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Abstract: This research aims at applying the Artificial Organic Network (AON), a nature-inspired,

supervised, metaheuristic machine learning framework, to develop a new algorithm based on this

machine learning class. The focus of the new algorithm is to model and predict stock markets based

on the Index Tracking Problem (ITP). In this work, we present a new algorithm, based on the AON

framework, that we call Artificial Halocarbon Compounds, or the AHC algorithm for short. In this

study, we compare the AHC algorithm against genetic algorithms (GAs), by forecasting eight stock

market indices. Additionally, we performed a cross-reference comparison against results regarding

the forecast of other stock market indices based on state-of-the-art machine learning methods. The

efficacy of the AHC model is evaluated by modeling each index, producing highly promising results.

For instance, in the case of the IPC Mexico index, the R-square is 0.9806, with a mean relative error

of 7× 10−4. Several new features characterize our new model, mainly adaptability, dynamism and

topology reconfiguration. This model can be applied to systems requiring simulation analysis using

time series data, providing a versatile solution to complex problems like financial forecasting.

Keywords: artificial intelligence; machine learning; bio-inspired; genetic algorithm; stock market

index; financial forecasting

1. Introduction

The handling of risk and uncertainty across various financial domains has prompted
the development of diverse models and methodologies. As exposed by Elliot and Tim-
mermann [1], asset allocation requires real-time stock return forecasts, and improved
predictions contribute to enhanced investment performance. Consequently, the ability to
forecast returns holds crucial implications for testing market efficiency and developing
more realistic asset pricing models that better reflect the available data. Furthermore, Elliot
and Timmermann [1] state that stock returns inherently contain a sizable unpredictable
component, so the best forecasting models can only explain a relatively small part of
stock returns.

In this respect, we propose a new algorithm, called Artificial Halocarbon Compounds
(AHC), or the AHC algorithm for short, to tackle the Index Tracking Problem (ITP). The ef-
ficacy is evaluated by forecasting eight stock market indices. The outcomes obtained using
the AHC model, as an alternative topology rooted in the Artificial Organic Network (AON),
are compared to the results obtained using genetic algorithms (GAs) as a benchmark.
Additionally, we performed a cross-reference comparison against results regarding the
forecast of other stock market indices based on state-of-the-art machine learning methods.
The efficacy of the AHC model is evaluated by modeling each index, producing highly
promising results. For instance, in the case of the IPC Mexico index, the R-square is 0.9806,
with a mean relative error of 7× 10−4. From this perspective, the objective is aligned with
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the aim previously outlined in [2], centered on crafting a novel, efficient algorithm based
on the AON framework that is capable of producing short-term forecasts for market trends.

The AON is a supervised machine learning framework. It comprises a collection of
graphs constructed using heuristic rules to assemble organic compounds, enabling the
modeling of systems in a gray-box manner. Each graph within this framework represents a
molecule, essentially acting as information packages that offer partial insights into under-
standing the behavior of the system. The rationale behind considering GAs as a benchmark
is that, although GAs are not traditionally categorized as a distinct subdivision of machine
learning and are often associated with stochastic optimization, they have been extensively
applied in financial forecasting tasks [3,4]. Moreover, as illustrated in Section 2.2.1, Artificial
Hydrocarbon Networks, or AHN, the formally defined topology of the AON, has been
subject to comparison with various other methods. Hence, building upon the previous fact,
and given that the GA has been used in financial forecasting with success, it was selected
as the benchmark for comparison.

The rest of the article is structured as follows. In Section 2, we present a literature
review concerning stock mark index prediction using machine learning methods. Addi-
tionally, the main concepts of the AHC algorithm are illustrated, as well as some details
about the machine learning class by which it was inspired, the AON framework, including
some previously reported implementations. This section also provides some main concepts
about GAs. Next, in Section 3, we give details about the data used and how data were
preprocessed. We also describe the methodology followed to perform the experiments. Af-
terward, Section 4 explains how the methods were implemented describing the parameter
tuning process. Section 5 presents the results of each method as well as a cross-reference
comparison. Finally, Section 6 gives the conclusions of the study and presents insights into
possible future investigation lines.

2. Background

In this section, a contextual theoretical framework is presented. Specifically, Section 2.1
provides a literature review. Further, Section 2.2 explains the Artificial Halocarbon Com-
pounds method as a novel topology based on AON principles. This section also shares
a comparison of Artificial Hydrocarbon Networks (the initially defined AON topology),
to other existing methods. Later, Section 2.3 provides a brief overview of genetic algorithms.

2.1. Literature Review

Several works can be found across the literature explaining the complexity of forecast-
ing stock market indices, due to their noisy, unpredictable, nonlinear dynamics as main
characteristics of their behavior, and considering the application of different machine learn-
ing techniques as state-of-the-art predicting tools. In this respect, Ayyıldız [5] offers a
literature review of machine learning algorithms applied to the prediction of stock market
indices. Saboor et al. [6] delivered the forecast of the KSE 100 (Karachi Stock Exchange),
the DSE 30 (Dhaka Stock Exchange) and the BSE Sensex (Bombay Stock Exchange) using
methods such as Support Vector Regression (SVR), Random Forest Regression (RF) and
Long Short-Term Memory (LSTM). In contrast, Aliyev et al. [7], offer the prediction of
the RTS Index (Russian Stock Exchange), applying an ARIMA-GARCH model and an
LSTM model. Ding et al. [8], performed similar work while producing the projection
of the SSE (Shanghai Stock Exchange) using ARIMA and LSTM models. In their work,
Haryono et al. [9] present the forecast of the IDX (Indonesia Stock Exchange) by applying
different combinations of architectures using Convolutional Neural Networks (CNNs),
Gated Recurrent Units (GRUs) and LSTM, implemented through TensorFlow (TF). Similarly
to Haryono, Pokhrel et al. [10] performed the forecast of the NEPSE (Nepal Stock Exchange),
employing CNN, GRU and LSTM architectures. Further, Singh [11] forecast the Nifty 50
(Indian Stock Market Index) using eight machine learning models, including Adaptive
Boost (AdaBoost), k-Nearest Neighbors (KNN) and Artificial Neural Networks (ANNs),
among others. As a final example, Harahap et al. [12] present the usage of Deep Neural
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Networks (DNNs), Back Propagation Neural Networks (BPNNs) and SVR techniques
for the forecast of the N225. A summary and a brief discussion of the results presented in
this section are given in Section 5.3.

