
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 1

ARCTIC: Approximate Real-Time Computing in a
Cache-Conscious Multicore Environment

Sangeet Saha§, Shounak Chakraborty§, Sukarn Agarwal, Magnus Själander, and Klaus D. McDonald-Maier

Abstract—Improving result-accuracy in approximate comput-
ing (AC) based time-critical systems, without violating power
constraints of the underlying circuitry, is gradually becoming
challenging with the rapid progress in technology scaling. The
execution span of each AC real-time tasks can be split into
a couple of parts: (i) the mandatory part, execution of which
offers a result of acceptable quality, followed by (ii) the optional
part, which can be executed partially or completely to refine
the initially obtained result in order to increase the result-
accuracy, while respecting the time-constraint. In this article,
we introduce a novel hybrid offline-online scheduling strategy,
ARCTIC, for AC real-time tasks. The goal of real-time scheduler
of ARCTIC is to maximise the results-accuracy (QoS) of the
task-set with opportunistic shedding of the optional part, while
respecting system-wide constraints. During execution, ARCTIC
retains exclusive copy of the private cache blocks only in the
local caches in a multi-core system and no copies of these blocks
are maintained at the other caches, and improves performance
(i.e., reduces execution-time) by accumulating more live blocks
on-chip. Combining offline scheduling with the online cache
optimization improves both QoS and energy efficiency. While
surpassing prior arts, our proposed strategy reduces the task-
rejection-rate by up to 25%, whereas enhances QoS by 10%,
with an average energy-delay-product gain of up to 9.1%, on an
8-core system.

Index Terms—Real-time systems, Approximate Computing,
QoS Improvement, Energy Efficiency, Cache Management

I. INTRODUCTION

In time-constrained systems, functional correctness not only
depends on the result-accuracy, but also that results are
produced before given deadlines [34]. For such real-time
scenarios, approximated result obtained before the deadline is
preferable over an accurate result produced after the deadline.
In a plethora of application areas, such as multimedia pro-
cessing, tracking of mobile targets, real-time heuristic search,
information gathering and control systems, an approximate
result, obtained within the time-limit is usually acceptable [6].
For example, in the case of video streaming applications,
frames with lower quality are preferable over completely
missing frames. In the case of target tracking, an approximated
estimation of the target’s location produced within the deadline
is preferred to an accurate location, obtained too late. In
such domains, applications are usually modeled as real-time

S.Saha and K. McDonald-Maier are with the Embedded and Intelligent
Systems Lab, University of Essex, Colchester, UK. S. Chakraborty and M.
Själander is with the Department of Computer Science, Norwegian University
of Science and Technology, Trondheim, Norway. S. Agarwal is with the
School of Computing and Electrical Engineering, IIT Mandi, India.

e-mail: (sangeet.saha@essex.ac.uk, shounak.chakraborty@ntnu.no,
sukarn@iitmandi.ac.in, magnus.sjalander@ntnu.no, kdm@essex.ac.uk).

§Equal contribution

task graphs, or precedence constrained task graphs (PTGs),
whose nodes denote application tasks and edges denote inter-
task dependencies. Further, each of these tasks is logically
decomposed into a mandatory part and an optional part [11],
[33], [35].

The entire mandatory part has to be completed prior to the
deadline to generate minimally acceptable QoS, followed by
a partial/complete execution of the optional part, subject to
availability of system resources, to improve accuracy of the
initially obtained result within the deadline. The QoS increases
with the number of execution cycles spent on the optional
part, and based upon the amount of execution cycles of the
optional part, a task can offer various QoS levels. However,
it is worth noting that, compared to a lower QoS level,
a higher QoS level demands additional computation, which
consequently leads to higher execution time and associated
energy overheads. Thus, the desire for enhanced QoS with
improved energy efficiency and the completing tasks within
their deadlines are often in conflict with each other. Hence,
given a real-time application modeled as a PTG, where the
tasks have multiple QoS levels and need to be scheduled
on a multiprocessor platform, maximising system-level QoS
by allocating appropriate quality levels, cores, and execution
start times to the tasks, and assigning core frequency, while
satisfying all timing, power, precedence, and resource-related
constraints, is a challenging scheduling problem.

Approximate real-time scheduling techniques are often clas-
sified as offline or online, based on whether scheduling de-
cisions are made at design time or at runtime [17]. Prior
art considered approximate computing based offline real-time
task scheduling [11], [35] by focusing on the processor cores
from a power-performance perspectives in case of chip multi-
processor (CMP) based systems. As time-constrained systems
require a high degree of timing predictability, it is typically
preferable to employ offline scheduling algorithms for such
systems, as this allows all timing requirements to be specified
offline before execution [42]. However, rigid adherence to
static schedules during online execution could result in reduced
performance, if the runtime architectural characteristics are not
considered [12].

Architectural techniques are effective in improving the
energy efficiency of the last level caches (LLCs) [13]–[15],
[38]. A prior coherence management technique for shared
LLC, proposed by Lodde et al., shrinks LLC size dynamically
at the way level granularity, while maintaining only copies
of the private blocks in the local cache [30]. Later Albericio
et al. proposed a “reuse cache” that decouples tag and data
for unused LLC blocks [4] and improves performance, while

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 2

incurring 16% additional LLC storage, associated with a
noticeable power overhead. ARCTIC introduces a critical man-
agement of the private blocks in a shared LLC to improve both
power efficiency and performance, by increasing live-block
count in the LLC, without incurring noticeable overheads.
We argue and empirically validate that our novel runtime
architectural technique to improve performance as well as
energy efficiency can also generate a slack time before the
deadline by reducing the task’s execution span. Such slacks
can also be exploited either to maximise QoS by executing
more from the optional part of the task or to enhance energy
efficiency of the underlying hardware by enabling power
gating mode [37]. However, it is worth noting that, even
in these situations, static schedules are still crucial as they
can serve as the basis for further online QoS stimulation
considering runtime characteristics of the task.

Tasks with Precedence, Power and Temporal Constraints

Schedule Tasks
to Maximise QoS

(i) Version ID
(ii) Processor ID & V/F
(iii) Start & Finish Time
(iv) Calculated QoS

For Each Ti, select- Store
Schedule

in Dispatch
Table

No

Yes

Offline

Online

Generate schedule
with Error Propagation

Highest version
of each task
is selected?

Identify Private Blocks at
Coherence Directory

Keep Exclusive Local
Copy, and no LLC Copy

At LLC

(A
lg

o
ri

th
m

 3
)

(Algorithm 4) At Core

(A
lg

o
ri

th
m

5,
 6

 a
n

d
 7

) Power Gate During Slack

Improves LLC Space
Utilisation, so IPC

(Algorithm 1)

(Algorithm 2)

Improves
QoS

Improves Energy
Efficiency

(Algorithm 8)

Fig. 1: ARCTIC: Process Overview

In this paper, we propose a scheduling technique, ARCTIC,
for approximate real-time task-set that generates a schedule
in offline with an objective to maximise the QoS, which
is further enhanced along with significant energy reduction
at runtime. Our considered task-set is dependent and hence
can be represented by a PTG (Sec. III), are scheduled on
a CMP, where each task can have multiple versions with
distinct degrees of accuracy. The entire concept of ARCTIC
is shown in Figure 1, where the upper half of the figure
depicts the offline part and the lower part elaborates the online
part. Respective algorithms in Figure 1 for individual sub-
stages of ARCTIC-Offline and ARCTIC-Online which will be
elaborated in Sec. IV and V, respectively.

Our key contributions can be summarized as follows:
• ARCTIC-Offline is a power constrained based task-

scheduling strategy (Sec. IV) that is formulated initially
as an optimization problem to maximise QoS, which is
solved to generate an optimal schedule. Each task is
assigned to a processor core along with a voltage and
frequency setting.

• In cases where tasks are scheduled with lower accuracy,
the portions of the optional parts that have not been
scheduled are added with the successor task(s) to enhance
QoS. This phenomenon is termed as Error Propagation,
which might cause a deadline violation, that is however
ameliorated by readjusting the voltage and frequency
at task level granularity, without violating the power-
budget (Sec. IV).

• At runtime, ARCTIC-Online maintains exclusive copies
of the private LLC blocks in the respective local caches,
and thus frees up space in the shared LLC (Sec. V),
that are exploited to accumulate more live LLC blocks
to improve performance.

• The slacks generated by reduced execution-times are
exploited either to enhance QoS by executing more from
optional parts of the tasks, or to improve energy efficiency
by turning off the cores (Sec. V).

While surpassing prior arts, ARCTIC-Offline reduces the
task-rejection-rate by up to 25%, whereas ARCTIC-Online
enhances QoS further, by 10%, with an average energy-delay-
product (EDP) gain of up to 9.1%, for an 8-core based
CMP (Sec. VI).

