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Robust and Convergent Distributed Cooperative
Localization with Labelled Bernoulli Random
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Abstract— Cooperative localization is critical for multi-robot sys-
tems to accurately ascertain their positions in the environment. This
paper presents a robust and convergent distributed cooperative lo-
calization algorithm to effectively address localization inaccuracies
and inconsistency caused by intermittent or limited absolute ob-
servation capabilities. The algorithm integrates three key modules:
propagation, observation, and communication, enabling each robot
to estimate its states and measure noise covariance simultane-
ously. To enhance the estimation consistency, inter-vehicle relative
observations and landmark absolute observations are modeled as
multi-Bernoulli random finite sets (RFSs), with robot states updated
using a coupled correlation scheme. By combining extended parti-
cle filtering, and covariance intersection techniques, the algorithm
efficiently handles intermittent observations, leading to substantial
improvements in localization accuracy and estimation consistency. Further, the proofs of convergent consistency are
provided in the paper, validating the algorithm’s robustness and convergence.

Index Terms— Cooperative localization, multi-robot systems, labelled Bernoulli random finite set, communication.

I. INTRODUCTION

MULTI-ROBOT Cooperative Localization (CL) has
emerged as a pivotal research area within the domain

of modern intelligent robots and autonomous systems. It has
garnered increasing attention from researchers due to its broad
applicability in various fields, including search and rescue [1],
[2], [3], warehousing [4], [5], [6], and military applications [7],
[8]. In practical scenarios, multiple robots must collaborate
and communicate with one another to effectively navigate
and accomplish tasks collectively. In scenarios where no
observations or only intermittent observations are available
within the environment, robotic systems could face challenges
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in acquiring accurate absolute positional information. This
could result in information gaps during the navigation process.
Additionally, limited collaboration among the robots could
give rise to redundant information and repeated computations,
thereby impacting the overall accuracy and consistency of
navigation algorithms. Therefore, it is of significant research
importance and practical value to address the challenges asso-
ciated with collaborative multi-robot localization in complex
environments.

Researchers have applied a collaborative approach for multi-
robot localization, which involves fusing data from on-body
and external sensors, as well as utilizing wireless communi-
cations. Centralized cooperative localization (CCL) achieved
success in some tasks but suffers from single point failures
and/or heavy communication overheads [9], [10], [11], [12],
[13], [14], [15], [16]. In contrast, Distributed Collaborative
Localization (DCL) [17], [18], [19], [20], [21], [22] adopted
a decentralized algorithm to improve reliability, real-time per-
formance, and reduce communication costs, making it suitable
for large-scale multi-robot navigation tasks.

DCL approaches face positioning accuracy and consistency
challenges. To address these challenges, controlling the es-
timate correlation through data flow management has been
explored. Leung et al. [23] proposed an information transfer
scheme that allows distributed robots to obtain latency esti-
mates comparable to centralized robots but requires a large
amount of communication due to data relaying. Su et al.
[24] introduced a new information exchange mechanism using
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entropy for confidence probability computation, which could
reduce unnecessary exchanges but rely heavily on synchronisa-
tion, potentially increasing pose estimation uncertainty. Bailey
et al. [25] proposed a state-exchange-based approach, sharing
independent estimates within the vehicle network to mitigate
the over-convergence risk. However, it has drawbacks: limited
benefit beyond visible neighbors and increased computational
overhead.

Covariance intersection (CI), an estimation method, ad-
dressed the inconsistent state estimation problem in distributed
cooperative localization [21]. It enables the vehicles to main-
tain a group state estimate and share it with neighbors for
consistency. Zhu et al. [26] mentioned that estimating the
cross-correlation reduces the computation of redundant infor-
mation. However, CI and cross-correlation estimation suffer
from reduced accuracy due to observation noise variance
expansion [19], [27], [28]. Estimation-based approaches offer
advantages: over-convergence risk is eliminated, and low com-
munication demands avoid extensive information relay. Chang
et al. [29] introduced Global State–Covariance Intersection
(GS-CI) by combining the state exchange and estimation-
based ideas to achieve accuracy comparable to centralized
methods. Nonetheless, GS-CI’s performance could be deterio-
rated in constrained observation scenarios, affecting estimation
accuracy and consistency.