2.2. Artificial Halocarbon Compounds

Artificial Halocarbon Compounds (AHC) or the AHC algorithm, as a learning method,
is a new topology based on the AON framework inspired by chemical halocarbon com-
pounds. The AON is a supervised metaheuristic bio-inspired machine learning class
introduced by Ponce et al. [13,14]. As defined, the AON is based on heuristic rules inspired
by chemistry to create a set of graphs that represent molecules with atoms as vertices and
chemical bonds as edges; the molecules interact through chemical balance to form a mix-
ture of compounds. In this regard, the AON builds organic compounds and defines their
interactions; the structure of molecules produced can be seen as packages of information
that allow us to model nonlinear systems.

As stated by Ponce et al. [13,14], the implementation of the AON requires the utilization
of a functional group. These functional groups act as the kinds of molecules that dictate
the topological configuration of the AON during its application. Consequently, the AON
has been instantiated using a specific existing topology known as Artificial Hydrocarbon
Networks (AHN). Therefore, the AHN model is the initial and sole formally defined
topology for the AON thus far. The AHN algorithm is conceptualized as biochemically
inspired by the formation of chemical hydrocarbon compounds. It was designed to optimize
a cost–energy function, employing two mechanisms for the creation of organic compounds.
These mechanisms aim to generate an efficient number of molecules to construct the desired
structures. These tools are as follows:

i Least-squares regression (LSR) to define the structure of each molecule.
ii Gradient descent (GD) to optimize the position and number of molecules in the

feature space.

While AHN has demonstrated enhanced predictive power and interpretability when
compared to other prominent machine learning models like neural networks and random
forests, it does have certain limitations. As explained in [15], big data is primarily character-
ized by the volume of information to be processed, the velocity of data generation and the
diversity of data types involved. Existing machine learning algorithms must be adapted to
harness the advantages of big data and efficiently handle larger amounts of information.
In this context, AHN faces a drawback as it is notably time-consuming and struggles to
cope with big data requirements. The model employs gradient descent (GD), which, due to
its inherent complexity, poses challenges to the scalability of the AHN model.

2.2.1. Formerly Reported Comparison and Implementations of AHN

Previously, Ponce [13,14] delineated a comprehensive comparison between the AHN
algorithm and various conventional machine learning and optimization methods. This
evaluation encompassed considerations of computational complexity, attributes of learn-
ing algorithms and features of the constructed models, alongside the types of problems
addressed. In this regard, Table 1 illustrates part of the comparison performed by Ponce,
showing the computational complexity of learning algorithms and some of their charac-
teristics, such as being supervised or unsupervised, among other attributes. Additionally,
Table 1 provides insights into some of the specific problem types that each algorithm can
effectively tackle, including approximation or prediction, classification and optimization.
In this regard, the AHN algorithm is noteworthy for constructing a continuous, nonlinear
and static model within a given system.
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Table 1. Some identified attributes for certain learning algorithms compared by Ponce [13,14].
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General

linear regression O(c2n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

general regression O(c2n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

running mean
smoother

O(n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

kernel smoother O(nd) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

decision trees O(nc2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

random forest O(Qcn log n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

naive Bayes
classifier

O(nc) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bayesian networks O(cdj) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

support vector
machine

O(n3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

k-nearest
neighbor

O(knd) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

k-means algorithm O(ndk+1 log n) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

fuzzy clustering
means

O(indk) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

simulated annealing OP X X NBD X X ✓ ✓

Artificial Neural
Networks

backpropagation TD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

generalized
Hebbian algorithm

TD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hopfield’s nets TD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Evolutionary

genetic algorithms NBD X X NBD X X ✓ ✓

gene expression
algorithms

NBD X X NBD X X ✓ ✓

Chemically
Inspired

DNA computing NBD X X NBD X X ✓ ✓

artificial hydrocarbon
networks

O(Cmn ln 1
ϵ
) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

n: number of samples. c: number of features. d: number of inputs. k: number of clusters. i: number of iterations.

j: maxi-mum number of parents in Bayesian networks. Q: number of trees in random forests. C: number of

compounds in AHN. m: number of molecules in AHN. ϵ: tolerance in AHN. ✓: the attribute is found in the

method. X: the method does not present that attribute. OP: the computational complexity of the method changes

depending on the specific problem and/or optimization algorithm. TD: the computational complexity of the

method is topology-dependent. NBD: the model is not built directly by the method.
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Numerous applications of the AHN algorithm across diverse fields have been docu-
mented since its proposition by Ponce [13]. Some of the reported applications are as follows:

• Online sales prediction: The AHN algorithm has been applied in forecasting on-
line retail sales, employing a simple AHN topology featuring a linear and saturated
compound. The implementation involved a comparative analysis with other well-
established learning methods, including cubic splines (CSs), model trees (MTs), ran-
dom forest (RF), linear regression (LR), Bayesian regularized neural networks (BNs),
support vector machines with a radial basis function kernel (SVM), among others.
Performance evaluation in the experiments was conducted based on the accuracy
of the models, measured by the root-mean squared error (RMSE) metric. Notably,
the results revealed that AHN outperformed the other models, demonstrating superior
performance in this context [16].