II. RELEVANT PRIOR ART

In recent years, researchers have developed various ap-
proaches for the real-time scheduling of PTGs on multicore
platforms. One set of the approaches are focused on energy-
minimisation. Since many of the CMP-based real-time systems
are battery-powered, reducing energy in such systems has
become an active research topic in recent past [5], [36]. For
energy savings, DVFS (dynamic voltage frequency scaling)
and DPM (dynamic power management) are typically em-
ployed. Scheduling time-constrained dependent tasks on the
CMP platform by considering the energy/power cap is however
becoming challenging with technology scaling [8]. An ILP-
based optimal approach was employed to solve the problem
in a prior art [16]. However, incorporating DVFS with task
allocation and scheduling decision is not straightforward, as
additional variables regarding the core selection, data depen-
dency, and Voltage/frequency (V/F) selection are required.
Moreover, these variables are interconnected, which makes
the problem challenging. To tackle this problem, researchers
applied system-level DVFS, where the frequency of each pro-
cessor was not adjusted individually. But, this technique is not
suitable for time-constrained systems. Researchers attempted
to build up sub-optimal energy-aware scheduling strategies for
real-time task sets with different system-wide constraints [23],
[32], [45].

In 2013, Kim considered QoS-based real-time scheduling
problem to improve the overall QoS under task deadlines [24].
Subsequently, research into QoS-aware real-time scheduling
has emerged. The concept of approximate computing to meet
the energy budget of a large-scale real-time system was
introduced for independent tasks [11]. Zhou et al. [47] took
energy consumption into account and proposed an energy-
adaptive and QoS-driven task mapping method. The energy-
efficient scheduling of the dependent approximate tasks was

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 3

considered in some prior arts [29], [35] with DVFS at the
cores. However, these methods did not consider the effect on
system performance when QoS degradation occurs for a task,
and the proposed optimal approaches also suffer from high
computational complexity. In some recent works [12], [38],
thermal efficient task scheduling for dependent approximate
real-time tasks was discussed, where the QoS offered in offline
mode is further enhanced by employing runtime architectural
techniques. In ARCTIC, a low-complexity optimal offline
task scheduling technique is proposed to maximise QoS. This
obtained QoS is further enhanced by incorporating runtime
architectural parameters. Moreover, to realistically frame the
behavior of QoS-aware systems, we introduce the concept of
error propagation.

Improving QoS as well as energy efficiency by employing
runtime architectural techniques can be a viable option to
be considered in approximate real-time computing. To re-
duce leakage power and area occupancy of the conventional
MOSFET-based LLC, Lodde et al. proposed a decoupled
technique for data and tag entries of the LLC [30]. The private
blocks are placed only in the local cache, and LLC data
array is trimmed to be used only for the shared blocks. This
technique significantly saves leakage power, but at the cost of
performance loss up to 10%. Later, Albericio et al. proposed a
tag/data decoupled technique that keeps both data and tag only
for the blocks that have been reused [4]. This policy leads to
a 16% increase in (MOSFET-based) LLC storage capacity;
however, authors did not consider the power consumption
of the LLC. In a recent study, researchers exploit dataless
LLC entries to overcome several write issues in an NVM-
based hybrid LLC [3]. Another recent approach attempted to
reduce refresh counts in an embedded-DRAM-based LLC by
segregating the private blocks and decoupled tag and data for
such blocks [31]. A coherence protocol based private block
management was also proposed [39], which incurs overhead to
the coherence management. Most of these prior policies limit
usages of the data array either to reduce leakage consumption
of the MOSFET-based LLC or to overcome writing issues of
the NVM caches. In ARCTIC, we considered FinFET-based
LLC that consumes lower leakage than the MOSFET-based
LLC and do not have writing issues like NVMs. Hence, in
ARCTIC, by managing the private blocks, the freed-up LLC
space is exploited to enhance the overall performance.

III. SYSTEM MODEL AND ASSUMPTIONS

Our considered CMP consists of m homogeneous cores,
denoted as P = P1, P2, ..., Pm. Each core can support L
distinct V/F settings, denoted as V = V1, V2, ..., VL and
F = F1, F2, ..., FL , where Vi < Vi+1 and Fi < Fi+1.
Our considered application, which is collection of a set of
sub-applications (also termed tasks in this paper), can be
represented as a PTG (see Figure 2), G = (T,E), where T is
a set of nodes (T = Ti|1 ≤ i ≤ n) and E is a set of directed
edges (E = {⟨Ti, Tj⟩ | 1 ≤ i, j ≤ n; i ̸= j}). Each node Ti

denotes a task of the PTG, and each directed edge specifies an
execution order that the Tj can only start after the task Ti is
completed. Being a real-time application, G has to be executed

T
1

T
2

T
3

T
4

T
5

T
6

k
2
 X 1

T1

2
T2

2
Tk

2

Available Versions

Selected
Version

2

V
1
/F

1
V

2
/F

2
V

L
/F

L

Available V/F Levels

Selected
V/F Level

L X 1

Tasks Mi Oi Powi

T1 4 2 10

T2 10 5, 8, 10 20

T3 10 5, 7, 10 10

T4 20 7, 12 15

T5 17 5, 11, 15 20

T6 10 1, 6 10

Parameters with values
for our example task-set

Number of Available V/F Levels
Considered by the Scheduler: 2

Turbo V/F is used at online V/F Spiking

D
PTG

= 85

Fig. 2: Precedence task graph (PTG) with timing parameters
and power requirements.

within the given deadline, by executing all the associated task
(Ti). The end-to-end application deadline is assumed to be
DPTG. We also assume that, Ti can have ki different versions,
Ti = T 1

i , T
2
i , ..., T

ki
i , those are distinct by their respective

execution lengths (Oi), denoted as O1
i , O

2
i , ..., O

ki
i , where Op

i

offers higher result-accuracy than Oq
i , if p > q. For each

optional part of a task (Oi), there exists a separate executable
module, that is executed after execution of the mandatory
portion (Mi) of the respective task, Ti. The length of the j-th
version of task Ti (lenj

i) can be defined as: lenj
i = Mi +Oj

i .
Note that, lenj

i includes the cycles required for accessing
LLC, which we obtain by executing an individual task for
a particular configuration. We define result-accuracy Accji
of T j

i as the executed optional part of the task, Oj
i (i.e.,

Acci = Oj
i). Thus, the overall system level result-accuracy

(QoS) is now defined as the sum of the executed cycles
of Oj

i for all the tasks [11], which can be represented as:
QoS =

∑n
i=1 O

j
i | Ti = T j

i .

IV. ARCTIC-Offline

With an objective to maximise the QoS, subject to the
system-wide constraints, ARCTIC-Offline allocates tasks to
the processor cores with the assigned V/F. Our scheduling
problem is bounded by a set of constraints and the problem is
detailed in Sec. IV-A. We further discuss the concept of error
propagation in Sec. IV-B, before concluding the section with
a working example.

A. ARCTIC: ILP based Scheduling

We present a scheduling strategy based on integer linear
programming (ILP). For this purpose, we first introduce an
integer decision variable Si ∈ Z+ to capture the start time of
each task Ti, where Z+ denotes the set of positive integers.
We further define a binary decision variable, Ziklθ, where,
i = 1, 2, ..., n; k = 1, 2, ..., ki; l = f1, f2, ..., fL; and
θ = 1, 2, ...,m; Here indices, i, k, l, and θ denote task
ID, corresponding version ID, viable frequency of the θ-th
processor and the processor ID, respectively. Ziklθ = 1, if
the k-th version of Ti (i.e. T k

i) executes on processor θ at
frequency fl, otherwise 0. We define another binary variable
Yij , where Yij = 1, if task Ti starts before Tj , else 0. If a

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 4

task Ti is executed with the kth version at frequency level l,
then its execution time will be denoted as ET (i, k, l). We now
present the objective function with constraints on the binary
variables to model the scheduling problem.

Maximise QoS (1a)

QoS(A) =

m∑
θ=1

n∑
i=1

ki∑
k=1

fL∑
l=f1

Ziklθ ×Ok
i (1b)

Subject to:
ki∑

k=1

fL∑
l=f1

m∑
θ=1

Ziklθ = 1 (1c)

Sn +

kn∑
k=1

fL∑
l=f1

m∑
θ=1

(ET (n, k, l)× Znklθ)− 1 ≤ DPTG (1d)

Powpeak = max{Powsys} (1e)
Powpeak ≤ Pow BGT (1f)

∀(⟨Ti, Tj⟩) ∈ E, Si +

ki∑
k=1

fL∑
l=f1

m∑
θ=1

((ET (i, k, l)× Ziklθ) ≤ Sj

(1g)
Yij + Yji > 0 (1h)
Yij + Yji ≤ 1 (1i)

Si +

ki∑
k=1

fL∑
l=f1

m∑
θ=1

((ET (i, k, l)× Ziklθ) ≤ Sj + (1− Yij)× α

(1j)

Equation 1b presents the objective function in the above
formulation, whereas Equation 1c enforces the constraint that
each task Ti is assigned to exactly one processor with a
particular version and executed at one frequency level. The
application must meet its end-to-end absolute deadline DPTG.
Hence, the sink node Tn should be finished by DPTG, which
is represented by the constraint enforced in Equation 1d. The
system-wide power constraint must be satisfied i.e. the peak
power consumption of the defined system must not exceed the
stipulated power budget. We represent the power constraints
in Equation 1e and 1f, where Powpeak represents the peak
power consumption of the system. On the other hand, Powsys

includes dynamic plus static power consumption of all the busy
processors and is the summation of power consumption of all
the tasks executing at that instant. Equation 1g, the precedence
constraint between the tasks (Ti & Tj), ensures that the
execution of Tj should commence only after the completion of
its predecessor Ti. Equation 1h to 1j represent the necessary
constraints in order to avoid time-wise overlapping between
tasks executing at the same processor. If tasks are executed
in the opposite order, we use α nullification to deactivate the
constraint where, α represents a large value.