In brief, existing research has extensively explored multi-
robot navigation algorithms. However, the accuracy of po-
sitioning and the convergence consistency of distributed CL
algorithms, particularly in intermittent measurement environ-
ments, still pose significant challenges. This study aims to
address some of these research challenges and develop a
more robust and reliable multi-robot CL system through four
specific objectives. Firstly, a novel algorithm titled “Labeled
Multi-Bernoulli on Global State by Extended Particle Filter
(LMB-GS-EPF)” is designed. This algorithm seamlessly in-
tegrates three distinct state updating strategies: propagation,
observation, and communication. This contributes to the si-
multaneous estimation of robot position and measurement
noise covariance, ultimately enhancing overall positioning
accuracy. Secondly, Random Finite Set (RFS) and Labeled
Multi-Bernoulli (LMB) of particles are employed to take
the correlation between observations into consideration and
incorporate more historical information into the observation
updating process. This innovation significantly enhances the
algorithm’s ability to associate and integrate diverse obser-
vation data, thereby bolstering its robustness. Furthermore,
advanced techniques including extended particle filtering and
CI are leveraged for precise state estimation and probabilistic
correlation. These steps collectively improve the algorithm’s
overall accuracy and reliability. Lastly, meticulous design of
communication topology and strategy coefficient allocation en-
sures effective information exchange among robots. This final
phase not only encompasses the comprehensive multi-robot
cooperative localization algorithm but also rigorously proves
its convergence consistency, further affirming its robustness
and effectiveness.

This paper is structured as follows: section II reviews related
work on cooperative navigation, focusing on RFS and LMB

techniques. In section III, we offer an overview of Coop-
erative Localization (CL) modeling for multi-robot systems,
emphasizing explicit communication. section IV details the
integrated observation update strategy employing the LMB
filters. The design of communication topology and coefficient
assignments for the update strategy, along with the proof of
algorithm convergence consistency, is presented in section V.
Experimental results and algorithm analysis are discussed in
section VI. Finally, section VII provides a conclusion and
future work.

II. RELATED WORK

RFS is a probabilistic framework widely applied in mod-
eling and handling situations with uncertain and dynamically
changing target quantities, particularly in the domains of multi-
robot systems and sensor fusion. In [30], RFS is employed
to model the birth/death of targets, extending the Probability
Hypothesis Density (PHD) filter for recursive propagation
of tracking density for environmental detection and targets.
However, limitations arise when dealing with uncertain dy-
namic targets and limited sensor ranges. [31] successfully
reduces false negatives and false positives in target detection
with limited sensor visibility, enabling a robot swarm to
effectively track the targets. Meanwhile, [32] introduces a Rao-
Blackwellized labeled multi-Bernoulli SLAM (LMB-SLAM)
filter and utilizes Gaussian mixture LMB filters for MAP
estimation, thereby obtaining a more accurate map and im-
proving single-vehicle trajectory estimation. In contrast, [33]
discusses full-distributed multi-robot simultaneous localization
and mapping (SLAM), where maps of multiple robots are
updated using RFS and PHD. However, this approach neglects
the uncertainty in data association, resulting in decreased
localization performance. To mitigate this issue, the covari-
ance intersection (CI) technique is employed to consider the
correlation between target states, and improve the accuracy.

In addressing dynamic estimation and convergence issues
for multiple vehicles, [34] employs RFS and PHD filtering for
dynamic estimation of multi-vehicle states, and [35] proposes
two approximation strategies to address constraints in GCI
fusion. However, these methods inadequately consider the
system consistency during information exchange and fusion
among sensors. [36] employs RFS theory to propose decision
and control algorithms, enabling collaborative work among
agent teams in handling randomly appearing and disappearing
targets in a surveillance area. [37] introduces RFS con-
cepts, proposing a joint spatial registration and state estima-
tion solution to enhance positioning accuracy, yet still faces
communication and computation challenges in collaborative
multi-vehicle localization. [38] applies the ICI algorithm and
introduces a distributed particle filter that optimizes the entire
network iteratively. This approach ensures the asymptotic con-
sistency in target tracking. Additionally, [39] introduces LMB
to provide a more flexible modeling approach without the need
for high signal-to-noise ratio for formal trajectory estimation.
[40] proposes a fast implementation method for the LMB

filter based on joint prediction and update, converting the
predicted LMB distribution into its corresponding δ-GLMB
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representation. However, the LMB filter incurs higher compu-
tational costs, especially in scenarios with a high number of
measurements, exhibiting cubic growth in computation costs.