• Forecast of exchange rate currencies: the effectiveness of the AHN model in generating
forecasts for the exchange rates of BRICS currencies to USD was assessed. Specifically,
the work focused on the exchange rate of the Brazilian Real to USD (BRL/USD).
Following the execution of experiments, the model yielded a favorable chart behavior,
accompanied by an error rate of 0.0102 [17].

• The AHN algorithm was employed in an intelligent diagnosis system using a double-
optimized Artificial Hydrocarbon Network to identify mechanical faults in the In-
Wheel Motor (IWM). The implementation aimed to validate enhanced performance
across multiple rotating speeds and load conditions for the IWM. Comparative analy-
sis was conducted against other methods, including support vector machines (SVMs),
a particle swarm optimization-based SVM (PSO-SVM), among others. The double-
optimized AHN method exhibited superior performance, achieving a diagnosis accu-
racy surpassing 80% [18].

These instances represent just a few examples of the diverse applications where AHN
has demonstrated favorable outcomes. For readers seeking more in-depth information on
specific cases mentioned here or desiring a broader understanding of the varied purposes
for which AHN has been employed, it is recommended to explore the lectures by Ponce et al.
referenced in this work [13–22].

2.2.2. Artificial Halocarbon Compounds Approach

Artificial Halocarbon Compounds (AHC) or the AHC algorithm for short, represents
a novel supervised machine learning algorithm rooted in the AON framework, drawing
inspiration from chemical halocarbon compounds. As a distinctive AON arrangement, its
primary emphasis is on forgoing the gradient descent (GD) mechanism to optimize the
position and/or number of molecules. This strategic choice aims to mitigate time consump-
tion during the creation of an AON structure. In this hybrid approach, the feature space
undergoes segmentation, or clustering, utilizing K-means based on the required number
of molecules. This segmentation determines the position of each molecule. Consequently,
with each iteration, the data are segmented as many times as the specified number of
molecules to be created. Subsequently, the structure of each molecule is computed for the
corresponding segment. Rather than employing a conventional least-squares regression
(LSR) method to directly define the structure of each molecule, a dynamic topology is
introduced as a significant feature shaping the new AON arrangement.

In this context, the dynamic topology provides flexibility by allowing a broader range
of options to construct organic structures for a compound. This selection is based on
the cost–energy function, ensuring the overall low error of the produced models. These
dynamic options involve decisions such as substituting the type of curve or choosing among
different fitting methods, including the multiple nonlinear regressive (MNLR) model [2],
among others. This involves replacing the method used to characterize each molecule.
These replacements are analyzed during the computation of the algorithm, simulating a
chemical reaction. At the end of the reaction, the arrangement with the most favorable final
substitution from the compared structures is presented.
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2.2.3. AHC Algorithm Implementation

The AHC algorithm is implemented through the routine presented in Algorithm 1.
In addition, Figure 1 shows a flowchart with the phases of the AHC algorithm. The corre-
sponding input variables that the algorithm receives to produce a model are (a) the dataset
(denoted as the system), (b) the maximum number of molecules allowed for the compound
structure, (c) the tolerance value for the error and (d) the regularization factor considered
along the computations. The maximum number of molecules and the tolerance value are
used as criteria for the stopping condition of the algorithm; in this sense, the routine stops
once one of the two is met. The outputs of the algorithm are (a) the structure of the com-
pound and (b) the type of halogenation (the chemical reaction) produced in each molecule.
The coefficients of the model are held inside the compound structure. The entropy-rule
considered in the algorithm is a characteristic of the AHC model, whose objective is to
maintain the lowest entropy (level of energy) of the model system, taking into account the
output error.

Algorithm 1 AHC Algorithm (Υ, nmax, ϵ, λ): Implementation of the Artificial Halocarbon
Compounds using the AHC algorithm.

Input: the system Υ = (x, y), the maximum number of molecules nmax, the tolerance value
ϵ > 0 and the regularization factor λ.
Output: the structure of the compound C and the type of halogenation τ for each molecule
in C. The coefficients Θ are included within the structure C.

1: Initialize the number of molecules, n← 2.
2: Initialize the error function, ε← ∞.
3: while (n ≤ nmax) and (ε > ϵ) do
4: Initialize a minimal compound C.
5: Initialize τ with all the types of halogenation.
6: Split Υ into n subsets Υi with their centers Qi, using K-means.
7: for each partition Υi do
8: for each type of halogenation τj do
9: Find the energy level of the subset Υi with each halogen τj, considering λ.

10: end for
11: Update the final behavior of the molecule in Υi, by selecting the best halogenation

τj, following the ENTROPY-RULE.
12: end for
13: Update the error function ε using the true fractional relative error defined in [2].
14: end while
15: return C, and τ

2.3. Genetic Algorithms

Genetic algorithms (GAs), as explained in [3,4], are metaheuristic, nature-inspired
algorithms that are classified under evolutionary algorithms (EAs), that work by imitating
the evolutionary process of natural selection and genetics. In contrast, as Ponce [23] recalls,
the GA functions as a mathematical object that transforms a set of mathematical entities
over time through a series of genetic operations, notably including sexual recombination.
These operations adhere to patterned procedures based on the Darwinian principle of
reproduction and the survival of the fittest. Typically, each mathematical object takes the
form of a string of characters (letters or numbers) of a fixed length, resembling chains of
chromosomes. These entities are associated with a defined fitness function that gauges
their aptitude. To elaborate, a genetic algorithm operates within a given population,
subjecting it to an evolutionary process to generate new generations. Usually, the algorithm
concludes when most individuals in a population become nearly identical or when a
predefined termination criterion is met; while GAs are not typically considered a specific
subdivision of machine learning (ML), they can be utilized in various aspects of ML. They
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are particularly used in stochastic optimization and search problems and have been widely
used in financial forecasting tasks.