B. ARCTIC: Error Propagation

As per the ILP-based scheduling, when a task (Ti) is
scheduled with a lower version (assuming ζ-th version, where
1 < ζ < ki), the result of a partially completed task shows

Algorithm 1: Generating Schedule and V/F Readjust-
ment

Input:
i. Task graph G(T,E)
ii. ki: Number of versions of each task Ti

iii. lenj
i : Execution length of jth version of task Ti

iv. DPTG: The deadline of the task graph.
v. Accji : accuracy achieved by executing jth version of Ti

vi. F j
l : implies a frequency level (l) for processor j.

Output:
i. Task Schedule /* Selected Task versions (ζi), Execution start
times (sti), Mapped Processor id: (P j

i i.e. ith task on jth

Processor, Obtained Accuracy) */
ii. Achieved system-level QoS.

1 By considering all Ti ∈ T and all processors P , a schedule will be
generated by employing the ILP given in Equation 1a to 1j, and
this schedule is named as PrimarySched ;

2 /* Our ILP based scheduling mechanism will map the tasks to the
cores and also selects the version of each task that will be
executed. */

3 for each Ti ∈ T do
4 Generate the list of predecessor (PARi, list of predecessors for

Ti) for each of the |T | − 1 tasks, as our single source task
does not have any predecessor;

5 if Ti is not mapped/selected with its highest version then
6 Calculate OEi and subsequently IEi by employing

Equation 2 and 3, respectively;
7 Derive EMj for Tj through Equation 4, where Tj is a

successor of Ti;

8 By considering EMi for each Ti, modify PrimarySched, and
this modified schedule is named as SchedMod;

9 Let us assume task T
Pj
η is the last task scheduled at processor Pj

(∀Pj ∈ P) in our schedule and one of such T
Pj
η will trivially be

the sink task;
10 if ∃ T

Pj
η , where FinishT ime(T

Pj
η) > DPTG then

11 SchedNew = Exploit Idle Slot(SchedMod) (Call
Algorithm 2);

12 if T
Pj
η ∈ SchedNew, FinishT ime(T

Pj
η) ≤ DPTG then

13 SchedF inal = SchedNew ;
14 else
15 Discard the schedule and return ;

16 else
17 SchedF inal = SchedMod ;

18 Store SchedF inal in dispatch table and return QoS;

lower accuracy than the maximum possible value and this
difference is termed output error (OEi) and is represented:

OEi = Oki
i −Oζ

i (2)

Since, the tasks (Ti) are dependent, the error OEi of
Ti is propagated to its successor task(s), in terms of extra
computational cycles. Hence, the additional cycles (IEi) of a
task (Ti), due to propagated errors by its predecessor(s) can
be defined as:

IEi =

PAR∑
p=1

OEp (3)

where PAR is the number of predecessors of Ti. This propa-
gated error extends the mandatory part of the successor (Tj),
since more processor-cycles are needed by the task to process
the error. The extended mandatory part of a task (Tj) can be
expressed as:

EMj = Mj + IEi (4)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 5

C. Generating Schedule and V/F Readjustment

The scheduling process of ARCTIC-Offline is given in
Algorithm 1. The task graph (G(T,E)), in addition with
the individual task’s versions (ki), execution lengths (leni

j)
and deadline (DPTG) are the inputs to this algorithm. The
algorithm also considers Accji and F j

l as inputs, which are
the accuracy achieved by executing the jth version of Ti at
a frequency level of L for processor j. With the onset of the
schedule generation process, Algorithm 1 employs the ILP
based scheduling discussed in Sec. IV-A (line 2). The ILP
considers power, precedence and time constraints and available
cores to generate the primary schedule, PrimarySched. The
generated schedule might not be able to execute all the tasks
with their highest versions. By considering that schedule, OEi

for individual Ti is generated next and subsequently IEi will
be derived by employing Equation 2 and 3, before deriving
EMj by employing Equation 4. To generate EMj , the list
of predecessor for all tasks are also considered. The entire
process of generating EMj is written in line 3 to 7.

Once the extended mandatory part is generated (EMj), the
PrimarySched is next modified and this schedule is named
SchedMod (line 8). As SchedMod is burdened with addi-
tional execution cycles, this might result in a violated deadline.
Any task Tη , the last task (can potentially be the sink task) that
has been scheduled on processor Pj (TPj

η) and having its finish
time after the deadline, i.e. FinishT ime(T

Pj
η) > DPTG,

trivially implies that the deadline is violated (line 10). Upon
detection of such deadline violation, Algorithm 2 will be called
(line 11), where existing possible idle slots at some cores will
be exploited as much as possible to adjust the frequency of
the non-idle cores by respecting power constraints.

To update the SchedMod, Algorithm 2 first considers the
tasks scheduled at each processor (Pi). Now, for each Pi,
Algorithm 2 detects the idle slots by considering finish time
and start time of two subsequent tasks (line 1 to 5). For each
such idle slots at a particular processor (Pi), Algorithm 2
searches if any other processor(s) (Pj) is scheduled with a
lower frequency, (where Pi ̸= Pj), then the frequency of Pj

is set at the highest level for that slot (line 6 to 8). Such overlap
slots between a pair of processor cores are detected by listing
the idle slots of each individual processors (IdleSlots(Pi)[]).
For such individual idle slots of a particular processor (Pi),
all other processors’ schedules will be verified and the active-
idle overlap pairs will be detected accordingly. However, such
changes in frequency will reduce the execution lengths of the
individual tasks, for which SchedMod will be updated and
the updated schedule is named as SchedUpdate, which is
next returned to Algorithm 1 (line 9 to 10 in Algorithm 2).
Upon receiving the updated schedule, Algorithm 1 checks
if this new schedule is meeting the deadline (line 12). If a
new schedule meets its deadline, Algorithm 1 stores this final
schedule SchedFinal in dispatch table and returns the QoS
(line 17). Otherwise, the schedule will be discarded (line 15).

D. Example: Constrained scheduling at work

By applying the ILP based mechanism for the proposed
scheduling problem based on the PTG depicted in Figure 2,

Algorithm 2: Exploit Idle Slots (SchedMod)
1 for each processor (Pi) do
2 List the tasks scheduled at Pi by considering Sched Mod ;
3 for each pair of subsequent tasks (Ti, Tj) do
4 if StartT ime(Tj) > FinishT ime(Ti) then
5 IdleSlots(Pi)[] =

{StartT ime(Tj)− FinishT ime(Ti)} ;

6 for each entry in IdleSlots(Pi)[] do
7 if Pj is scheduled with lower frequency, where Pi ̸= Pj then
8 Set the frequency (F j

l) at the highest level for Pj ;

9 Re-calculate the time-stamps and spans for each task in SchedMod
along with its successors, for which frequency has been readjusted,
and the new schedule is named as SchedUpdate ;

10 Return SchedUpdate ;

T4

T3 T5P2

Slack
Task with
highest version

Task with
lower version

0

6

6

26 58

8170 Time

V/F

DPTG = 85

T1P1

Task with error propagation

[A]

T2

26

T3 T5P2

0

6

6

26 58
85

Time

V/F

DPTG = 85

T1P1

[C]

T2

26

T4

T3 T5
T6P2

0

6

6

26 58

70 Time

V/F

DPTG = 85

T1P1

[B]

T2

26

91

58-70

Task runs at higher V/F
than the assigned one

T3 T5
T6P2

0

6

6

26 58
85

Time

V/F

DPTG = 85

T1P1

[D]

T2

26 70

Online Slacks

T6 is still not scheduled
with highest version

Updated to highest version

EM6 = 21

T4

T4

T6

T6

 Updated to a higher version

O
ff

li
n

e
O

n
li

n
e

Fig. 3: Generated Schedule and V/F readjustment, and online
LLC induced improvement (not to scale).

Algorithm 1 at first generates the PrimarySched as shown
in diagram [A] of Figure 3, whereas our assumed system has
two processors (P1 and P2) and with an overall power-budget
of 35 units.

Note that, the source task does not have any such overhead.
In Figure 3, T5 is scheduled with a lower version, hence T6

will be scheduled with an extended mandatory part EM6

as shown in diagram [B], which is the modified schedule,
SchedMod, derived by Algorithm 2. Such error propagation
leads to deadline violation for SchedMod, which is shown in
diagram [B] of Figure 3.

The assigned V/F levels of a processor is adjusted by
observing the assigned V/F level of the other processor(s)
so that the power constraint is not violated. During task-
allocation, the V/F level for each task on a specific processor
is determined. For a pair of processors, if there exist any
overlapped time-slots where one processor is idle, and the
other one is executing a task at some lower V/F, then ARCTIC

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 6

Fig. 4: Percentage shares of Private and Shared LLC Blocks.

will increase V/F of that processor (shown in Figure 3[C]).
Note that, this task-level V/F readjustment will reduce the
execution length of tasks, and thus will improve the QoS.
In Figure 3[C], our SchedFinal is depicted, in which the
V/F adjustment reduces the execution length of the task T5 in
diagram [B]. Hence, completion time of T5 remains same at
70, however, a higher version has been scheduled, thanks to
V/F adjustment. Even after scheduling a higher version of T5,
T6 can also be completed without a deadline-violation and our
final obtained QoS is 46 (Figure 3[C]). The feasible schedule,
SchedFinal is next stored into the dispatch table [27] by
Algorithm 1, and subsequently, the tasks will be executed.

