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Abstract— Cooperative localization is critical for multi-robot sys-
tems to accurately ascertain their positions in the environment. This
paper presents a robust and convergent distributed cooperative lo-
calization algorithm to effectively address localization inaccuracies
and inconsistency caused by intermittent or limited absolute ob-
servation capabilities. The algorithm integrates three key modules:
propagation, observation, and communication, enabling each robot
to estimate its states and measure noise covariance simultane-
ously. To enhance the estimation consistency, inter-vehicle relative
observations and landmark absolute observations are modeled as
multi-Bernoulli random finite sets (RFSs), with robot states updated
using a coupled correlation scheme. By combining extended parti-
cle filtering, and covariance intersection techniques, the algorithm
efficiently handles intermittent observations, leading to substantial
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improvements in localization accuracy and estimation consistency. Further, the proofs of convergent conS|stency are

provided in the paper, validating the algorithm’s robustness and convergence.
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[. INTRODUCTION

ULTI-ROBOT Cooperative Localization (CL) has

emerged as a pivotal research area within the domain
of modern intelligent robots and autonomous systems. It has
garnered increasing attention from researchers due to its broad
applicability in various fields, including search and rescue [1],
[2], [3], warehousing [4], [5], [6], and military applications [7],
[8]. In practical scenarios, multiple robots must collaborate
and communicate with one another to effectively navigate
and accomplish tasks collectively. In scenarios where no
observations or only intermittent observations are available
within the environment, robotic systems could face challenges
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in acquiring accurate absolute positional information. This
could result in information gaps during the navigation process.
Additionally, limited collaboration among the robots could
give rise to redundant information and repeated computations,
thereby impacting the overall accuracy and consistency of
navigation algorithms. Therefore, it is of significant research
importance and practical value to address the challenges asso-
ciated with collaborative multi-robot localization in complex
environments.

Researchers have applied a collaborative approach for multi-
robot localization, which involves fusing data from on-body
and external sensors, as well as utilizing wireless communi-
cations. Centralized cooperative localization (CCL) achieved
success in some tasks but suffers from single point failures
and/or heavy communication overheads [9], [10], [11], [12],
[13], [14], [15], [16]. In contrast, Distributed Collaborative
Localization (DCL) [17], [18], [19], [20], [21], [22] adopted
a decentralized algorithm to improve reliability, real-time per-
formance, and reduce communication costs, making it suitable
for large-scale multi-robot navigation tasks.

DCL approaches face positioning accuracy and consistency
challenges. To address these challenges, controlling the es-
timate correlation through data flow management has been
explored. Leung et al. [23] proposed an information transfer
scheme that allows distributed robots to obtain latency esti-
mates comparable to centralized robots but requires a large
amount of communication due to data relaying. Su et al.
[24] introduced a new information exchange mechanism using
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entropy for confidence probability computation, which could
reduce unnecessary exchanges but rely heavily on synchronisa-
tion, potentially increasing pose estimation uncertainty. Bailey
et al. [25] proposed a state-exchange-based approach, sharing
independent estimates within the vehicle network to mitigate
the over-convergence risk. However, it has drawbacks: limited
benefit beyond visible neighbors and increased computational
overhead.

Covariance intersection (CI), an estimation method, ad-
dressed the inconsistent state estimation problem in distributed
cooperative localization [21]. It enables the vehicles to main-
tain a group state estimate and share it with neighbors for
consistency. Zhu et al. [26] mentioned that estimating the
cross-correlation reduces the computation of redundant infor-
mation. However, CI and cross-correlation estimation suffer
from reduced accuracy due to observation noise variance
expansion [19], [27], [28]. Estimation-based approaches offer
advantages: over-convergence risk is eliminated, and low com-
munication demands avoid extensive information relay. Chang
et al. [29] introduced Global State—Covariance Intersection
(GS-CI) by combining the state exchange and estimation-
based ideas to achieve accuracy comparable to centralized
methods. Nonetheless, GS-CI’s performance could be deterio-
rated in constrained observation scenarios, affecting estimation
accuracy and consistency.

In brief, existing research has extensively explored multi-
robot navigation algorithms. However, the accuracy of po-
sitioning and the convergence consistency of distributed CL
algorithms, particularly in intermittent measurement environ-
ments, still pose significant challenges. This study aims to
address some of these research challenges and develop a
more robust and reliable multi-robot CL system through four
specific objectives. Firstly, a novel algorithm titled “Labeled
Multi-Bernoulli on Global State by Extended Particle Filter
(LMB-GS-EPF)” is designed. This algorithm seamlessly in-
tegrates three distinct state updating strategies: propagation,
observation, and communication. This contributes to the si-
multaneous estimation of robot position and measurement
noise covariance, ultimately enhancing overall positioning
accuracy. Secondly, Random Finite Set (RFS) and Labeled
Multi-Bernoulli (LMB) of particles are employed to take
the correlation between observations into consideration and
incorporate more historical information into the observation
updating process. This innovation significantly enhances the
algorithm’s ability to associate and integrate diverse obser-
vation data, thereby bolstering its robustness. Furthermore,
advanced techniques including extended particle filtering and
CI are leveraged for precise state estimation and probabilistic
correlation. These steps collectively improve the algorithm’s
overall accuracy and reliability. Lastly, meticulous design of
communication topology and strategy coefficient allocation en-
sures effective information exchange among robots. This final
phase not only encompasses the comprehensive multi-robot
cooperative localization algorithm but also rigorously proves
its convergence consistency, further affirming its robustness
and effectiveness.