Figure 1. Flowchart illustrating the phases of the AHC algorithm to produce a compound to model

a system.
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3. Methodology

Distinct experiments have been conducted to validate the efficacy of the AHC algo-
rithm, put forth as a suggested supervised machine learning algorithm, and can successfully
conduct short-term forecasts of market price trends, as initially specified in [2]. In this
context, Section 3.1 details the utilized data and outlines the preprocessing steps under-
taken for the experiments. Subsequently, Section 4 provides insight into the selection of the
parameters for the implementation of the AHC algorithm for forecasting eight stock market
indices, as well as the parameters used in GA models for the same forecasting purpose.

3.1. Data

For these experiments, we used the existing data of the closing price of eight indices,
from six countries. The indices are IPC, S&P 500, DAX, DJIA, FTSE, N225, NDX and CAC;
Table 2 shows some descriptive statistics for the closing price of the stock market indices
used in this research.

Table 2. Descriptive statistics of the closing price of the corresponding stock market indices.

Descriptive Statistics

Index Mean SD Min 25% 50% 75% Max

IPC 39,899.97 8813.83 16,653.15 33,262.48 41,960.44 46,190.08 56,609.53
S&P 500 2175.65 1022.05 676.53 1343.80 1963.29 2801.97 4796.56

DAX 9730.27 3228.43 3666.40 6795.31 9662.18 12,427.14 16,275.37
DJIA 18,905.68 7938.82 6547.05 12,397.85 16,837.42 25,371.71 36,799.65
FTSE 6400.61 880.11 3512.10 5850.83 6486.40 7129.97 8014.31
N225 17,399.64 6332.78 7054.97 10,965.59 16,958.52 22,011.19 31,328.16
NDX 5332.16 4030.66 1036.51 2084.62 4089.62 7307.99 16,573.33
CAC 4794.71 1073.30 2519.29 3939.81 4799.87 5501.77 7577.00

For each index model, the variables included in the dataset are the daily reported
stock market index closing price, the quarterly reported gross domestic product (GDP),
the daily reported foreign exchange rate (FX), the monthly reported consumer price index
(CPI), the monthly risk-free rate (RFR), the monthly unemployment rate (UR), the monthly
reported current account to GDP rate (BOP) and the monthly reported investment rate
(GFCF). The time period is from the 1st of June 2006 to the 31st of May 2023. We chose this
time period to ensure that at least one short economic cycle was used for the analysis and
prediction [2]. The indices and the FX data were sourced from Yahoo Finance, and the rest
of the variables were retrieved from the OECD. The data are available at [24] and were
preprocessed as follows:

1 For each input, we applied an approximation using least-squares polynomial (LSP)
regression; in this regard, the macroeconomic variables (MEVs) are treated as “contin-
uous signals” instead of discrete information.

2 The data were standardized by removing the mean so it could be scaled.
3 We used principal component analysis (PCA) to reduce the dimensionality of the data;

it was carried out by considering three principal components (PCs).

It is crucial to emphasize that, although eight may be considered a relatively small
number of features, the utilization of PCA plays an essential role in the implementation
of AHC; this arises from the fact that the computational complexity of the original AHN
topology was dependent on the number of features. The models are evaluated by applying
an out-of-sample forecast. The criteria for employing an out-of-sample forecast instead
of a one-day-ahead forecast (despite the latter method being a more common forecast
practice) pertain to the progress achieved for the ongoing investigation at the moment
these results were collected. Out-of-sample forecasting refers to the practice of testing the
performance of a financial model or forecasting method on data that were not used in the
model’s development. Essentially, the idea is to evaluate how well a model generalizes to
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new, unseen data. This is a crucial step in assessing the reliability and effectiveness of a
forecasting model, as it provides insights into how well the model is likely to perform in
real-world scenarios. In contrast, a one-day-ahead forecast involves predicting the financial
market’s conditions or the price of an asset for the next trading day. This short-term forecast
is used by investors and traders to make informed decisions on buying or selling securities
based on expected market movements within the next day.

To avoid overfitting, besides the consideration that the AHC algorithm uses the
parameter λ as a regularization factor, the data were preprocessed accordingly as mentioned
above. The procedure to fine-tune the λ value is explained in Section 4.1. In addition,
the data were split in two: the initial 85% for training and the remaining 15% for testing.
This split size was chosen because, as outlined in Section 5.1, we conducted a comparison
of the performance of the AHC algorithm vs. the GA. In this regard, after conducting
parameter tuning for the GA, that included different values of the split size, the best results
for the GA were obtained using a testing size of 15%.

3.2. Forecast of the Stock Market Indices

To produce the forecast of the stock market indices, first, all data were preprocessed as
described in Section 3.1; subsequently, the dataset was passed to each algorithm. The train-
ing parameters for the AHC algorithm and GA methods were established by carrying out a
grid search, explained with further detail in Section 4. Once we established the training
parameters, the models were fitted using the training set. Afterward, the models were used
to conduct a forecast with the testing sets. The performance of each method is compared in
Section 5; the section also contains a comparison of the AHC algorithm against some of
the results found across the literature review. The described methodology is illustrated in
Figure 2.

Figure 2. Methodology to compare the results of the forecast of stock market indices with differ-

ent methods.

For the interested reader, the code used in this work is available at [25] and the
complete dataset at [24].

4. Experimental Setup

At this point, it is crucial to clarify that both models (AHC and GA), were imple-
mented to compute a model with 16 coefficients for benchmarking reasons. This is because,
by default, the AHC algorithm performs this computation owing to its chemical reac-
tion properties.

