Besides, the breakthrough in Machine Learning (ML) that provides outstanding

performance tasks that used to require a lot of knowledge and time to model [37], as

well as the tremendous advances made in processing system technologies that made

the ML computing possible have given researchers more tools and resources to handle

and process the data collected from the sensors and hence permitting a more accurate

and quicker assessment [38]. Figure 1.1 shows an example of a WS-based rehabilitation

assessment step.

Figure 1.1: Wearable sensor-based rehabilitation assessment steps.
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1.2 Research motivation

Conventional clinical assessments are frequently based on subjective interpretation of

patient movements, leading to a time-consuming and often inaccurate evaluation of

motor function and mobility. In contrast, WS can provide continuous and accurate data

on a patient’s movement patterns, allowing for a more comprehensive and objective

assessment. Moreover, WS can facilitate unsupervised rehabilitation training, which

can lead to improved patient outcomes and reduced healthcare costs.

In addition to these benefits, the use of ML algorithms in conjunction with WS has

the potential to revolutionise post-stroke rehabilitation by providing more personalised

and comprehensive assessments of motor function and mobility. This technology has

the potential to enhance the quality of life of stroke survivors by facilitating faster

and more effective rehabilitation outcomes, leading to improved long-term functional

outcomes and overall health.

The primary aim of this thesis is to perform a comprehensive analysis of recent

advancements in the field of WS for post-stroke rehabilitation. The research focuses on

identifying the prevalent limitations, particularly those associated with the accuracy of

assessment algorithms and the scarcity of available data. To address these challenges,

state-of-the-art ML algorithms are proposed to enhance assessment performance as

well as facilitate data augmentation to overcome the difficulties in collecting sufficient

data in the field of post-stroke rehabilitation.

1.3 Contributions and dissertation structure

This section is structured as follows: Chapter 2 presents a comprehensive literature

review of the current state-of-the-art in post-stroke rehabilitation assessment using WS

and ML. Also, the existing limitations in the field are discussed. Chapter 3 proposes
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an approach to enhance the accuracy of assessment algorithms by adapting popular

computer vision (CV) algorithms to the time series (TS) domain. Chapter 4 discusses

a new methodology that encodes TS data into images and uses CV algorithms for the

assessment. Chapter 5 introduces a novel algorithm to generate heterogeneous and

realistic data to improve rehabilitation assessment.

A summary of each chapter’s contribution is given below:

Chapter 2

The primary objective of this chapter is to conduct a comprehensive assessment of

recent developments in the field of post-stroke rehabilitation utilising wearable devices

for data collection and ML algorithms for exercise evaluation. To achieve this, a review

was conducted. To categorise the assessment systems, a taxonomy was proposed that

divided them into three categories: activity recognition, movement classification, and

clinical assessment emulation. Additionally, this chapter provides a review of the

most commonly utilised sensors, targeted body limbs, outcome measures, and study

designs. Furthermore, the ML approaches utilised, starting from feature engineering

to classification, are examined. Lastly, the limitations in the field are presented they

were found to pertain to the accuracy and quantity of available data. The subsequent

chapters of this thesis aim to provide viable solutions to address these.

Chapter 3

An important part of this chapter is to develop an efficient evaluation algorithm

that provides a high-precision activity recognition rate in post-stroke rehabilitation

assessment. Sixteen state-of-the-art TS deep learning (DL) algorithms with four

different architectures were investigated: eight Convolutional Neural Networks (CNNs)

configurations, six recurrent neural networks, a combination of the two and finally a

wavelet-based neural network. Additionally, data from different sensors’ combinations
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and placements as well as different pre-processing algorithms were explored to determine

the optimal configuration for achieving the best performance. Our results show that

the XceptionTime CNN architecture is the best-performing algorithm with normalised

data. Moreover, it was found that sensor placement is the most important attribute

to improve the accuracy of the system.

Chapter 4

A novel pipeline for TS classification is presented, it involves imaging the segmented TS

data by employing three encoding techniques namely: Gramian Summation Angular

Fields (GASF), Gramian Difference Angular Fields (GADF) and Markov Transition

Fields (MKV). These encoding techniques were originally designed for univariate TS,

one contribution of this work is to propose a way to adapt it to multivariate TS by

imaging each axis of the sensors separately and fusing them to create multi-channel

images. Another limitation comes from the fact that the resulting image size equals the

sequence length of the original TS, this is tackled by employing a linear interpolation on

the TS sequence to increase or decrease it. A comparison of the performance accuracy

for the employed encoding technique and the image size has been done. Results showed

that GASF and GADF performed better than MTF encoding, besides fusing the images

and increasing the image size to a certain limit improved the accuracy from 83% for

the ExceptionTime model to 91.5%. Finally, the proposed pipelines outperformed the

existing stat-of-the-art accuracy on the same dataset by 4%. This pipeline represents

a solution to the performance of the assessment algorithms identified in Chapter 2.

Chapter 5

One way to acquire more data is to use data augmentation that generates synthetic

data by taking into account prior real data configuration. Generative Adversarial

Networks (GANs) are one of the most recently used techniques. GANs have been
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found to suffer from mode collapse, which is an issue where the generated data did

not take into account all the information from the original dataset. The objective of

this paper is to tackle this problem.

To do so, a GAN is used to generate data for a real-world post-stroke clinical assessment

dataset. As the original GAN was found to suffer from mode collapse, a new framework

is proposed that involves adding a Siamese network (SN) and another discriminator to

create Time Series Siamese GAN (TS-SGAN). Analysis using the longest common Sub-

sequence (LCSS) showed that TS-SGAN created data uniformly for all the elements

of the real dataset, contrary to the Original GAN. Moreover, encoding the generated

dataset into images using Gramian Angular Field (GMAF) and classifying them using

ResNet-18 allowed to improve the classification performance of an activity recognition

dataset from 48.73% to 90.8% and from 63% to 98.2% for an ARAT dataset. This new

model represents a solution to the data quantity limitation in post-stroke rehabilitation

that was identified in Chapter 2.



Chapter 2
Literature review

2.1 Background on the study and review

The recent surge in technology-based stroke rehabilitation methods has facilitated

the creation of effective rehabilitation settings, offering controlled and adaptable

stimulation [39, 40]. These swift advancements have given rise to innovative approaches

in stroke rehabilitation aimed at restoring motor functions in stroke survivors. Various

interventions have been developed and assessed for stroke rehabilitation, including

robot-assisted interventions [41–51], virtual reality [52–59], and WS-based approaches

[60–95]. These interventions offer advantages such as task-specific and repetitive

training, along with adaptive feedback, which enhances neuroplasticity and motor

functions, thereby accelerating recovery. This thesis scope deals mainly with the

application of WS-based rehabilitation so other approaches are not discussed.

The objective of this chapter is to evaluate the progress made in the domain of WS-

based stroke rehabilitation assessment and to make a status report of the different

technological developments in smart upper and lower limb recovery, to answer the

following questions:

• What are the different aims of the post-stroke rehabilitation systems?

• What wearable sensing devices are more used?

• What are the most common outcome measures and the targeted sensors’ place-

8
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ments?

• What are the different study designs followed by the researcher in this field?

• Which ML algorithms and feature engineering techniques were more used?

• What limitations and challenges are encountered by researchers?

In the ensuing section, A comprehensive discussion of the relevant works in the field is

presented, which includes an assessment of the WS utilised, the outcome measures,

the types of assessment systems, and the diverse algorithms utilised. Finally, it entails

a detailed exposition of the limitations and challenges encountered in post-stroke

rehabilitation. Finally, the section concludes by providing suggestions for potential

avenues to develop more effective systems.

2.2 Discussion about WS based rehabilitation

Study characteristics related to the WS used and its placement, the monitored exercises,

the participants, the selected features the ML algorithm used and the classification

performance for the included papers are presented in table A.1. The studies are

divided into three categories based on the assessment type namely activity recognition,

movement classification and clinical assessment emulation (explained below). After

that, a more in-depth discussion on each topic is done separately with a quantitative

comparison done at the end of this section.

2.2.1 Assessment systems and outcome measures

In the post-stroke rehabilitation, and based on the reviewed papers, a new taxonomy

was gleaned in which the assessment systems in post-stroke rehabilitation were classified.

Subsequently, three assessment approaches depending on the system’s aim were

distinguished: activity recognition, movement classification and clinical assessment

emulation.
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Activity recognition

Are systems which aim to identify specific movements of rehabilitation of the patients

and differentiate between them for record and monitoring purposes [60–71], in this

category researchers monitored Activities of Daily Living (ADL) [96] and they most

frequently covered detecting general activities like standing, sitting, lying, standing

up, sitting down [61, 63, 66, 67, 69], performing kitchen tasks like making a drink,

chopping food [61] and other routine activities like making the bed, reading and lacing

shoes [67], folding, sweeping and brushing teeth [65, 67, 68]. Other researchers covered

activities for specific body parts like recognising different hand gestures [60, 71], arm

gestures [62] and some exercises to strengthen shoulders and arms [67].

Movement classification

The system objective is to classify well and poorly-executed tasks [72–83], to do so

many approaches were followed. Some researchers implemented systems to distinguish

between normal and abnormal gaits for lower-limb rehabilitation [76, 79, 80], in

which participants executed 10 m walks. Other researchers assessed the execution

of ADLs [74, 77] like different kitchen-related activities or routine bedroom tasks.

Moreover, Lee et.al [72] utilised exercises that belong to popular batteries of tests

like Fugi Mayer assessment (FMA) [97, 98], and extension or flexion of elbow and

flexibility movements of shoulders [75, 81].

Movement classification englobes as well systems that quantify limb use in order to

classify the tasks, in [78], Miller et.al distinguished between uni-manual and bi-manual

tasks using both dominant and non-dominant activities while Liu et.al [73] estimated

the amount of the affected hand use compared to the unaffected hand. In [82] Derungs

extracted digital biomarkers consisting of convergence points physical activity and

functional ROM to investigate the affected and less-affected body side. Whereas,

Balestra et.al [83], identified different executed tasks in order to count the number of
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repetitions and determine a correlation with the degree of severity of stroke.

Clinical assessment emulation

In this category, systems that aim to quantify the level of correctness in executing

the prescribed exercises are identified. Researchers achieved this by using popular

post-stroke assessment scoring systems [84–95]:

FMA variants are the most commonly used batteries of tests from the included works

[87, 88, 92, 95], it comprises five domains namely motor functioning, balance, sensation,

joint functioning and joint pain in both upper and lower extremities rehabilitation.

Scale items are scored on the basis of the ability to complete the item using a 3-

point ordinal scale where a score of 0 means the incapacity to perform, 1) a partial

performance and 2) a full performance of the task. The total possible score is 226

divided into 100 points for motor functioning, 14 for balance, and 24 for sensation

while joint functioning and joint pain have 44 points each. Other variants of this

assessment were used such as the short FMA used developed in [98] which includes

fewer exercises than the original.

Wolf Motor Function Test (WMFT) [99, 100] is an upper-limb assessment system

through timed and functional tasks, the most popular form consists of 17 items in which

6 involve timed functional tasks, 2 are measures of strength, while the remaining consist

of analysing the quality of movement quality when performing various activities. It

uses a scaling system that ranges from 0 which signifies Does (i.e. no attempt with the

limb being tested) to 5 which signifies the attempt was made with a normal-appearing

movement. Two included studies used the WMFT [84, 86, 92].

Action Research Arm Test (ARAT) [101] is a 19-item observational measure for upper-

limb post-stroke assessment. Items comprising the ARAT are categorised into four

subscales namely grasp, grip, pinch and gross movement. Task performance is rated on

a 4-point scale, ranging from 0 (no movement) to 3 (movement performed normally).
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Two of the included works used the ARAT system [85, 91, 94]

Oxford Grading Motor-Scale (OGM) [102] used in a single study included [89], it

evaluates the muscle strength of the rehabilitated patient and can help diagnose

problems in which weakness plays a role. It is not proper to stroke rehabilitation

and targets both upper and lower extremities. According to the OGM scale, muscle

strength is graded from 0 to 5 where 0 implies no muscle contraction and 5 equals

movement through a full range against full resistance. Performing OGM requires

knowledge of muscle anatomy so that the joints can be positioned correctly as well as

the tendon and muscle palpated in order to make a judgement on how much muscle

action can be made on the patient.

Chedoke Arm and Hand Activity Inventory (CAHAI) [103], it is an upper-limb post-

stroke clinical assessment method that evaluates functional ability. The original

CAHAI involved 13 functional items that incorporate a range of movements and grasps

that reflect stages of motor recovery following stroke. The clinician will score based

on the patient’s performance at a scale from 1 which implies a weak performance to 7

which shows complete independence. From the included works Chen et.al used the

CAHAI in [90].

The National Institutes of Health Stroke Scale (NIHSS) is a 15-item neurologic scale

used to assess the effect of acute cerebral infarction on different levels of consciousness,

language, neglect, visual field loss, extraocular movement, motor strength, ataxia,

dysarthria, and sensory loss. Scores range from 0 to 42, with higher scores indicating

greater severity. A single included paper [83] used this assessment system. Figure 2.1

shows our study taxonomy and the different categories.
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Figure 2.1: Proposed taxonomy for post-stroke systems’ classification.

2.2.2 Wearable sensors

Over the past few years, effort has been put into developing unobtrusive, effective

and objective motion-modeling systems, taking advantage of the progress made in the

sensor technology which became more compact and more power-efficient [104]. All the

included works utilised IMUs for the data acquisition [61–69, 71–95]. IMUs are devices

that combine linear acceleration from accelerometer and the angular turning rates from

gyroscopes [105]. IMUs were chosen for their portability and for their low costs, but

also because they provide accurate modelling of the participant motion. Some studies

used individual accelerometers [62, 64, 73, 74, 84, 86, 87, 89, 90] or gyroscopes [64]

while the rest used their combination to give more detailed information. Moreover,

IMUs were coupled with different sensors to acquire more information: a barometric

pressure sensor to detect changes in altitude [66, 67], insole pressure sensors in [75] to

measure the force exercised by the feet while performing the activities, flex sensors

to measure the amount of deflection or bending while griping objects [87, 95], liquid
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level detectors in a cup [61] to measure drinking activity and EMG sensors [70, 81]

to measure the activity of the muscles that can translate as strength. Only a single

study did not use IMUs and employed EMG sensors only [60].

2.2.3 Sensors’ placements

The placement of the sensing technology on the body has shown a heterogeneous

distribution linked to the different nature of the employed technology and to the

purpose for which the monitoring system was designed. Systems that focused on

upper-limb rehabilitation used more frequently the wrists [65, 68, 72, 73, 78, 84, 87,

88, 90–94] in twelve studies, arms [62, 68, 74, 78, 81–83, 86, 88, 89] in ten studies, four

studies used forearm [60, 71, 82, 83, 85], three studies used fingers [73, 77, 87], and

hands [61, 64, 83], and a single study used elbow and shoulder [87]. These placements

were targeted to monitor activities that involved using hands.

By contrast, systems that focused on lower limbs for activities that involved walking

utilised more frequently the chest in eight studies [67, 74, 78, 81, 84, 86, 88, 92] the

shank in four works [76, 79, 80, 89], thighs [75, 79, 82], and feet [75, 79, 93] in three

studies, while two works targeted either the hip [63, 64], or the waist [66, 69], and

finally a single study used the lower back [79]. Fig 2.2 shows the targeted placements

reviewed in the different studies.
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Figure 2.2: Sensors’ placements in the included studies.

2.2.4 Study designs and populations

In the included works, different study settings were explored. More commonly it was

in controlled environments [106] like labs and hospitals where patients are under the

direct supervision of researchers and therapists. Other studies used semi-naturalistic

environments [107] where a home environment is replicated in the labs e.g. participants

performing their exercises in a kitchen environment under the supervision of researchers.

Other studies monitored participants in an outpatient home environment [82].

For the study population, many works recruited stroke survivors with different degrees

of severity after getting ethical approvals [62–68, 71, 72, 74, 76–80, 82, 83, 85–94].

Some of them undertook a cohort study by combining them with Able Bodied (AB)

participants [62–65, 71, 72, 77, 78, 80, 83, 86] elderly [72] and neurologically disordered

patients [79]. Other works only used AB [60, 61, 69], while some studies did not specify

or did not use participants [73, 81]. For the number of participants, it varied from 4
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SP [89] to 59 SP [90].

2.2.5 Pre-processing and feature engineering

Feature engineering is the process of creating features from raw data to improve the

accuracy of a system [108]. Some sophisticated ML algorithms i.e. DL don’t require

features and can learn to find similarities and differences in raw data automatically [109].

Before selecting features, pre-processing is undertaken on the data to make it ready

for the feature study.

According to the different included papers, for filtering unwanted data, designed

modules have usually applied threshold-based methods to filter sensor data [62, 63] or

used different statistical tools to interpolate the missing data points [83]. Moreover, to

filter frequency-based noise, in the frequency domain, other methods are applied such

as power spectral density (PSD) [76, 89] Fast Fourier Transforms (FFT) [78, 89], as

well as designing different filtering to remove the fluctuations in sensor signals. For

example, in [63, 77] noise and unwanted information are filtered out by a low-pass

fourth-order Butterworth filter, after that a high-pass fourth-order Butterworth filter

was implemented for frequency analysis to eliminate the continuous component of the

signal. In [79] Hsu et.al filtered data with a fourth-order bi-directional Butterworth

band-pass filter.

Moreover When dealing with accelerometer data, gravity is usually removed from the

acceleration as done in [83, 90, 92] by computing the magnitude of acceleration a(t)

and subtracting 1. a(t) =
√
a2x(t) + a2y(t) + a2z(t), in which ax,ay,az is the acceleration

along the x, y, z . The gravity effect can be removed by VM = |a− 1| . Compared

with raw acceleration triaxial data, VM is insensitive to the gravity effect. In addition,

using multiple data sources and thus different sampling rates requires data to be

synchronised, to have the same time basis, this has been done by first identifying

segments from timestamps and then using linear interpolation as in [83] or padding



Chapter 2. Literature review 17

with zero [81] on the lower frequency data source.

Since the data collected from WS is TS, it should be structured in order to be studied.

TS segmentation can be considered either as a pre-processing step for a variety of data

mining tasks or as a trend analysis technique. It is also considered as a discretisation

problem [110]. A fixed length window is used to segment a TS into sub-sequences

and the TS is then represented by the primitive shape patterns that are formed [111].

Segmentation was used by all the papers included herein with time windows varying

from 2 s to 10 s depending on the monitored activities. For DL algorithms data after

these steps is ready to be fed [64, 74, 80, 84].

By contrast, conventional ML algorithms require further data processing and features

that most describe the activities are selected and extracted. In most of the included

papers, feature engineering is hand-crafted based on the authors’ knowledge of human

movements. Time-domain-based features [112] was the most commonly used approach,

numerous works extracted Root Mean Square (RMS), mean of time windows, variances,

correlatiion between different axes and features, minima and maxima, skewness and

other related features [60, 63, 65, 66, 68, 71–73, 75, 77, 78, 81, 85–89, 92, 93, 95]. Some

studies coupled it with frequency domain features by converting the data segments

using Discrete Cosine Transform (DCT) [61] and extract energy and frequency related

features or using Fourier transform [78, 89] and extract frequency components. In [90],

Lee et.al used the Discrete Wavelet Transform (DWT) representation to extract

wavelet coefficients (Coeffs) and then computed their normalised sum of absolute value.

Whereas, in [92] zero-crossing decomposition is applied to the gravity-free acceleration

data, to then extract relevant features.