This paper is structured as follows: section II reviews related
work on cooperative navigation, focusing on RFS and LMB

techniques. In section III, we offer an overview of Coop-
erative Localization (CL) modeling for multi-robot systems,
emphasizing explicit communication. section IV details the
integrated observation update strategy employing the LMB
filters. The design of communication topology and coefficient
assignments for the update strategy, along with the proof of
algorithm convergence consistency, is presented in section V.
Experimental results and algorithm analysis are discussed in
section VI. Finally, section VII provides a conclusion and
future work.

[I. RELATED WORK

RFS is a probabilistic framework widely applied in mod-
eling and handling situations with uncertain and dynamically
changing target quantities, particularly in the domains of multi-
robot systems and sensor fusion. In [30], RFS is employed
to model the birth/death of targets, extending the Probability
Hypothesis Density (PHD) filter for recursive propagation
of tracking density for environmental detection and targets.
However, limitations arise when dealing with uncertain dy-
namic targets and limited sensor ranges. [31] successfully
reduces false negatives and false positives in target detection
with limited sensor visibility, enabling a robot swarm to
effectively track the targets. Meanwhile, [32] introduces a Rao-
Blackwellized labeled multi-Bernoulli SLAM (LMB-SLAM)
filter and utilizes Gaussian mixture LMB filters for MAP
estimation, thereby obtaining a more accurate map and im-
proving single-vehicle trajectory estimation. In contrast, [33]
discusses full-distributed multi-robot simultaneous localization
and mapping (SLAM), where maps of multiple robots are
updated using RFS and PHD. However, this approach neglects
the uncertainty in data association, resulting in decreased
localization performance. To mitigate this issue, the covari-
ance intersection (CI) technique is employed to consider the
correlation between target states, and improve the accuracy.

In addressing dynamic estimation and convergence issues
for multiple vehicles, [34] employs RFS and PHD filtering for
dynamic estimation of multi-vehicle states, and [35] proposes
two approximation strategies to address constraints in GCI
fusion. However, these methods inadequately consider the
system consistency during information exchange and fusion
among sensors. [36] employs RFS theory to propose decision
and control algorithms, enabling collaborative work among
agent teams in handling randomly appearing and disappearing
targets in a surveillance area. [37] introduces RFS con-
cepts, proposing a joint spatial registration and state estima-
tion solution to enhance positioning accuracy, yet still faces
communication and computation challenges in collaborative
multi-vehicle localization. [38] applies the ICI algorithm and
introduces a distributed particle filter that optimizes the entire
network iteratively. This approach ensures the asymptotic con-
sistency in target tracking. Additionally, [39] introduces LMB
to provide a more flexible modeling approach without the need
for high signal-to-noise ratio for formal trajectory estimation.

[40] proposes a fast implementation method for the LMB
filter based on joint prediction and update, converting the
predicted LMB distribution into its corresponding -GLMB
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representation. However, the LMB lter incurs higher compudimensional plane. Each robot is equipped with both proprio-

tational costs, especially in scenarios with a high number oéptive and exteroceptive sensors: an odometer for self-motion

measurements, exhibiting cubic growth in computation costaieasurement and a camera for collecting measurements to
Several studies have addressed the challenges of commiamdmarks or measurements between robots. The index set of

cation and computation burdens. [41] presents an innovatibee multi-robot system is denoted as f1;2;::;;M g, and

approach that signi cantly reduces these costs by employitige set of landmarks as, resultingin = [ . Atany

strongly weighted Gaussian component sharing and spatigdlen timet, the state of robot is represented by the vector

merging of neighboring sensors. [42] introduces an efcier8 = [x};y!; {]7. Consequently, the state of the system is

distributed fusion algorithm for sensor networks, which utdenoted byS, =[S} SM 7.

lizes GCI fusion rules and reduces computation and mem-The robot's motion model is established based on the

ory requirements through approximation techniques and fastometer to describe its spatio-temporal displacement. The

clustering algorithms. To mitigate computation and commun@ddometer sensor is classi ed as a proprioceptive sensor, pro-

cation costs, [43] adopts a centralized Kalman lIter estimataiding measurements of the robot's linear velocity and

distributed into a dimensionality reduction lter. In [44], a par-angular velocity! |. Let t be the time interval between two

allelized fusion approach for the GCI-GMB fusion posterioconsecutive motion updates. The discrete motion propagating

effectively reduces computation and memory costs in targebdel for roboti is represented as follows.

tracking tasks by discarding negligibly weighted assumptions. i i i

. . A . Xy + vp tcos(y)

However, this approach lacks an investigation into the estima- i _f (Qeyicliy= 4 yi i inf1y 5

; ; ; ; ; ; S = Fi(Sivist ) =2 yi+ v tsin(y) (1)

tion of consistency issues that may arise when implementing et

the algorithm in distributed sensor networks. Furthermore, teot

[45] addresses the multidimensional assignment problem witthere § = [x};yi; ], [xi;yi]" denotes the position of

the multi-sensor generalized labeled multi-Bernoulli (GLMBjoboti in the absolute coordinate system, ajddenotes the

Iter, while [46] resolves the labeled random nite set (LRFS)orientation of robot at timet.

density fusion problem using the minimum information loss The observation model describes the relative position of

criterion and introduces the cost rank allocation optimizatiasbjectj as observed by robdt Therefore, the observation

(RAO) to address the label mismatch (LM) issues betweemodel for roboti can be represented as follows.