4.1. AHC Parameter Tuning

To forecast the eight indices, we implemented the AHC algorithm via hyperparameter
tuning. For this purpose, we trained the AHC model with an initial set of different parame-
ters; then, a grid search was conducted. The parameters are the tolerance ϵ, with values
in {6× 10−4, 9× 10−4}; the maximum number of molecules nmax, with values in {2, 4, 8,
12}; and the regularization factor λ, with values in {0, 1× 10−10, 0.95, 1}. The fine-tuned
parameters for the AHC model are illustrated in Table 3. These fine-tuned parameters are
employed for the forecast of the eight indices.
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Table 3. Final set of fine-tuned parameters for the AHC experiments.

AHC Parameter Tuning

Tolerance 9× 10−4

Maximum number of molecules 12
Regularization factor 1× 10−10

4.2. GA Parameter Tuning

To obtain the forecast of the eight stock market indices, the GA was implemented
by applying hyperparameter tuning. On this subject, the GA was trained with an initial
set of different parameters; then, a grid search was conducted. The parameters are the
training size, with values in {0.80, 0.85, 0.90, 0.95}; population size, with values in {300, 500,
700}; mutation probability, with values in {0.25, 0.5, 0.75}; and the number of generations,
with values in {25, 30}. The GA experiments involved 50 iterations.

To improve the outcomes derived from the first approach, a second instance of hy-
perparameter tuning was conducted; subsequently, the parameters were the population
size, with values in {650, 800}; mutation probability, with values in {0.25, 0.5, 0.75}; and
the genetic operator probability, with values in {0.1, 0.3, 0.6}. For these cases, the GA
experiments involved 35 iterations. The fine-tuned parameters are shown in Table 4.

Table 4. Final set of fine-tuned parameters for the GA experiments.

GA Parameter Tuning

Training size 0.85
Population size 650

Mutation probability 0.25
Genetic operator probability 0.1

Generations 25

5. Results and Analysis

Using the fine-tuned parameters for the AHC and GA models defined in Section 4, we
conducted the forecast of the closing price of the eight stock market indices. This section
presents some of the results of the forecast of the eight indices. Particular attention is given
to the IPC results. For the interested reader, the results of the other indices have been
included in Sections S1 and S2 of the Supplementary Material.

5.1. AHC Forecast

The main properties in the design of the AHC algorithm are adaptability, dynamic
characteristics and a topology that is reconfigurable. The AHC algorithm achieves these
characteristics by creating an organic structure while producing a model. In this respect,
Table 5 shows 16 coefficients computed for each molecule, that conform to the computed
organic compound that models the IPC. For the interested reader, the coefficients of the
organic structures that model the rest of the indices are included in Section S1 of the
Supplementary Material. By analyzing all the computed AHC compounds, the differences
among each structure can be observed, reinforcing the capability of the AHC algorithm
to be adaptable and reconfigurable. Thus, as examples, it can be remarked that the AHC
compound to model the IPC has two molecules (Table 5), while the AHC compound to
model the S&P 500 is defined with 12 molecules; the AHC compound to model the S&P
500 has seven Cl molecules and five T molecules, in contrast, the AHC compound to model
the DAX has nine Cl molecules and three T molecules (Table 6).
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Table 5. Structure of the computed AHC compound for the IPC model: two Cl molecules and 16

coefficients per molecule.

Computed AHC Model

Molecule 1 2

τ Cl Cl

â0 5.5511× 10−2 1.7165× 10−1

â1 1.0751 1.0431

â2 −8.1720× 10−2 −6.3559× 10−2

â3 2.0870× 10−4 8.0320× 10−4

â4 −5.0229× 10−4 7.6059× 10−4

â5 1.3830× 10−9 5.3071× 10−10

â6 −5.0932× 10−10 −1.3417× 10−9

â7 5.6099× 10−10 −5.8049× 10−10

â8 −8.9410× 10−10 9.4233× 10−10

â9 4.3678× 10−10 −4.0522× 10−10

â10 −1.4914× 10−10 −9.4375× 10−11

â11 1.3702× 10−10 −2.3062× 10−11

â12 1.5235× 10−10 −2.6964× 10−10

â13 5.1419× 10−8 3.1700× 10−7

â14 4.2263× 10−10 −5.4817× 10−10

â15 0 0

Table 6. Comparison of the structures of the computed AHC compounds for the eight stock mar-

ket indices.

Comparison of the AHC Computed Compounds

Index Cl Molecules Ts Molecules Total Molecules

IPC 2 0 2

S&P 500 7 5 12

DAX 9 3 12

DJIA 2 0 2

FTSE 9 3 12

N225 10 2 12

NDX 8 4 12

CAC 7 5 12

The AHC model offers notable results obtained from the forecast of the IPC using the
testing set:

1 Figure 3 shows a comparison between the original values yt of the IPC from the testing
set displayed in blue and the forecast values ŷ displayed in red. From this graph, it can
be noticed that the obtained forecast from the AHC algorithm replicates the behavior
of the original IPC very well.

2 Figure 4 shows the residuals of the model. The residuals display a satisfactory homo-
geneous distribution, reinforcing the claim that the model is behaving well.
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3 Figure 5 illustrates the behavior of the relative error with a 7 × 10−4 mean and a

6× 10−4 SD; this shows how the results of the test data have kept a low error rate and
low noise or residual variation.

Figure 3. Graphs depicting the AHC model’s forecast using the testing set of the closing price of the

IPC (red line) and the original data (blue line).

Figure 4. Residuals of the AHC model.

Figure 5. Behavior of the relative error of the AHC model.