Several studies have addressed the challenges of communi-
cation and computation burdens. [41] presents an innovative
approach that significantly reduces these costs by employing
strongly weighted Gaussian component sharing and spatial
merging of neighboring sensors. [42] introduces an efficient
distributed fusion algorithm for sensor networks, which uti-
lizes GCI fusion rules and reduces computation and mem-
ory requirements through approximation techniques and fast
clustering algorithms. To mitigate computation and communi-
cation costs, [43] adopts a centralized Kalman filter estimator
distributed into a dimensionality reduction filter. In [44], a par-
allelized fusion approach for the GCI-GMB fusion posterior
effectively reduces computation and memory costs in target
tracking tasks by discarding negligibly weighted assumptions.
However, this approach lacks an investigation into the estima-
tion of consistency issues that may arise when implementing
the algorithm in distributed sensor networks. Furthermore,
[45] addresses the multidimensional assignment problem with
the multi-sensor generalized labeled multi-Bernoulli (GLMB)
filter, while [46] resolves the labeled random finite set (LRFS)
density fusion problem using the minimum information loss
criterion and introduces the cost rank allocation optimization
(RAO) to address the label mismatch (LM) issues between
LRFS densities. [47] designs a recursive distributed fusion
estimator (DFE) that achieves local state estimation through
covariance intersection fusion criteria and transmits local es-
timates to a remote fusion center (FC) via a communication
network, providing convenience for multi-sensor interaction
fusion estimates. In [48], a network architecture introduces
point-to-point communication among robots and interaction
with a central server for information exchange and sharing.
Although the algorithm mitigates the effect of sensor noise
on localization accuracy through information sharing, state
updates in communication mode still play a supplementary
role. For intermittent measurement environments, designing a
parallelized communication update strategy and topology is
crucial for improving the overall localization performance of
multi-robot systems.

In summary, RFS technique and LMB filters in multi-
robot collaborative localization achieve efficient data fusion for
target identification and collaborative localization. However,
there is a lack of research on high-precision localization and
communication architecture for large-scale robot groups in
intermittent measurement environments.

III. BACKGROUND

This section briefly reviews the multi-robot state update
model required for this paper, including the motion model,
observation model and communication model, and briefly
describes the CL algorithm used for GS-CI [29].

A. Motion and Observation Models
We consider the scenarios where multiple robots interact

with landmarks with known positional information in a two-

dimensional plane. Each robot is equipped with both proprio-
ceptive and exteroceptive sensors: an odometer for self-motion
measurement and a camera for collecting measurements to
landmarks or measurements between robots. The index set of
the multi-robot system is denoted as Ω = {1, 2, ...,M}, and
the set of landmarks as ∆, resulting in Ω∗ = Ω ∪∆. At any
given time t, the state of robot i is represented by the vector
Sit = [xi

t, y
i
t, θ

i
t]
T . Consequently, the state of the system is

denoted by St = [S1t , ...,SMt ]T .
The robot’s motion model is established based on the

odometer to describe its spatio-temporal displacement. The
odometer sensor is classified as a proprioceptive sensor, pro-
viding measurements of the robot’s linear velocity vi

t and
angular velocity ωi

t. Let ∆t be the time interval between two
consecutive motion updates. The discrete motion propagating
model for robot i is represented as follows.

Sit+1 = f i(Sit,vi
t,ω

i
t) =

 xi
t + vit∆t cos(θit)
yit + vit∆t sin(θit)

θit + ωi
t∆t

 (1)

where Sit = [xi
t, y

i
t, θ

i
t]
T , [xi

t, y
i
t]
T denotes the position of

robot i in the absolute coordinate system, and θit denotes the
orientation of robot i at time t.