LRFS densities. [47] designs a recursive distributed fusion

estimator (DFE) that achieves local state estimation througho! = CT( |) , ,

covariance intersection fusion criteria and transmits local es- i Y

timates to a remote fusion center (FC) via a communicatiavhereC is the rotation matrix containing the angle parameter

network, providing convenience for multi-sensor interaction. It is worth noting that the observation mogetontains the

fusion estimates. In [48], a network architecture introducedservation of robot on the robof or landmark . TheH

point-to-point communication among robots and interactias calculated based on the relative observation information of

with a central server for information exchange and sharinthe robot, as follows.

Although the algorithm mitigates the effect of sensor noise When roboti observes another robpt H ! is denoted as:

on localization accuracy through information sharing, state 2 3

updates in communication mode still play a supplementary i _

role. For intermittent measurement environments, designing a HY =40, - |{z|}2 |{]zaf 0z 2° ©)

parallelized communication update strategy and topology is i i 2 2N

crucial for improving the overall localization performance ofvherel, denotes & 2 unit matrix. If observatiorj is a

X% =cT(hHIs @

multi-robot systems. landmark,H I is denoted as:
In summary, RFS technique and LMB Iters in multi- 2 3
robot collaborative localization achieve ef cient data fusion for i _ 4 5
. R . o HY =40, , | 0, 2 (4)
target identi cation and collaborative localization. However, [{zP
there is a lack of research on high-precision localization and i 2 2N

communication architecture for large-scale robot groups inin this paper, the observation process is carried out by

intermittent measurement environments. an external camera sensor. The relevant observed yariables
include the relative distancd! and the relative attitude! .
[1l. BACKGROUND Consequently, the observation of the relative spatial position

This section briey reviews the multi-robot state updat®&tween robot and objec§ is expressed as follows.
model required for this paper, including the motion model, V= g cos( i) 5
observation model and communication model, and briey o = sin( 1) ®)
describes the CL algorithm used for GS-CI [29].

B. Communication Model

A. Motion and Observation Models In a system comprisintyl robots, we introduce the concept
We consider the scenarios where multiple robots interaat a communication directed graph denotedGis= ( ;Ef),
with landmarks with known positional information in a two-where represents the set of robots, aif is the
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set of edges representing their communication links betweerThis approximation distinguishes two uncorrelated error
the robots at timd. When roboti receives a message fromterms: the state estimation er®rand the measurement noise
robotj at timet, it signi es the existence of a directed edgen i , whereH o = cT( i)H I, When the observation result
(j;i) 2 ES. It is worth noting that we assume the presenc@ is obtained from the camera, the covariance mafix

of self-looping edgeqi;i) 2 Ef, 8i 2 , implying that of nyi can be expressed as

each robot can utilize its own information. At tinte._the _ - 2 N2 2 T
communicating neighbor set of robbtis de ned asN ' = Roi = C( ")diag g ;(d") % C (") (10)
fj(ii) 2 E;8 6 ;7 2 g. Subsequently, the inclusive  The oyerall covariance update can be represented as
communicating neighbor set of robotis I &' = N [f ig. ' . , _ o
Similarly, we de ne a directed sensing graph denoted as( t+1) *=( {) "+(H)TC( YR,CT( PH' (11)
Gt = ( ;E¢) to describe the robot-to-robot measurements,s) Communication Update: In the communication update,

where_EtS . denotes the set .Of edges, |n_d|cat|ng th?oboti utilizes CI [21] to update its estimated information

detec’qon I|_nks b(_etv_veen robots at tinte If robot_| detects based on external information received from other robots. This
“?*?0“ atstlmet., it implies the presence of a directed edg rocess involves incorporating the information sent by robot
;1) 2 Ep. Attime t, we de ne the set of robots detecte to roboti. The covariance update in the reference baseline

by roboti aSNts;i = flj(Gi) 2 E;;8 6 i, 2 g, e, 29], where only robok provides information to robat, can
the set of other robots that robbtdetects. We consider thatée ]r'epresentedyas foIIovr\)/s L
e

for each robot, the communication radius is greater than t _ _
sensing radius of all robots. This setting allows the robots to ( .4) *= () '+@ O YL 201 12
share information within their communication range, thereb?/he coef cient  value

L . : is determined by minimizin
facilitating collaboration among multiple robots. : : y minimizing

det( i,;) ortr( i,;) during the estimation fusion process.
As increases, the own estimates for robogain more
C. Cooperative Localization Algorithm signi cance in the fusion process.

framework. We denote the state estimate of each robef§ ~baseline algorithm, which consists of three key components:
and its corresponding covariance as motion propagation, observation updates, and communication
1) Motion Propagation Update: For roboti, the covariance updates. While existing algorithms update localization esti-

update during the motion propagation process is as followghates independently through observation and communication,
) ) _ _ _ the GS-CI baseline algorithm separates communication from
t = t+ 9= {+Diag( " WM (6) observation, considering communication imperfections due

to intermittent or limited observation capabilities. However,

where ; represents the state covariance at time % is this reliance on an one-way chain communication topolo
determined by the input noise, which is the diagonal matrix y pology

of Y and depends on the availabilty of information fron{" the baseline algorithm introduces limitations, resulting in
neighboring robots iased and inconsistent localization results. We also identify
. ] Lo P potential issues associated with this communication topology.
For roboti, the linear velocity inputy is disturbed by a This research aims to address these limitations and enhance
zero-mean Gaussian random variale with a covariance of L .
2 Linearizing equation (1) [49], which no longer takes iméocallzanon accuracy and consistency.
ny’ ' The GS-Cl algorithm's limited assumption of robdt

account the estimation of, but is continuously given by the e . . . o

. : . transmitting information to robadt can hinder communication
on-board odometer, the error propagation equation for robo o : :
adequacy. Consequently, it yields suboptimal performance in

itself i o ; o
s ) ) o CL accuracy and estimation consistency. To address this issue,
& R, cos(y)  visin( {) Ny (7) our paper focuses on integrating historical correlation data into
* i sin( {)  vicos(;) R the observation update process while optimizing the communi-
. . o . A cation framework, thereby improving estimation consistency.
where the orientation estimation error modgk | " com- y Imp g y