We determined the R-square, which measures the performance of a model, based on
how well the original output was replicated. In this sense, Table 7 shows the sum of squares
and the R-square using the testing set of all the indices. From this table, we can observe
that not all the values of the R-square are as good as expected, like the cases of the DAX
and the NDX. Nevertheless, for the rest of the indices, the R-square of the testing model
is satisfactory and for some cases is high, as in the cases of CAC, the DJIA and the IPC.
Table 8 shows some descriptive statistics of the relative error of the testing set. From this
table, we can see that, in general, the results of these statistics are good; in the cases of the
DJIA and IPC, they have the smallest mean of the relative error with a 7× 10−4 value.
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Table 7. Statistical measures of the sum of squares and the R-square of the AHC model for the

eight indices.

Testing Set Model Performance

Index RSS SSR TSS R-Square

IPC 0.0397 2.0127 2.0524 0.9806
S&P 500 1.6715 4.4964 6.1679 0.729

DAX 38.4175 36.9056 75.3231 0.49
DJIA 0.0444 1.9437 1.988 0.9777
FTSE 2.2429 5.4236 7.6666 0.7074
N225 2.632 4.13670 6.7687 0.6111
NDX 36.3486 47.3396 83.6882 0.5657
CAC 0.819 4.0481 4.8671 0.8317

Table 8. Descriptive statistics of the relative error of the AHC model for the eight indices.

Relative Error of the Testing Set

Index Mean Median SD MAD Max Min Range

IPC 0.0007 0.0006 0.0006 0.0004 0.0031 0.0000 0.0031
S&P 500 0.0049 0.0027 0.0058 0.0042 0.0291 0.0000 0.0291

DAX 0.019 0.0052 0.0251 0.022 0.0753 1.0035× 10−5 0.0752
DJIA 0.0007 0.0005 0.0007 0.0005 0.0039 0.0000 0.0039
FTSE 0.0063 0.005 0.0052 0.0038 0.0265 0.0000 0.0265
N225 0.0064 0.0065 0.0044 0.004 0.0141 0.0000 0.0141
NDX 0.011 0.0033 0.0293 0.0122 0.1464 0.0000 0.1464
CAC 0.0038 0.0025 0.0034 0.0028 0.0136 0.0000 0.0136

5.2. Model Comparison with GA

Similarly to the previous Section 5.1, some of the results are included here, specifically
the results of the IPC index. The complete results for the rest of the indices are provided in
Section S2 of the Supplementary Material. In this regard, Table 9 presents the coefficients
computed for the IPC model using the GA. In addition, Figure 6 depicts the error behavior
through the computation of the 25 generations. Figure 7 shows the forecast using the
testing set and compares the original values against the predicted values. Table 10 shows
the sum of squared and the R-square of the model performance using the testing set of all
the indices. Furthermore, Table 11 illustrates some descriptive statistics of the relative error
of the testing sets.

Figure 6. IPC error behavior through 25 generations.
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Figure 7. Graphs depicting the GA model’s forecast using the testing set of the closing price of the

IPC (red line) and the original data (blue line).

Table 9. Computed GA genotype with the coefficients (genes) for the IPC model.

Computed GA Model

Gene Value

â0 1.9749

â1 3.5800

â2 −2.8185

â3 5.4865× 10−3

â4 3.5244× 10−2

â5 10.9748

â6 11.1065

â7 5.8242

â8 9.6453

â9 8.6060

â10 10.7133

â11 1.2196

â12 −10.8794

â13 −7.6908

â14 3.5332

Table 10. Statistical measures of the sum of squares and the R-square of the GA model for the eight indices.

Testing Set Model Performance

Index RSS SSR TSS R-Square

IPC 11.8032 15.0688 26.8721 0.5607
S&P 500 543.1242 549.0494 1092.1737 0.5027

DAX 342.9938 347.9404 690.9343 0.5035
DJIA 34.3704 37.6600 72.0305 0.5228
FTSE 106.3347 104.6426 210.9773 0.4959
N225 87.8507 88.8637 176.7144 0.5028
NDX 30.3829 23.5269 53.9099 0.4364
CAC 79.4216 84.3237 163.7454 0.5149

By contrasting the results obtained from the AHC and the GA models, it can be
remarked that, at first hand, the GA has the following advantages over the AHC algorithm:

• It has the capacity to perform a global search, since this method can explore the entire
search space and can find global optima in complex spaces.

• It can find a solution via exploration, searching new areas of the solution space and
thus focusing on specific areas.
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• Its stochastic characteristic allows it to escape local optima.

Table 11. Descriptive statistics of the relative error of the GA model for the eight indices.

Relative Error of the Testing Set

Index Mean Median SD MAD Max Min Range

IPC 0.0144 0.0150 0.0054 0.0043 0.0275 0.0002 0.0273
S&P 500 0.1347 0.1290 0.0232 0.0169 0.2014 0.0903 0.1111

DAX 0.0824 0.0893 0.0450 0.0396 0.1714 0.0000 0.1714
DJIA 0.0263 0.0266 0.0077 0.0059 0.0510 0.0011 0.0499
FTSE 0.0531 0.0492 0.0184 0.0127 0.1177 0.0232 0.0945
N225 0.0437 0.0437 0.0078 0.0060 0.0653 0.0180 0.0472
NDX 0.0258 0.0278 0.0113 0.0095 0.0522 0.0009 0.0513
CAC 0.0462 0.0473 0.0172 0.0136 0.1081 0.0006 0.1074

On the other hand, despite these advantages, the performance of the AHC algorithm
makes evident some of the disadvantages of the GA:

• It requires a high computational intensity and thus can be computationally expensive
for complex problems and large solution spaces, requiring a significant amount of
computational resources and time.

• It can converge prematurely to suboptimal solutions.
• Its performance is sensitive to the choice of parameters, making it susceptible improper

tuning, and its optimal parameter tuning can be challenging.
• Due to its stochastic nature, the results can be more susceptible to white noise.