On the other hand, Boukhennoufa et.al in [69] encoded TS windows into GMAF [113]

images and fed them into some popular CV algorithms. Studies involving post-stroke

rehabilitation require usually many sensors with multiple axes, this could yield huge

numbers of features and cause systems to over-fit. To remedy to this, dimensional
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reduction techniques were used. Dimensionality reduction refers to techniques for

reducing the number of input variables in training data by projecting the data to a

lower dimensional subspace which captures the essence of the data. Multiple techniques

were used in the studies included here. Yang et.al and Tran et.al [60, 65] used a

technique called Principal Component Analysis (PCA) that transforms data into fewer

dimensions. keeping the three first components only allowed Yang et.al to keep 95.86%

of the overall information stored in 56 feature vectors while it allowed Tran to keep

99% of the information, reducing it from the 11 feature vectors. Other studies [63, 78]

employed Relief-F which takes a filter-method approach to feature selection to keep

only the most relevant features.

2.2.6 Machine learning

ML is an application of AI that provides systems with the ability to automatically

learn and improve from experience without being explicitly programmed to do so

using the features selected before. Depending on whether to incorporate the outcomes,

ML algorithms can be divided into two major categories: unsupervised learning

and supervised learning. Unsupervised learning is well known for feature extraction,

while supervised learning is suitable for predictive modelling through building some

relationships between the patient traits and the outcome of interest [114]. All the

papers included used supervised ML algorithms.

Support Vector Machines (SVM) were the most used classifier [61, 63, 65, 68, 73,

76, 77, 87, 89, 93, 95, 115], it was used mainly for classification problems in activity

recognition but also in regression problems for clinical assessments where participants

are given a clinical score [84–90, 92, 93]. The reasons for choosing SVM variants are

their good generalisation ability for sequential data structures [116] and datasets that

are not too large. This has been the case in most of the reviewed papers as recruiting

post-stroke patients is not an easy task. Moreover, SVM has different kernel types
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allowing it to deal both with linear and non-linear problems.

Random Forrest (RF) and more specifically Random Trees (DT) were also massively

employed [63, 65, 66, 68, 75, 80, 81, 84, 86, 88]. DT is one of the commonest oldest

ML algorithm, it models it decision logics to outcomes in a tree-like architecture. Its

easiness of interpretation as well as its rapidity of learning made it popular to use

in the tele-rehabilitation domain and especially in multi-class activity recognition

problems. The reason for that is when going through the tree for a classification

sample, the outcomes of all tests at each node will provide relevant information to

infer about its class. RF was less used than the former [65, 66, 72, 78], the reason is it

is an ensemble of RT making it more prone to over-fitting. It is only used when the

available dataset is relatively large.

Artificial Neural networks (ANNs) were also a common choice among researchers for

post-stroke rehabilitation assessment. ANNs are a set of ML algorithms that are

inspired by the neurons of the brain. ANN may be represented as an interconnection

of layers of nodes in which the output of one node is an input to another node for

the subsequent processing layer. Multilayer perceptron (MLP) was the commonest

among them [61, 75, 77, 79, 80, 115]. MLP does not require feature engineering thus

necessitating less domain expertise, although a drawback is the fact that they are

considered to be black-box having sometimes unpredictable behaviour. MLP achieved

very good results for activity recognition and movement classification. Another ANN

architecture that was employed is CNN Architectures [62, 64, 69, 74]. They are

designed to automatically and adaptively learn spatial hierarchies of features through

backpropagation by using multiple building blocks, such as convolution layers, pooling

layers, and fully connected layers [117]. CNNs achieved outstanding accuracies in the

CV field but this did not translate to TS data structure which is the structure of

the data from the sensors. Boukhennoufa et.al [69], encoded the sequential data into

images and then employed a popular CNN architecture which is the Visual Geometry
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Group 16 (VGG-16) to achieve very high accuracy.

k-Nearest Neighbour (kNN) is another algorithm that was used in three included

works [65, 70, 83]. The kNN classifier is based on distance metrics and was widely

used in real-time applications as it is free from the underlying assumptions about the

distribution of the dataset. Moreover, The setting of different values for ‘K’ can result

in different classification results for the same problem which makes it an additional

hyper-parameter to find the most performing model, especially in activity recognition.

As per the metric to assess the system, almost all the papers used accuracy. It is the

proportion of the total number of correct predictions. The accuracy was computed

using the formula:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (2.1)

where TP is true positive, TN is true negative, FP is false positive, and FN is false

negative.

Two works [84, 92] used the Coeff of determination, denoted R2 which is a statistic

that will give some information about the goodness of fit of a model in regression

models. It was used for the clinical assessment algorithms to compare the predicted

score with the score from the clinician.

R2 = 1− RSS

TSS
(2.2)

where RSS is the sum of squares of residuals and TSS is the total sum of squares

Moreover, another metric used in regression problems and especially in the clinical

emulation assessment [73, 86, 88, 90] is the Root Mean Square Error(RMSE) it is
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defined to be the standard deviation (SD) of the residuals (prediction errors):

RMSE =

√√√√ 1

n

n∑
i=1

(di − fi)2 (2.3)

where di is the predicted score value and fi is the actual one given by the therapist.

2.2.7 Quantitative analysis

In this subsection, a quantitative analysis related to the specifics of the included

papers is presented, and statistics about number of citations, system aim, year and

1st author’s country of the different works are given.

The system’s aim is almost homogeneously divided between the three categories with

eleven of the included works treating activity recognition [60–71], twelve dealing with

movement classification [72–83] and ten with clinical assessment emulation. [84–95].

This demonstrates that the different categories are of equal interests to researchers.

For the publication year, a growing interest has been noticed starting from 2020 in

the included sample of works.

The academic citations of the included papers, ranged from no citations at all [69,

78, 80, 83] to 126 citations [76] (up to August 2021). The papers with no citations

were tolerated only in the most recent works written in 2021, and the authors felt it

presented an interesting approach worth reviewing. In the same context, statistics

of the 1st author’s publication are also given. The US, is the country with most

publications with thirteen papers [65, 66, 68, 72, 74, 78, 83–86, 88, 89, 92] followed

by china with four papers [60, 70, 73, 87], three papers for South Korea [64, 81, 93]

and Italy [75–77], two papers for the UK [69, 90] and Thailand [79, 80] and finally a

single study for France [61], India [62], Canada [63], Switzerland [67], Germany [82],

Singapore [91].
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Additionally, as for the targeted limbs from the included papers, upper extremity

rehabilitation is the dominant practice with fifteen papers [60, 62, 73, 74, 77, 78, 81,

83, 84, 86–88, 90–92]. This is justified by the fact that most of the clinical assessment

batteries of test that the researchers tried to emulate are for the upper extremities, as

well as the fact that most of the ADLs involve using hands. Both-limb rehabilitation

comes second with twelve papers [61, 64, 65, 67–70, 72, 82, 85, 89, 93] and finally 6

papers for lower-limbs only [63, 66, 75, 76, 79, 80].

2.3 Limitations and challenges

In subsection 2.3.1 the objective and the limitation for each of the included studies

are presented, based on that a list of challenges that the researchers in this field most

commonly found are extracted in subsection 2.3.1.

2.3.1 Limitations

Challenges

Based on the limitations presented in table A.2, different challenges encountered by

the researchers in post-stroke telerehabilitation were assessed.

2.3.2 Quantity and quality of data

ML-based system as for post-stroke smart telerehabilitation, requires rigorous com-

putational models to achieve the desired results and estimate properly the needed

parameters. The starting point to construct an efficient model is to have a significant

amount of data, besides, the most sophisticated algorithms (e.g. DL) require at

least 10 times the number of samples as parameters in the network. Indeed, These

algorithms thrive in domains where large amounts of data are easily collected (e.g.

CV). On the other hand, in the healthcare area and more specifically in post-stroke
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rehabilitation, the number of patients is limited, and are not always keen to take part

in research projects as it is an extra burden they endure. moreover, more than 70 %

of the patients live in low and middle-income countries [118] that do not give enough

importance yet to data collection or do not have the necessary means. Subsequently,

the available information is still limited to building and training efficient models that

would generalise under different conditions and for different cases. Besides, in contrast

with other fields where the data is well-structured, healthcare data, in particular and

sensor data in general, is heterogeneous, abstruse, noisy and difficult to interpret

if not an expert. This makes building a good learning model tricky and requires

addressing several challenges, such as data sparsity, missing and dismissed values,

sensor miss-calibration issues and noisy segments. In the same context, data bias

which is another issue can cause the assessment algorithm to evolve in an unpredictable

manner and not generalise to new patients that have different degrees of severity. This

was very common among the reviewed papers, where researchers complained about

their algorithms not generalising well. [60, 68, 72, 78, 80]. Another data-related issue

is confidentiality, especially with the growing use of cloud platforms and the Internet

of Things. Therefore, effort should be spent to secure the data transmission between

the platforms to ensure privacy for the users of the assessment systems.

Recruitment related challenges

Dealing with post-stroke participants is a sensitive task and requires researchers

to follow strict procedures, starting from the recruitment process which requires

undertaking tedious ethical approval applications to mounting sensors and collecting

data from the participants. In addition, in order to design efficient ML-based assessment

systems that generalise to new users a large number of participants should take part

with different and variant degrees of severity [62, 67, 68, 88, 89], which is not always

available and taken into account. Besides, a common issue found in the included

papers when doing cohort studies is not recruiting AB participants that age-match
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the SP recruited [66, 77], this could yield introduce inequalities that are not caused by

stroke disease rather it is by the age difference.

Field complexity and field standards

Understanding illnesses in general and stroke in particular is a more challenging task

than dealing with natural language or image processing. It also requires advanced

expertise since the systems will be deployed to deal with human subjects to assist them

in their rehabilitation process or to assess their execution. Moreover, the standards

applied in healthcare are highly rigorous, ethical committees have to approve studies

involving human subjects, in addition to the privacy restrictions that govern personal

patients’ data and sensitive information that limit the use of some modern platforms

like computing and data clouds. Furthermore, threats introduced by hacking have

become a leading cause of breaches in patients’ data, and sensing devices are no

exception to this since the information is often transmitted wirelessly. All of these

reasons resulted in IoT systems locally processing data [60, 75, 76]. In the same

context, some stroke clinical assessments, and some severe cases require particular

expertise in dealing with patients to position their limbs, this is usually done with the

assistance of experts in the field and is hard to translate to only WS.

Power consumption and latency issues

The WS are continuously sensing data, pre-processing and transmitting it to a remote

platform for analysis or visualisation. This results in huge power consumption that

may result in the devices turning off and thus terminating the monitoring process

of the patients. In addition to that, absolute dependence on cloud platforms for the

analysis of data may result in latency of the processing of information due to the huge

amounts of data that these platforms receive at once, this may lead to the loss of the

real-time aspect of the system or in worst cases to the complete failure of the system

when the internet connection is lost.
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Patients’ acceptance

Patients’ approval should be considered in order to build up platforms that will be

used in both clinical and home settings. Sensing devices may turn out to be redundant

if the patients or clinicians do not use them. Therefore, the wearable device should

be unobtrusive, and easy to operate. It should not influence the ADL of the user.

Researchers should also concentrate on the implications of the patients’ preferences

when designing the systems and more efforts should be spent on making stroke patients

more familiar with intelligent sensing devices.

2.4 Conclusion and study limitations

The primary contribution of this chapter is two-fold: Firstly, a new taxonomy for

post-stroke telerehabilitation assessment was proposed, categorising the field into

activity recognition, movement classification, and clinical assessment emulation. The

evaluation encompassed various research works conducted in this domain, analysing

the utilisation of WSs for data collection. IMU sensors were found to be the most

commonly used, with a limited presence of EMG sensors. Additionally, the study

examined sensor placements, study designs, feature engineering, and ML techniques

employed for the assessment. Secondly, The review identified challenges encountered

in the field, including data-related issues, recruitment difficulties, field complexity,

power consumption, and patients’ acceptance.

In the subsequent chapters, this study aims to address the identified constraints

related to field complexity and the adequacy of data volume and quality. The third

and fourth chapters focus on enhancing the effectiveness of the evaluation algorithm,

while the fifth chapter aims to generate more authentic and informative data. The

datasets analysed in this research encompass all forms of assessment systems within

the proposed taxonomy, as introduced in the outcome measures Section 2.2.
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Time series models

3.1 Background

As seen in Chapter 2, Human activity recognition (HAR) offers an interesting solution

towards the monitoring of ADLs. HAR is a broad field of study that aims to identify

the specific movement of a person based on information collected from sensors [119].

The sensor data may be remotely recorded from devices like cameras, radars and force

plates or locally recorded using WS. The most challenging task of WS-based HAR

in a real-time scenario is to get accurate and reliable information on the patient’s

activities and behaviours. To do so, many approaches have been investigated, ranging

from a conventional signal processing modelling approach that seeks a mathematical

relationship between an activity and the different modelling parameters, to ML

algorithms, that extract pertinent features to allow the model to differentiate and

recognise the different activities [61, 63, 65, 68, 73, 76, 77, 81, 84, 86–89], to more

recently DL algorithms that can automatically extract features and learn to distinguish

between the activities [61, 62, 64, 69, 74, 75, 115].

In this context, after AlexNet [120] emerged as the winner of the ImageNet competition

in 2012, deep CNNs have been successfully applied in various fields [121]. They

have achieved remarkable feats such as attaining human-like performance in image

recognition tasks [122] and performing diverse natural language processing tasks [123,

124]. Inspired by their accomplishments, researchers have started to adopt these CNN

26
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architectures for TS analysis [125]. These are commonly referred to as 1D CNNs. 1D

CNNs are better suited to handle 1D signals for the 1D CNNs refer to CNNs with 1D

kernel filters while 2D CNNs refer to CNNS with 2D kernel filters. following reasons:

1. 1D convolutions have a lower computational complexity compared to 2D con-

volutions. This means that a 1D CNN has a lower computational complexity

than a 2D CNN under equivalent conditions, like having the same configuration,

network, and hyperparameters. 1D models refer to CNN models using 1D kernels

while 2D models refer to CNN models using 2D kernels.

2. Most 1D CNN applications have used compact configurations with fewer hidden

layers and fewer neurons, whereas almost all 2D CNN applications have used

deep architectures with many parameters. Networks with shallow architectures

are easier to train and implement.

3. Training deep 2D CNNs requires special hardware setups like cloud computing

or GPU farms. In contrast, any CPU implementation over a standard computer

is feasible and relatively fast for training compact 1D CNNs with a few hidden

layers and neurons.

4. Due to their low computational requirements, compact 1D CNNs are well-suited

for real-time and low-cost applications, especially on mobile or handheld devices.

Recent studies have shown that compact 1D CNNs perform better than 2D CNNs

for applications with limited labelled data and high signal variations acquired from

different sources. Two distinct layer types are proposed in 1D CNNs: CNN layers and

MLP layers. The configuration of a 1D-CNN is formed by the number of hidden CNN

and MLP layers/neurons, filter (kernel) size in each CNN layer, subsampling factor in

each CNN layer, and the choice of pooling and activation functions.

In this chapter, a comprehensive evaluation of thirteen state-of-the-art 1D models

is done. These algorithms were originally designed for TS data forecast and were
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adapted to TS activity recognition. Before feeding the data into these algorithms, the

datasets were segmented into multiple time chunks using two different methods:

• Static segmentation: The dataset is decomposed into a fixed window, resulting

in equal-length time chunks.

• Dynamic segmentation: The dataset is decomposed in time chunks, and the

segmentation is governed by an event-triggered process.

Two different datasets were utilised: the WISDM Smartphone and Smartwatch Activity

and Biometrics Dataset [126] that comprises 19 different activities and of overground

and the dataset of treadmill walking kinematics.

3.2 Static segmentation and WISDM dataset:

3.2.1 TS models dataset description and preparation

In the first part of this chapter, the WISDM Smartphone and Smartwatch Activity

and Biometrics Dataset [126] was utilised. This dataset was actualised in late 2019. It

includes diverse and complex ADL and this makes it a good candidate for evaluating

the algorithms. It consists of 18 activities (Table 3.1) performed by 51 different

participants for three minutes. Two IMU sensors (triaxial accelerometer and triaxial

gyroscope) from a smartwatch and a smartphone were utilised respectively to collect

the data. The smartwatch was mounted on the participant’s dominant hand, and

the smartphone was placed on the waist, with each using a frequency of 20 Hz.

Hierarchically, the dataset is divided into two folders, phone and watch, each folder

is subdivided into two sub-folders accelerometer and gyroscope, each containing 51

files corresponding to the different participants’ IDs. Each file contains the following

information: subject-ID, activity-code (character between ‘A’ and ‘S’ no ‘N’ that

identifies the activity), timestamp, x, y, z sensors’ readings (i.e. accelerometer or
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gyroscope).

Table 3.1 shows the different activities involved and their labels.

Table 3.1: Dataset activities and their labels.

Activity orientation Activities

Non-hand-oriented ac-
tivities

Walking (A), Jogging (B), Stairs (C), Sitting (D), Standing
(E), Kicking (M)

Hand-oriented activi-
ties (Eating)

Eating soup (H), Eating chips (I), Eating pasta (J), Drinking
(K), Eating sandwich (L)

Hand-oriented activi-
ties (General)

Typing (F) , Playing catch (O) , Dribbling (P), Writing (Q),
Clapping (R), Brushing teeth (G) , Folding clothes (S)

3.2.2 Data pre-processing and classification models

The dataset has been segmented into 10 s chunks corresponding to 200 readings using

non-overlapping windows as shown in Figure 3.1 this window length has been chosen

in order to compare with the original paper results and other works that used this

dataset. Every segment of data is labelled with the most recurring corresponding

activity.

All analyses were done using Python (version 3.7.0), with packages (Numpy v1.19.5,

Pandas v1.1.5, Scipy v1.4.1). All ML models were trained using either Keras (version

2.4.0) or Tsai (version 0.2.2) from Fastai with Google Collab’s Tesla V100 GPU, 25

GB RAM.

To find the best-performing algorithm, sixteen state-of-the-art deep learning classifiers

are employed. Different architectures are used namely CNN, RNN, a combination of

the two (CNN-RNN), and Wavelet-based neural networks, as previously identified.

A brief description of each algorithm is given below. Besides, three different pre-

processing were used on the data: feeding raw data, normalised data, and standardised

data to the chosen algorithm. In addition, six different data sources were investigated:
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Figure 3.1: Sliding window segmentation.

a gyroscope from the phone, an accelerometer from the phone, a gyroscope from the

watch, an accelerometer from watch, a combination of accelerometer and gyroscope

from the phone (called phone) and finally, a combination of accelerometer and gyroscope

from the watch (called watch). The seventeen different explored models are briefly

defined as follows:

• RNN models

RNNs are a class of neural networks that allow previous outputs to be used as

inputs while having hidden states. In this paper, six RNNs with different Long
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Short-Time Memory (LSTM) are used for HAR, and the main difference between

each of them is the number of layers (1, 2, 3) as well as using the bidirectional

or non-bidirectional architectures.

• Fully convolutional Neural networks (FCN): Inspired by the work intro-

duced by Wang et al [127], it consists of CNNs that do not contain any local

pooling layers, meaning that the length of a TS is kept unchanged throughout

the layers of convolutions. FCN models have been widely used in various com-

puter vision tasks such as semantic segmentation, instance segmentation, and

object detection. They are highly effective in capturing spatial information in

images, and they have achieved state-of-the-art performance in many benchmark

datasets. It comprises of a series of convolutional layers and pooling layers,

followed by a series of upsampling layers that gradually increase the resolution

of the output. The final layer of the FCN model uses a softmax function to

produce a probability distribution for each pixel, indicating the likelihood that

it belongs to a particular class [128].