The observation model describes the relative position of
object j as observed by robot i. Therefore, the observation
model for robot i can be represented as follows.

oij = CT(θit)

([
xj
t

yjt

]
−

[
xi
t

yit

])
= CT(θit)H

ijSt (2)

where C is the rotation matrix containing the angle parameter
θ. It is worth noting that the observation model j contains the
observation of robot i on the robot j or landmark ∆. The H
is calculated based on the relative observation information of
the robot, as follows.

When robot i observes another robot j, Hij is denoted as:

Hij =

02×2 · · · −I2︸︷︷︸
i

· · · I2︸︷︷︸
j

· · · 02×2


2×2N

(3)

where I2 denotes a 2 × 2 unit matrix. If observation j is a
landmark, Hij is denoted as:

Hij =

02×2 · · · −I2︸︷︷︸
i

· · · 02×2


2×2N

(4)

In this paper, the observation process is carried out by
an external camera sensor. The relevant observed variables
include the relative distance dij and the relative attitude ϕij .
Consequently, the observation of the relative spatial position
between robot i and object j is expressed as follows.

oij = dij

[
cos(ϕij )
sin(ϕij )

]
(5)

B. Communication Model
In a system comprising M robots, we introduce the concept

of a communication directed graph denoted as Gc
t = (Ω, Ec

t ),
where Ω represents the set of robots, and Ec

t ⊆ Ω× Ω is the
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set of edges representing their communication links between
the robots at time t. When robot i receives a message from
robot j at time t, it signifies the existence of a directed edge
(j, i) ∈ Ec

t . It is worth noting that we assume the presence
of self-looping edges (i, i) ∈ Ec

t , ∀i ∈ Ω, implying that
each robot can utilize its own information. At time t, the
communicating neighbor set of robot i is defined as N c,i

t =
{ℓ | (ℓ, i) ∈ Ec

t ,∀ℓ ̸= i, ℓ ∈ Ω}. Subsequently, the inclusive
communicating neighbor set of robot i is Ic,it = N c,i

t ∪ {i}.
Similarly, we define a directed sensing graph denoted as
Gs

t = (Ω, Es
t ) to describe the robot-to-robot measurements,

where Es
t ⊆ Ω × Ω denotes the set of edges, indicating the

detection links between robots at time t. If robot i detects
robot j at time t, it implies the presence of a directed edge
(j, i) ∈ Es

t . At time t, we define the set of robots detected
by robot i as N s,i

t = {l | (ℓ, i) ∈ Es
t ,∀ℓ ̸= i, ℓ ∈ Ω}, i.e.,

the set of other robots that robot i detects. We consider that
for each robot, the communication radius is greater than the
sensing radius of all robots. This setting allows the robots to
share information within their communication range, thereby
facilitating collaboration among multiple robots.

C. Cooperative Localization Algorithm

The GS-CI [29] localization algorithm employs the EKF
framework. We denote the state estimate of each robot i as Ŝit
and its corresponding covariance as Σi

t.
1) Motion Propagation Update: For robot i, the covariance

update during the motion propagation process is as follows.

Σi
t+1 = Σi

t +Σqi = Σi
t +Diag(Σu1, ...,ΣuM ) (6)

where Σi
t represents the state covariance at time t, Σqi is

determined by the input noise, which is the diagonal matrix
of Σui and depends on the availability of information from
neighboring robots.

For robot i, the linear velocity input vit is disturbed by a
zero-mean Gaussian random variable nv , with a covariance of
σ2
nv

. Linearizing equation (1) [49], which no longer takes into
account the estimation of θ, but is continuously given by the
on-board odometer, the error propagation equation for robot i
itself is

Ŝit+1 ≈
[

x̂i
t

ŷit

]
+∆t

[
cos(θit) −vi sin(θit)
sin(θit) vi cos(θ

i
t)

] [
nv

θ̃it

]
(7)

where the orientation estimation error model θ̃it = θit−θ̂it com-
prises a zero-mean Gaussian random variable, with Gaussian
variance denoted as σ2

θ̃i
t

= E[(θ̃it)
2] bounded by σ2

θ̃i
t

which is
the given variance. The covariance matrix increment can be
expressed as follows.