V. ARCTIC-Online

In this section, we will illustrate the ARCTIC-Online mech-
anism after discussing the background on private blocks.
Basically, the schedule generated by Algorithm 1 is deployed
for execution and the online mechanism attempts to improve
QoS and energy efficiency.

A. Analysing Exclusive Cache Blocks

To analyse the presence of shared and private blocks in
the LLC, we executed a set of PARSEC benchmarks [9] in
gem5 [10]. The footprints of private and shared blocks have
been captured once the execution of an application proceeds to
the region of interest (ROI). The traces have been captured at
the end of each million of clock cycles, and we took this traces
for 80 million clock cycles within the ROI1. The percentages
of private and shared LLC blocks are shown in Figure 4. Our
analysis shows, on average, about 20% of all LLC blocks are
private, and can be as high as 58% for some applications
(e.g., Swap). As we consider an inclusive cache hierarchy,
a significant LLC-space is occupied by the private blocks.
However, a single copy of such exclusive cache blocks in
the respective requester cores’ private caches can maintain the
functional correctness and thus a large portion of the LLC
will be freed up, which can be filled up by more live blocks
to improve performance.

In case of an exclusive cache hierarchy, the effective cache
capacity is significantly higher than the inclusive ones. But,
maintaining coherency at the shared cache in exclusive cache
hierarchy can incur significant costs in terms of latency and
energy usages [46]. Implementation of coherence state ma-
chine for the exclusive cache hierarchy is more complex than

1By evaluating LLC traces for longer time-span (of 200 million clock
cycles), we observed that the shares of private and shared blocks does not
change significantly. Hence, we decided to take the values derived at the 80
million clock cycles.

its inclusive counterparts, and exclusive cache also requires
an additional victim buffer, which will further incur extra area
as well as energy overhead. While considering the sharing
pattern between blocks as shown in Figure 4, it can be stated
that, the larger percentage of the LLC blocks are shared in
nature. Hence, implementing exclusive cache hierarchy can
incur significant energy, area and coherence overheads [18],
[19]. In ARCTIC-Online, we therefore propose an inclusive
cache hierarchy with slight modification in the coherence
management scheme, that will handle the private blocks like an
exclusive cache, while shared blocks will be handled normally
like the inclusive cache. Such technique will not incur energy,
area, coherence or implementation overheads like exclusive
cache, but can exploit the benefits of the exclusive cache for
the private blocks.

B. Core Concept of ARCTIC-Online

The entire mechanism of ARCTIC-Online is governed by
Algorithm 3. This algorithm handles LLC management (de-
scribed in Sec. V-B1) techniques along with the online QoS
improvement and energy savings. Time span between the start-
ing time till deadline is called Frame, within which the sched-
uled tasks need to be executed. The tasks are fetched from
the dispatch table for execution (line 3), and while executing
the tasks, the LLC management algorithm (Algorithm 4) is
executed at each LLC bank simultaneously (line 5 to 7). On
the other hand, the core based QoS improvement and energy
savings are also handled at each core simultaneously (line 8
to 10) by employing Algorithm 8 (discussed in Sec. V-B2).

Algorithm 3: ARCTIC-Online Mechanism
1 for each Frame do
2 for all Ti in Dispatch Table do
3 Get schedule details of each Ti from the Dispatch Table;
4 Fetch Ti and start execution;
5 for each LLC bank do
6 Call Algorithm 4;
7 # Execute simultaneously at each bank;

8 for each Core do
9 Call Algorithm 8;

10 # Execute simultaneously at each core;

1) Managing LLC Blocks: To maintain a single copy of
the private cache blocks in the inclusive cache hierarchy, the
coherence protocol must be updated to ensure functional cor-
rectness. In ARCTIC-Online, the allocation will be performed
in the following manner. We have segregated three cases for
managing coherency in ARCTIC-Online, and the sequence of
operations for each one is shown in Figure 5, whereas the
whole implementation framework is given in Algorithm 4. In
case [A] in Figure 5, once a miss is detected at both L1-D

1 and LLC 2 (line 3 in Algorithm 4), the request will be
sent to the main memory (line 4) and an entry will be created
in the directory (line 5). Upon receiving the memory response
(line 11 to 12), the associated request type (read/write) and
the number of requester(s) will be determined, the response
management framework is detailed in Algorithm 7. When
a miss is detected at the local data cache, but the data is

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 7

D$_0 D$_1

Shared LLC (L2) + Coherence Directory

1

2

4

Miss at D$
and LLC

1
2

3

Wr-Miss at
D$, but hit at
Coherence Dir.

4

3

D$_2

1
2

4

3

Rd-Miss at
D$, but hit at
Coherence Dir.

1 Req. to LLC

2 Req. to Main Memory

LLC
miss

D$ miss

3

4 Send data to D$

Create directory entry

1

2

3

4

D$
miss

D$
miss

Req. to LLC
Req. to LLC

Req. to only sharer

Update directory entry

Send data directly
to requester

1

2

3

4

Req. to only sharer

Send data directly
to requester(s)

Update directory entry;
allocate data in LLC
If #requesters > 1

[A] [B]
[C]

Fig. 5: Request-Response Paradigm across Cache Hierarchy.

I E_P

S U

Rd/ Wr

W
r_B

ac k (P
u

t X
)

Rd

W
r_R

eq

/ R
d

_R
e q

 (#R
e q

 =
 1)Last_PutS

Rd_Req
(#Req > 1)

W
r_

Req

Rd_R
eq

R
d

_R
eq

(#R
eq

 >
 1)

Wr_Req

/ Rd_Req (#Req = 1) States:
I: Invalid
S: Shared
E_P: Exclusive
 (data less

entry in
LLC)

U: Updated (no
 owner/sharer)

#Req: Requester

Rd: Read
Wr: Write

Fig. 6: LLC Coherence State-Transitions with events.

exclusively present in another data cache, the LLC will be
requested at first for the data. In such cases (case [B] and [C]
in Figure 5), there will be a hit in the coherence directory, and
data will be forwarded to the new requester (line 7 to line 8),
and Algorithm 5 will be called. However, to handle LLC hit,
Algorithm 6 is called by Algorithm 4 (line 9 to 10).

Algorithm 4: LLC Management
1 ULC: Upper Level Cache, C D: Coherence Directory, DLT : Data

Less Tag Array, NT : Normal Tag Array
2 for each Request (Req) or Response (Resp) to LLC bank do
3 if Req.tag is missed in both DLT and NT then
4 # Req sent to next level of Memory;
5 # C D.state = I;
6 else
7 if Req.tag hits in DLT then
8 Call Algorithm 5 ;

9 if Req.tag hits in NT then
10 Call Algorithm 6 ;

11 if Resp came from Main Memory then
12 Call Algorithm 7;

Handling Hit at Coherence Directory (Algorithm 5):
Once there is a data L1 cache miss, the normal tag (NT) array
is searched at the LLC along with the tag array maintained at
the coherence directory (C D). The tag array at the coherence
directory is filled up with a tag with the exclusive copy of
the data is present in any of the local data cache (defined
as E P coherence state), but no LLC copy is present in the
LLC data array. This tag storage at the coherence directory is

named Data Less Tag (DLT) array. However, upon receiving
a request from a local cache, the request type needs to be
evaluated first and the subsequent actions are taken accord-
ingly (Algorithm 5). If it is a read request with more than one
requester cores, then, C D will forward the data directly to all
new requester cores’ data cache (as shown in 4 in Figure 5)
and update the sharers’ list at the C D. Additionally, the data
will be allocated in LLC after migrating the tag from DLT
to NT. The entire process is given between line 1 to 6 in
Algorithm 5. Case [C] in Figure 5 shows the same sequence of
these operations, and the respective changes in the coherence
state is shown in Figure 6. The coherence state transits from
E P to shared (S) state.

Upon receiving a write (exclusive) or a read request with
one requester (line 7), i.e. case [B] in Figure 5, 4 the data
will be sent to the requester core’s private cache, after updating

3 an entry in the LLC coherence directory for the block. The
directory entry contains the tag of the data, its coherence status
and the requester core ID as an owner. The entire mechanism
is given between line 7 to 10. Note that, as an exclusive copy
of the data block will only move from one local cache to
another, the coherence state will remain the same at E P ,
which is shown by a self loop at this state in Figure 6.

In case of a write back request from the local cache in E P
state (line 12), the data will be allocated in the LLC, and the
owner’s entry will be cleared along with migrating the tag from
DLT to NT (line 12 to 16). Finally, the coherence state will
be changed to update state (U) and the respective transition is
shown in Figure 6.