• InceptionTime: Consists of an ensemble of deep CNN models, inspired by the

Inception-v4 architecture for computer vision [129]. The composition of an Incep-

tion network contains two different residual blocks. For the Inception network,

each block is comprised of three Inception modules rather than traditional fully

convolutional layers. Each residual block’s input is transferred via a shortcut

linear connection to be added to the next block’s input. Following these residual

blocks, a Global Average Pooling layer was employed that averages the output

multivariate TS over the whole time dimension. Each inception module contains

a bottleneck 1D CNN layer with 32 output channels, a stride of 1 and a kernel

size of 1 to reduce parameter dimensionality. The bottleneck layer is followed

by three 1D CNN layers with an output channel of 32, a kernel size of 39, 19, 9

consecutively, a padding of 19, 9 and 4, with a stride of 1 in all the cases. The
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final layer of the InceptionTime network consists of a linear layer to output the

internal knee abduction moment.

• XceptionTime: is a DL model that is used for TS classification tasks. It

is a variant of the Xception model, which is a CNN architecture that was

originally designed for image classification tasks. The XceptionTime model

extends the Xception architecture to handle one-dimensional TS data [130]. The

XceptionTime model consists of a series of depthwise separable convolutional

layers, which are designed to efficiently learn spatial features in TS data. These

layers are followed by a series of residual blocks, which help the network learn

temporal dependencies between the features. The output of the network is fed

into a final fully connected layer, which produces the classification output. The

XceptionTime model has been shown to achieve state-of-the-art performance

on several benchmark TS classification datasets. It is particularly effective

when dealing with long sequences of TS data, where traditional recurrent neural

network architectures can be computationally expensive and difficult to train.

• ResNet: Convolutional layers that stack residual blocks on top of each other

to form a network, very popular in the computer vision domain introduced by

Kaiming He in [131]. ResNet allows using very deep structures which minimises

the problems of vanishing gradients and accuracy saturation, by adding shortcut

connections in each residual block to enable the gradient flow directly through

the bottom layers [131]. A residual block is a stack of layers set in such a way

that the output of a layer is taken and added to another layer deeper in the

block. The non-linearity is then applied after adding it together with the output

of the corresponding layers in the main path. A TS residual block is comprised

of stacking three 1D CNN layers followed by a batch normalisation layer and a

ReLU activation layer. The number of filters for the CNN layers in each residual

block is 64 then 128 then 256. The final ResNet stacks three residual blocks
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followed by a global average pooling layer and finally, a linear activation layer to

predict the knee abduction moment impulse.

• XResNet1d: A modification of the traditional ResNet architecture suggested

by Tong He in [132], adapted for TS data.

• ResCNN: ResCNN is a type of neural network that improves the training of deep

networks by using residual connections. It combines the input of a convolutional

layer with its output using a shortcut connection, allowing the network to bypass

one or more convolutional layers and create a residual block. This approach

helps the network learn the difference between the input and output, reducing

the vanishing gradient problem and improving training. ResCNNs have been

successful in a range of computer vision tasks, including image classification,

object detection, and semantic segmentation. The ResNet architecture is a

popular ResCNN model that has been widely used in many computer vision

applications.

• OmniscaleCNN: A CNN architecture whose specificity is to concatenate the

outputs of several convolution filters whose length is one plus all the prime

numbers between two and a quarter of the TS length proposed by Tang et

al [133].

• RNN-CNN models

A combination of CNN and RNN architectures was investigated, it consists of

LSTM layers and convolution layers for feature extraction with different pooling

layers.

• Wavelet-based neural network

This model consists of the Multilevel Wavelet Decomposition Network for Inter-

pretable Time Series Analysis (mWDN) Algorithm introduced by Wang et. al

in [134]. The particularity of this model is that it preserves the advantage of
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multilevel discrete wavelet decomposition in frequency learning while enabling

the fine-tuning of all parameters under a deep neural network framework.

Experimental results for the TS models

At this stage, raw data were utilised, 75% of the dataset was used for training and

the rest for testing, taking a cross-subject split approach to allow the model to learn

from all participants. After different training experiments, 32 epochs were found to

be the best choice in conjunction with using cyclical learning rates (LR), as proposed

by Leslie N. Smith in [135], where the loss is computed and plotted with respect to

an increasing LR. The LR is then an interval taken in the range where the loss is

decreasing. For example in Figure 3.2, the LR is chosen to be [3e-4,1e-2].

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

Learning Rate

2.6

2.7

2.8
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Figure 3.2: Loss by learning rate.

Validation accuracies for the different models with respect to the different sensors’s

sources are presented then computed. The accuracy was computed using the formula:
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Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

where TP is true positive, TN is true negative, FP is false positive, and FN is false

negative.

Table 3.2 shows the accuracy results when following the procedure explained earlier,

the sensors from the phone perform very poorly on the different models, this can

be explained by the fact that the phone was placed in the pocket while some of

the activities were hand-oriented, consequently making it difficult for the sensor to

sense the changes. The gyroscope from the phone performed best among the sensors,

XceptionTime model reached an accuracy of 40.87%.

In contrast, the watch sensors performed significantly better, the XceptionTime gave

the best overall results with 77.6% for the accelerometer data and 70.8% for the

gyroscope data. While the other models performed slightly worst. This is explained by

the fact that the sensor placement this time (wrist) is better for sensing the difference

between the hand-oriented activities.

Hence the XceptionTime model has been selected to carry out further fine-tuning and

fine-tuning to improve the performance.

Two pre-processing methods were investigated: feeding normalised data and feeding

standardised data. Normalisation typically means re-scaling the values into a range of

[0, 1] while standardisation means re-scaling data to have a mean of 0 and a SD of 1.

The pre-processing was first done on the training data, then the resulting processing

parameters were used to per-process the validation data to avoid data leakage.

Results of classification are presented in Table 3.3, only the watch sensors are presented

here, the phone data results were discarded because they did not improve from the

previous phase.

The combination of gyroscope and accelerometer performed best with 83% and 82%
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Table 3.2: Accuracies of the different models on the different sensors’ raw data.

Model Acc watch Acc phone Gyro watch Gyro phone watch phone

XceptionTime 0.776013 0.275341 0.707558 0.4087 0.697626 0.299416

ResNet 0.752714 0.224783 0.707558 0.353006 0.704748 0.294947

InceptionTime 0.751655 0.264684 0.683721 0.389305 0.709792 0.275696

ResCNN 0.748478 0.244114 0.680523 0.327237 0.709496 0.27879

LSTM FCN 0.73471 0.225774 0.681105 0.349958 0.707122 0.291165

OmniScaleCNN 0.730209 0.260719 0.680814 0.346911 0.657665 0.263445

LSTMFCN 0.726238 0.245353 0.681105 0.349958 0.697626 0.246476

FCN 0.721472 0.263445 0.677616 0.348573 0.711573 0.289447

xresnet1d34 0.709293 0.253779 0.67907 0.373234 0.680119 0.279821

mWDN 0.67964 0.238662 0.587209 0.313106 0.605242 0.275696

LSTM3 0.666667 0.203965 0.624419 0.365475 0.669436 0.258508

LSTM3bi 0.661371 0.203965 0.612791 0.353006 0.65905 0.237882

LSTM2 0.657665 0.199009 0.604942 0.343585 0.623739 0.232726

LSTM2bi 0.656606 0.17596 0.603198 0.337213 0.619881 0.217944

LSTM1 0.605242 0.174226 0.573837 0.326129 0.60178 0.202475

LSTM1bi 0.587503 0.163569 0.556395 0.321142 0.588131 0.196631

for the standardised and normalised data successively. The confusion matrix for the

best performing one (standardised) is shown in Figure 3.3. The ExceptionTime model

achieves near-perfect classifications for non-hand oriented activities (A, B, C, D, E, M)

and the general hand activities (F, G, O, P, Q, R, S) whereas it has more difficulty

differentiating between the different eating activities (H, I, J, K, L) especially eating

sandwich (L) eating chips (I) and eating pasta (J).
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Table 3.3: Validation Accuracies of the different watch sensors’ configurations

Sensor Standardised Normalised

Accelerometer 81% 69%

Gyroscope 73% 74%

Combination 83% 82%

3.3 Dynamic segmentation and treadmill walking

kinematics dataset:

This was a secondary analysis of a publicly available dataset, using a single session,

cross-sectional laboratory study design [136]. The data came from a public dataset

of 42 healthy adults walking on a treadmill, the details of which can be found in the

original open-source publication [136]. Nine out of the 42 participants from the walking

dataset were excluded from the present study. These participants had simultaneous

bilateral foot contacts on the same force plate, resulting in an absence of consecutive

good foot contact strides which lasted >50% of the walking duration. The 50%

threshold was determined by the authors to minimise manual identification of foot

contact events, and to increase processing replicability [137].

Participants performed unshod walking on a dual-belt, force-instrumented treadmill

(300 Hz, FIT; Bertec, Columbus, OH, USA), and motion was captured with 12

optoelectronic cameras (150Hz, Raptor-4; Motion Analysis Corporation, Santa Rosa,

CA, USA) [136]. This dataset was deemed feasible for this study given that the

primary aim is to determine the optimal network architecture for using TS kinematic

measures to predict knee joint moment impulse. Walking occurred over eight controlled

speeds: 40%, 55%, 70%, 85%, 100%, 115%, 130%, and 145% of each participant’s

self-determined dimensionless speed (Froude number). The associated absolute walking
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Figure 3.3: Confusion matrix of the normalised data from the watch.

speeds for all eight conditions for each participant were reported by the authors [136].

Marker trajectories and ground reaction force (GRF) were low passed filtered at a

matched frequency of 6Hz (4th Order, zero-lag, Butterworth) [137]. A seven-segment

lower limb, the 6DOF joint model was developed in Visual 3D software (C-motion Inc.,

Germantown, MD, USA) [137]. A force plate threshold of 50N was used to determine

gait events of initial contact and toe-off.

Three-dimensional (3D) angular and linear displacement, velocity, and acceleration of

the seven-segment’s centre of mass (COM), relative to a fixed global coordinate system

were derived and formed the predictor space (126 TS predictors). These kinematic

predictors were used as they represented predictors that can potentially be measured
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using IMUs. Internal moments are automatically calculated in Visual 3D. Hence,

the internal knee abduction moment (inverse of the external KAM) was calculated

using inverse-dynamics and expressed in the proximal segment’s reference frame [138]

(negative values indicated internal knee abduction moment)

Machine learning modeling

All analyses were done using Python (version 3.7.0), with packages (Numpy v1.19.5,

Pandas v1.1.5, Scipy v1.4.1). All ML models were trained using either Keras (version

2.4.0) or Tsai (version 0.2.2) from Fastai with Google Collab’s Tesla V100 GPU, and

25 GB RAM.

Generic pre-processing

Dynamical segmentation of all TS (predictors and outcome) was performed by an

event-triggered algorithm that takes into account the right foot on the ground: between

initial contact (RON) and toe-off (ROFF) [137], as shown in Figure 3.4, resulting in

non-fixed time chunk, and this is referred to as dynamic segmentation that differs from

the static segmentation utilised in section 3.2.2. For the outcome, the area under the

(negative) internal knee abduction moment curve for each TS segment was calculated

to provide a measure of knee abduction impulse. The knee abduction impulse was

normalised to each participant’s body mass (Nm.s/kg). Given that the stance duration

between each step, each speed condition, and participants were different, each TS

segment had a different number of data points. the TS segments were zero-padded to

have an equal number of data points as that of the longest TS segment [139, 140].

Three different pre-processing methods and their influence on prediction performance

were explored: (1) using raw TS data as predictors, (2) normalising the TS predictors

to a range from 0 to 1, and (3) standardising the TS predictors to a mean of 0 and

SD of 1. Although scaling of predictors (e.g. to a mean of 0 and SD 1) is commonly
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Figure 3.4: Dynamic segmentation

advocated in ML [141], the best prediction performance was found to be provided

by using raw TS as predictors in the exploratory analysis, and this was subsequently

utilised in formal ML modelling.

The total number of observations in the dataset was 6737 corresponding to 6737

participant-steps. The predictor dataset was organised into a 3D array of shapes

6737×126 ×300, where the second dimension was the number of predictors, and the

third dimension was the number of time points. The outcome dataset was organised

into a 1D vector of length 6737. Both the predictor and outcome datasets were split

into training (75%, n = 5052) and testing (25%, n = 1685) datasets [142]. The

training dataset contains 75% of all the participants’ data with all the controlled

speeds while the test dataset contains the rest of the dataset over the controlled speeds.

This allows the model to learn from all the different cases to permit a more robust

generalisation for each distinct instance. Our method of ML model development relies

on a scenario which a participant comes for a baseline biomechanics assessment to

develop a personalised model for the prediction of future instances of knee joint loads.

Figures (3.5-3.11), show a plot of the mean of each predictor around all the segments

and in shadow ± the SD:
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Figure 3.5: Predictors 1-18

Algorithms

The following architectures were evaluated: 1) A 2D CNN-based model used as a

baseline model, 2) the InceptionTime model, 3) transfer learning, and 4) the TS-Resnet
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Figure 3.6: Predictors 19-36

model.
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Figure 3.7: Predictors 37-54

2D CNN model

The baseline 2D CNN model architecture can be found in Figure 3.12. Convolutional

layers in a neural network are designed to learn a hierarchical representation of local
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Figure 3.8: Predictors 55-72

features (e.g. peaks) of the predictors [143]. Advantages of convolutional layers

over fully connected layers include having to learn much fewer parameters, better

generalisability, and better scalability to big datasets. The model hyperparameters
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Figure 3.9: Predictors 73-90

were selected based on initial exploratory analysis. Neural network (NN) weights

were initialised with Xavier initialisation [144]. The Xavier initialisation method is

calculated as a random number with a uniform probability distribution (U) between
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Figure 3.10: Predictors 91-108

the range − 1√
n

and 1√
n
, where n is the number of inputs to the node.

weight = U

[
− 1√

n
,

1√
n

]
(3.2)
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Figure 3.11: Predictors 109-126

A batch size of 64, 100 epochs of training repetitions, an LR of 3e-3, and an Adam

optimiser were used. The mean squared error as the loss criteria were also used.

For the other neural network models, a different method to find the appropriate LR,
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Figure 3.12: Baseline two dimensional convolutional neural network architecture.

which has been termed cyclical LRs, was used [135]. The loss was plotted with respect

to an increasing value of the LR. The LR was chosen to be in the interval that resulted

in the lowest loss, which was found to be between 8e-3 to 1e-1. The LR took the value

of 8e-3 at the first epoch and then gradually increased to reach a final value of 1e-1 at

the last epoch. In conjunction with the cyclical method, it was found that after only

ten epochs the loss stabilises and therefore 10 epochs were chosen, and a batch size

of 128. weights were initialised with Xavier initialisation. The three models used are

described below:

InceptionTime

Transfer learning InceptionTime

The InceptionTime model previously defined that was pre-trained on datasets from

the UCR archive [145]. Only two layers were tuned from the InceptionTime model -

the first input layer to ensure that the required dimensions of the data conformed to

our dataset; and the last layer in which the activation function was changed to linear

to predict the continuous outcome of knee abduction moment impulse.



Chapter 3. Time series models 49

TS-Resnet

ResNet allows using very deep structures which minimises the problems of vanishing

gradients and accuracy saturation, by adding shortcut connections in each residual

block to enable the gradient flow directly through the bottom layers [131]. A residual

block is a stack of layers set in such a way that the output of a layer is taken and

added to another layer deeper in the block. The non-linearity is then applied after

adding it together with the output of the corresponding layers in the main path. A

TS residual block is comprised of stacking three 1D CNN layers followed by a batch

normalisation layer and a ReLU activation layer. The number of filters for the CNN

layers in each residual block is 64 then 128 then 256. The final ResNet stacks three

residual blocks followed by a global average pooling layer and finally, a linear activation

layer to predict the knee abduction moment impulse.

Predictive performance

The prediction performance of the knee abduction impulse was calculated on our test

dataset using the metrics of the RMSE, (Nm.s/kg), the mean average error (MAE,

Nm.s/kg), and the mean absolute percentage error (MAPE, %), and the normalised

root mean squared Error (NRMSE, percentage). The RMSE was computed using

RMSE =

√∑N
i=1 ∥y(i)− ŷ(i)∥2

N
(3.3)

where y is the observed knee abduction moment, y is the predicted moment and N is

the number of observations in the test dataset. The MAE was computed using

MAE =

∑N
i=1 ∥y(i)− ŷ(i)∥

N
(3.4)

The MAPE was computed using:



Chapter 3. Time series models 50

MAPE =
1

N

N∑
i=1

∥∥∥∥y(i)− ŷ(i)

y(i)

∥∥∥∥ (3.5)

And finally, the NRMSE which is the RMSE divided by a measure spread. In this

work, the RMSE is divided by the difference between the min and the max of the knee

abduction.

NRMSE(%) =
RMSE

MAX −MIN
× 100 (3.6)

The max and min values are reported below in the result section.

3.3.1 Results on the treadmill dataset

For the 33 included participants (female = 15, male = 18), the mean SD age was

39.42 (17.87) years, height was 1.67m (0.12m), and body mass was 67.66 kg (12.44

kg). The mean knee adduction impulse was -28.06 Nm.s/kg, SD was 11.55 Nm.s/kg,

the interquartile range was 15.17 Nm.s/kg, with a variation range (max-min) of 86.94

Nm.s/kg. The mean (SD) waveforms of our 126 predictors normalised 100% timepoints

of the stance phase, on our dataset can be found in the supplementary material.

Table 3.4: Regression models performance

Training set
loss(Nm.s/kg)

Validation
set
loss(Nm.s/kg)

Test
set MAE
(Nm.s/kg)

Test set
RMSE
(Nm.s/kg)

Test set
MAPE
(%)

Test set
NRMSE
(%)

Baseline model 8.91 16.97 2.78 3.46 10.80 3.98

InceptionTime 6.70 6.05 1.76 2.46 8.61 2.83

Transfer learning 6.54 5.59 1.70 2.36 8.28 2.71

TS-ResNet 5.28 6.10 1.77 2.47 8.65 3.15

Table 3.4 shows the performance of the four ML models. MAPE and MAE are

measures of how far the model’s predictions are off from observed values on average.
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The baseline model achieved 10.80% with the predicted value spreading on average

2.78 Nm.s/kg from the observed values. Transfer learning with inception time was

the best performing model, achieving the best MAPE of 8.28%, which translates

to the predicted value spreading on average 1.70 Nm.s/kg from the observed values.

In contrast, training the inception time model from scratch resulted in a slightly

lower performance compared to transfer learning, with a MAPE of 8.61%. The

GADF-xResnet 18 model performed worse than the baseline model with a MAPE of

16.17%. This means that converting a TS to images did not improve ML prediction

performances.

3.3.2 Discussion about the dynamic segmentation

The ability to quantify joint moments in the field may revolutionise the clinical

management of musculoskeletal disorders where tissue loading has been implicated as

a risk factor for the onset, exacerbation, and symptomatic relapse. In partial support

of our hypothesis, transfer learning resulted in the best prediction performance of

the outcome of knee abduction impulse during walking. However, in contrast to our

hypothesis, the GADF-xResnet model was the worst-performing algorithm.