Σui = (∆t)2C(θit)

[
σ2

nv
0

0 v2
iσ

2
θ̃i

]
CT(θit) (8)

2) Observation Update: The observation update is based on
measurements oij from the camera, following the standard
EKF procedure. With reference to equation (2), the estimated
observation error õij = oij − ôij can be approximated as

õij ≈Hoij S̃+CT (θ̂
i

t)H
ij S̃it− θ̃

i
+ noij (9)

This approximation distinguishes two uncorrelated error
terms: the state estimation error S̃ and the measurement noise
noij , where Hoij = CT (θi)Hij . When the observation result
oij is obtained from the camera, the covariance matrix Roij

of noij can be expressed as

Roij = C(ϕij)diag
(
σ2
dij , (dij)

2
σ2
ϕi

)
CT(ϕij) (10)

The overall covariance update can be represented as

(Σi
t+1)

−1 = (Σi
t)

−1 + (Hi)TC(θi
t)R

−1
oijC

T(θi
t)H

i (11)

3) Communication Update: In the communication update,
robot i utilizes CI [21] to update its estimated information
based on external information received from other robots. This
process involves incorporating the information sent by robot
k to robot i. The covariance update in the reference baseline
[29], where only robot k provides information to robot i, can
be represented as follows.

(Σi
t+1)

−1 = β(Σi
t)

−1 + (1− β)(Σk
t )

−1, β ∈ (0, 1) (12)

The coefficient value β is determined by minimizing
det(Σi

t+1) or tr(Σi
t+1) during the estimation fusion process.

As β increases, the own estimates for robot i gain more
significance in the fusion process.

4) Problem Statement: In this paper, we explore the GS-CI
baseline algorithm, which consists of three key components:
motion propagation, observation updates, and communication
updates. While existing algorithms update localization esti-
mates independently through observation and communication,
the GS-CI baseline algorithm separates communication from
observation, considering communication imperfections due
to intermittent or limited observation capabilities. However,
this reliance on an one-way chain communication topology
in the baseline algorithm introduces limitations, resulting in
biased and inconsistent localization results. We also identify
potential issues associated with this communication topology.
This research aims to address these limitations and enhance
localization accuracy and consistency.

The GS-CI algorithm’s limited assumption of robot k
transmitting information to robot i can hinder communication
adequacy. Consequently, it yields suboptimal performance in
CL accuracy and estimation consistency. To address this issue,
our paper focuses on integrating historical correlation data into
the observation update process while optimizing the communi-
cation framework, thereby improving estimation consistency.
This enhancement serves as the primary motivation behind our
research.

IV. METHODS

A. Design Idea of the Proposed Method
To improve the CL accuracy and estimation consistency,

we propose a new algorithm, called LMB-GS-EPF algorithm.
Firstly, this new algorithm introduces a labeled multi-Bernoulli
filter to consider the correlation between observations and
incorporate more historical information into the observation
updating process. Secondly, we utilize a particle filter to
overcome the limitations of EKF algorithm since the system is
nonlinear. In addition, we optimize the communication update
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part by creating a richer communication structure that allows
information exchange between multiple robots, thus improving
the accuracy of localization and consistency of estimation.
With these improvements, we aim to effectively achieve more
robust and accurate cooperative localization.

B. Multi-Labelled Bernoulli Coupled Observation Update
1) Labelled multi-Bernoulli (LMB) and random finite sets

(RFS): To represent the state estimates of robots in a multi-
robot motion platform, our RFS for the multi-robot motion
platform is defined as follows.

Xt =
{
x1,ℓ1

t , ..., xn,ℓn

t

}
(13)

where each element xn,ℓn is on the space R × L where R
and L denote the state space and the labeled discrete space,
respectively, and x ∈ R, ℓ ∈ L. Similarly, the finite set of
absolute and relative observations for a multi-robot platform
can be defined as follows:

o∗
t =

{
o1t , ..., o

Ω∗

t

}
(14)

where * represents the observation set of random collaborative
robots in network, each observation component is oΩ

∗

t ∈ R,
where R represents a vector field, and Ω∗ represents the index
value of the observed neighbor or landmark.