: . i . This enhancement serves as the primary motivation behind our
prises a zero-mean Gaussian random variable, with Gausﬁjgglearch

variance denoted as? = E[(7)?] bounded by 2 which is
the given variance. The covariance matrix increment can be
expressed as follows.

IV. METHODS
, A. Design Idea of the Proposed Method
U= 1cC(h) 8v 2 2 cT(h (8) To improve the CL accuracy and estimation consistency,
[ we propose a new algorithm, called LMB-GS-EPF algorithm.

2) Observation Update: The observation update is based oRirstly, this new algorithm introduces a labeled multi-Bernoulli
measurementsi from the camera, following the standard!ter to consider the correlation between observations and

EKF procedure. With reference to equation (2), the estimat8tforporate more historical information into the observation
observation erros’ = o 6 can be approximated as  UPdating process. Secondly, we utilize a particle lter to
overcome the limitations of EKF algorithm since the system is

6 HY s+ CT('\L)H s ~ 4 N i (9) nonlinear. In addition, we optimize the communication update
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part by creating a richer communication structure that allows3) LMB prediction and associated weight update: Initially,

information exchange between multiple robots, thus improvinge set a probability threshold®s. This threshold is based

the accuracy of localization and consistency of estimatioon the camera's detection range. Its purpose is to Iter out

With these improvements, we aim to effectively achieve morewly born vehicles. We de ne these newcomers as part

robust and accurate cooperative localization. of the networking group. Simultaneously, it helps eliminate
redundant Bernoulli information.

B. Multi-Labelled Bernoulli Coupled Observation Update

1) Labelled multi-Bernoulli (LMB) and random nite sets
(RFS): To represent the state estimates of robots in a mulwhere Py, indicates the probability that the observation
robot motion platform, our RFS for the multi-robot motiorcorresponding to the current particle state is not associated

Pron (P(H" =0)) >Pg; m2f0;1;:::;Myg @an

platform is de ned as follows. with the motion platform. Equation (17) indicates that the
n 11 e 0 measurements correspond to particle states generated by newly
Xo= Xg Xy (13) porn network members, rather than by surviving network
members.

n;‘ n .
Wh(;erLe deacht elt(;mert)tt IS on thg tshpafi | (Ij_dv_vher?R The state of the LMB-RFS motion platform is then com-
an t_enlo € ;szaF\()a §pgci ag_ 'Iel a tﬁe .t|screte ?p%?ﬁed with robot observations to generate particles using a
respectively, an ' - >lmiiarly, the nite Set of . alihood function. This results in the generation of related

absolute and relative observations for a multi-robot platforg'arameters, including the particle state, particle weight, and
can be de ned as followsr:]

o multi-vehicle platform networking probability.
0 = 0o (14) 1 e
o= X =K(0; " 2Ly 1 = ==Pon  (18)

where * represents the observation set of random collaborative © Np’ M

robots in network, each observation componentis 2 R, where N, is the total number of particle; is the spatial

whereR represents a vector eld, and represents the index probability density function (pdf) of the particle. The func-

value of thg observed neighbor or Ial_"ndmark. - odon K () represents the likelihood function, and, is the
Bernoulli RFS represents uncertainty about the existence. . . L o )

. : . . itial weight of the particle. Additionallyr is the existence

of a single object in a straightforward way. The parameter

r represents the probability of the existence of a rob(ﬁmbab".Ity of the robot, and g is the probability of birth
networking platform mean.

s(x) represents the state matrix of multiple robots, which is™, . .
abbreviated as below; the probability thaX is an empty set It is noted that t.he. label space of new objed) &nd the
label space of existing objectd Y are complementary and

is1 1. The prior distribution of LMB-RFS is given as satisfyB\ L = .The RFS is then divided into two parts: the

(X) = 1 r‘g X =3 (15) multi-Bernoulli RFS of the survived networked robots (marked
roos(x); X= xbu;xM asS) and the multi-Bernoulli RFS of the new birth network
where X is the union ofM independent multi-Bernoulli Fobots (marked a8).
i i = M i i-
random nite setsX', for example, X = [, X'. A multi X = XS [ XEB, (19)