The only other study to our knowledge that investigated the accuracy of ML in

predicting KAM impulse was Stetter et al. [146], which reported an average observed

value of 69.16 Nm.s/kg, and a predicted value of 64.23 Nm.s/kg – a difference of 4.93

Nm.s/kg. Given that performance metrics (RMSE, MAE) were not reported for KAM

impulse [146], the difference in average values as the performance metric were used for

comparison. The performance in predicting KAM impulse in the previous study [146]

was worse than all our models tested in the present study. The worse performance

by Stetter et al. [146] could be due to two reasons. First, the previous study used

IMU TS predictors [146] which may be noisier than our kinematic predictors. Second,

Stetter et al. [146] performed validation whereby the training and testing data were
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independent (i.e. subject data in the training set not in the testing set). However, our

training and testing data were dependent, the reason for which was explained in the

methods section. Third, they used a fully connected layered neural network model

which may not adequately harness the temporal information within the variables [146].

As previously mentioned, Boswell et al. [147] reported that a fully connected network

was superior to an LTSM network, but the poorer performance of the latter could be an

insufficient number of layers. Future investigations are needed to benchmark different

types of network architectures on different biomechanical datasets to determine when

different modelling approaches would be superior.

A number of layers used in our ResNet model was potentially insufficient to learn the

parameters.

Another finding of the present study was that our baseline CNN model performed worse

than InceptionTime and TS-ResNet, using the same TS predictors. Both InceptionTime

and TS-ResNet contain shortcut residual connections between convolutional layers,

whilst our baseline CNN model does not. The benefit of having residual connections

within the network is that makes training a deep neural network much easier by

reducing the vanishing gradient effect [131]. In addition, the high performance of

InceptionTime may be attributed to having multiple parallel convolutional layers,

each with different filter lengths, learning different latent hierarchical features of the

TS. The benefit of having multiple parallel layers may be analogous to the benefit

of ensemble ML techniques like boosting – combining the results of multiple weak

learners. InceptionTime, when compared to the baseline model, combines multiple

extracting structures with different window sizes, which allows the former to extract a

more diverse set of features from the predictors than the latter, thereby improving the

prediction performance using InceptionTime. In a consistent manner, TS-ResNet’s

deep architecture also allows to learn a plethora of features that are associated with this

dataset. In contrast, the baseline model likely did not allow to learn the features as well
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as with InceptionTime and TS-ResNet due to its shallow architecture. Interestingly,

our finding that transfer learning resulted in the best prediction performance was not

supported by another study, albeit conducted in running [148]

The following limitations were identified in this study. First, hyperparameter tuning

was not performed, and the selected hyperparameters were chosen based on the authors’

experience. Therefore, our findings could be considered to provide a more conservative

estimate of the predictive performance of deep and transfer learning models. Second,

predictors derived from optoelectronic systems were used, which can still be a time-

method to use in clinics. WS or markerless motion capture represents the most

clinically feasible methods of measuring body motions. Whether the performance

of the ML approach using these newer technologies would match that of traditional

optoelectronic systems needs to be investigated. Third, the model was developed using

data collected from treadmill walking, and the performance may differ in overground

walking. Lastly, the models were trained to predict a specific load metric, the internal

knee abduction impulse. Whether the present study’s findings would similarly translate

to other knee load metrics (e.g. peaks), or indeed the entire TS curve, will require

investigation..

3.4 Conclusion

In this chapter, an investigation into the performance of various state-of-the-art TS DL

algorithms was conducted. Two different datasets were used: the first was a complex

HAR dataset, and the second was aimed at predicting the knee abduction moment

impulse. The impact of various factors such as sensor utilisation, sensor placement,

pre-processing algorithms, and transfer learning on the algorithm’s performance were

analysed.

The analysis of the first dataset revealed that the different algorithms produced
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accuracy rates that were relatively close to each other. However, the Xceptiontime

model slightly outperformed the other models. It was observed that sensor placement

played a significant role in accurately recognising the activities, as some placements

were more sensitive to specific activities than others. In particular, a maximum

accuracy rate of 42% was achieved by using the algorithm on data from sensors placed

on the waist, while the sensors placed on the hand yielded an accuracy rate of 84%.

On the second dataset, it was found that TS-based DL models were highly effective

in predicting knee abduction moment impulse during walking. It was also observed

that transfer learning improved the predictive model’s performance, even though the

two models were derived from different domain disciplines. The results supported the

idea that combining ML with kinematic inputs can effectively quantify biomechanical

kinetic measures outside the laboratory.

In the previous chapter, the application of CV models to TS data in rehabilitation

assessment was examined, revealing promising outcomes and demonstrating the models’

adaptability and strength. As the focus shifts in the next chapter, a novel transfor-

mative approach called ’Imaging TS’ is introduced. This technique transforms time

TS into visual images, which are then analysed using 2D CNNs. This approach not

only explores new methods but also addresses previous challenges related to algorithm

performance and data interpretation. It leverages established CV models for a deeper

understanding and analysis of time series data, marking a significant step into new

research territory in the field of rehabilitation assessment. A complete pipeline that

will also use interpolation to increase/decrease image size is also presented.



Chapter 4
Encoding time series models

4.1 Background

In the preceding chapter, an attempt was made to address the issue of rehabilitation

assessment performance, as presented in Chapter 2, by adapting CV models to the TS

(TS) format. This involved segmenting data either statically or dynamically, modifying

the structure of conventional CV models using one-dimensional (1D) kernels, and

rearranging the input to make it compatible with the TS format.

In this chapter, a different approach is followed, whereby the TS data chunks are

encoded into images and fed into a two-dimensional (2D) kernel CNN model, which is

also a CV model. This approach, known as “imaging TS," is increasingly being utilised.

For example, Souza et al. [149] used recurrence plots to encode TS from different

univariate UCR datasets. Images were then fed to support vector machine (SVM)

classifiers and outperformed state-of-the-art methods at the time. Researchers in [113]

employed GMAF and MKV to encode five multi-disciplinary univariate TS datasets.

The resulting images were then fed to tiled CNN and demonstrated competitive results.

GMAF has also been used for EEG classification and performed well [150].

The contribution of this chapter is to propose a way to adapt it to multivariate TS

by imaging each axis of the sensors separately and fusing them together to create

multi-channel images. The resulting image size equals the sequence length of the

55
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original TS, which also represents a limitation, this was tackled by employing a linear

interpolation on the TS sequence to increase or decrease it. The datasets used in

Chapter 2 were employed to compare the accuracies of the two approaches, as well as

the smartphone-based recognition of human activities and postural transitions dataset.

4.2 Dataset and pre-processing

In the first part of this chapter, the smartphone-based recognition of human activities

and postural transitions dataset from Reyes-Ortiz et al [151] is used. It contains data

from experiments that were carried out with a group of 30 volunteers within an age

bracket of 19-48 years who performed a protocol of ADL. Six dynamic activities from

the dataset were included: walking, walking up, walking down, sit to stand, stand

to sit, lying. The reason for choosing these activities is that post-stroke patients

are required to perform them in their daily lives. In addition, the quantity of data

for the different activities are very close allowing us to build a more accurate model

less prone to bias. Besides some of these activities are very similar and hard to

differentiate which will be a good challenge for our algorithms. The data is comprised

of tri-axial linear acceleration and 3-axial angular velocity at a constant frequency of

50 Hz using the embedded accelerometer and gyroscope in a smartphone. The dataset

is organised in two folders the first contains unprocessed raw data and the second

contains preprocessed data (denoised and decomposed in different time windows and

features). In this work, only the raw data were considered.

4.2.1 Data segmentation

After the data of the different activities were loaded into different frames of data, each

element at a particular time was labelled depending on which activity was performed.

After that, a sliding window method has been employed in order to prepare the data

for further processing. A sliding window converts sequential data into different chunks
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of data with a fixed window size in order to be used in algorithms that require the

data to be of a specific structure. In this work, a sliding window of 4 sec (4 sec × 50

Hz = 200 data elements) was chosen to decompose the dataset into different windows

of the same size. The label for each data chunk was chosen to be the label that is

most recurrent within the segment. Since the activities were performed sequentially,

an activity might be cut when composing the different windows. To remedy to this

issue, an overlap of 2 sec was introduced, which means that adjacent windows share

50% of the data. The resulting windows are matrices with fixed sizes 200 × 6 with the

six columns corresponding to the triaxial accelerometer and gyroscope. Fig 4.1 shows

how a sliding window operates. Therefore a static segmentation as the one presented

in section 3.2.2 was employed.

Figure 4.1: Sliding window to decompose the dataset.

4.2.2 Imaging ts data

Three encoding techniques proposed by Wang et.al in [152] are utilised in this chapter

namely the GASF, GADF and MKV.

GMAF

GMAF is an encoding technique that transforms TS data into images, it uses the polar

coordinates representation of the data presented in a matrix form called the Gramian
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Figure 4.2: Encoding a window of the IMU data into gramian images.

matrix. Each element of this matrix is either the addition (GASF) of the cosines of

the polar angles or the difference (GADF) of their sines. This mapping maintains the

temporal dependency of the TS, the time increases as the position shifts from the top

left to the bottom right. Due to this feature, the polar coordinates can be reverted
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back to the original TS data by its transformation principle.

The steps to encode the TS data into images using GAF are given below:

• First data should be re-scaled to the range [0,1] ( or [-1,1]) using the linear

normalisation equation 4.1:

x̂i =
xi −min(X)

max(X)−min(X)
(4.1)

• After that, the data is mapped into its polar coordinates representation using

equations 4.2 and4.3

ϕ = arccos(x̂i),−1 ≤ x̂i ≤ 1, x̂i ∈ X (4.2)

r =
ti
N
, ti ∈ N (4.3)

• Finally either sum (GASF) or differentiate (GADF) the cosines or the sines of the

polar angles to build the Gramian matrix as shown in 4.4 and 4.5 respectively:

GASF = cos(ϕi + ϕj)

= X̂T .X̂ −
√

I − X̂2

T

.

√
I − X̂2

(4.4)

GADF = sin(ϕi − ϕj)

=

√
I − X̂2

T

.X̂ − X̂T .

√
I − X̂2

(4.5)

where I is the unit vector after the transformation to polar coordinates, X the elements

of the TS X, and t the time subscript.
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Markov Transition Fields

The MKV is given as follows:

M =



wij|x1∈qi,x1∈qj · · · wij|x1∈qi,xn∈qj

wij|x2∈qi,x1∈qj · · · wij|x2∈qi,xn∈qj

... . . . ...

wij|xn∈qi,x1∈qj · · · wij|xn∈qi,xn∈qj


(4.6)

A Q × Q Markov transition matrix (W ) is built by dividing the data (magnitude)

into Q quantile bins. The quantile bins that contain the data at time stamp i and

j (temporal axis) are qi and qj (q ∈ [1, Q]). Mij denotes the transition probability

of qi → qj. That is, the matrix W which contains the transition probability on the

magnitude axis is pread out into the MKV matrix by considering the corresponding

temporal positions.

By assigning the probability from the quantile at time step i to the quantile at time

step j at each pixel Mij, the MKV M encodes the multi-span transition probabilities

of the TS. Mi,j||i−j|=k denotes the transition probability between the points with time

interval k. For example, Mij|j−i=1 illustrates the transition process along the time axis

with a skip step. The main diagonal Mii, which is a special case when k = 0 captures

the probability from each quantile to itself (the self-transition probability) at time

step i. To make the image size manageable and computation more efficient, The MKV

size is reduced by averaging the pixels in each non-overlapping m×m patch with the

blurring kernel { 1
m2}m×m. That is, the transition probabilities are aggregated in each

sub-sequence of length m together. To the contrary to the GMAF, This mapping does
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not maintain the temporal dependency of the TS.

4.3 Classification and experimental results

In subsection 4.3.1 the 2D size images from the GMAF transformations (subsection

4.2.2) were and the windows from the segmentation (subsection 4.2.1 to feed a 1D

based CNN classifier, while in subsection 4.3.2 the previous images were converted to

RGB format and use a 2D CNN based classifier as well as the VGG_16 pre-trained

model employing transfer learning technique and compare the overall results.

4.3.1 2D models

The model used for the classification comprises two 1D CNN layers, supported by

a dropout layer for the regularisation of the data, and then a pooling layer. The

reason for defining two CNN layers is to give the model a good chance of learning the

features from the input. In order to avoid over-fitting of the data resulting from the

fast learning of the CNNs a dropout layer is utilised. After the CNN, the features are

flattened to a 64-node vector and go through a fully connected layer that provides

a buffer between the learnt characteristics and the classification. This model uses a

standard tuning of 64 parallel feature maps and a kernel size of 2. The three discussed

methods namely: the windowing method, the GASF and the GADF as shown in Fig

4.3 are used as inputs to this classifier.

The results of decomposing the dataset are 7474 different windows of data of 200

samples for the six sensors-axes (7474 × 200 × 6). The encoded images resulting

from the Gramian transformation are 7474 of 256 × 256 different images. 80% of the

data (5980) were used for training the model while 1494 were used for testing. To

evaluate the techniques, the model was used in three separate parts, one for each input

technique.
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Figure 4.3: Classification process for the 2D methods.

The models were trained for 250 epochs on an I7 CPU 6700T 16GB RAM and the

results are shown in Fig 4.4 and 4.5.

• The window-CNN model (Fig 4.4-a) reaches a maximum accuracy of 95.42% for

training and 94% for the testing, this model seems less prone to over-fitting as

the accuracies seem to stabilise at the same time after 130 epochs at around 94%.

This model though starts learning slowly with a training precision of 37.5% and

a testing precision of 72.31% at the origin. The average learning time was 740

µs per sample.

• The GASF-CNN model (Fig 4.4-b) reaches a maximum training accuracy of

98.81% and testing accuracy of 97.06% but it seems to start overfitting after 30

epochs. The accuracies seem to stabilise at an accuracy of 98.54% for training

and 96.25% for validation. The model also starts learning quickly with a training

accuracy of 69.46% at the origin and 87.29% for the testing. The average training

time was 770 µs by sample.
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(a) (b)

(c)

Figure 4.4: Accuracies of the different 2D method
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(a) (b)

(c)

Figure 4.5: Confusion matrices of the different 2D method
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• Finally, the GADF-CNN model Fig 4.4-c) reaches a maximum training accuracy

of 99.38% and testing accuracy of 97.06%, this model seems to start overfitting

after 35 epochs. The accuracies seem to stabilise at 98.43% for training and

96.19% for validation were obtained. This model though starts learning very

quickly with a training precision of 71.47% and a testing precision of 89.23% at

the origin. The average learning time was 820 µs per sample.

• 75 time chunks from the overa1l 1494 were miss-classifed in the window-CNN

(Fig Fig 4.5-a) model. It confuses 38 walking up activities for walking down and

37 walking down for walking up.

• For the GMAF models, 44 miss-classifications for both models were recorded.

The GSAF_CNN (fig Fig 4.5-b) confused 40 walk-ups for walk-downs while the

GDAF_CNN (Fig Fig 4.5-c) miss-classified 36 walking for walking-down.

4.3.2 RGB models

The 2D: 128 × 128 GMAF images were converted to the 128 × 128 × 3 RGB format

in order to investigate their performances using:

The first model comprises 2 layers of 2D CNN 64-nodes supported by dropouts to

reduce over-fitting. the learned features are flattened and then filtered out through a

64-node vector to finally go through the Softmax classification layer. This model uses

a standard tuning of 64 parallel feature maps and a kernel size of 2 × 2.

In the second model, transfer learning is used by employing the popular VGG16, which

is a 16-layer network built by Oxfords VGG [153]. It was pre-trained on a 1,000,000

images dataset from ImageNet and achieved state-of-the-art results. It contains 16

hidden layers composed of convolutional layers and max pooling. One extra Softmax

6-layer classification layer was added at the top for our classification.

As for the 2d models, 80 per cent of the data (5980) were used for training the model
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while the 1494 were used for testing. To evaluate the techniques, the model was used

in four separate structures (depending on the two inputs and the two classifiers) as

shown in Fig 4.6. Fig 4.7 shows the models’ accuracies when trained for 250 epochs

on Google Colab GPU 16GB Ram.

Figure 4.6: Classification process for the RGB methods.

• The CONV2D_GSAF model performs relatively badly (Fig 4.7-a), it reaches a

maximum accuracy of 89.53% for training and 95.45% for the testing, this model

seems less prone to over-fitting as the accuracies seem to stabilise at the same

time after 120 epochs around the accuracies given before. This model though

starts learning slowly with a training precision of 41.80% and a testing precision

of 47.96% at the origin. The average learning time was 22.33 ms per sample.

• The CONV2D_GDAF model (Fig 4.7-b) reaches a maximum training accuracy

of 97.98% and testing accuracy of 97.52% but it seems to start overfitting after

120 epochs. The validation accuracy seems to stabilise at an accuracy of 95.65%

while the training keeps increasing above 97.98%. The model also starts learning
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(a) (b)

(c) (d)

Figure 4.7: Accuracies of the different RGB methods
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(a) (b)

(c) (d)

Figure 4.8: Confusion matrices of the different RGB methods
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quickly with a training accuracy of 55.88% at the origin and 68.16% for the

testing. The average training time was 42 ms by sample.

• The VGG_GSAF model (Fig 4.7-c) reaches a maximum training accuracy of

100% and testing accuracy of 98.46%, this model seems to start overfitting after

115 epochs. The accuracies then decrease to accuracies of 98.73% for training

and 97.59% for validation. This model though starts learning very quickly with

a training precision of 58.86% and a testing precision of 85.08% at the origin.

The average learning time was 73 ms per sample.

• Finally, the VGG_GDAF model (Fig 4.7-d) reaches a maximum training accuracy

of 100% and testing accuracy of 98.53%, this model seems to stabilise after 120

epochs at 100% training and 97.86% for validation. This model though starts

learning very quickly with a training precision of 69.41% and a testing precision

of 90.23% at the origin. The average learning time was 79 ms per sample.

• For the 2D CNN models, 68 and 37 miss-classifications were recorded for the

2D_GSAF (Fig 4.8-a) and 2D_GDAF (Fig 4.8-b) models respectively. The

first one mostly confuses walking up and down but also some sit-to-stand and

stand-to-sit activities. the second one is more accurate only miss-classifying

some walking up and down activities.

• For the VGG models, 19 and 22 miss-classifications for the VGG_GSAF (4.8-c)

and VGG_GDAF (4.7-d) models were recorded respectively. The VGG_GSAF)

confused 15 walk-ups for walk-downs while the VGG_GDAF miss-classified 20

walking for walking-down.

To summarise, the four RGB-based models give even better accuracies than the 2D

models. Using GSAF and the CNN_2D improved the accuracy of the windowing

method by approximately 1.45% for the validation data, and decreased the training

data by 5.89% for training data but took much longer for training. The reason for
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that is that the windows of data were encoded to 128 × 128 images and then to RGB

128 × 128 × 3 images.

Using GADF and the CNN_2D improved the windowing accuracy 3.56% for the

validation data, and 2.52% for training data, nevertheless the required time for

training was slower than the GSAF_CNN2D (almost double). On the other hand the

VGG models gave the best results overall, it improved the windowing accuracy by

4.58% for the training data for both GSAF and GDAF, and 4.46%, 4.53% for the test

data accuracy for GSAF and GDAF respectively. The time used for the training was

the slowest among all models.

following these results, the RGB images are used in the upcoming parts.

4.4 Encoding pipeline

In this section the results obtained in Chapter 3 are compared with the proposed

approach which consists of images resulting from encoding the TS data, the images

of the different sensors’ axes are fused together and image sizes are increased using a

linear interpolation technique. The resulting images are then fed to a 2D CNN-based

model. The datasets presented in sections: (3.2 and 3.3) are used.

4.4.1 Encoding techniques

4.4.2 Image fusion and interpolation

The TS windows are encoded into images using the previously described encoding

techniques in section 4.2.2, images resulting from different axes are fused together to

create multiple-channel images. A linear interpolation is used before that in order to

either up-sample or down-sample the images’ sizes.