Algorithm 5: Handling DLT Hit
1 if Req.type == Rd Req and #Req.ID > 1 then
2 # C D forwards Req to Local owner cache and adds Req.ID

to its sharer list;
3 # Local owner cache directly sends data to the local cache(s) of

the requester(s) (Req);
4 # Migrate the DLT.tag from DLT to NT ;
5 # Allocate data from the owner cache to LLC;
6 # C D.state = S;

7 if Req.type == Wr Req or (Req.type == Rd Req &&
#Req.ID == 1) then

8 # C D forwards Req to Local owner cache and replaces owner
entry with Req.ID;

9 # Local owner cache serves the Req and invalidates own copy;
10 # C D.state remains E P ;
11 else
12 if Req.type == Wr Back(PUTX) then
13 # Allocate updated data at the LLC from owner cache;
14 # C D clears respective owner entry;
15 # Migrate the DLT.tag from DLT to NT ;
16 # C D.state = U ;

Handling NT Hits (Algorithm 6): If the requested data
block is found in the LLC, the hit will be declared at the NT
array by following the conventional mechanism. Based upon
the request type (line 1), the block is next handled by following
the techniques given in Algorithm 6. If there is either a write
request or a read request with one requester, then the block
will be put in E P state after invalidating its prior sharers and
sending it to the requester (line 2 to 5). Note that, tag will also
be migrated to DLT from NT array.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 8

Algorithm 6: Handling NT Hit
1 if (Req.type == Wr Req) or ((Req.type == Rd Req) and

(C D.sharer == 1)) then
2 # Send Invalidation to all the sharer(s) and send block to the

Req.ID;
3 # Reset Sharer list in C D and initialize owner entry with

Req.ID;
4 # Migrate the NT.tag from NT to DLT ;
5 # C D.state = E P ;

6 if Req.type == Last PUTS then
7 # Reset Sharer list in C D;
8 # C D.state = U ;
9 else

10 if (Req.type == Rd Req) and (C D.sharer > 1) then
11 # Serve the Req from NT ;
12 # Add Req.ID in C D sharer list;
13 # C D.state remains S;

Algorithm 7: Handling Response from Main Memory
1 if (Resp.type == Wr Req) or ((Resp.type == Rd Req) and

(#Req.ID == 1) then
2 # Allocate Data less entry in DLT ;
3 # Send Resp.Data to requester local cache;
4 # Create C D with owner entry set to requester local cache ID;
5 # C D.state = E P ;
6 else
7 if (Resp.type == Rd Req) and (#Req.ID > 1) then
8 # Allocate Resp.tag and Resp.Data in LLC NT ;
9 # Serve the Resp.Data to requester local caches;

10 # Create C D with sharers list initialized to requester
cache IDs;

11 # C D.state = S;

If a shared block is evicted from all of its sharers’ L1s
(Last PutS), the state is changed to U from S (line 6 to 8).
Upon receiving a read request for a shared block having more
than one sharer (line 10), the request is served from NT with
updating the sharers’ list in the directory and the coherence
state will remain the same at S (line 11 to 13). The respective
transitions of the coherence states are depicted in Figure 6.

Handling Response from Memory (Algorithm 7): In case
of an exclusive-read (having single requester) or a write LLC
miss, the data is directly sent to the requester’s data cache upon
receiving the response from the main memory. The coherence
state of the data is directly made as E P by creating an entry
in the DLT with updating the owner of the block (line 1 to 5).
In case of a read LLC miss, while having multiple requester
cores, the tag and data are allocated in the LLC’s data array
and NT array, and the copies of the data will be sent to the
requester cores’ local cache after updating the sharers’ list
in the coherence directory and setting the coherence state as
S (line 7 to 11). The detailed coherence state transitions are
given in Figure 6.

2) Improving QoS & Energy Efficiency (Algorithm 8):
By maintaining exclusive cache entries for the private blocks,
ARCTIC-Online frees up empty LLC spaces, that are further
used to increase live block count. Such mechanism minimises
LLC misses, which improves performance of the tasks and
reduces the execution time of the individual tasks. After
executing the mandatory portion (Mi) of the individual tasks,
ARCTIC-Online evaluates its remaining time for executing
the task (line 1 to 3). To calculate remaining execution

Algorithm 8: Improving QoS and Energy Efficiency
Input: Break Even T ime

1 # Execute Mi as per schedule ;
2 if Execution of Mi is over then
3 Cyc remOi

= (Cyc Ext End Ti − Cyc End Mi) ;

4 if Highest Oi is not scheduled then
5 # Call the function that returns optional part with highest

possible accuracy which can run within Cyc remOi
;

6 Oi = get Oi(Ti, Cyc remOi
) ;

7 if O i then
8 #Fetch the Oi ;

9 if Execution of Ti is over then
10 Slack after Ti = (Cyc Ext End Ti − Cyc End Ti) ;

11 if Slack after Ti > Break Even T ime then
12 #Power gate the core ;

13 if Core is power gated then
14 Slack after Ti--;
15 if Slack after Ti == Break Even T ime then
16 #Turn on the core ;

time (Cyc remOi) for each task, we introduced extended
end time of each task (Cyc Ext End Ti), which is defined
as follows. Cyc Ext End Ti for Ti is set as the starting
time either of the next task at the same core or of its
successor task, whichever is earlier. If Ti is a sink task, then
Cyc Ext End Ti is set at DPTG. However, Cyc remOi

is
calculated by considering the time-span between the current
time-stamp (at the end of Mi) and Cyc Ext End Ti. If the
highest version of the task is not scheduled, Cyc remOi

is
used to decide if a higher version of the task can be executed,
subject to availability (line 4 to 6). Otherwise, the task version
will remain unchanged, i.e. the scheduled Oi will be executed
(line 7 to 8). This will assist in improving overall QoS during
task execution. However, as execution time of the Oi will also
be minimised due to cache based performance improvement
of ARCTIC-Online, there is a chance of generating dynamic
slack after execution of each task. If such slack exists and its
span (evaluated at line 11 to 12) is more than break even time
of the respective processor core, the core will be shutdown for
energy saving, and will be turned on before starting-time of
the next task (line 13 to 16).

3) ARCTIC: Online Computational Overhead:

Theorem 1. The amortized complexity of ARCTIC-Online
(Algorithm 3 to 8) is O(n·k)

DPTG
per time-slot.

Proof. Algorithm 3 is the master algorithm of ARCTIC-
Online technique that executes tasks at each core. A step-wise
analysis of computational overhead of Algorithm 3 due to the
called functions/algorithms is as follows:

1) The “for loop” from line 2 to 10 may be executed O(n)
times in the worst-case, although the number of tasks
assigned to a core usually takes a small value.

2) Next, the “for loop” from line 5 to 7 will be executed
in constant time, as the number of LLC bank is always
constant.

• Algorithm 4 to 7 are called next during task ex-
ecution. For all practical purposes, computational
overheads of these algorithms may be considered to
be constant, however, implementation overheads for
Algorithm 5 and 7 is discussed in Sec. V-B4.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 9

3) The “for loop” from line 8 to 10 will be executed in
constant time, as the core count is always constant.

• In worst-case, for Algorithm 8, the loop will execute
line 4 to 8 which can have a worst-case complexity of
O(k), where k is the maximum number of versions
for a task Ti.

4) Hence, the worst-case computational complexity of Al-
gorithm 3 is O(n · k).

5) At any FRAME, the total overhead for generating the
schedules over all processor cores for the duration of a
FRAME is O(n · k) in the worst case.

6) As the FRAME length is in O(DPTG), the amortized
complexity of ARCTIC: Online is O(n·k)

O(DPTG) .

4) Implementation Overhead: The implementation of
ARCTIC-Online requires additional tag entries at the LLC,
called DLT, for bookkeeping the tag and coherence states of
the private blocks. Each LLC tag entry will be equipped with
DLT space, which will be filled up with the tag entries of the
blocks having the same index. We analysed the power and
area overheads for adding 25% and 50% extra tags for im-
plementing DLT and corresponding area and power overheads
have been analysed with FinCanon [25] by considering a 14
nm FinFET technology. With 25% (50%) extra tag, LLC will
experience an area overhead of 2.32% (4.53%), with a power
overhead of 2.71% (5.64%). The power and area overheads are
not significant, due to lower leakage consumption and higher
cell-density of the FinFET-based caches [25]. To implement
Algorithm 8, the per-core power gating (PCPG) technique can
be employed at the circuit level, which does not incur any
significant circuit overhead [26].

VI. EVALUATION

In this section, we first showcase the efficacy of ARCTIC-
Offline, followed by the evaluation of ARCTIC-Online, and
show how ARCTIC improves system level QoS.

A. Methodology

1) ARCTIC-Offline: We define Normalized Obtained QoS
(NOQ) as the ratio between the actually achieved QoS for
the PTG, and the maximum achievable QoS by executing
the highest versions of all tasks. NOQ can be formulated as:
NOQ =

∑n
i=1 Accji∑n
i=1 Acc

ki
i

, where ki represents the highest version
of task Ti. Next, we model our multi-core and the task-set:

• Processor System: A homogeneous multi-core platform
having 4 Intel x86 cores (i.e., m = 4) has been consid-
ered. The TDP of the individual cores are scaled and set
as 10.5W, by considering the Intel Xeon’s data-sheet [1].
The runtime core power is obtained through McPAT [28].