Bernoulli RFS is de ned by a parameter dat;s'gM, . The
LMB-RFS with state spacX and label spacé is given by where the superscrips indicates the members who have
parameter set = fr ;s gi.. formed a surviving networked group at tinteand in the
The RFS representing a multi-robot label in a non- xethetworked group at the next time1 and its Bernoulli compo-
collaborative robot network can be denoted as follows. nent isf (r g, ;Ss; (X1))9 5.5 » The superscripB means not
_ e I\ e e (e (D o in the networking group at stefp and a new member in the
Xo = 1(res O)san(res e 2 Ly (16) networking groug e?t thepnext gzpl, that is, a new member
whereX ; contains the LMB-RFS component information ofind is the Bernoulli component. Those surviving members
multiple robots,r denotes the existence probability, asd retain the Bernoulli information, and their corresponding label
denotes the state of a single object, and * is the mark of teet elds follow as
random collaborative robot network.denotes the state of a Lo, = LS [ LB
single object and is marke8 in equation (1). Lts+l\ LBt Lo
2) Particle Iter: In order to establish a reliable prior value t t+1 =

for LMB, we use extended Kalman Iter (EKF) as the initial According to equation (15), the pdf of LMB-RFS can be
calibration value of our particle Iter algorithm (PF). Throughexpressed as

(20)

the use of the PF-EKF algorithm [50], we are able to acquire Y o o

the initial optimized staté!,, and covariancé'l,; of robot (X )==( X ) @ r) L CO)r s (x")
i. The optimized state signi cantly reduces the uncertainty in 2L nL(X ) x2X

position estimation, while the optimized covariance provides n o} (21)
parameters for the LMB correlation probabilities, thereby L(X )= "®;@; 00 m (22)

enhancing the correlation between relative and absolute ob-
servations. ( X )= jx (LX) (23)
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where "C is labelled as not participating in the networklngwhen a() = b(m) 6 ° or aE) 6 m;bEm) =

1. (7) is an inclusive function, and 2 L is 1, otherwise it *; ( ,t{m)) = 0, and 1 otherwise, which de nes the

is 0. L(X ) represents the robot label set of LMB-RFSis representation motion platform to match with the observation

the Kronecker function. set. The message passing in the LMB collaborative navigation
Since the cardinality distribution of labelled RFS is the sansystem, with the introduction of redundant variables, can be

as that of unlabeled RFS, the subscripts gf ; is denoted described as

the same labeX = (jL(X )j), when the labels irX are

. . ACim )
independent of each other,X = 1 andO otherwise. The irem _ i pt i _ i
update of particle Itering on the new robotics platform. ‘ AGD G0 ’;"nkgzl ACm Oyl 1me
m-6 m
f Xypdo = F (X jo s Wy ) (24) L (30)
qm! ~ _ -
where W, is the noise set of networked robots, and then Vi T+ O (31)
we update the existence probability, association Weight by the 0L, !
parameter set = fr ;s g,.,(;m)2L f 1;::; Mg
i i In equations (30) and (31), the inter-iterations are performed
Poo1 =T Ps (25) for each value of until i takes on all values from 1 tb.
1 L ko o K L ko K N D=g o (32)
no=1 2 vZ e ? vZ
P P 2V gV AC:0) .
(26) V=% (1 Pp) (33)
Cm) * X (
G =T (™= Po Po=leu (27) . p(a) ) ANm)—pim2f 1,09
i= = a =m)= . N N
= ass ‘ "OMvmt T=pm 2 £ 155 Mg
wherePg represents the survival probability of each robot at (34)
the speci c moment. The variables; (1) ando; (2) denote T NG D AGO) X wm AC;m O)V[I]mO! T (35)
the distance and orientation information in the observation t t mo=1 ! t
of the robot, respectively. Moreoved; and ; represent
the relative distance and relative orientation of the neighbors, = P(" =0)= 51 _
2 non g ITr m 36
while vi and v2 are the varlances of ranging noise and 1+ t (36)

orientation, respectively. ;] indicates association weights, 2Ly
Pp indicates the detection probability,., indicates the

whereP,. is the probability of correlation among robots, and
probability of incorrect observation, and, represents the ass b y 9

P.on is the probability that the observed value corresponding

number of F')z.irt.|cles of the 'Itefr _ to the particle state is robot-independent, which is fed redun-
4) Probabilistic data association observation update based dant Bernoulli information into the next iteration

thgre#?;é)éogagaetﬁﬁn}ome ;igebeﬁocr'g“gnaﬁg?]bz?"g?ftﬁs 5) Observations update: The association weights are up-
y ploying propag 9 "fated via messaging and the observations are modied ac-

which relies on the factor graph model. Once the a5500|at|0n
weights are updated, redugndZnt variables are integrated i rdlngly This includes the updated network probabilities and
r?at'al probability density functions for grouped robots.

the model. For the association probability fast marginalizatio

introduce the association vecter; and the corresponding N & i
variableb; [51]. n = g Jim 20,15 Mg (37)
0) O M.as : 2Lenb (X )
a;’2f 1,0, ;Mg 2L;;m2f 1,015 Mg m=0
(28) N
where a() = m denotes the association variables corre- nC) — .r«g)J
sponding to the'-th robot state estimation and tha-th P ey (38)
measurementn = O indicates that it is not associated with _ n{)
any measurementn = 1 indicates that it does not exist. !
When bﬁm) =" 2L, , it means that there is an observation . ACim)
related to the robom. WhenbE ) =0, it means that there is fe = ¢ m2f0;1; ;Mg (39)
no observation related to the robot. O
The joint associated probability mass function is wheren{ ) is the weight related to the observation and the
\ robot, .Y\p is the updated particle weight, apds the particle.
pag;b) ! ( aghby) Q AGao) r, denotes the existence probability or networking probaibility.
2L, 29) Lastly, through standardized post-processing, pruning and
by QR ). (M) ( resampling techniques for state estimation, we attain reliable
(at;b) = wm (@ sby )

2L, m=1 robot presence probabilitigs,, and state estimates, .