Chapter 4. Encoding time series models 71

Image fusion

These encoding techniques described in 4.4.1 transform univariate TS windows into

single-channel images whose size equals that of the window length. in this work, the

window size is 200, subsequently, the resulting images are 200× 200. In the case of

multivariate TS, as it is in this work, each sensor’s axis is encoded into images. For

acceleration or gyroscope-only data, the three axes (x− y − z) are transformed into

three-channel images, meaning, the resulting images for the different axis corresponding

to the same window are fused together to create three-channel images (A 3 × 200

window generates 3× 200× 200 images). In the case of the combination of the two

sensors, six-channel images are generated by fusing the images for each axis (a 6× 200

window generates 6× 200× 200 images).

Figure 4.9 illustrates two windows of data corresponding to three-axis acceleration

data for jogging activity and standing activity and the corresponding GASF, GADF,

MKV.

A limitation when using these three encoding techniques is that the resulting image

size is set by the window length of the TS data. Sometimes changing the image size

would improve classification accuracy, or speed up the training. In this work, an

additional layer of pre-processing is done on the TS data to change its size before

encoding it into images using linear interpolation.

Linear interpolation

Linear interpolation is a technique to fit a curve using linear polynomials to generate

new data points within the interval of a discrete set of already known data points. It

has been used in this work to over-sample windows of data to increase the size of the

windows by adding new points. Another approach would have been to increase the

window size when segmenting the dataset, but that would decrease the number of the

resulting windows, hence reducing the dataset size. In addition, as stated earlier, in
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Figure 4.9: The TS data from accelerometer and the different corresponding encoded
images for jogging at the top and standing soup at the bottom.

this work the same window used in other works has been chosen in order to have an

objective performance comparison.

If the two known points are given by the coordinates (x0, y0) and (x1, y1), the linear

interpolation is the straight line between these points. In this work, an interpolation

Coeff is defined, which is a parameter that controls the factor at which the resulting

data length (rdl) is increased from the original data length: Coeff = rdl ÷ odl. For

example, a coefficient of 2 would yield to doubling the data points of the window. The

added data points are homogeneously spread along the window in order not to affect

the data distribution. A Coeff in the range [0,1] means reducing the window length,

for example, a Coeff of 0.5 would yield to decrease the data points of the window

by half. Figure 4.10 describes the coeff-based interpolation used in this work before

constructing the images.
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Figure 4.10: Linear interpolation of IMU data.

4.4.3 Data pre-processing and classification model

Only the data from the watch sensors are considered, data from the phone are not

included because the sensor placement on the waist did not capture relevant information

for hand-oriented activities, thus yielding a worse classification performance.

The resulting 200-long chunks of raw data from section 3.2.2 are normalised and

re-scaled to the range [−1, 1]. After that, a linear interpolation is done on the windows

either to up-sample or down-sample the data windows as described in section 4.4.2 to

see the effect of either increasing or decreasing the image size. The sizes chosen are: 50,

100, 200 (no interpolation), 300, 400, 500. after that, the associated windows for each

sensor are encoded using three encoding techniques described in section 4.4.1. The

resulting images for the different axes are fused together to create 3-channel images

when the source is gyroscope only or accelerometer only, or 6-channel images for their

combination as explained in section 4.4.2.

The dataset is decomposed into training and validation following the same procedure in
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(a) (b)

(c)

Figure 4.11: Accuracies per image size for the different encoding techniques

section 3.2.2, the fine-tuning parameters are also chosen similarly. Many classification

models have been investigated and the Xresnet18 [132] was finally selected because

it performed best without transfer learning. Xresnet is the popular Resnet [122]

architecture with three different tweaks on the residual blocks.

4.4.4 Experimental results on the WIDSM dataset

The accelerometer, gyroscope data and their combination from the watch are encoded

into different-sized images as explained in 4.4.3 and then fed to the XResnet18 model.

The resulting validation accuracies are given in Figure 4.11 and Table 4.1, representing

the accuracy for each encoding technique for each sensor per image size. From these

results, numerous points were noticed:
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Table 4.1: Accuracies per image size for the different encoding techniques

Sensor Encoding 50 100 200 300 400 500

ACC

GADF 75.11327 82.8838 85.775 86.3878 87.4496 86.8796

GASF 85.3897 85.5596 86.3028 88.0017 88.9573 88.1504

MKV 38.0123 59.2483 73.2003 74.4653 76.237 75.4301

GYRO

GADF 69.473 78.3815 82.9524 84.2814 86.1418 85.3349

GASF 70.0093 78.6847 82.416 86.1473 86.3003 85.4934

MKV 50.1435 62.1398 69.0065 73.6358 77.1659 76.359

Watch

GADF 77.8624 83.9086 86.646 87.9552 88.4551 87.6482

GASF 82.6232 84.5275 89.0502 91.4544 88.3361 87.5292

MKV 49.0597 70.7451 78.6479 81.6234 82.421 81.6141

• Fusing the images significantly increased accuracy from the TS models in section

3.2.2 from 83% to 91.5% for the combined sensors, GASF encoding 300 image

size.

• The GASF is the best-performing encoding technique, it performs slightly better

than GADF for all the sensors and sizes.

• MKV is the worst performing encoding, it performs worse than the TS model

from section 3.2.2.

• Up-sample Interpolation of the data increased the classification accuracy for

almost all the models until a Coeff ≈ 2 e.g. It increased the accuracy for the

GASF-200-watch from 89.1% to 91.5% for GASF-300-watch, and 82.9% for the

GADF-200-gyro to 86.1% for GADF-400-gyro.

• Increasing Coeff further than 2, led the performance accuracy to decrease in all

models.

• Down-sample interpolation improves the accuracy from the TS models from
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section 3.2.2 for some models, a Coeff of 0.5 performed better for example in

the GASF-100-ACC, GADF-100-watch, and GASF-100-watch. Only a single

model with a Coeff of 0.25, i.e. the GASF-50-ACC performed better than

the TS model. Down-sample interpolation can be useful when a performance

accuracy improvement is sought, and keeping also a balance with the computation

complexity.

• 6-channel images resulting from fusing all the sensors performed better than the

3-channel images from the individual sensors.

Figure 4.12 shows the validation accuracy curve and the confusion matrix for the

best-performing model which is the GASF-300-watch.

Figure 4.12: Accuracy per epoch and confusion matrix for the GASF 300 size data
from the watch.

Comparing the confusion matrices in Figure 4.12 and the TS model in Figure 3.3,

demonstrates a significant improvement in distinguishing between the hand-oriented

activities, this shows that by interpolating the data and fusing the images the model

learnt to discriminate between these very close complex activities.

The model achieves near-perfect classification for most of the activities, the most

confusion happens only between eating a sandwich and eating chips accounts for 25
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false negatives each among the 238 (24%). Besides, the general hand activities and

non-hand oriented activities miss-classifications have been reduced.

4.4.5 Comparaison with other works

‘

Table 4.2: Comparison with other works

Paper [154] [155] [156] ExceptionTime [157] [158]
Our

approach

Accuracy

(%)
79 80 72 83 84 87.5 91.5

All the work done on the WIDSM dataset employed the traditional segmentation

technique. Benavidez et.al in [154] employed both LSTM and CNN architectures,

reaching a maximum accuracy of 79% for the watch. Saleh et.al in [155] opted for

using conventional ML algorithms consisting of Random Forest, KNN and SVM. They

selected a set of features and achieved a maximum of 80% for RF. Online federated

learning techniques were used in [156] achieving an accuracy of 87%. Researchers

in [157] used four different DL models namely CNN, BiLSTM, LSTM, and ConvLSTM

on the different sensors of the dataset, the CNN model outperformed the other models

achieving 84.9%. Finally, Bhuiyan et.al in [158] applied several ML algorithms along

with some preprocessing techniques to identify which combination performs best,

they found out that the highest accuracy 87.5% is achieved in phone accelerometer

data when coupling Principal Component Analysis with Random Forest. Table 4.2

summarises the accuracy result comparison. An inference speed comparison was not

possible as these data were not available in the other works’ papers.

The proposed model performed better than all other existing works, achieving 91.5%.

The best-performing model was increasing the data from the combination of accelerom-

eter and gyroscope from the watch using linear interpolation by a factor of 1.5, then
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encoding it into GASF, to finally feeding the resulting images into the Xresnet18

model.

4.5 Conclusion

The segmented TS data were converted into images using three distinct encoding

techniques, namely GASF, GADF, and MKV. The resultant images from the various

axes of the sensors were merged to produce multi-channel images. To increase the

dimensions of the images, linear interpolation was applied to the data windows

to generate additional data points. The optimal configuration was determined by

comparing the performance of the various encoding techniques and image dimensions,

and evaluating how these parameters impacted the classification accuracy. The

classification accuracy was improved by up to a factor of 2 by increasing the image

dimensions using linear interpolation; however, the accuracy declined beyond this point.

Additionally, reducing the image dimensions from the original window length enhanced

the accuracy compared to TS models, striking a balance between performance and

computational complexity. Merging the images boosted the accuracy from 83% for 1D

models to 91.5% in the case of GASF encoding and 300-size images. MKV encoding,

on the other hand, performed poorly when compared to the other encoding techniques.

The proposed methodology in this chapter significantly improved accuracy compared

to Chapter 3 and could, therefore, be a suitable approach for post-stroke patient HAR

and addressing the performance limitations identified in Section 2 of Chapter 2.

In the upcoming chapter, we will delve into the limitation highlighted in section 4 of

Chapter 2, specifically focusing on the issue of data quantity. The chapter will explore

the use of GANs to create varied and high-quality time series data within the realm of

post-stroke rehabilitation. This exploration aims to enhance the assessment process in

post-stroke rehabilitation further. This will also contribute to the algorithms proposed
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in this chapter by providing more data.



Chapter 5
Data augmentation

5.1 Background

In sensor-based telerehabilitation, data plays a crucial role as it serves as the medium

used to learn features. The data generated by these sensors are known as TS [159],

which are organized sequentially in a time-dependent manner. They are classified as

univariate TS if they vary on a single axis and multivariate TS if they vary on multiple

axes [111]. However, in healthcare applications, including stroke rehabilitation, it

is not always feasible to obtain sufficient data due to patients’ conditions that may

prohibit their attendance in testing sessions [160]. To address this issue, the creation

of synthetic data, with enough information to simulate real-world data, is required.

This process, known as data augmentation, is a well-established processing step in

CV [161]. Additionally, data augmentation assists with model generalisation capability,

reducing over-fitting and increasing the trained models’ characterisation boundary [162].

Although many data augmentation techniques exist for TS data, such as random

transformations like scaling and slicing, they are not always effective as they cannot

account for the specific characteristics of each dataset [163].

To overcome this challenge, new ML models have been introduced that allow person-

alised spawning of data by taking into account the input dataset’s characteristics, such

as GANs. GANs are DL models that capture the inner probabilistic distribution of

actual data and generate new comparable data. However, GANs suffer from the issue

80
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of mode collapse, where the generated data do not account for all the elements of the

real dataset, resulting in synthetic data that fails to learn all the information from the

real one.

The contributions provided in this chapter are summarised as follows:

• A new GAN model was proposed by coupling it with a Siamese network (SN),

to add another layer that allows to generate more heterogeneous data.

• The resulting model generates more diverse TS than the original GAN, as proved

using the longest common sub-sequence (LCSS). Classifying the original data

using the generated TS increased from 63% in the original GAN to 98.2% in the

proposed model, for the first dataset and from 48% to 90.8% in the second.

• Encoding TS into images permitted to increase the classification performance,

thus improving the post-stroke tele-rehabilitation assessment.

5.2 Datasets

This study utilises two datasets that belong to the post-stroke rehabilitation categories.

Section 5.2.1 examines an ARAT-based dataset introduced by Lee et al. in [151]. Sec-

tion 5.2.2 explores the WISDM Smartphone and Smart-watch Activity and Biometrics

Dataset proposed by Weiss in [126]. These datasets were chosen because they belong

to the categories of assessment systems identified in section 3 of Chapter 2 namely:

Activity recognition and movement classification for the WISDM dataset and Clinical

assessment emulation for the ARAT dataset.

5.2.1 ARAT dataset

The dataset includes ARAT motions [164], which are rated on a four-point scale. A

score of 3 indicates satisfactory completion within 5 seconds, while a score of 0 denotes
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non-completion due to factors such as inability to grasp the cube or use fingers to

manipulate it. The score also considers the time taken to complete the task, where

a score of 2 indicates completion with difficulty or taking an abnormally long time,

and a score of 1 represents partial completion. The trial involved 34 stroke patients

undergoing rehabilitation over a 60-day period in a hospital setting. Each patient

performed a set of ARAT motions up to three times in a single session, with data

continuously recorded and manually segmented into individual trials. Notably, the

scores were awarded on a session basis, suggesting averaging over trials, and multiple

therapists scored the sessions, introducing score variability despite briefings. Each

class used in this study comprises a distinct number of segments, and the length of

each segment varies, as presented in Table 5.1. The data acquisition is sampled at 30

Hz.

Table 5.1: Number of TS segments per class in the ARAT dataset.

ARAT score 0 1 2 3

Number of segments 3 6 38 31

As depicted in Table 5.1, the dataset is unbalanced and contains an insignificant

number of segments for contemporary algorithm analysis such as deep learning. This

feature renders the dataset an excellent candidate for the exploration of generating

synthetic data. Furthermore, the dataset is comprised of naturalistic data recorded in a

real-life scenario, thereby offering added value to its application in real-world scenarios.

The segments are multivariate TS chunks of varying lengths, derived from triaxial

acceleration as previously mentioned. Each TS in a particular class has dimensions of

n× 3× t, where n represents the number of segments in that class, 3 indicates the

number of axes (X, Y, Z), and t denotes the sequence length.

5.2.2 Activity recognition dataset

The WISDM dataset introduced in 3.2.1 is used.
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Figure 5.1: Some of the original TS segments for the datasets.
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Figure 5.1 displays samples from each dataset, Figure 5.1a displays some segments

from each ARAT class and Figure 5.1b shows segments from four of the activity

recognition datasets. Time axis “sample" refers to the acquisition index knowing that

the first dataset has 30 acquisitions per second while the 2nd has 20.

5.3 2D systems

In this section, the process of generating synthetic data from the original dataset using

a GAN is presented. The aim is to produce data that satisfies two key conditions:

first, the generated data must be realistic and accurately represent the statistical

distribution of the original dataset. Second, it should not suffer from mode collapse.

The proposed GAN structure is described in detail and demonstrates the generated

synthetic data in the following sections.

5.3.1 GAN

The proposed GAN is composed of two parts: the first part encompasses a generator

that takes as its input random noise vectors z and generates dummy data while the

second part “the discriminator" takes the real TS data and the dummy TS data

generated by the generator as input, and outputs a number that is corresponding to

the probability of the input being real. The GAN employs the Nash equilibrium game

principle [165], which assumes two players. The generator tries to learn the real TS

data distribution whereas the discriminator tries to accurately guess whether the fed

data is from the original dataset or from the generator. To be victorious in the game,

the two players shall compete repeatedly to improve both the generation (maximise

resemblance) and the discrimination (minimise the difference).

Mathematically, let x be a TS window from the dataset distribution pX , and z be

a random vector. only z from a uniform distribution with a support of [−1, 1] is
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considered, Let G and D be the generative and discriminative models, the generative

model takes z as input and outputs the TS data, G(z), that has the same support

as x. Denote the distribution of G(z) as pG. The discriminative model approximates

the probability that the input TS data is drawn from pX . Ideally, d(x) = 1 if x ∼ pX

and D(x) = 0 if x ∼ pG. The generative and discriminative models can be trained

together by solving the equation (5.1) below:

min
G

max
D

V (D,G) = Ex∼preal(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z))] (5.1)

In our work, the architecture for the two parts is only comprised of fully connected

layers. Depending on the dataset, two architectures were proposed:

The first dataset utilises a generator with five layers, beginning with an input layer that

corresponds to the latent vector z of 32 elements. This is followed by a fully-connected

layer of 256 nodes, and three additional fully-connected layers of 512, 1024, and 699

nodes, respectively. Each layer is equipped with a Leaky ReLU activation function

and batch normalisation is applied. Finally, the last layer is reshaped to a 3 × 233

node configuration that matches the architecture of the input data. The discriminator,

on the other hand, takes as input either real or artificial data that is first reshaped to

an 899-node fully connected layer. This layer then passes through two additional fully

connected layers of 512 and 256 nodes, respectively, both of which are equipped with

leaky ReLU activation functions and batch normalisation. The output node is a single

node with a Sigmoid activation function, responsible for indicating whether the data

is real or artificial.

For the second dataset, the same architectures are used, with only differences being

a latent vector size of 128 nodes and the inclusion of an additional fully connected

layer of 2056 nodes after the 1024 layer. This is followed by a 1200-node layer that
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is reshaped to 6 × 200 instead of the 899-node layer in the previous dataset. The

discriminator for this dataset begins with a 6 × 200 input that is flattened to 1200

nodes, followed by three additional fully connected layers of 512, and 256, and 128

nodes, respectively.

The architectural details of these setups are summarised in Table 5.2.

Table 5.2: Architecture of the proposed GANs for the two datasets.

Dataset Network architecture Layer type Nodes, activation, normalisation

ARAT

Generator

Input vector 32

Fully Connected Layer 256, Leaky ReLU, Batch normalization

Fully Connected Layer 512, Leaky ReLU, Batch normalization

Fully Connected Layer 1024, Leaky ReLU, Batch normalization

Fully Connected Layer 699, Leaky ReLU, Batch normalization

Reshape Layer 3 x 233

Discriminator

Input layer 3 x 233

Fully Connected Layer 512, Leaky ReLU, Batch normalization

Fully Connected Layer 256, Leaky ReLU, Batch normalization

Output layer 1, Sigmoid

Activity recognition

Generator

Input vector 128

Fully Connected Layer 256, Leaky ReLU, Batch normalization

Fully Connected Layer 512, Leaky ReLU, Batch normalization

Fully Connected Layer 1024, Leaky ReLU, Batch normalization

Fully Connected Layer 2056, Leaky ReLU, Batch normalization

Fully Connected Layer 1200, Leaky ReLU, Batch normalization

Reshape Layer 6 x 200

Discriminator

Input layer 6 x 200

Fully Connected Layer 512, Leaky ReLU, Batch normalization

Fully Connected Layer 256, Leaky ReLU, Batch normalization

Fully Connected Layer 128, Leaky ReLU, Batch normalization

Output layer 1, Sigmoid

5.3.2 Generated data from the GAN model

ARAT dataset

It has been observed in Section 5.2.1 that the dataset is imbalanced and has a limited

number of TS segments. This makes training the deep neural networks challenging. To

address this issue without the need for additional data collection, a GAN-based data
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augmentation technique has been proposed to generate synthetic data. This approach

can help overcome the problem of imbalanced data, and its applicability may extend

to other TS-related research studies.

As TS segments have varying lengths, direct application of deep learning algorithms is

not feasible. These algorithms require input streams of equal length, which can be

achieved by padding the segments with zeros to match the length of the longest segment

which is 233 samples (time acquisition). This approach is a well-established technique

in TS analysis and has been used in several studies as a simple and effective way to

achieve equal-length input data [166]. Moreover, in [167], zero-padding was used in

their GAN-based approach for generating synthetic TS data to handle variable-length

TS data.

After padding, the segments were normalised to the range of [0, 1]. Unlike image

generation, where the label of the generated image can be visually recognised, in

the TS domain, it is difficult to associate each generated window of data with its

corresponding real-domain counterpart. Therefore, a separate GAN has been trained

on each class of the data, with each class trained separately, and the data for each

class generated independently.