• Task-set: Task characteristics have been taken from a
prior technique, Prepare [12], where tasks are framed
by using PARSEC benchmark applications. The total
execution requirement of a PTG (CPTG) is the sum of
the execution times of its subtasks, CPTG =

∑n
i=1 ETi.

Thus, utilization Ui of a PTG can be written as CPTG

DPTG
.

TABLE I: System parameters [CC: clock cycle]

Parameter Value Parameter Value

ISA Intel x86 L1-I 64KB, 4Way, 3CC
#Cores (type) 8 (Xeon) L1-D 64KB, 4Way, 3CC
Max. V/F (Max V F) 1.12V, 3.0GHz L2 8MB, 16Way, 12CC
Min. V/F (Min V F) 0.6V, 1.5GHz Cache Non-MRU, 64B blocks
Power gate overhead 60 ns DRAM latency 70 ns
ROB Size 200 Technology 14 nm FinFET
Dispatch/Issue width 8 Ambient Temp. 47 ◦C

The average utilization of a PTG is taken from a normal
distribution, by considering a normalized frequency of
0.6. Given the PTG’s utilization, we next obtain the total
utilization of the system (Sysuti) by summing up the
utilization of all PTGs. Given the Sysuti, the total system
workload (SysWL) / system pressure can be obtained
by: SysWL = Sysuti

m . For a given Sysuti, we generated
all of our PTGs by following the method proposed in
Prepare [12]. Given a SysWL, a set of PTGs are created.
The number of PTGs (ρ) within a set is calculated as:
ρ = m×SysWL

Ui
. In our generated PTGs, the minimum

number of tasks is 5 and the maximum number of tasks
is 20. For each PTG in the set, the number of tasks are
generated randomly within a preset limit. Note that, as the
individual Ui of a PTG is lower than the given SysWL,
the number of PTGs (ρ) within the set will always be
higher than m.

• Task Temporal Parameters: For each Ti, based on which
portion of the leni is considered as the mandatory por-
tion (Mi), the following cases are considered [20]: (i)
man low : Mi ∼ U(0.2, 0.4) × leni (low portion of a
task Ti’s length (leni) is for the mandatory portion). (ii)
man med : Mi ∼ U(0.4, 0.6) × leni (medium portion
of a task Ti’s length (leni) is for the mandatory portion).
(iii) man high : Mi ∼ U(0.6, 0.8)× leni (high portion
of a task Ti’s length (leni) is for the mandatory portion).

2) ARCTIC-Online: Simulation Infrastructure: In this
work, we simulated a homogeneous CMP, having 8 Intel
x86 Xeon OoO cores in the gem5 full system simulator [10].
Each core is equipped with its private L1 data and instruction
caches. The L2 cache, considered as LLC, is logically shared
among the cores. The performance traces derived from gem5
are sent to McPAT-Monolithic [22], to generate the power
traces, and system parameters used in the simulations by
considering 14nm FinFET technology nodes are listed in
Table I. In our simulation framework, each core can execute
tasks either at Max VF (3.0GHz) or at Min VF (1.5GHz). By
considering prior arts, where PARSEC [9] can be used in an
approximate computing based paradigm [2], [41], we framed
our task-set by defining each task with 4 PARSEC applications
with large input sets. We constructed each Mi and Oi by using
two copies of two different PARSEC applications, where the
execution lengths of Mi and Oi for each task are set by scaling
each values of Mi and Oi of Figure 2 with 20M clock cycles.
Our multi-programmed task-set is detailed in Table II, where
the execution lengths (EL) are given in millions of cycles in
the region of interest (RoI) for the respective Mi’s and Oi’s.
Each task’s Mi and Oi run on a group of 4 cores, and we
consider two such groups to represent Pi in Figure 3.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 10

TABLE II: Tasks formation with PARSEC [9], [38]. Black (2)
implies two copies of Black, which is the same for others.

(Acronyms: Blackscholes (Black), Bodytrack (Body), Canneal
(Can), Dedup (Ded), Fluidanimate (Fluid), Freqmine (Freq),

Streamcluster (Stream), and X264 (X264)). The execution lengths
(ELs) are in million cycles.

Tasks Benchmarks (Mi, Oi) EL ([Mi], [Oi]) Sel. Oi [EL]

T1 Black (2), Body (2) [80], [40] #1 [40]

T2 Stream (2), Swap (2) [200], [100, 160, 200] #2 [200]

T3 Ded (2), Can (2) [200], [100, 140, 200] #3 [200]

T4 X264 (2), Fluid (2) [400], [140, 240] #2 [240]

T5 Freq (2), Swap (2) [340], [100, 220, 300] #2 [220]

T6 Ded (2), Body (2) [200], [20, 120] #2 [20]

B. ARCTIC-Offline

ARCTIC-Offline is evaluated based on task rejection rate
(TRR), which is the ratio of the number of tasks that did not
finish their execution within their deadline, over the number of
all tasks executed by the system. We obtain task characteristics
and the total utilization of the system (Sysuti) from a prior art,
proposed by S. Saha et al. [38]. The left plot in Figure 7 depicts
the TRR obtained by ARCTIC-Offline for 40, 60 and 80% of
SysWL. We observed that TRR remains 8%, when the system
workload is low, which is increased to 35% on average, when
the workload is scaled up by 40%. As the system workload
is increased to maintain the number of PTGs in the system,
the individual PTG-utilization also increases, that eventually
contributes to high TRR. Actually, increased utilization results
in longer running time of each node, that trims the possibility
of obtaining sufficient free slots within the deadline. Moreover,
the insufficient free slots curtail the chances of selecting higher
task versions, thus increase in the error propagation. This
cascading effect increases the execution length of the sink node
that violates the deadline.

In case of manhigh, the TRR increases in a lower rate than
for manmed and manlow, while increasing SysWL (shown in
Figure 7 (Left)). Basically, when mandatory portions of the
individual tasks are high, the length of the optional portions
will be low, that results into lower variance among the different
versions of a task, which reduces error propagation.

The right plot in Figure 7 shows the reduction in TRR
(RTRR) for different values of SysWL. We compared the
changes in RTRR for ARCTIC-Offline (suffixed by AR)
with the scheduling proposed in TD [35] (suffixed by TD).
We observed that, increased SysWL trivially reduces RTRR
for ARCTIC-Offline, which still significantly outperforms TD
for all the workloads. This is because TD accounted no power-
budget, whereas the assumed energy budget increased with
higher number of tasks. Moreover, TD also allows unlimited
task migration that incurs extra overheads. For a given SysWL,
manlow obtains a higher reduction in TRR, as the lengths of
the mandatory (optional) parts of individual tasks are short
(long), that also increases the probability of obtaining slacks.

We have compared our policy with a prior strategy
(SENAS) [21] and the results are shown in Figure 8 in case
of man med. For a fair comparison with SENAS, we firstly
derived the overall energy limit based on our considered power
budget (PowBGT) of ARCTIC’s experimental framework. The

Fig. 7: System Workload (in percentage) vs. TRR (Left), and
RTRR (Right).

Fig. 8: Comparing NOQ: ARCTIC vs. Prior arts.

same value is used as energy budget for SENAS as well.
It can be observed, as the number of task increases (due
to increase in SysWL), that ARCTIC maintains higher QoS
by achieving higher NOQ than SENAS. ARCTIC is able
to maintain close to 70% QoS with 70% workload, where
SENAS achieves 55% QoS. This is because SENAS did
not consider any power limits but assumed a fixed energy
budget. Moreover, SENAS assumed that the task’s energy
consumption increases with its execution cycle, i.e., the higher
the task’s execution, the higher the energy requirement. Hence,
for a fixed energy budget, SENAS fails to execute tasks with
a higher version and thus, ends up with a lower QoS.

We compared our offline strategy also with EERTS [7]
and it can be observed from the figure that EERTS achieved
considerable NOQ with low system utilization. However, NOQ
decreased significantly with the increase in system workload.
This is mainly due to the fact that EERTS only considered
tasks with a linear task chain and considered only the latency
constraint but not the power budget has been considered. Now,
when the system workload is low, the utilization of individual
tasks is also low, and this correspondingly attributes to a
lower number of tasks/nodes within a graph (Sec. VI-A).
Thus EERTS achieved close to 60% NOQ. However, as
the workload increases, the number of nodes also increases,
making the graph structure more skewed. Hence, EERTS fails
to achieve a higher QoS, as tasks with a higher versions cannot
be scheduled due to stringent power, resource and deadline
constraints.