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

C. Optimization of communication structure a cyclic communication topology, the algorithm assigns

In

this section, we adopt a multi-robot communication the coef cients based on the existence probability of the

approach using a cyclic structure. The cyclic structure enables Bernoulli lter. This approach enhances  exibility and
bidirectional information ow among robots, promoting a scalability, resulting in more robust and ef cient multi-
comprehensive exchange of observation and measurement data "0bot systems.
among neighbors [52].
In the state update process within the communication maéligorithm 1 LMB-GS-EPF by Roboi
ule, we design a novel approach to assign the coef cients in thejnitialization
state update equation based on the robot survival probabilitySetS, and | for roboti.
i, obtained from the LMB lter. The state update equation is Motion Model

as

i . X i1 input: odometen} o '
t+1 = t i\t 4 +1 L1 1t Ve ) b it o Vit e T M OMt 0 Vit J
( ) c( {) 4+ C]( ) (40) g{ = [fT(sl .lvl)..t..fT(g| 'V')""'fT (8l -yM )]T
i2Ci by = b+ 9= 4+ Diag( Y% WM,
2 3 Observation Model

X _ ¢
. _ g g _ i
8 = w1 Aoo( }) &+ G ( 1y "5 (41) In_put. camerao

where, ¢o and ¢ represent the coef cients used to weight
the fused robot states. By incorporating robot presence pro

j2Ciy g*—l = §l;t + ItH ! TRolj_l(oij H ! §),T ) )
(ha) 2= D) TH(HDTC(DRGCT(DH ',
pDetermine the particle and weightg. .y ;! 141 ng:pl ,

abilities into the coef cient assignments, we can fuse the OPtimization of robot statd,;, using PF algorithm.
information from different neighboring robots. LMB Initial

V.

A. LMB-GS-EPF algorithm

DetermineL using P,,, > Pg, according toP,,, =
P(H" = 0) given Pg, m 2 f0;1;::;Mkg, create new
Bernoulli componentr’;s' gt .

LMB propagation
Determinef,,; and"

LMB-GS-EPF ALGORITHM AND CONVERGENCE
CONSISTENCY

p

Our proposed algorithm aims to improve the accuracy andAssociated wei%)ht update .
consistency of CL. The algorithm simultaneously estimatesDetermine f;{“ ,m 2 f 1,0;1;::; Mg, with tﬁ{“),
the robot's state and covariance by using parallel multimodaly = 1 with t(+:£ﬂ ) m =0, with t(+:£n)’ m2f 1 Mg,

robot state update strategies such as motion model, observatioB termi n O
model and communication model, as detailed in Algorithm etermine:
1. By the particle based LMB lItering algorithm, we couple
relative and absolute observations. Moreover, we optimize the
communication structure by means of a cyclic directed graph.
Leveraging the robot existence probabilities computed by the
LMB lIter, we achieve an optimized allocation of coef cients

in the state update equation. The LMB-GS-EPF algorithm we
proposed can be summarized as follows:

1)

2)

3)

at+1 -

LMB-BP Message Passing interactions
Determine ' ™! VI ' ™ i s the interaction index,

DetermineP,¢, = P(a;,; = m) andP,,, = P(b}; =0).

Probabilities update and spatial probability update
Calculation of*{ andf,, using equations (38) and (39),
Post-processing by pruning and re-sampling to optimize
8., and 1, .
Communication Model
input: &, ¥ from robotk,

Global State Representation: our LMB-GS-EPF employs
a global state representation to capture the interrela-

tionships and collaborative historical behaviors among 1

multiple robots for enhancing localization accuracy. (ta) '= CO(" ot (20, G( 1)

Labeled Multi-Bernoulli Filter: our LMB-GS-EPF intro- ! p - _#
duces the labeled multi-Bernoulli Iter for modelingand &,, = 1, co( ) 19{ + G(1) ¢,
labeling multi-robot state information as labeled RFS. j2Cit

It couples the relative and absolute observations, dis—:;he glloca‘;:on of coef mentgz :)Ofo ar}d;]:j IS bdetermlneql_
carding negligibly weighted assumption and redundant °PaS€d on the presence probability of the robot transmitting

computation. It retains the historical information with "€ Message.

high con dence and offers a exible state update strat-

egy in communication mode, addressing the limitations

in intermittent observation environments. The dynamic .

grouping process improves the computational ef cienc?' Convergence consistency proof

and handles the scenarios with low detection probability First, we establish the convergence consistency of the
and high false alarms without sacri cing the estimatiomessage-passing algorithm. Subsequently, we demonstrate the
accuracy. convergence consistency of the message-passing embedded
Parallel Communication and Observation: our LMB-GSwithin the explicit communication algorithm.

EPF incorporates the parallelism by treating communi- We establish the fractional forms of equations (30) and
cation and observation as an integral mechanism. Usi(®)l) in accordance with the requirements of the guaranteed
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P ~. 0 N N .
convergence proof. By using the fractional expression functionDe ne c= (-~ ™5 "G vm? =" P+ G)

“\t+l t+1

f in equation (30), we construct the representation distance m®%m
function d such that there exists a contraction facter 1 S

o f(vm A+ cAL 1+cL
satistying d(f (i1 (y) <= d (¥):));80cy) [54]. When e (@)
the functionf is in fractional form, any sequence derived fvem) ¢ ¢
from repeated applications of the functibnconverges to the P my ACm 9y mOr
same xed value. Subsequently, the measure for information _ mgglm o
is de ned as wherec = AT DL AT mW.