Generating synthetic data separately for each class also avoids potential biases that

could arise from the padding process. By training the GAN separately for each class,

the generated data will have the same padding and distribution as the original data

for that class. This is important because the padding process may introduce a bias in

the generated data if performed on the entire dataset together.

After conducting multiple trials with different latent vector sizes, a size of 32 data

points was determined to be the most suitable. The criterion for determining the

optimal latent vector size was based on the quality of the generated data, as increasing

the latent vector size beyond 32 did not significantly improve it.
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Adam optimiser [168] with a momentum of 0.5 and learning rate of 2 × 10−4 are

empirically selected for both the generator and discriminator red by testing various

GAN models and trials, and binary cross-entropy was used for their compilation. The

selection of the learning rate was empirical and involved testing various values. The

aim was to identify a value that would strike a balance between convergence speed

and overfitting avoidance. The choice of using the Adam optimizer with a momentum

of 0.5 and binary cross-entropy for compilation is a common practice in many GAN

architectures. This decision was also informed by empirical testing.

For each class, 640 epochs were required for training. This number was selected by

monitoring the degradation of the discriminator loss. Moreover, Google Colab with

32 GB RAM and a Nvidia T4 GPU was used, moreover, the code was developed in

Keras and TensorFlow.

Figure 5.2a showcases several synthetic TS segments generated from different ARAT

categories using the proposed GAN model. The generated data share the same n×3×t

dimensional structure as the input data, with X, Y , and Z axes representing triaxial

data. The generated TS segments exhibit curvature patterns similar to those observed

in the real data segments, as can be seen in the plot. The GAN model can generate

multivariate TS data from any input segment, as evidenced by the triaxial data

generated by the model. Furthermore, the model has learned to generate the zeros that

were padded to the segments to achieve equi-length time windows, as demonstrated in

the rightmost plot of Figure 5.2a. A thresholding method was employed to determine

the end of the signal, where the amplitude decreases below a specific level. This

method involved identifying three consecutive data points with amplitudes equal to or

less than a threshold value of 0.05 on all axes.

However, during experimentation, the GAN model did seem from visual inspection to

exhibit mode collapse, which caused it to generate synthetic data for some portions of

the input segments while neglecting others.
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Activity recognition dataset

In accordance with the methodology outlined in Section 5.2.2, the dataset was parti-

tioned into 10-second segments consisting of 200 readings each using non-overlapping

sliding windows. Subsequently, each data segment was labelled with the activity

label that appeared most frequently, resulting in a structured dataset of dimensions

16854× 6× 200. In order to generate synthetic data from this dataset, a GAN model

was employed as detailed in Section 5.3.1. Prior to applying the GAN, the TS segments

were normalised. The hyperparameters used in the GAN training process were similar

to those employed previously, with a latent vector size of 128, the Adam optimizer

with a momentum of 0.5 and learning rate of 5× 10−4, and binary cross-entropy. The

GAN training process was repeated for a total of 20k epochs. Figure 5.2b displays the

TS segments generated by the GAN model, with each class visually identified through

comparison with the real dataset. It is worth noting that the generated data appear

to exhibit curvature patterns that resemble those observed in the real data segments.

However, it is also observed that some classes of the generated segments appear to

have been omitted, indicating a potential occurrence of mode collapse.

While visual inspection can be informative, it is not sufficient to draw accurate

conclusions. Further required analysis is presented below.

5.3.3 Analysis of GAN Generated data

The effect of mode collapse is verified on both datasets using two techniques:

1. A similarity study is conducted between the generated segments and the original

ones. This is achieved by correlating the generated signal with every original

signal and calculating the similarity between them using an objective method.

The original signal with the highest similarity is considered the parent signal that

spawned the segment. To ensure the robustness of the objective method against
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Figure 5.2: Some of the generated TS segments for the datasets.
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Figure 5.3: LCSS applied to two spawned TS data.

noise or small vibrations, either Dynamic Time Warping or the LCSS [169] are

considered. LCSS has been proven to be more resilient under noisy conditions

and can work with data of different lengths, hence, it has been chosen for this

study. Then, the number of generated data for each class is computed to show

the distribution of the generated dataset over the parent classes.

2. The generated data is used to train a classifier, and its performance is evaluated

on the real dataset used as a validation set. Classification and other metrics are

computed to show whether the generated data contains sufficient information

to differentiate between the classes of the original dataset. Before classification,

the TS data is encoded into images using Gramian Angular Field (GMAF) and

fed into a ResNet-18 classifier. This pipeline has been shown to yield promising

results for TS classification of the same dataset in previous works. [170–172].

LCSS algorithm

One of the very first applications of LCSS algorithm has been for string matching [173].

Later contributions worked on the extension of LCSS and it has been widely used for
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measuring the similarity of two TS with different lengths focusing on similar parts

between two TS [173–175].

The basic core method of LCSS is dynamic programming that applies similarity-based

searching from machine regions both in time and space to keep away from distant or

degenerating regions.

For LCSS operation, let’s define a and b as finite discrete TS. ap1 is associated with the

first TS as a with a discrete time index varying between 1 and p. In a similar manner,

bq1 is associated with the second TS b with a discrete-time index varying between 1

and q. Additionally, ai , bi represent the ith sample of TS a and b, respectively. A

recursive algorithm has been formulated to provide a solution to the LCSS [169] as

given in Equation (5.2):

LCSSδ,ϵ(a
p
1,b

q
1) =

0 if p < 1 or q < 1,

1 + LCSSδ,ϵ(a
p−1
1 ,bq−1

1 ) if


dLP (ap, bq) < ϵ and

| p− q |< δ,

Max


LCSSδ,ϵ(a

p−1
1 ,bq

1)

LCSSδ,ϵ(a
p
1,b

q−1
1 )

otherwise

(5.2)

where p and q represent the lengths of TS a and b, respectively, meanwhile, dLP

(ap − bq) take any LP -norm of the (ap − bq).

Two parameters are used in LCSS to introduce flexibility in controlling the matching

regions in time (δ) or space (ϵ). In the end, the similarity of the two times-series is

measured using the output of the LCSS including a normalising factor associated with

the lengths of input times-series as shown in:
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Sδ,ϵ(a,b) =
LCSSδ,ϵ(a

p
1,b

q
1)

min(p, q)
(5.3)

Based on the above definition, the returned values by the LCSS vary from 0 to 1, the

highest value is related to a situation when the two TS fully match, and vice-versa.

The values of δ and ϵ are taken from the work in [169], which concluded that their

best values are:

ϵ = 0.5× (min(std(a), std(b)) (5.4)

where std is the standard deviation of a and b,

δ = round(0.1× n) (5.5)

where n is min(length(a, b))

Figure 5.3 shows two different generated signals (blue) and their associated parent

signal (red) and the corresponding similarity of 0.93 and 0.71 using the LCSS algorithm.

GMAF

The Gramian matrix is a matrix-based encoding method that converts TS data into

images by using polar coordinates as a representation of the data. Each component

of this matrix is either the addition of the sines of the polar angles (GASF) or the

difference of their cosines (GADF). The time increases as the location shifts from the

top left to the bottom right, thus maintaining the temporal dependence of the TS.

This feature allows the polar coordinates to be converted using the transformation

principle back to the original TS data.

In this work, the used GASF are summarised as follows:

• First, using the linear standardisation equation, re-scale the data to the range
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[0,1] (or [-1,1]). 5.6:

x̂i =
xi −min(X)

max(X)−min(X)
, (5.6)

• After that, using equations 5.7 and 5.8, the data is translated into its polar

coordinates form.

ϕ = arccos(x̂i),−1 ≤ x̂i ≤ 1, x̂i ∈ X, (5.7)

r =
ti
N
, ti ∈ N. (5.8)

• Finally, the cosines of the polar angles to get GASF representation are summed

as follows:

GASF = cos(ϕi + ϕj) = X̂T · X̂ −
√

I − X̂2

T

·
√

I − X̂2 (5.9)

where X represents the components of the TS X, I is the unit vector following the

transformation to polar coordinates, and t is the time stamp index. Figure 5.4 shows

the GMAF encoded images for the three axes of segments from ARAT 0, ARAT 1,

ARAT 2 and ARAT 3 categories.

Results for the ARAT dataset

For the ARAT dataset, 1500 segments are generated for each ARAT category. To

determine the parent segment for each generated segment, LCSS, as described in

Section 5.2, is used to find the segment with the highest similarity, as explained in

subsection 5.3.3. The results for each ARAT class are presented in Tables 5.3, 5.4,

5.5, and 5.6 respectively. These tables highlight the bias in the generation of the data.

For instance, Table 5.3 indicates that 97.3% of the generated data corresponds to
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segment 3, whereas segments 1 and 2 only account for 1.53% and 1.2%, respectively.

A similar bias is observed in other classes where certain segments are not generated at

all, indicating mode collapse.

Table 5.3: The number of generated segments per class seen by LCSS algorithm for
GAN for ARAT 0.

Segment 1 2 3

GAN 23 18 1459

Table 5.4: The number of generated segments per class seen by LCSS algorithm for
GAN for ARAT 1.

Segment 1 2 3 4 5 6

GAN 0 1055 445 0 0 0

Table 5.5: The number of generated segments per class seen by LCSS algorithm for
GAN or ARAT 2.

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

GAN 5 0 42 51 12 99 9 2 0 0 0 0 2 26 3 40 40 97 138

Segment(cont) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

GAN 7 19 17 158 71 44 190 39 3 19 1 75 261 0 1 0 7 0 22

After this, the total generated dataset of 6000 segments (1500 for each class) are used

to train the classifier described in Section 5.2. The resulting dataset after the data

encoding was 6000 × 3 × 233 × 233 (three channels 233 × 233 images). Figure 5.4

shows GMAF encoded images for ARAT 0 segment.

The images were fed to a pre-trained ResNet-18, and the training process followed a

cyclical learning rate as suggested by Smith in [135], which has been proven effective

in previous studies [170–172, 176]. The model was trained for 20 epochs using the

dataset, and the original data encodings were used as a validation set. Two metrics

were employed for evaluating the performance of the model: Accuracy and F1-score

weighted by class. The latter metric was chosen as it takes into account the performance

of each class.

The F1-score weighted by class is calculated using the following equation:
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Table 5.6: The number of generated segments per class seen by LCSS algorithm for
GAN for ARAT 3.

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GAN 0 28 6 0 0 0 13 3 7 122 10 80 0 51 14 49

TS-SGAN 69 52 26 73 35 65 61 43 12 118 14 65 50 13 44 16

Segment (cont) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

GAN 24 28 66 55 2 162 191 77 68 29 129 271 0 13 2

Figure 5.4: An encoding example of an ARAT 0 TS segment into its GASF.

F1weighted =

∑n
i=1wiF1i∑n

i=1 wi

where n represents the total number of classes, wi is the weight assigned to class i,

and F1i is the F1-score for class i. The weights wi are defined based on the class

distribution in the validation dataset.

Based on the results obtained, it was found that the classification accuracy of the

model is 63%, indicating that the model is struggling to accurately classify some

of the classes. This is further supported by the F1-score weighted by class of 0.58.

These results suggest that the generated dataset used for training the model did not

provide sufficient information about the original dataset used for validation and metric

computation. The observed mode collapse in the generated dataset may have led to

the poor performance of the model on some classes.
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Figure 5.5: Distribution of the GAN generated data per class.

Results for the activity recognition dataset

The second dataset was processed in a similar manner as the first one. A total of

90000 TS (TS) segments were generated using the GAN, and the LCSS method was

used to find the similarities with the parent segments. The results are presented in

the distribution bar chart shown in Figure 5.5.

From the chart, it is evident that the generated data suffers from a significant bias,

with some classes having over 20000 segments while some others have none. This

generated dataset was then used to train the same classifier used for the first dataset.

A training dataset of 90000× 6× 200× 200 (six channels of 200× 200 images) was

used, with 800 segments from each class taken as a validation set, resulting in a total

of 14400 segments. The trained model achieved an accuracy of 48.73% and an F1-score

weighted by class of 0.45. These results indicate that similar to the first dataset,
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the model is experiencing mode collapse and that not all the information has been

captured while generating the synthetic data.

To address this issue, incorporating an SN into the GAN architecture is proposed,

which is described in Section 5.4.1.

5.4 TS-SGAN to treat mode collapse

The data generated from the GAN in section 5.3 suffers from mode collapse which

results in the data not being heterogeneous. To solve this an SN is added, this was

inspired by the work in computer vision of Allahyani et al. in [177] and adapting it

into the TS domain.

In [178] the SN was initially introduced for use in the tasks involving face and signature

verification. Two sub-networks with common weights make up SN [179]. SN compares

the characteristics of the pair networks using Euclidean distance while learning the

features from each sub-network. As a result, during the training, the network aims to

increase the distance between feature pairs (latent data) when they are from separate

classes while reducing it when they are from the same class. SNs have been normally

employed frequently for the re-identification task because of this attribute as the job’s

objective is to determine how similar two sequences are to one another [180, 181]. The

associated verification loss is given in Equation (5.10).

Lossver(Li, Lj) =


1
2
∥Li − Lj∥2 i = j

1
2
max(m− ∥Li − Lj∥, 0)2 i ̸= j

, (5.10)

where m is the margin, and Li and Lj are the latent data for the ith and jth TS data

sequence. They correspond the output of the last layers on the ith and jth branch

before being fed into the similarity metric function.
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Figure 5.6: Siamese GAN flowchart.

5.4.1 TS-SGAN

Our suggested method for reducing the mode collapse problem is to combine the

SN with the modelled GAN architecture to construct a time-series Siamese GAN

(TS-SGAN). This will add an additional layer that will learn to differentiate between

the different segments of the input layer and try to spawn more heterogeneous data.

As shown in Figure 5.6, the TS-SGAN is divided into two components; the first

component consists of a generator G and a discriminator D1, which are the fundamental

configuration in every GAN design. G produces artificial data X̂ using random noise

vectors z as input. The discriminator D1 accepts its inputs from the real data X

and the created data X̂ so that the networks outputs a probability of the data to

be real. The second part of the network is to be responsible for the heterogeneity of

the generated data. It is made up of a SN and a D2 discriminator. The SN in the

TS-SGAN architecture finds similarity in a batch of data, it generates the similarity

of the entire batch for real data (S) as well as the created data Ŝ; this serves as an

additional layer to spot mode collapse. The inputs to D2 are S and Ŝ. If the data in

the batch are heterogeneous, the D2 identifies the similarity as a true similarity. In

any other case, the D2 identifies it as a bogus similarity thus indicating mode collapse.
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In order to implement the TS-SGAN, the function inherited from the GAN as well

as the function responsible for the heterogeneity of the output data are merged. The

first part was demystified in section 5.3 and given by Equation (5.1). The latter

one, which is responsible for treating mode collapse by varying the GAN output a

heterogeneity principle for both G and D2, The role of D2 is to discriminate between

the heterogeneity in the real TS data and the heterogeneity in the created one. Very

similar to the Nash equilibrium game principle between G and D1 to generate realistic

Ts data, the Nash equilibrium between G and D2 can be viewed as a means to generate

heterogeneous data [182].

The SN in the TS-SGAN takes a pair of real data denoted as preal and outputs their

similarity S. Simultaneously, it takes another pair from the generated data denoted as

pfake which also generates their similarity Ŝ. The role of D2, then, is to discriminate

between the heterogeneity of preal and pfake. Finally, G role is to generate pfake TS data

that possesses preal heterogeneity. Consequently, G in this part, tries to minimise the

cost function while D2 tends to maximise it. The process is given in Equation (5.11).

min
G

max
D2

V (D2, G) = Ex1,x2∼preal [logD2(SN(x1, x2))]+

Ez1,z2∼pz(z)[log(1−D2(SN(G(z1), G(Z2))))] (5.11)

The architecture of the heterogeneity part of our proposed TS-SGAN is shown in Table

5.7. The SN comprises of two 2D CNN layers with a 3× 3 kernel including similar

padding and tanh activation function with successively 4 and 16 channels, followed by

a flatten function before outputting the similarity value. D2 comprises a simple MLP

layer of 128 nodes with the output node responsible for generating either bogus for

mode collapse or real for the heterogeneous data.

Coupling this last part with the GAN part from section 5.3 gives us the TS-SGAN
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Table 5.7: Siamese Network and Discriminator 2 architectures.

Network Layer Type Number of Nodes, Activation Function, Batch Normalization

Siamese Input Layer 3 x 233 or 6 x 200

Network Convolutional Layer 4, Tanh, Same Padding

Architecture Convolutional Layer 16, Tanh, Same Padding

Flatten Layer 11184

Output Layer 1, Linear

Discriminator 2 Input Layer 3 x 233 or 6 x 200

Architecture Fully Connected Layer 128, Leaky ReLU, Batch Normalization

Output Layer 1, Sigmoid

architecture. The corresponding overall Loss function of the TS-SGAN is given in

equation (5.12).

min
G

max
D1,D2

V (D1, D2, G) = Ex∼preal(x)[logD1(x)]

+ Ez∼pz(z)[log(1−D1(G(z))]

+ Ex1,x2∼preal [logD2(SN(x1, x2))]

+ Ez1,z2∼pz(z)[log(1−D2(SN(G(z1), G(Z2))))] (5.12)

5.4.2 Algorithmic process

Figure 5.6 shows the flowchart of the proposed TS-SGAN, as discussed earlier, it

comprises G and D1 for the GAN part responsible for generating realistic data, and

SN and D2 responsible for generating heterogeneous data. G takes the latent data

vector Z as input and outputs the bogus TS data, while, D1 takes instances of real TS

data and the bogus TS data, and outputs the probability that the input is real. The

SN takes two batches from a dataset DTS that contains both bogus X̂ and real data

X and outputs the similarity between them (Ŝ for bogus data and S for real data).

Finally, D2, takes S and Ŝ and produces the probability of heterogeneity.
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Hence, the steps to produce heterogeneous and realistic data using the TS-SGAN are:

• The SN is trained on the real dataset, to learn to differentiate between the

segments.

• A batch of latent data z is fed to G in order to generate bogus data X̂.

• Real data is divided into two parts X1 and X2 and are fed to SN in order to

produce S.

• Bogus data is divided into two parts X̂1 and X̂2 and are fed to SN in order to

produce Ŝ.

• D2 takes S and Ŝ to produces heterogeneity probability and D1 takes X and X̂

to produces how real probability.

• The process is repeated until pbogus converges to preal, and the parameters of SN,

G, D1 and D2 are updated according to the loss function provided in Equation

(5.12).

The pseudo-code of the TS-SGAN is given in Algorithm 1.

5.4.3 Experimental results

In this section, the experimental results of our proposed TS-SGAN model are presented,

which was trained using the procedure described in Section 5.4.1 and Section 5.4.2.

Specifically, the pre-processing and configuration used for training the GAN were also

used for training TS-SGAN. Moreover, the same analysis was conducted in Section

5.3.3, which involved finding the parent segment for the generated data using LCSS

and training the same classifier on the generated data, followed by using the real data

as a validation set.
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Algorithm 1 TS-SGAN Algorithm to produce realistic heterogeneous TS data
Input :Dataset of real TS data and the number of iterations as I for SN.
Output :G that produces realistic and heterogeneous TS data.
Parameters : δ, θ, Γ which are parameters of D1, D2, G , are consecutively initialised.