C. ARCTIC-Online

1) Performance Improvement and EDP gains: We first
evaluate the reduction in LLC misses (MPKI), and the IPC
values for each task, with two different extra DLT storage
of 25% (ARC 25) and 50% (ARC 50). We also compare
these results with a prior LLC way-sharing and way-gating
based technique, ACCURATE [38] (ACCRT), the results for
MPKI reductions are shown in Figure 9 for all tasks. For T3

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 11

and T4, the higher number of shared LLC blocks curtails the
benefits of ARCTIC-Online, whereas for T2, T5 and T6 higher
private block counts lead to significant reduction in MPKI.
The MPKI reduction is higher in ARC 50 than ARC 25,
due to accumulation of more live blocks. For tasks like T3,
having higher private block count during Mi and higher shared
blocks during Oi, the performance improves further during Mi

than during Oi, thus the slack-span is getting longer. On the
other hand, T4 contains higher shared block counts during
Mi, which lowers the performance benefits during Mi. For all
tasks, ACCRT achieves lower reduction in MPKI (9.4% on
average) than both ARC 25 (13.5% on average) and ARC 50
(30.2% on average), as ACCRT turns off some portions of
the LLC to reduce LLC leakage. However, this lower MPKI
reduction leads to lower IPC improvement (2.7% on average)
for ACCRT whereas ARC 25 and ARC 50 achieve 5.2% and
8.9% average improvements in IPC, respectively. Figure 10
shows the IPC improvements for all of our tasks for ARCTIC-
Online and ACCRT. The higher the number of private blocks
during both Mi and Oi in case of T6 the more significant
reduction in IPC, that enables to enhance QoS by executing
higher version of Oi. For all tasks, ARC 50 reduces more
MPKI during Mi than ARC 25, which generates longer slack
in ARC 50, which in turn leads to higher energy savings. For
individual tasks, we evaluated the EDP gains for ARCTIC-
Online and ACCRT, as shown in Figure 11. The average
EDP gains for both ARC 25 and ARC 50 are around 5.3%
and 9.1%, respectively, that surpass the EDP gains of 2.7%
for ACCRT. ARCTIC-Online power gates the cores for a
sufficiently longer time-span during its longer slacks, that in
turn leads to higher EDP gain.

Fig. 9: Normalised MPKI.

Fig. 10: Normalised IPC.

Figure 12 shows how ARCTIC-Online improves the QoS
and energy efficiency by reducing execution length of the

Fig. 11: Normalised EDP.

T3P2

0

109

120

464
85

Time

V/F

DPTG = 1700

T1P1 T2

504 1108

Power gate at
Online Slacks

T4

520 1132

1160-1382

T5
T6

1698

Executed remaining parts of T5
that includes higher version

Version updated (to
Highest) in Online

ARC_50

Fig. 12: QoS Update in Online for ARC 50. Timeline is
based on Table II.

tasks, while applying ARC 50. ARCTIC-Online reduces the
execution lengths of individual tasks, that generates slacks at
the end of each task, during which cores are power gated
to save energy. For all but sink tasks, starting time-stamps
are kept the same, as derived by ARCTIC-Offline. However,
once all predecessor tasks are completed, ARCTIC-Online
schedules the sink (T6) and based on the available time-
span and the highest possible version of Oi is executed.
In ARC 50, ARCTIC-Online executed the highest version
of T6, that improves QoS by 10%, with an overall energy
saving of 6.21%, even after exploiting the slack. However, in
ARC 25, the online QoS improvement is 4% with 12.32%
energy saving, as T6 is able to execute its second version
within deadline. However, higher IPC improvements for all
tasks in ARC 50 generate longer slacks, which are exploited
to save more energy.

TABLE III: Outputs of ARCTIC-Online

Tasks Mapped Final Amount of Slack
Core Version (over Offline)

T1 P1 1 9.2%

T2 P1 3 14.0%

T3 P2 3 3.8%

T4 P1 2 4.4%

T5 P2 2 6.9%

T6 P2 2 9.6%

Improvement in Achieved QoS 10.0%

D. Discussion: Applicability of ARCTIC in Heterogeneous
Platform

To showcase the efficacy of ARCTIC-Online while em-
ployed in heterogeneous platforms, we further evaluated both
ARC 25 and ARC 50 of ARCTIC-Online in our simulation

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 12

TABLE IV: Heterogenous System parameters [CC: clock
cycle]

Parameters Values

Big Core ISA RISCV (RV64GC)
Cores 4 cores, single issue, in-order

L1 Cache 4KB L1I/D, 2-way, 1 CC

Tiny Core ISA RISCV (RV64GC)
Cores 60 cores, 4-way out of order

16 entry LSQ, 128 entry ROB
L1 Cache 64KB L1I/D, 2-way, 1 CC

L2 Cache Shared, 8-banks, 1MB per bank,
8-way, 1 bank per mesh coloumn

Network 8x8 mesh, XY routing, 16B per flit

Benchmark Suite: BC, BF, BFS, BFS-BV,
Ligra [40] CC, MIS, RADII and TC

infrastructure. We model heterogeneous multi-core system in
gem5 [10], with different core types, e.g. Big-core and Tiny-
core, employing the setup proposed by Wang et al. [44].
Table IV details the system parameters used for our het-
erogeneous simulation. In the simulated system, each core
has its own private L1 data and instruction caches and all
cores share the L2 cache, which is considered as LLC. Due
to existing limitations related to support-ability of PARSEC
benchmark applications in heterogeneous simulation infras-
tructure of gem5, we used Ligra benchmark suite [40], which
is also used to construct task-sets in approximate computing
paradigm [43]. The applications chosen for evaluation are also
listed in Table IV.

Fig. 13: Normalised MPKI: in Heterogeneous Multicore.

Fig. 14: Normalised IPC: in Heterogeneous Multicore.

Our evaluation shows, for all applications, ARC 50 shows
higher reduction in MPKI than ARC 25, as we have seen in
case of homogeneous system. The MPKI reduction for all
applications are plotted in Figure 13. Overall, MPKI across
all applications is reduced upto 8% and 12% for ARC 25
and ARC 50, respectively, over the baseline, whereas the
respective average values for ARC 25 and ARC 50 are 6%

and 11%. This reduction in MPKI further leads to performance
improvement, which is shown in Figure 14, by plotting results
for IPC. For all applications, the average IPC improvement is
6% and 13% for ARC 25 and ARC 50, respectively, whereas
the respective ranges for IPC improvements for ARC 25 and
ARC 50 are in 2-10% and 7-20%. This significant reduction in
MPKI and IPC improvement in case of heterogeneous system
demonstrates that ARCTIC can also be a promising technique
in heterogeneous systems to stimulate QoS of an approximate
real-time computing paradigm.

VII. CONCLUSIONS

In ARCTIC, we introduce a novel hybrid offline-online
scheduling strategy for approximate real-time tasks. ARCTIC
generates a schedule for a dependent task-set with an ob-
jective to maximise the QoS while respecting other system-
wide constraints. ARCTIC-Offline further considers the tasks
scheduled with lower accuracy and schedules the portions of
their respective optional parts with their respective successors,
known as Error Propagation. As Error Propagation might lead
to deadline violation, ARCTIC-Offline also introduced a V/F
readjustment technique at the task level granularity, while re-
specting the power budget and deadline. At runtime, ARCTIC-
Online keeps the only copies of the private blocks in the
respective local caches, and frees up the LLC locations. These
spare LLC spaces are further utilized to boost performance
by accumulating more live blocks on-chip, reducing tasks’
execution-times. The slacks generated by reduced execution-
time will further be exploited to enhance QoS by executing
more from the tasks’ optional parts or improve energy effi-
ciency by power gating the core. Simulation results show that,
for a set of tasks ARCTIC-Offline reduces task rejection rate
up to 25%, whereas ARCTIC-Online yet improves QoS by
10% with 9.1% average EDP gain, while surpassing a state-
of-the-art technique.

ACKNOWLEDGMENTS

This work is supported by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) through grants
EP/X015955/1, EP/V 000462/1, and is also funded by
Marie Curie Individual Fellowship (MSCA-IF), EU (Grant
Number 898296).

For the purpose of open access, the author has applied a
Creative Commons Attribution (CC BY) license to any Author
Accepted Manuscript version arising.

REFERENCES

[1] “12th generation intel® core™ processor family,” https:
//www.intel.com/content/www/us/en/products/docs/processors/core/
core-technical-resources.html, accessed: 2022-03-28.

[2] S. Achour and M. C. Rinard, “Approximate computation with outlier
detection in topaz,” SIGPLAN Not., 2015.

[3] S. Agarwal and H. K. Kapoor, “Reuse-distance-aware write-intensity
prediction of dataless entries for energy-efficient hybrid caches,” IEEE
TVLSI, 2018.

[4] J. Albericio et al., “The reuse cache: Downsizing the shared last-level
cache,” in MICRO, 2013.

[5] M. Ansari et al., “Peak-power-aware energy management for periodic
real-time applications,” IEEE TCAD, vol. 39, no. 4, 2020.

https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 13

[6] H. Aydin et al., “Optimal reward-based scheduling for periodic real-time
tasks,” IEEE TC, 2001.

[7] K. M. Barijough et al., “Exploiting approximations in real-time
scheduling,” in Approximate Computing Techniques: From Component-
to Application-Level. Springer, 2022.

[8] A. Bhuiyan et al., “Energy-efficient parallel real-time scheduling on
clustered multi-core,” IEEE TPDS, 2020.

[9] C. Bienia et al., “The PARSEC benchmark suite: Characterization and
architectural implications,” in PACT, 2008.

[10] N. Binkert et al., “The gem5 simulator,” SIGARCH CAN, 2011.
[11] K. Cao et al., “QoS-adaptive approximate real-time computation for

mobility-aware IoT lifetime optimization,” IEEE TCAD, 2019.
[12] S. Chakraborty et al., “Prepare: Power-Aware Approximate Real-Time

Task Scheduling for Energy-Adaptive QoS Maximization,” ACM TECS,
2021.