I m v m Using Lemma 1
d(;V)=maxfmax - ——;max ——g (42) ‘
m VI fVim) _ 1+cL
The dynamic log distance form is de ned as f (VM) T 1+c (49)
d(f ();f(y)  d(x;y) ;8(x;y) (43) 1+mWL _ 0 wmow) | wmw)

so thatlogd(f (x);f (v)) _logd(x:y);8(x;y). e my

We de ne the update P'mo= f(V™ ") in equation (30), Those similar steps are followed as
and ™ = g(V' ™M) in equation (31). Now, we present o
a list of preliminary lemmas concerning the form of the f(v‘i ) 1+mWL L (Lmw) (50)
contraction factor that will be utilized. f(vm)y 1+mW

Lemma 1[53]. Forc > OandL > 1, we have the following oy we establish the same validation of interactive step in

log(15e equation (31).
Lo)= = (44 Lemma 3 For all (: 9 with d(; 9 L, The update

The function value is strictly less than 1 and increases mong?f— mes_sag_eg() In equation (3?0) _'S a contraction .a}bout the
tonically with L . ynamic distance measure witlf ; ) the factor (L; (W),

The following two lemmas demonstrate that the LMB-RF&€+ .

updates in equations (30) and (31) are contractions. dig( );9())  d( ;) H W) (51)
Lemma 2 For all (V;V) with d(V;V) L, The update ) . . .

of message () in equation (30) is a contraction about the Proof Itis assumed tha8(’;m), V™ andV ™ bounded

dynamic distance measudé : ) with the factor (L;m W), With0<= V'™ <=1,if V™ orV ™ is 0, it guarantees
ie.. any d( ; 7) resulting from equation (31), let

d(f (v);Pf (7)) d(v;v) (Emew) (45) 1 L=d(;9) L<1 (52)
M ACim 0
ml=1

0 We prove it in the same step,
wherem W = max — =" ———) P P
;m t+1

t+1 P ~‘0! m
Proof. It is assumed thaB(‘;m), m andf?m boynded o ™) 1+‘02LH1 t+1 WL Lo )
WIn0< ™ 1and0< =7 Lwhen M or=mis g T Pt SRR LU g
zero, it guarantees arfy; 7) resulting from equation (31), let %2t
9" "™) 1+ WL L (Lnow)
1 L=dV;Vv) L<1 (46) g( ™) T+ W
It is easy thaty m LY M andvy’m Ly m Now we present Theorem 1 to prove LMB-GS-EPF algo-
Since the association Weigh'i(\?m) is non-negative and rithm's convergence consistency when the robot information
bounded. if*C:M) = 0 then in equation (30)i = | and the Source is camera to landmark absolute observation data or
superscript of iteration procedsis omitted, getf (V™) = camera to neighborhood robot relative observation data.

Theorem 1 Regardless of different initializations, GS-
EPF-LMB iterative operation$ () in equation (30),g() in
equation (31) will converge to the same point.

Proof Let us start with an initial vectok/g]m! . Then,

f(¢™)=0 andf (V™)=f(V:™)=0=0= 1. Otherwise,
the division is considered.

Dene ", Y+ " = A, one obtains the following.

. . P ~m O 0 - N N
AC D L A0 M ACm 7)) ! . . | |
. 1t Y mkgzl v Vi using equation (30), we havé2™ = f(vEI™ ) Now,
f(v" _ m-°6m . . . iim! ° i 1lm!
wam ; T R I A P W AT Ty consider the iteration proces§™ = f(g( § 1™ ). we
B e mel o can see that = d( o; 1) < 1, whered is the distance
Asl M o ACm O)V‘Tf! : function measuring the difference betweegnand ;.
- Mm% m (47)  Usinglemmas2and@( i; k) L (L maxfmin gW)
= P ACm O 0 - 21k
A+ K Cm Byym 0 wWh (L; maxfme;nigW) |
m =1 t+1 t+1 enL ! 1.
0, . . .
AP wr e™ oy Ly m0 When the robot has no available information source, the GS-
mgglm B B EPF-LMB algorithm uses a new communication mechanism to
VR AT Oymo update the estimates and its convergence consistency follows

Mogm [29].
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TABLE | C. Evaluation Metrics
SYMBOL OR VARIABLE DESCRIPTIONS

The paper evaluated the algorithm using two commonly

zymbOI Z;Stznspstogf multiple robots indicator_s for_ CL: positioning error (RMSE) a_nd state covari-
vi Linear velocity of roboii at timet ance es_tlmatlon error, corresponding to equations (54) and (55)
i Angular velocity of robot at timet respectively.

t Heading of roboi at timet : 2
otij Observation of robot on targetj (neighbor robot or land- iN:1 Slt Slt =N (54)

mark)

C Rotation matrix related to heading q
H Linear innovation matrix in the observation model Notr([ s J)=N (55)

i State covariance of robatat timet
R i Covariance matrix of measurement noise
Xt State set of multiple robots at timewith associated labels D. Results
(X Observation set at time

(X) Prior probability distribution function of an LMB-RFS We executed all the algorithms and gathered the perfor-
Xy LMB-RFS component information set of multiple robots mance data in two key dimensions: the accuracy of robot lo-
fy | Probability of the existence of a labeled robot calization and the precision of tracking covariance estimation.
S (%) St.ate mforma.“.o n of robot with label ) Additionally, we recorded the computational time each algo-
Pc Given probability threshold for camera-based detection rapge . . .

to Iter out newly born vehicles rithm consumed when applied to a 3-robot dataset operating on