Finally, considering these disadvantages and the results summarized in Table 12
(columns extracted from Tables 7, 8, 10 and 11), we can conclude that for the objec-
tives of this research, the AHC algorithm has proven to be a preferable alternative to
the GA method.

Table 12. Comparison of the statistics of the relative error for the eight indices.

Statistics Comparison of the Relative Error

Method AHC GA

Index Mean Median SD R-Square Mean Median SD R-Square

IPC 0.0007 0.0006 0.0006 0.9806 0.0144 0.0150 0.0054 0.5607
S&P 500 0.0049 0.0027 0.0058 0.729 0.1347 0.1290 0.0232 0.5027

DAX 0.019 0.0052 0.0251 0.49 0.0824 0.0893 0.0450 0.5035
DJIA 0.0007 0.0005 0.0007 0.9777 0.0263 0.0266 0.0077 0.5228
FTSE 0.0063 0.005 0.0052 0.7074 0.0531 0.0492 0.0184 0.4959
N225 0.0064 0.0065 0.0044 0.6111 0.0437 0.0437 0.0078 0.5028
NDX 0.011 0.0033 0.0293 0.5657 0.0258 0.0278 0.0113 0.4364
CAC 0.0038 0.0025 0.0034 0.8317 0.0462 0.0473 0.0172 0.5149

Using the data from Table 12, a Wilcoxon signed-rank test was conducted. The
p-values are smaller than an alpha of 5%; therefore, statistical significant differences exist
between the two methods. This further strengthens the assertion that the AHC algorithm
outperforms the GA model. The outcomes of the Wilcoxon signed-rank test are presented
in Table 13.

Table 13. Results of the Wilcoxon signed-rank test for the two methods.

Wilcoxon Signed-Rank Test Results

Mean Median R-Square

Test Statistic 0 0 1
p-value 0.0078 0.0078 0.0156
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5.3. Cross-Reference Comparison

In addition to the evaluation made in Section 5.2, a further cross-reference [6–12]
comparison against the results obtained in Section 5.1 is presented here. In this respect,
Table 14 summarizes some of the results found in the literature and compares them to the
results of the forecast using our AHC algorithm.

Table 14. Cross-reference comparison against the AHC model’s results from the testing sets.

Compared Results from the Testing Sets

Index Method Error R-Square Data Size (Years) Time Period Testing Set Size

KSE 1 SVR 10,615.67 * −2.51 22 2000–2022 30%

KSE 1 RF 12,113.12 * −3.57 22 2000–2022 30%

KSE 1 KNN 13,404.33 * −4.60 22 2000–2022 30%

KSE 1 LSTM 1844.47 * 0.89 22 2000–2022 30%

DSE 1 SVR 170.89 * 0.82 9 2013–2022 30%

DSE 1 RF 163.01 * 0.84 9 2013–2022 30%

DSE 1 KNN 186.20 * 0.79 9 2013–2022 30%

DSE 1 LSTM 48.42 * 0.99 9 2013–2022 30%

BSE 1 SVR 12,569.63 * −1.35 13 2009–2022 30%

BSE 1 RF 12,356.13 * −1.27 13 2009–2022 30%

BSE 1 KNN 13,155.32 * −1.57 13 2009–2022 30%

BSE 1 LSTM 3295.93 * 0.84 13 2009–2022 30%

RTS 2 ARIMA-GARCH 35.93 * 0.977 22 2000–2022 10%

RTS 2 LSTM 14.91 * 0.996 22 2000–2022 10%

SSE 3 ARIMA 9.838 * 0.9675 1 2020–2021 25%

SSE 3 LSTM 1.319 * NA 1 2020–2021 25%

IDX 4 CNN 719.9594 * −75.4127 1 2022 20%

IDX 4 LSTM 638.0830 * −33.0115 1 2022 20%

IDX 4 GRU 553.3277 * −40.1303 1 2022 20%

NEPSE 5 LSTM 10.4660 * 0.9874 4 2016–2020 20%

NEPSE 5 GRU 12.0706 * 0.9839 4 2016–2020 20%

NEPSE 5 CNN 13.6554 * 0.9782 4 2016–2020 20%

NIFTY 50 6 ANN 36.865 * 0.999 25 1996–2021 20%

NIFTY 50 6 SGD 42.456 * 0.999 25 1996–2021 20%

NIFTY 50 6 SVM 68.327 * 0.998 25 1996–2021 20%

NIFTY 50 6 AdaBoost 2277.710 * −0.930 25 1996–2021 20%

NIFTY 50 6 RF 2290.890 * −0.952 25 1996–2021 20%

NIFTY 50 6 KNN 2314.720 * −0.993 25 1996–2021 20%

N225 7 SVR NA * 0.81 3 2016–2019 10%

N225 7 DNN NA * 0.79 3 2016–2019 10%

N225 7 BPNN NA * 0.82 3 2016–2019 10%

N225 7 SVR NA * 0.58 3 2016–2019 20%

N225 7 DNN NA * 0.58 3 2016–2019 20%

N225 7 BPNN NA * 0.56 3 2016–2019 20%

IPC AHC 0.0007 † 0.9806 17 2006–2023 15%

S&P 500 AHC 0.0049 † 0.729 17 2006–2023 15%

DAX AHC 0.019 † 0.49 17 2006–2023 15%

DJIA AHC 0.0007 † 0.9777 17 2006–2023 15%

FTSE AHC 0.0063 † 0.7074 17 2006–2023 15%

N225 AHC 0.0064 † 0.6111 17 2006–2023 15%

NDX AHC 0.011 † 0.5657 17 2006–2023 15%

CAC AHC 0.0038 † 0.8317 17 2006–2023 15%

1 Results reported in [6]. 2 Results reported in [7]. 3 Results reported in [8]. 4 Results reported in [9]. 5 Results

reported in [10]. 6 Results reported in [11]. 7 Results reported in [12]. * Reported as RMSE. † Reported as Relative

Error. NA: Value not provided.