Bernoulli RFS represents uncertainty about the existence
of a single object in a straightforward way. The parameter
r represents the probability of the existence of a robot,
s(x) represents the state matrix of multiple robots, which is
abbreviated as s below; the probability that X is an empty set
is 1− r. The prior distribution of LMB-RFS is given as

π(X) =

{
1− rℓ, X = ∅
rℓ × sℓ(x), X =

{
x1, ..., xM

} (15)

where X is the union of M independent multi-Bernoulli
random finite sets Xi, for example, X = ∪Mi=1X

i. A multi-
Bernoulli RFS is defined by a parameter set {ri, si}Mi=1. The
LMB-RFS with state space X and label space L is given by
parameter set π = {rℓ, sℓ}l∈L.

The RFS representing a multi-robot label in a non-fixed
collaborative robot network can be denoted as follows.

X∗
t = {(rℓt , sℓ(x1

t )), ..., ((r
ℓ
t , s

ℓ(xnt
t ))}, ℓ ∈ L∗

t (16)

where X∗
T contains the LMB-RFS component information of

multiple robots, r denotes the existence probability, and s
denotes the state of a single object, and * is the mark of the
random collaborative robot network. s denotes the state of a
single object and is marked S in equation (1).

2) Particle filter: In order to establish a reliable prior value
for LMB, we use extended Kalman filter (EKF) as the initial
calibration value of our particle filter algorithm (PF). Through
the use of the PF-EKF algorithm [50], we are able to acquire
the initial optimized state ŝit+1 and covariance Σ̂i

t+1 of robot
i. The optimized state significantly reduces the uncertainty in
position estimation, while the optimized covariance provides
parameters for the LMB correlation probabilities, thereby
enhancing the correlation between relative and absolute ob-
servations.

3) LMB prediction and associated weight update: Initially,
we set a probability threshold, PG. This threshold is based
on the camera’s detection range. Its purpose is to filter out
newly born vehicles. We define these newcomers as part
of the networking group. Simultaneously, it helps eliminate
redundant Bernoulli information.

Pnon( P (bmt = 0)) > PG, m ∈ {0, 1, ...,Mk} (17)

where Pnon indicates the probability that the observation
corresponding to the current particle state is not associated
with the motion platform. Equation (17) indicates that the
measurements correspond to particle states generated by newly
born network members, rather than by surviving network
members.

The state of the LMB-RFS motion platform is then com-
bined with robot observations to generate particles using a
likelihood function. This results in the generation of related
parameters, including the particle state, particle weight, and
multi-vehicle platform networking probability.

ωℓ
p =

1

Np
, xℓ = K(o), ℓ ∈ L∗

k, rℓ =
µB

M
pℓnon (18)

where Np is the total number of particles, xℓ is the spatial
probability density function (pdf) of the particle. The func-
tion K(·) represents the likelihood function, and ωℓ

p is the
initial weight of the particle. Additionally, rℓ is the existence
probability of the robot, and µB is the probability of birth
networking platform mean.

It is noted that the label space of new objects (B) and the
label space of existing objects (L) are complementary and
satisfy B∩L = ϕ.The RFS is then divided into two parts: the
multi-Bernoulli RFS of the survived networked robots (marked
as S) and the multi-Bernoulli RFS of the new birth network
robots (marked as B).