[13] S. Chakraborty and H. K. Kapoor, “Analysing the role of last level
caches in controlling chip temperature,” IEEE Transactions on Sustain-
able Computing, vol. 3, no. 4, 2018.

[14] S. Chakraborty and H. K. Kapoor, “Exploring the role of large cen-
tralised caches in thermal efficient chip design,” ACM TODAES, 2019.

[15] S. Chakraborty and M. Själander, “WaFFLe: Gated cache-ways with per-
core fine-grained DVFS for reduced on-chip temperature and leakage
consumption,” ACM TACO, 2021.

[16] S. Chang et al., “Toward minimum WCRT bound for DAG tasks under
prioritized list scheduling algorithms,” IEEE TCAD, 2022.

[17] J.-J. Chen et al., “Scheduling of real-time tasks with multiple critical
sections in multiprocessor systems,” IEEE TC, 2020.

[18] H. Cheng et al., “LAP: Loop-Block Aware Inclusion Properties for
Energy-Efficient Asymmetric Last Level Caches,” in ISCA, 2016.

[19] L. B. Drault, “Evaluation of cache inclusion policies in cache
management,” Master’s thesis, Texas A & M University, August 2017.
[Online]. Available: https://hdl.handle.net/1969.1/166081

[20] A. Esmaili et al., “Energy-aware scheduling of task graphs with impre-
cise computations and end-to-end deadlines,” ACM TODAES, 2019.

[21] K. Guha et al., “SENAS: security driven energy aware scheduler for
real time approximate computing tasks on multi-processor systems,” in
IOLTS, 2022.

[22] A. Guler and N. K. Jha, “McPAT-Monolithic: An area/power/timing
architecture modeling framework for 3-D hybrid monolithic multicore
systems,” IEEE TVLSI, 2020.

[23] J. Huang et al., “Dynamic DAG scheduling on multiprocessor systems:
reliability, energy, and makespan,” IEEE TCAD, 2020.

[24] K. H. Kim, “Reward-based allocation of cluster and grid resources for
imprecise computation model-based applications,” International Journal
of Web and Grid Services, vol. 9, no. 2, pp. 146–171, 2013.

[25] C. Lee and N. K. Jha, “FinCANON: A PVT-Aware Integrated Delay
and Power Modeling Framework for FinFET-Based Caches and On-Chip
Networks,” IEEE TVLSI, 2014.

[26] J. Lee and N. S. Kim, “Analyzing potential throughput improvement
of power- and thermal-constrained multicore processors by exploiting
DVFS and PCPG,” IEEE TVLSI, 2012.

[27] K. Lee, et al., “Mixed harmonic runnable scheduling for automotive
software on multi-core processors,” International Journal of Automotive
Technology, 2018.

[28] S. Li et al., “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009.

[29] X. Li et al., “Approximation-aware task deployment on heterogeneous
multi-core platforms with dvfs,” IEEE TCAD, 2022.

[30] M. Lodde et al., “Dynamic last-level cache allocation to reduce area and
power overhead in directory coherence protocols,” in Euro-Par Parallel
Processing, 2012.

[31] S. S. Manohar et al., “Towards optimizing refresh energy in embedded-
DRAM caches using private blocks,” in GLS-VLSI, 2019.

[32] R. Medina et al., “Generalized mixed-criticality static scheduling for
periodic directed acyclic graphs on multi-core processors,” IEEE TC,
2020.

[33] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, 2016.

[34] ——, “A survey of techniques for cache locking,” ACM TODAES, 2016.
[35] L. Mo et al., “Approximation-aware task deployment on asymmetric

multicore processors,” in DATE, 2019.
[36] ——, “Energy efficient, real-time and reliable task deployment on noc-

based multicores with dvfs,” in DATE, 2022.
[37] M. Powell et al., “Gated-Vdd: A circuit technique to reduce leakage in

deep-submicron cache memories,” in ISLPED, 2000.

[38] S. Saha et al., “ACCURATE: Accuracy maximization for real-time
multi-core systems with energy efficient way-sharing caches,” IEEE
TCAD, 2022.

[39] W. Shaogang et al., “Optimizing private memory performance by
dynamically deactivating cache coherence,” in HPCC, 2012.

[40] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2013, p. 135–146.

[41] S. Sidiroglou-Douskos et al., “Managing performance vs. accuracy
trade-offs with loop perforation,” in ACM SIGSOFT, 2011.

[42] Y.-C. Tian and D. C. Levy, Handbook of real-time computing. Springer
Nature, 2022.

[43] K. Tovletoglou et al., “HaRMony: Heterogeneous-Reliability Memory
and QoS-Aware Energy Management on Virtualized Servers,” in ASP-
LOS. ACM, 2020.

[44] M. Wang et al., “Efficiently supporting dynamic task parallelism on
heterogeneous cache-coherent systems,” in ISCA, 2020.

[45] S. Yi et al., “EASYR: E nergy-Efficient A daptive Sy stem R econfig-
uration for Dynamic Deadlines in Autonomous Driving on Multicore
Processors,” ACM TECS, 2023.

[46] Y. Zheng et al., “Performance evaluation of exclusive cache hierarchies,”
in ISPASS, 2004.

[47] J. Zhou et al., “Energy-adaptive scheduling of imprecise computation
tasks for QoS optimization in real-time MPSoC systems,” in DATE,
2017.

Sangeet Saha is currently associated with the
Embedded and Intelligent Systems (EIS) Research
Group, University of Essex, UK as a Lecturer.
Prior to that, he worked as a lecturer at the Uni-
versity of Huddersfield, UK, and Senior research
officer (Postdoctoral scholar) at the University of
Essex, UK. His current research interests include
real-time scheduling, scheduling for reconfigurable
computers, real-time and fault-tolerant embedded
systems, and cloud computing. He published several
of his research contributions in conferences like

CODES+ISSS, ISCAS, Euromicro DSD, and in journals like ACM TECS,
IEEE TCAD, IEEE TSMC.

Shounak Chakraborty (Senior member, IEEE) is
currently working as a guest researcher at the De-
partment of Computer Science, NTNU, Norway.
Primarily, his research interests include high per-
formance computer architectures, emerging mem-
ory technologies, on-chip thermal management, and
compilers. Prior to joining NTNU, Shounak obtained
his PhD degree in Computer Science and Engineer-
ing from IIT Guwahati, India in February 2018, and
also worked as assistant professor at IIIT Guwahati,
India.

Sukarn Agarwal is an Assistant Professor at School
of Computing and Electrical Engineering, IIT Mandi
(India). He has earned his PhD degree in Com-
puter Science and Engineering from IIT Guwa-
hati, India, in March 2020, and was also a se-
nior research fellow at School of Informatics, Uni-
versity of Edinburgh (UK). His research interests
include Emerging Memory Technologies, Memory
System Design, Network-on-Chip design and Ther-
mal Aware Chip Management. He published many of
his research contributions in conferences like IPDPS,

DAC, PLDI, ASAP, VLSI-SoC, GLS-VLSI, etc. and also published several
of his research outcomes in journals like IEEE TVLSI, ACM TECS, IEEE
TC, and ACM TODAES.

https:/ /hdl.handle.net/1969.1/166081

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 14

Magnus Själander is working as a Professor at the
Norwegian University of Science and Technology
(NTNU). He obtained his Ph.D. from Chalmers
University of Technology in 2008. Before joining
NTNU in 2016 he has been a researcher at Chalmers
University of Technology, Florida State University,
and Uppsala University. Själander’s research inter-
ests include hardware/software co-design (compiler,
architecture, and hardware implementation) for high-
efficiency computing.

Klaus McDonald-Maier is currently the Head of
the Embedded and Intelligent Systems Laboratory
and Director Research, University of Essex, Colch-
ester, U.K. He is also the founder of UltraSoC
Technologies Ltd., the CEO of Metrarc Ltd., and a
Visiting Professor with the University of Kent. His
current research interests include embedded systems
and system-on-chip design, security, development
support and technology, parallel and energy-efficient
architectures, computer vision, data analytics, and
the application of soft computing and image pro-

cessing techniques for real-world problems. He is a member of VDE and a
Fellow of the BCS and IET.

	Introduction
	Relevant Prior Art
	System Model and Assumptions
	ARCTIC-Offline
	ARCTIC: ILP based Scheduling
	ARCTIC: Error Propagation
	Generating Schedule and V/F Readjustment
	Example: Constrained scheduling at work

	ARCTIC-Online
	Analysing Exclusive Cache Blocks
	Core Concept of ARCTIC-Online
	Managing LLC Blocks
	Improving QoS & Energy Efficiency (Algorithm 8)
	ARCTIC: Online Computational Overhead
	Implementation Overhead

	Evaluation
	Methodology
	ARCTIC-Offline
	ARCTIC-Online: Simulation Infrastructure

	ARCTIC-Offline
	ARCTIC-Online
	Performance Improvement and EDP gains

	Discussion: Applicability of ARCTIC in Heterogeneous Platform

	Conclusions
	References
	Biographies
	Sangeet Saha
	Shounak Chakraborty
	Sukarn Agarwal
	Magnus Själander
	Klaus McDonald-Maier