From Table 14, we can state that the AHC algorithm offers promising results. The fore-
casts reported in the references use the index historical data as input. In our case, to produce
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the stock market index forecasts, the AHC algorithm makes use not only of the historical
data but also considers, for each index, seven country-specific macroeconomic variables.
Moreover, our models used a large data size of 17 years (the third largest), besides being
tested for eight indices of six different countries. In the cases of the IPC, the DJIA and
the CAC, the obtained R-square using the AHC algorithm is comparable to the R-square
obtained using the LSTM method, which provided one of the highest R-squares for the
DSE with a value of 0.99.

5.4. Complementary Analysis

A complementary analysis is presented here to illustrate the feasibility of using the
AHC algorithm forecast in the financial domain. In this sense, the computed forecast of
the stock market indices, using the testing set of the closing prices, is used as input to
implement a Buy-and-Hold strategy and to compute the Sharpe ratio. The Buy-and-Hold
approach uses two moving averages for the index historical data with different time periods:
a slow moving average (SMA) and a fast moving average (FMA). There are many common
combinations used [26]: 5-day and 20-day averages, 12 and 24, 10 and 30, 10- and 50-day
and so forth. For the development of the current experiments, we used the pair 10-day
FMA and 30-day SMA. Figure 8 shows the frames of the Buy-and-Hold strategy for the
model of the IPC forecast computed in Section 5.1. From this figure, it is possible to see
the intersects between the SMA and FMA frames. The outcomes for the Buy-and-Hold
strategy for the rest of the indices are included in Section S3 of the supplementary material.
In addition, Table 15 shows the values of the computed return, volatility and the Sharpe
ratio for the forecast period of each index.

Figure 8. Curves of the IPC forecast (blue line), with the 10-day FMA (red line) and 30-day SMA

frames (green line).

Table 15. Financial analysis with the computed return, volatility and Sharpe ratio for the forecast of

the stock market indices using the testing set of the closing price.

Financial Analysis

Index Return % Risk Free Rate % Volatility % Sharpe Ratio

IPC 121.49 6.06 16.30 7.07
S&P 500 130.28 2.32 23.14 5.52

DAX 84.04 0.66 30.14 2.76
DJIA 114.42 2.32 13.85 8.09
FTSE 91.01 2.15 27.00 3.29
N225 100.59 -0.69 17.20 5.88
NDX 170.45 2.32 50.76 3.31
CAC 103.53 6.06 28.33 3.43

6. Conclusions and Future Work

Through this research, different experiments are offered to evaluate the capabilities of
the AHC algorithm as a new supervised machine learning algorithm that can effectively
satisfy the objective stated in [2]. The final forecast models obtained by the AHC algo-
rithm provide very encouraging results; for example, in the case of the IPC Mexico stock
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market index, the R-square is 0.9806, with a mean relative error of 7× 10−4. Moreover,
the experiments surpass the objective, considering that, among the results, we obtained
a series of good forecasts covering months and in some cases even years. Additionally,
we worked on eight different stock market indices from six countries, using 17 years of
historical data to cover at least one short economic cycle, employing eight MEVs (including
the corresponding index) to produce the prediction model of each rate.

As a main contribution, the new algorithm complies with the following properties:
it is adaptable and dynamic, and its topology is reconfigurable. Given these properties,
the new algorithm can be applied to different approaches or systems that require simulation
analysis using time series. Thus, the AHC algorithm provides an alternative tool to financial
analysts to produce forecasting scenarios comparable to existing state-of-the-art methods.
The AHC algorithm, as a new machine learning technique, opens new research windows
in the following directions:

• Improving financial forecasts. Taking into account that our results are evaluated
by applying an out-of-sample forecast, changing this approach to a one-day-ahead
forecast can improve the performance of the predictions.

• Extending the comparison with other state-of-the-art methods. An extensive assess-
ment of the performance of the new AHC algorithm against other techniques, such
as random forest, neural networks, multilayer perceptrons, long short-term memory
neural networks and genetic programming, can be carried out.

• Exploring other types of substitutions for the AHC halogenations. Specific kinds of
polynomial expressions are used to produce the halogenations for the AHC algorithm;
these expressions were chosen based on empirical reasons, leaving space to explore
other types of substitutions to yield the halogenations while forming the compounds.

• Increasing and diversifying the application of the AHC algorithm to other fields. One
immediate natural application is electricity load forecasting, considering that this
task is also based on time series prediction [27]. Another usage that in recent years
has gained importance due to its relevance in the medical field is image and pattern
recognition, such as cancer detection or kidney stone identification [28]. Further
applications where the original AHN algorithm proved to be efficient can be tested,
such as signal processing, facial recognition, motor controller and intelligent control
systems for robotics, among many other possibilities.

• Extending the analysis of the results. An exhaustive examination of the results can be
undertaken regarding more specific aspects, such as model robustness, variation in
the results over time and consistency across countries.

The main challenge along our research was to design a new algorithm based on the
AON framework, keeping the main attributes of the former AHN topology and, at the
same time, introducing new properties to eliminate the usage of gradient descent (used
to optimize the position and/or number of molecules), hence reducing the computational
time. In this regard, we present a solution that includes two key elements: (a) a new
topology inspired by a different functional group by which AHN was originally motivated,
and (b) the inclusion of PCA, which plays a key role in the implementation of AHC, since it
makes the new algorithm’s time complexity independent of the number of features.

Supplementary Materials: The following supporting information can be downloaded at: https:

//www.mdpi.com/article/10.3390/bdcc8040034/s1.
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