1 Sample of noise data [Z1.....Zm] .

2 Sample of bogus TS data [X̂1.....X̂m].

3 DTS sample containing both bogusX̂ and real data X.

4 while iterations < I do
5 Train SN on DTS (X̂ ∪X)
6 end

7 while X̂ not converge to X do
8 Generate Z [Z1.....Zn]

9 G(Z) random batch of latent TS data [X̂1.....X̂n]

10 X random batch of real TS data [X1.....Xn]

11 Split latent TS in two: X̂1 = [X̂1.....X̂n
2
], X̂2 = [X̂n

2
......X̂n]

12 Split real TS in two: X1 = [X1.....Xn
2
], X2 = [Xn

2
......Xn]

13 S = SN(X1, X2), Ŝ = SN(X̂1, X̂2)

14 Update δ, θ, Γ using Equation (5.12).
15 end
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ARAT dataset

Initially, the SN was trained for 32 epochs to acquire the ability to distinguish between

the distinct segments contained in the dataset. After that, the hyperparameters

employed in Section 5.3.3 for GAN training were utilised, to train the GAN namely,

640 epochs, the Adam optimizer with a momentum of 0.5, binary cross-entropy loss

function, a latent vector size of 32, and a learning rate of 2× 10−4.

Upon conducting a visual inspection of the generated data, it was observed that the

spawned time chunks exhibited a comparable quality to those generated by the model

trained in Section 5.3.1. Notably, the model learned to generate the padded zeroes

that were added to ensure uniform signal length, which is a consequence of retaining

the GAN component of TS-SGAN. However, it is evident that the TS-SGAN model

effectively incorporates all dataset segments in generating novel data. Furthermore, a

thorough visual examination reveals that the model does not suffer from mode collapse,

this is substantiated below.

Following the same procedure used in Section 5.3.1, 1500 segments per class are

generated, and results are shown in Tables 5.8, 5.9, 5.10, and 5.11 respectively.

Table 5.8: The number of generated segments per class seen by LCSS algorithm for
GAN and TS-SGAN for ARAT 0.

Segment 1 2 3

TS-SGAN 492 500 508

Table 5.9: The number of generated segments per class seen by LCSS algorithm for
GAN and TS-SGAN for ARAT 1.

Segment 1 2 3 4 5 6

TS-SGAN 339 206 292 200 214 249

The tables clearly demonstrate that the TS-SGAN-generated data are uniformly

distributed across various segments and classes of the dataset, which was not the case

with the GAN-generated data. Furthermore, training the same classifier as in Section
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Table 5.10: The number of generated segments per class seen by LCSS algorithm for
GAN and TS-SGAN for ARAT 2.

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TS-SGAN 57 33 22 47 65 73 25 40 45 50 25 32 45 28 50 54 31 57 10

Segment(cont) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

TS-SGAN 44 19 28 60 10 85 64 21 29 29 35 74 32 50 30 35 6 35 25

Table 5.11: The number of generated segments per class seen by LCSS algorithm for
GAN and TS-SGAN for ARAT 3.

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TS-SGAN 69 52 26 73 35 65 61 43 12 118 14 65 50 13 44 16

Segment (cont) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

TS-SGAN 26 20 24 45 127 30 87 43 62 16 107 53 11 74 19

5.3.3 on the TS-SGAN-generated data yields an accuracy of 98.2% and a weighted

F1-score of 0.99, surpassing the GAN model’s performance by 35% in accuracy and

0.41 in F1-score per class. These results indicate that the TS-SGAN model is not prone

to mode collapse and effectively captures all relevant information while generating

synthetic data for this dataset.

Activity recognition dataset

Initially, the SN was trained on the authentic dataset consisting of 14400 segments,

for a total of 150 epochs, with the aim of acquiring the ability to distinguish between

the various classes.

Subsequently, utilising the identical parameters from Section 5.3.3, the TS-SGAN was

trained, and 90000 segments were generated. The class distribution per partition is

illustrated in Figure 5.7. It is observed that akin to the findings obtained for the ARAT

dataset, the TS-SGAN-generated data is uniformly distributed among the classes, as

opposed to what was observed for the GAN-generated data.

Furthermore, upon training the previously established classifier on the generated data
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Figure 5.7: Distribution of the TS-SGAN generated data for different classes.

and then using the authentic data as a validation set, an accuracy of 90.8% with an

F1-score per class of 0.90 was obtained. This represents a substantial improvement of

42.07% in accuracy and 0.45 in F1-score as compared to the GAN-generated data.

5.4.4 Results Summary

In this study, a framework for generating realistic and heterogeneous multivariate

TS data is introduced. Our approach leverages two datasets related to post-stroke

rehabilitation assessment: (1) a small, unbalanced dataset containing data for a popular

rehabilitation assessment scale, and (2) a larger activity recognition dataset. data

that closely resembled the original data and contained enough information to enable

near-perfect classification by a classifier are generated.
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Initially, a vanilla GAN is employed to generate the multivariate TS data. the model

is trained separately on each category in the first dataset, as it is not feasible to

predict the label from visual inspection of the signal. In the case of the second dataset,

the model is trained on the entire dataset, as it was easier to distinguish between

classes. While the generated data met the realism criteria, further inspection revealed

that many segments from the dataset were not included in the generated data. This

observation suggested that the model suffered from mode collapse, failing to capture

the heterogeneity of the true distribution. To confirm this hypothesis, the LCSS

algorithm is used to compute the similarity between the generated data and the

original segments. Results on both datasets confirmed the presence of mode collapse.

Additionally, a classifier is trained on the generated data and evaluated using the real

data as a validation set, and the classification results were poor due to mode collapse.

To address the issue of mode collapse, a new method that uses the TS-SGAN is

proposed. This involved adding a layer that learns the heterogeneity between different

input structures and uses this information to characterise all modes, enabling the

generator to spawn more diverse data. This was achieved by adding an SN that first

discriminates between the dataset elements and then generates similarity, which is

sent to a second discriminator in the network. The resulting generator did not suffer

from mode collapse, and the generated data were heterogeneous, as evidenced by the

distribution of the generated data across both datasets and the excellent classification

results when training the classifier on the newly generated data.

This study lays the groundwork for future research endeavours. Our intention is to

extend the application of the TS-SGAN model to other types of GAN architectures,

such as conditional GANs and cycle GANs, and assess their efficacy on various TS

datasets. While our focus has been on post-stroke rehabilitation, This model is believed

to have the potential to be applied to other TS domains with further research and

development. Additionally, conducting a thorough analysis of the generated data,
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including their variability, and performing comprehensive comparisons with the original

datasets, could serve as valuable groundwork for future research.

5.5 Conclusion

The assessment of post-stroke telerehabilitation heavily relies on a substantial amount

of data collected from WS. The accuracy of the patient modelling depends on the

realism and diversity of this data, making data augmentation in the TS domain a

critical step in the development of more efficient assessment models that can generalize

to real-life circumstances. Despite their ability to generate meaningful data, GANs

are known to suffer from mode collapse. To address this limitation, a new model,

called TS-SGAN is proposed, which incorporates a second discriminator and SN. This

modification effectively resolves the issue of mode collapse and enables the generation

of more heterogeneous data, the resulting model was able to generate more diverse and

realistic data, which improved the classification performance of the activity recognition

dataset from 48.73% to 90.8% and from 63% to 98.2% for the ARAT dataset. This new

model represents a solution to the data quantity limitation in post-stroke rehabilitation

that was identified in Chapter 2 (data from post-stroke rehabilitation assessment is not

very abundant due to the complexities involved in collecting data within the healthcare

sector).
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Conclusion

In this comprehensive dissertation, an extensive and systematic exploration of the post-

stroke telerehabilitation assessment field was undertaken, resulting in the formulation

of a novel taxonomy that categorises the domain into three distinct areas: activity

recognition, movement classification, and clinical assessment emulation. The in-depth

analysis encompassed multiple facets, ranging from the prevalent use of IMU sensors

to the emerging utilisation of EMG sensors in data collection, as well as scrutinising

sensor placements, study designs, and the intricacies of feature engineering techniques.

Notably, the landscape of machine learning in this domain has been evolving rapidly,

with the advent of sophisticated algorithms, particularly deep learning, which have

mitigated the requirement for extensive domain expertise.

Furthermore, this dissertation identified and addressed several pivotal challenges faced

by researchers in the field. These challenges spanned issues related to data availability

and quality, recruitment complexities, the complex real-world conditions under which

assessments are conducted, concerns regarding the power consumption of wearable

sensors, and the critical factor of patient acceptance in telerehabilitation systems. To

facilitate the progress of fellow researchers, the dissertation offered valuable insights

and practical tips to enhance the development of telerehabilitation systems.

The research endeavours also encompassed an in-depth investigation into the perfor-

mance of cutting-edge ts dl algorithms, particularly on a complex HAR dataset. The

109
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study systematically examined the impact of sensor types, their specific placements

on the human body, and the various data pre-processing techniques employed. The

results unveiled that multiple algorithms yielded closely comparable accuracy rates,

with Xceptiontime slightly outperforming others. Notably, the placement of sensors on

the body emerged as a pivotal determinant in achieving precise activity recognition,

with certain sensor placements displaying heightened sensitivity to specific activities.

A noteworthy discovery was that hand sensors achieved a significantly higher accuracy

rate (84%) compared to waist sensors (42%).

Moreover, this dissertation introduced an innovative pipeline for HAR assessment. It

entailed the transformation of segmented time series data into images through diverse

encoding techniques, including GASF, GADF, and MKV. These images, stemming

from different axes of the sensors, were seamlessly fused to create multi-channel images.

The application of linear interpolation was employed to augment data windows and

subsequently enhance the sizes of the images. Comparative analysis revealed that

increasing image size improved classification accuracy up to a specific threshold

before diminishing returns set in. Conversely, a decrease in image size from the

original window length struck an optimal balance between performance accuracy and

computational complexity. The fusion of these multi-channel images notably boosted

accuracy from 83% for one-dimensional models to a remarkable 91.5% when utilising

GASF encoding with 300-size images, though MKV encoding exhibited comparatively

lower performance.

Moreover, the dissertation unveiled an innovative solution to combat the mode collapse

issue frequently encountered in conventional GANs. The novel approach introduced

TS-SGAN, an advanced model that incorporated a secondary discriminator and an SN.

This groundbreaking innovation led to the generation of a more diverse and realistic

dataset, substantially elevating the classification performance for activity recognition

datasets. This advancement is particularly evident in the performance improvements
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achieved in the ARAT dataset, where accuracy surged from a baseline of 63% to

an impressive 98.2%. This innovative approach effectively addresses the challenge

of limited data quantity, which was identified in Chapter 2, thereby significantly

enhancing the efficacy of post-stroke rehabilitation assessment models with more

authentic and varied datasets.

The contributions of this research are summarised below:

• Development of a New Taxonomy: A new taxonomy for post-stroke tele-

rehabilitation assessment is proposed, categorising the field into activity recogni-

tion, movement classification, and clinical assessment emulation. This taxonomy

provides a comprehensive framework for understanding and organising the differ-

ent aspects of assessment in this domain.

• Evaluation of Existing Research: A thorough evaluation of numerous research

works in post-stroke telerehabilitation assessment is conducted. This evaluation

covers various aspects such as sensor usage, sensor placements, study designs,

feature engineering, and machine learning techniques employed for assessment.

• Identification of Limitations and Challenges: Based on the reviewed literature,

the study identifies common limitations and challenges in the field, including

issues related to data volume and quality, recruitment difficulties, field complexity,

power consumption, and patients’ acceptance. These findings highlight areas

where improvements and advancements are needed.

• Enhancement of Evaluation Algorithm: Enhancing the efficacy of the evalua-

tion algorithm used in post-stroke rehabilitation assessment. this was done by

adapting seventeen different CV models to Ts domain.

• Proposing a new pipeline to improve the accuracy of assessment, is done by

encoding each axis of the sensor into an image and fusing all the images together

to have a multi-channel image. Moreover, a linear interpolation was done on
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the original TS data in order to control the size of the resulting images. This

allowed to improve the accuracy of the classification of different datasets.

• Generation of Authentic and Informative Data: Another contribution focuses on

generating more authentic and informative data for post-stroke rehabilitation

assessment. This contribution involves the development of a novel algorithm or

methodology to create realistic and heterogeneous datasets that can enhance the

accuracy and effectiveness of assessment models. This was done by coupling a

Siamese network with a GAN to add the heterogeneity aspect.

6.1 Future works

Some potential directions for this specific study include:

• A data collection study at Colchester Hospital, targeting post-stroke patients who

are performing sit-to-stand rehabilitation exercises. Patients will be equipped

with sensing devices, including a shimmer device with an IMU and non-invasive

surface EMG sensors, to capture body movements and muscle activity. The goal

is to use this data to develop a robust system for evaluating the effectiveness

of rehabilitation exercises. Feedback from rehabilitation trainers will also be

recorded and used as a reference in the assessment process. This research at

East Suffolk & North Essex NHS Foundation Trust Colchester Hospital aims to

gather valuable data to improve and refine assessment systems for post-stroke

rehabilitation, enhancing the accuracy and reliability of evaluations for better

patient outcomes.

• A promising research direction includes analysing the results obtained from

processing sensor data through each layer of adapted CV models. This analysis

aims to gain a deeper understanding of the outcomes at each layer to enhance

the accuracy of assessment algorithms. By examining the intermediate outputs



Chapter 6. Conclusion 113

of the CV models, researchers can identify areas for improvement and optimise

the overall system performance.

• Another avenue for exploration is adapting NLP models to the time series sensor

domain. This involves assessing the performance of NLP models when applied

to the analysis of sequential sensor data, to understand the temporal patterns

and inherent characteristics present. This exploration could provide valuable

insights into using NLP techniques to improve the assessment of post-stroke

rehabilitation, expanding the range of methods for accurate and comprehensive

evaluation.

Some potential study directives and tips that might be worth considering to address a

few challenges encountered in post-stroke rehabilitation in general:

• Provide a person-centric approach that considers both what the individual should

and can achieve during rehabilitation. Indeed, integrating the quantification and

analysis of the present and future conditions of the patient would result in a

personalised treatment that takes into account the specificities of the different

users.

• Employing additional sensors in conjunction with IMUs to model additional

quantities to limb kinematics depending on the exercise. For batteries of tests

that involve strength exercises, employing EMG sensors would be an interesting

approach to have muscular activity, for gait-related tasks and sit/standing, using

an insole pressure sensor would add useful information related to which lower

limb is more active. For exercises that involve changing body level like standing

up sitting down or going upstairs using level sensors would be an interesting

approach. This will permit to lay out a more holistic and subjective assessment

of the movement dysfunction

• Employing non-invasive, unobtrusive WS and taking into more consideration
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the patient’s comfort as now many studies proved the possibility to design

effective systems with a very small number of sensors (sometimes a single sensor

is sufficient) as is the case in [62, 70]. Moreover, making the system simple to

use providing visual tips as using avatars, and giving positive feedback on the

execution would attract more users.

• Implementing a more holistic assessment system by combining multiple evaluation

categories as a movement classification in conjunction with clinical assessment

emulation, would allow for having different and complementary perspectives

and therefore a more effective assessment. From the works reviewed, no paper

combined it.

• Taking the assistance of field professionals when designing the systems, as some

stroke clinical assessments, and some severe stroke cases require particular

expertise in dealing with patients for example to position their limbs when doing

their recovery tasks.

• Making more use of DL algorithms as they do not require thorough feature

engineering and thus require less signal processing expertise. Moreover, 1D

TS DL has emerged and they provide better accuracies than conventional ML

algorithms and are even much faster like [129].

• As AI-based technologies are going to be an important part of the modern

world, it is important to follow universal standards and guidelines that orient

the patients’ well-being in light of the social and ethical issues of these AI

technologies. The recent IEEE 7010-2020 [183] is one good example.
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Appendix A
Appendix

The below tables contain some useful information identified in interesting research

papers in the field of post-stroke rehabilitation.

Study characteristics related to the WS used and its placement, the monitored exercises,

the participants, the selected features and the ML algorithm used and the classification

performance for the included papers are presented in table A.1. While Table A.2

presents a summary of each paper and the corresponding limitations and objectives.
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Table A.1: Characteristics of the reviewed papers

Paper Sensor/limb Exercise Participants Feature ML method Best performance

Activity recognition

[60] EMG/ Forearm 9 different hand gestures 3 AB 1 Time domain features corresponding to variance, wave-

form length, root mean square, zero-crossing and auto-

regressive coefficients. PCA was then applied to the result-

ing 56 features vector and the three first components that

contributed with 95.86% of the overall information were

utilised.

MLP and SVM Accuracy of 96.25%

[61] IMU, level sensor/

Hand

ADLs (Walking, standing,

sitting, up/down, drinking)

15 AB Discrete cosine transform on the segmented time series data

signals to extract frequency domain features and regroup

the energy in the low frequency coefficients.

SVM, MLP Accuracy of more than

92% for SVM

[62] Accelerometer/ Arm ADLs (20 arm movements) 10 SP 2 The data was segmented to time windows and down sam-

pled and the normalised magnitude of the acceleration was

used. The different segments are then labeled according

to the activity. Two different configurations were used for

the participants: naturalistic data where patients are in

their houses and 97.89% on semi-naturalistic data where

patients are in labs

CNN Accuracies of 88.87%

on the naturalistic

data and 97.89% on

the semi-naturalistic

data respectively.

[63] IMU/ Right-front hip ADLs (41 mobility tasks) 15 AB, 17 El
3, 12 SP

Extracted a number of 76 time series features, relief-F,

correlation-based feature selection and fast correlation

based filter were then used to select the most relevant

features.

Bayes, SVM and RT Variant for different

tasks

1AB: Able-Bodied
2SP: Stroke patients
3El: Elderly
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[64] IMU/ Hand and hips Bilateral shoulder flexion

with both hands inter-

locked; wall push exer-

cise; active scapular exer-

cise; and towel slide exer-

cise.

23 SP Raw data from gyroscope, accelerometer and the combina-

tion of both to Recognise and record the type and frequency

of the rehabilitation exercises.

CNN 99.9%

[65] IMU/ Wrist ADLs (Doing the laundry,

performing kitchen tasks,

shopping related tasks, and

making the bed.)

10 AB, 10 SP Extracted overall and axial means, overall and axial vari-

ances, entropy, minima, and maxima. The feature vectors

were then compressed using PCA to reduce the high from

11 to 3 columns.

K-Means, KNN, RF,

SVM, RBF SVM

RF accuracy 83%

[66] IMU, barometer/

Waist

ADLs (Sitting, Lying,

Standing, Stairs Up, Stairs

Down, and Walking)

30SP Features included statistical measures of the sensor sig-

nal, its derivatives, and the frequency domain (mean,

range,skewness...etc)

RF Trained on stroke ac-

tivity achieved 75%

[67] IMU, barometer/ Ster-

num

ADLs (sitting, standing,

walking, lying,sit-to-stand,

stand-to-sit,walking up and

down the stairs, taking the

elevator, washing hands,

eating, pouring and drink-

ing water, sleeping, shoe

lacing, reading the newspa-

per..etc)

12SP Different algorithms developed from previous researches

by detecting transitional phases for different ADLs

Hierarchical Fuzzy In-

ference System

70.3%

[68] IMU/ Wrist, arm ADLs (Chopping food, vac-

uuming, sweeping, spread-

ing jam or butter, folding

laundry, eating, brushing

teeth...etc)

11SP Time series features (mean, standard deviation, autocor-

relation, and slope) and frequency domain features (not

mentioned)

DT, RF, SVM, and eX-

treme Gradient Boost-

ing (XGBoost)

82%

[69] IMU/ Waist ADLs (Walking, walking

up, walking down, sit to

stand, stand to sit, laying)

30AB Segmented data were encoded into images using GMAF

technique

Different CNN models VGG16 98.53%
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[70] IMU, sEMG/ Wrist,

arms forearms, legs,

ankles

ADLs (Walking, tooth

brush, gace washing,

drinking)

9SP, 14AB Noise was filtered through Butterworth filter and band-

pass, then data were normalised, then 28 different time-

series features were extracted RMS, meqn, variance...etc

SVM (linear and rbf),

Adaboost, KNN, RF,

DT, KNN

SVM-rbf 82.47% .