Pnon Probability that the current particle state corresponds to| an & 200-second cycle. The comprehensive evaluation outcomes

\ observation independent of the motion platform have been organized and are showcased in Table Il. The
L Particle weight corresponding to robot label metrics encompassed within the table include localization error
K(9) | Likelihood function related to observation (measured in meters), tracking covariance (expressed in square

t+1 = | Attimet+1, the robot-associated weights labeled as meters), and time cost (quanti ed in seconds). To ensure a

L2 S;?gﬁfg;{grn‘fﬁgmed fusion of robot states in communi- -y rehensive assessment, we compared our algorithm (Our)
The table focuses on the key symbols and variables involved with the DCL-based GS-Cl algorithm and the CCL-based Cen-
in the algorithm of this paper. EKF algorithm. The tested localization accuracy results were

presented in Fig. 1. In this gure, the localization accuracies
of each robot associated with the various methods were shown
C. Symbol Description in the same subplot, with the vertical coordinate indicating the

_ o _ _localization accuracy and the horizontal coordinate indicating
This section lists important symbols and variable descrigse time series.

tions in the article, as shown in Table I. To enhance clarity, we had divided the axis into four

segments spanning from 0 to 200. Notably, our algorithm
consistently demonstrates exceptional performance in local-
ization accuracy and maintain an accuracy of approximately
This section presents the experimental dataset, outlifdd meters. This result stands as a testament to the robust-
baseline methodologies for comparison, speci es evaluati@ss of the algorithm we developed. To validate the algo-
metrics, and explains experiment results. rithm's consistency, we undertook a comparable evaluation
of tracking covariance accuracy. The outcomes are presented
in Fig. 2. Our algorithm signi cantly advances the tracking
A. Experimental Dataset covariance accuracy in comparison to the GS-CI algorithm.

This achievement can be attributed to the innovative cyclic

The proposed LMB-GS-EPF algorithm’s performance was,mmynication topology we formulated, and the strategic

evaluated using the UTIAS multi-robot CL and mappingqsqignment of communication update coef cients based on
dataset provided by Leung et al [55]. Each robot was equ'pp&‘?istence probabilities.

with a wheel encoder and a monocular camera, measuring
linear and rotational velocities at 67 Hz and capturing dis-

tance and orientation measurements with other robots and
landmarks. The position and orientation were obtained from

VI. EXPERIMENT

TABLE Il
ALGORITHM PERFORMANCE COMPARISON

a 10-camera Vicon motion capture system at 100 Hz, with a Method Locerror (m) | TraceCov (m?) | Time Cost ()
positional accuracy of approximately 1 mm. GS-SCI [56] 0.142 1871 13.578
DCL GS-CI [29] 0.135 1.254 12.717
our 0.095 0.536 14.651
. cCl EKF-LS-CI [12] | 0.492 0.120 10.683
B. Compared Baselines Cen-EKF [57] | 0.138 0.115 10.759

We compared the proposed approach with two representé&valuation results of all algorithms on the 3-robot dataset with a period of
tive SOTA algorithms, including EKF-based DCL [29], [56] 200 seconds for the system as a whole.
and EKF-based CCL [12], [57].
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Fig. 1.  Comparison of localization accuracy of all the algorithms
corresponding to the three robots.

Fig. 2. Comparison of tracking covariance accuracy for all the algo-
rithms corresponding to the three robots.

Fig. 3. Localization accuracy results of ablation experiments.

E. Ablation Experiment

Fig. 4. Tracking covariance accuracy results of ablation experiments.

EPF, LMB ltering, and communication structure Graph op-
timization into the GS-CI algorithm [29]. The experimental
results are shown in Fig. 3 and Fig. 4, where the Fusion
curve represents the integration of all three improvements in
the proposed LMB-GS-EPF algorithm.

Firstly, in our experimental setup where we introduced the
EPF, we witnessed a discernible reduction in the localization
error when contrasted with the GS-CI algorithm.

After the integration of LMB ltering, we observed a stabi-
lization in localization accuracy, settling around 0.11 meters,
as demonstrated by the +LMB curve in Fig. 3. This result
is attributed to the fact that the LMB algorithm we designed
incorporates both relative and absolute observations.

In addition, we adopted a cyclic-structured directed graph
for multi-robot communication to realize the bidirectional
information ow between robots, while the coef cient assign-
ments in the updating equations (40) are accomplished with the
help of the robot survival probabilities obtained in the LMB
Iter while considering more historical information. As shown
in the +Graph curve in Fig. 4, the tracking covariance accuracy
of the robots is signi cantly improved, ensuring robust state
consistency.

VIlI. CONCLUSION AND FUTURE WORK

This paper introduced a novel distributed cooperative local-
ization algorithm (LMB-GS-EPF) tailored for multi-robot sys-
tems. This algorithm seamlessly integrates the motion, obser-
vation, and communication strategies, ensuring the concurrent
state and covariance estimation robustness and consistency. By
investigating the fusion of absolute and relative observations
using the LMB Iter and considering the incorporation of
more reliable historical observations, the algorithm's impact
on Cooperative Localization was analyzed. Additionally, the
optimization of multi-robot communication topology and the
re nement of communication updates, guided by the robot
presence probability within the LMB Iter, were achieved.
The robustness and convergence of the proposed algorithm

A series of ablation experiments was conducted. This imas validated through theory and quantitative results. The
volved the stepwise integration of individual improvement$ollowing conclusions are derived:
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