[71] IMUs/ forearms Forward and Upward

stretch, Fling, Hand-to-

mouth, Swipe, Pouring

28AB RMS, mean, variance, skewness...etc LSTM 89% .

Movement classification

[72] IMU/ Wrist Motor tasks associated

with the FMA

20 SP, 10 El Applied the minimal-redundancy maximal-relevance algo-

rithm on the minimum, maximum, range, mean, standard

deviation, RMS values, and the number of zero crossings

of the time-series data.

LR, RF 87% and 84.3% succes-

sively

[73] Accelerometer/ Finger

and wrist

Estimate amount of hand

use

18 AB Extracted multiple time-series features ( mean, inter-

quartile range, minimum and maximum, root mean square

of the acceleration time-series, standard deviation, ratio of

the energy at the dominant frequency to the entire signal,

energy of the time-series, skewness, kurtosis, and signal

entropy) then a correlation based feature selection was

utilised to identify the most relevant features.

SVR 0.11 RMSE

[74] IMU/ Arms and chest ADLs (washing the face,

applying deodorant, comb-

ing the hair, donning and

doing glasses, preparing

and eating a slice of bread,

...etc)

48 SP Raw data to measure functional primitive CNN 70 %

[75] IMU and pressure sen-

sors/ Legs and feet

extension and abduction of

the legs, sit-to-stand, gait

and Bipodaal Bridge

NA Extracted 64 features consisting of mean and the variance

for the different sensing nodes

TB, RT, hyper-plane ,

MLP

MLP reported the best

F-measure with 97.9%
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[76] IMU/ Shanks Gait 15 SP Used a total of 18 features consisting of Hidden Markov

Model (Log-likelihood, EL model, Log-likelihood PS

model, Log-likelihood, HD model, Difference between log-

likelihoods given EL and PS models, Difference between

log-likelihoods given EL and HD models, Difference be-

tween log-likelihoods given PS and HD models) time (Mean

value Evaluated, Standard deviation, Variance, Maximum,

Minimum, Range) and frequency domain features (Power

at first dominant frequency (P1), Power at second domi-

nant frequency, First dominant frequency, Second dominant

frequency, Total power (PT) , P1/PT).

SVM LOSO cross validation

and an accuracy of

90.5%

[77] IMU/ index and finger 9 different ADLs: rest-

ing, eating, pouring water,

drinking, brushing,folding

towel, grasp bottle, grasp

brush, and grasp towel.

10AB, 12SP A low-pass fourth-order Butterworth filter was applied

to all the signals to remove the tremor noise. A high

pass fourth-order Butterworth filter was implemented for

frequency analysis to eliminate the continuous component

of the signal. then data was normalised then different

features were extracted: skewness, average, RMS, jerk...etc

SVM, ANN ANN 99.9% for a

dataset containing

both SP and AB.

[78] IMU/ Wrist, arm, ster-

num

Uni-manual tasks, bi-

manual asymmetric tasks,

bi-manual symmetric tasks

all performed with dom-

inant and non-dominant

hand

20SP, 20AB Classifier Attribute Evaluator, ReliefF, Info Gain Attribute

Evaluator and Gain Ratio Attribute were used to select

the most relevant features then Root Mean Square, Mean,

Signal Magnitude Area, Signal Vector Magnitude, Energy,

Entropy, FFTPeak, and Standard Deviation were then

selected.

Bayes,SMO, IBk,

KStar, Multiclass

Classifier, Bagging,

DT, J48 and RF

RF 85%

[79] IMU/ Lower back,

both sides of the thigh,

shank, foot

10m gait 11SP, 9NDP
4

Data were filtered with a fourth-order bi-directional But-

terworth band-pass filter, then minimal peak distance and

minimal peak height were applied to the resulting data.

after that different gaits parameters were computed.

RF, Adaboost, DT,

Gaussian naive bayes,

MLP

The shank placement

DT 89.13%

[80] IMU/ shank 10 m gait 8SP,7AB Data were normalised and labeled different gait phases MLP 99.35%

4NDP: Neurologically disordered participants
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[81] IMU,

EMG,temperature/

Arms and chest

Flexor synergy, shoulder

flexion hand to lumbar

pronation and supination

NA Employed Empirical mode decomposition [184] to partition

the times series data into the three first intrinsic mode

functions. The mean values and standard deviations of

these components are used in conjunction with mean values

and standard deviations, entropy and energy of the motion

signals as features for large joint actions.

AdaBoost Accuracy of 99.25%.

[82] IMU,/ Arms, forearms,

thighs

ADLs (e.g. walking, walk-

ing up/downstairs, arm

and leg flexion/extension,

arm rotation, writing, us-

ing phone, drinking)

NA walking-related gait parameters ( stride duration, cadence

and stride count)

unspecified regression

models

[83] IMU,/ Arm, forearms,

hand

Flexion/extension of the el-

bow, supination/pronation

of the forearm, exten-

sion/flexion of the wrist

13AB, 13SP Linear interpolation was done to synchronise data, then

data was normalised

Different KNN models,

Different SVM models,

Fine tree

Fine KNN 98.5%

Clinical assessment emulation

[84] Accelerometer/ Wrist

and the sternum

tasks associated with WFT 34 AB Segmented time-series data RF correlation with thera-

pists scores R2=0.97

[85] IMU/ Forearm ADLs (Doing the laundry,

Performing kitchen activi-

ties, Shopping, Making the

bed.)

10 AB, 10 SP Extracted entropy, mean, and variance-based measures Tree based Accuracy of 88%

[86] IMU/ Arms and chest A battery of activities from

WMFT

16 SP Derived the time-series magnitudes of displacement, veloc-

ity, acceleration, and jerk to extract multiple time series

features i.e.: minimum, maximum, and mean values, root

mean-square value, ratio of the magnitude of the dom-

inant frequency and total signal energy, jerk, skewness,

signal entropy, kurtosis, correlation coefficients computed

for different axes, and duration of the data segments.

RF 0.38 RMSE
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[87] Accelerometer, flex/

Shoulder, elbow, wrist,

finger

Seven different exercises

based on the short FMA

24SP Raw sensor data was denoised with 5 point smooth method,

and AMP, MEAN, RMS, JERK, and ApEn were extracted

and then RRelief algorithm was applied to find the optimal

features for each exercise.

ELM,SVM SVM 92.2%

[88] IMU/ Sternum, arms,

wrist, elbow

Synergy, out of synergy,

combination of synergies,

wrist/hand function and

fine motor coordination

8SP RMS, mean, entropy, dominant frequency. DT, Bagging Forest Bagging Forest re-

ported lowest RMSE

[89] Accelerometer/ arms,

shanks

ADLs (Exercises from the

Oxford Grading Motor

Scale)

4SP Gravity component was removed from the norm of the

acceleration data then the mean, max, mean, normalized

average rectified jerk, powers and frequencies of FFT

SVM 82%

[90] Accelerometer/ Wrist ADLs (Exercises from the

Oxford Grading Motor

Scale )

59SP signal vector magnitude is computed by substracting the

gravity effect from the acceleration, then DWT to extract

wavelet coefficients, normalised Sum of Absolute value of

DWT coefficients is used as features

LMGP, lSVM, rbf

SVM, mlp

LMGP reached RMSE

3.12 for Chronic) and

5.75 for acute

[91] IMU/ Wrist grabbing a cube and mov-

ing it for an ARAT asses-

ment

34SP Raw data from IMUs Matching pursuit Accuracy of 95 percent

[92] IMU/ Wrist,sternum continuous, random, vol-

untary upper-limb move-

ments spanning the entire

range of active motion

23SP Zero-Crossing Decomposition applied on gravity free accel-

eration, resulting data is normalised to engineer different

features

unspecified regression

model

R2 value of 0.985

[93] IMU/ Wrist, and feet Stretch and hold their arms

for 20 seconds, and lift and

stretch their left or right

leg

15SP Features related to the degree of drift of the limbs Ensemble algorithm

and SVM

Accuracy of 83.3% for

SVM

[94] IMU/ hands, arms,

Knee, Tibia

ADL 120SP Features related to time domain Logistic regression Overall accuracy of

79.3% for SVM
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[95] IMU and flex sensors/

Wrist

A variety of limb move-

ments, including joint

movements, collaborative

actions, stability exercises,

and coordination tasks,

are encompassed in the

provided text. These move-

ments span both upper and

lower limbs and involve

different quantities of

actions for each category.

21SP Features related to time domain SVM 95%
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Table A.2: Summary of the reviewed papers

[60] Real-time gesture recognition performance to control a five

finger dexterous robot; • Focused only on user-specific condition, where the

training data and the verification data are from

the same subject posing a generalisation issue.

• Did not test the model on stroke patients.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[61] Monitor the overall body activity and the drinking activity

from the liquid level of the mug. Subjects were asked to

accomplish while holding the cup some ADL. the resulting

data were fused together to increase the performance of

the processing algorithm.

• The absence of a study on the acceptability of

the smart cup by stroke patients.

• No stroke patients were included and no research

studies were conducted.

• The absence of an assessment system.

[62] A single sensor was used to collect data from the impaired

arm of stroke survivors, the participants execute twenty

different arm tasks in two different environment settings:

patients at home and patients at labs.

• The absence of a real-time implementation of the

system

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[63] The study determined signal features that are best suited

for activity recognition with various populations (stroke

patients, able bodied and elderly participants) independent

of the chosen classifier.

• The study did not present any platform.

• The classifiers were not customized to the specific

HAR application.

[64] Developed a home-based rehabilitation system that can

recognise and record the type and frequency of rehabilita-

tion exercises conducted by the user using a smartwatch.

• The total number of patients who completed the

program was relatively small to derive statistically

strong evidence.

• The actual accuracy of exercise detection at home

was not assessed.

[65] A system that classifies functional and nonfunctional arm

movement from accelerometry sensor data. • Limited activities and ADL tasks that the partic-

ipants performed..

[66] Compared HAR performance for persons with stroke while

varying the origin of training data, based on either popu-

lation (AB or SP) or environment setting.

• The healthy cohort did not age match the stroke

cohort.

• Different sensor placements throughout the study.

• Data associated with stroke patients in home set-

ting was small compared to the others.
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Paper Study aim Limitation

[67] Proposed a wearable activity monitoring system based on

a fuzzy logic based activity classifier that exploits fused

information from the sensors which accounts for behav-

ioral constraints and estimates the body elevation during

standing and locomotion.

• Non-uniformity of the number of data samples

for the different activities.

• Limited number of SP.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[68] Developed a novel prediction model based on ML algo-

rithms and determine the accuracy of detecting different

ADLs performed by stroke survivors. The study was con-

ducted in a simulation living room and kitchen. Lastly,

additional independent training and testing data were col-

lected to perform external validation to further imitate

real-world prediction conditions.

• The sample size is relatively small so the model

might not generalise well.

• Data was collected in a semi-naturalistic environ-

ment instead of participants’ homes.

• The accuracy might be more improved.

• It is a pilot study so it did not yield to an assess-

ment platform yet.

[69] Encoded time-series data into gray-scale and RGB images

and tested different CNN models to profit from computer

vision development.

• No SP were included in the collected data.

• The presence of confounding movements induced

by clinical practitioner patient interactions while

performing the exercises.

[70] A comparative study to investigate the performance of

different sensors and different placements for classifying

four different ADLs with the purpose to find the optimal

placement of a single sensor that achieves best accuracy.

• The study was preliminary.

• Only five ADLs were included, they also have

similar patterns

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[71] A new dataset was provided for real-time activity recogni-

tion of stroke-affected patients, encompassing six frequent

recognition activities and 20 common features were ex-

tracted. Activities were recognized in real-time using a

standard LSTM-RNN, and the recognised activities were

presented as text and sound output through a MATLAB

application.

• Accuracy can be improved.

• Accelerometer did not model well the movements.

[72] Used two sensors to differentiate between goal-directed

exercises and ADL as well as detecting the poorly executed

exercises following the FMA [97] assessment during in-home

rehabilitation exercises.

• The sample size was relatively small and thus the

reported results may not be generalised.

• Movements that were both goal-directed and non

goal-directed in nature were not considered.

• There is no mention if the final prototype has

been used in clinical environments afterwards.
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Paper Study aim Limitation

[73] The Establishment of a quantitative measurement system

of the amount of hand use of 11 motor tasks of ADL using

two sensors.

• The proposed technology cannot capture the use

of the hands for stabilizing objects (e.g., holding

a cup or stabilizing a piece of steak with a fork)

as it focuses on estimating the amount of hand

movement.

• No stroke patients were included and no research

studies were conducted.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[74] Developed an approach that identifies and counts func-

tional primitives that constitute rehabilitation activities

in an automated manner.

• The primitives were only recognised, no system

has been set up to count them.

• No platform was implemented.

• Has not been tested in clinical settings.

[75] SmartPants is used to perform therapy exercises and recog-

nise some ADL lower-limbs taks. • The number of sensors might be reduced to design

a more unobtrusive system.

• Did not test the model on stroke patients.

• There is no mention if the final prototype has

been used in-clinical environments afterwards.

[76] Validate a general probabilistic modeling approach for the

classification of different pathological gaits. • Metrics for gait assessment were not included.

[77] Recognise purposeful and non purposeful arms’ movements

of post-stroke patients when performing ADLs for identi-

fying and promoting the use of the impaired limb during

daily life in people affected by stroke. different datasets

were investigated to see which gives better results, namely

SP, AB, and both.

• Data collected from index and wrist sensors only.

• the recruited groups were not age-matched.

• Data were collected in a controlled environment.

[78] Investigated the performance of unimanual, bimanual asym-

metric, and bimanual symmetric tasks in participants post-

stroke and controls for a variety of signal processing and

ML tools. The system classifies bi-manual and uni-manual

tasks.

• Accuracy could be further improved.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

• Accuracy could be further improved. The sample

size was relatively small and thus the reported

• Results may not be generalised.

[79] Examined IMU sensor placement configuration with differ-

ent classification algorithms and differentiate between SP

and NDP gaits. It showed that shank placement provided

better accuracy.

• Limited sample size.

• No clinical application was implemented from this

research yet.
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[80] Developed a model that can recognise stroke gait with the

help of therapists. • Limited number of participants which causes the

system to not generalise well.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[81] A sensing sub-system placed on a shirt sleeve (smart shirt)

collected data that are then processed locally on a smart

wireless access point based on Raspberry Pi and then sent

to an Android device via a Transmission Control Protocol

(TCP) socket by a Wi-Fi master node where the patient is

given a personal account that the physicians use to login

into and visualise the real-time data. The information is

then sent to a data cloud built with MySQL where it is

stored and then pushed to a computing cloud that utilises

ML algorithms implemented on MATLAB to evaluate the

data [97]..

• Limited number of activities included.

• The data was collected from a single person.

• No stroke patients were included and no research

studies were conducted.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[82] Proposed three digital biomarkers namely convergence

points, physical activity and functional range of motion for

the longitudinal performance monitoring and movement

evaluation of stroke patients

• Some subtle movement changes require further

research to distinguish improved movement ability

due to recovery from movement compensation

mechanisms.

• Further analysis should be done to see how the

algorithm would generalise.

[83] Evaluate the feasibility of using body-worn sensors to track

rehabilitation exercises in the inpatient setting and count-

ing exercise repetitions in order to identify stroke severity

• Has only been tested on three basic ADLs.

• gyroscope data did not include all patients.

• Stroke patient data were from subjects with at

least moderate strength and did not include more

severe cases.

[84] Only two IMU sensors to assess quality of movement Func-

tional Ability Scale scores [99], the results were then cor-

related with therapists scores giving very high accuracy.

• Further analysis should be done to see how the

algorithm would generalise.

• No stroke patients were included and no research

studies were conducted.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[85] A single sensor to measure upper extremities functional use

during ADL and distinguish it from the upper extremities

movements that occur while walking.

• Establishing clinical validity requires further re-

search with larger patient populations to deter-

mine how well this methodology generalises across

stroke survivors.
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[86] Multiple upper-limbs assessment system utilising two differ-

ent rehabilitation evaluation scoring systems the FAS [185]

and FMA associated with different ADL tasks.

• Further analysis on supplementary participants

to see how the algorithms would generalise.

• Accuracy could be improved further.

• Has not been tested in clinical settings.

[87] Proposes a novel remote quantitative FMA assessment

system in home settings. Sensors record the movement

information in real time and wirelessly transmit to the

computer through ZigBee protocol and finally upload to

the web server database through Internet.

• Only seven exercises were included.

• The placement of sensors has not been investi-

gated further.

• The system is obtrusive.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

[88] Evaluated two approaches designed to estimate the quality

of post–stroke upper extremity motion as measured by the

FMA subscale for the upper extremity using paretic and

non–paretic limb kinematic data.

• Limited number of participants which causes the

system to not generalise well.

• No clinical application was implemented from this

research.

• Research was not conducted in a research envi-

ronment.

[89] Assessed whether long-term monitoring of seven days or

more, in unilaterally impaired stroke patients is useful in

determining motor impairment using [102].

• Very small sample size which would not generalise

to more data.

• The presence of confounding movements induced

by clinical practitioner patient interactions while

performing the exercises.

[90] Developed an automated system that can predict the as-

sessment score in an objective manner to do so two new

features were proposed.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

• Included activities are limited

[91] Employ time-frequency methods to provide a better ana-

lytical basis for the derivations. • Very small data sample, only 78 data segments

were collected.

• There is no mention if the final prototype has

been used in clinical environments afterwards.

• No clinical application was implemented from this

research.

• Research was not conducted in a research envi-

ronment.
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[92] Proposed an approach to estimate upper-limb impairment

in stroke survivors using two wearable inertial sensors, on

the wrist and the sternum.

• Small sample size which may not generalise to

more data.

• Reliance on the performance of large, continu-

ous movements, which can be tiresome for stroke

patients.

[93] Developed an autonomous grading system for stroke pa-

tients using NIHSS and MRC scores. • Very small sample size which may not generalise

to more data.

• Very limited set of exercises.

[94] A wearable motion capture system, employing nine-axis

IMUs and Flex sensors, recorded real-time rehabilitation

data from stroke patients. This data was used to establish

a rehabilitation assessment model akin to the clinical FMA

score, offering quantitative rehabilitation scores through

sensor fusion and machine learning.

• The sensitivity of signal processing to the ini-

tial placement of wearable sensors, potentially

leading to deviations in rehabilitation assessment

outcomes.

• The influence of body compensation on assess-

ment accuracy in more severe patients was noted.

• Further improvements maybe sought, using more

advanced algorithms (e.g: deep learning).

[95] Data on stroke patients were collected using two inertial

sensors attached to their wrists, with ARAT task and total

scores estimated through supervised machine learning. It

is hypothesized that this approach can yield ARAT score

estimates with an error similar to or smaller than clinically

relevant changes, enabling automated administration in-

dependent of expert input, thanks to the straightforward

setup of just two wearable sensors.

• A small sample size was employed, potentially

affecting the prediction accuracy and model ro-

bustness. Expanding the sample size with greater

diversity may enhance the model’s performance.

• The reliance on clinical scores as reference data

for machine learning training introduces inherent

limitations, as the model merely reproduces infor-

mation from these scores, which may not capture

movement quality comprehensively.
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