X∗
t+1 = XS∗

t ∪XB∗
t+1 (19)

where the superscript S indicates the members who have
formed a surviving networked group at time t and in the
networked group at the next time t+1 and its Bernoulli compo-
nent is {(rℓS,t, sℓS,t(xt))}ℓ∈LS∗

t
, The superscript B means not

in the networking group at step t, and a new member in the
networking group at the next step t+1, that is, a new member
and is the Bernoulli component. Those surviving members
retain the Bernoulli information, and their corresponding label
set fields follow as{

L∗
t+1 = LS∗

t ∪ LB∗
t+1

LS∗
t ∩ LB∗

t+1 = ϕ
(20)

According to equation (15), the pdf of LMB-RFS can be
expressed as

f(X∗) == ∆(X∗)
∏

ℓ′∈L∗\L(X∗)

(1− rℓ
′
)
∏

x∈X∗

1L∗(ℓ)rℓsℓ(xn)

(21)
L(X∗)

∆
=

{
ℓ(1), ℓ(2), ..., ℓ(n)

}
(22)

∆(X∗) = δ|X∗| (|L(X∗)|) (23)
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where ℓ′ is labelled as not participating in the networking,
1L∗(ℓ) is an inclusive function, and ℓ ∈ L∗ is 1, otherwise it
is 0. L(X∗) represents the robot label set of LMB-RFS, δ is
the Kronecker function.

Since the cardinality distribution of labelled RFS is the same
as that of unlabeled RFS, the subscripts of δ|X∗| is denoted
the same label X∗ = (|L(X∗)|), when the labels in X∗ are
independent of each other, ∆X∗ = 1 and 0 otherwise. The
update of particle filtering on the new robotics platform.

f
(
X∗

t+1 |o∗t
)
= f (X∗

t |o∗t ,W ∗
t ) (24)

where W ∗
t is the noise set of networked robots, and then

we update the existence probability, association weight by the
parameter set π = {rℓ, sℓ}ℓ∈L, (ℓ,m) ∈ L∗ × {1, ...,Mt}.

r̂ℓt+1 = rℓt+1 × PS (25)

ω̂ℓ
p = ωℓ

p ×
1√

2πvdvθ
e
− 1

2×
∥oij(1)−dℓij∥2

v2
d × e

− 1
2×
∥oij(2)−θℓij∥2

v2
θ

(26)

β
(ℓ,m)
t+1 = rlt+1|t × η(ℓ,m) = rℓt+1 × PD ×

Np∑
j=1

ω̂ℓ
p/ωcul (27)

where PS represents the survival probability of each robot at
the specific moment. The variables oij(1) and oij(2) denote
the distance and orientation information in the observation
of the robot, respectively. Moreover, dℓij and θℓij represent
the relative distance and relative orientation of the neighbors,
while v2d and v2θ are the variances of ranging noise and
orientation, respectively. βℓ,m

t+1 indicates association weights,
PD indicates the detection probability, ωcul indicates the
probability of incorrect observation, and Np represents the
number of particles of the filter.

4) Probabilistic data association observation update based
on belief propagation: The edge association probability is
determined by employing the belief propagation algorithm,
which relies on the factor graph model. Once the association
weights are updated, redundant variables are integrated into
the model. For the association probability fast marginalization
introduce the association vector at and the corresponding
variable bt [51].

a
(ℓ)
t ∈ {−1, 0, · · · ,Mt}, ℓ ∈ L∗

t ,m ∈ {−1, 0, 1, ...,Mt}
(28)

where a
(ℓ)
t = m denotes the association variables corre-

sponding to the ℓ-th robot state estimation and the m-th
measurement. m = 0 indicates that it is not associated with
any measurement, m = −1 indicates that it does not exist.
When b

(m)
t = ℓ ∈ L∗

t , it means that there is an observation
related to the robot m. When b

(ℓ)
t = 0, it means that there is

no observation related to the robot.
The joint associated probability mass function is

p(at, bt) ∝ Ψ(at, bt)
∏

l∈L∗
t

β̂
(ℓ,aℓ

t)
t

Ψ(at, bt) =
∏

ℓ∈L∗
t

Mt∏
m=1

Ψℓ,m(a
(ℓ)
t , b

(m)
t )

(29)

when a
(ℓ)
t = m, b

(m)
t ̸= ℓ or a

(ℓ)
t ̸= m, b

(m)
t =

ℓ,Ψ(a
(ℓ)
t , b

(m)
t ) = 0, and 1 otherwise, which defines the

representation motion platform to match with the observation
set. The message passing in the LMB collaborative navigation
system, with the introduction of redundant variables, can be
described as

ζ
[i]ℓ→m
t =

β̂
(ℓ,m)
t

β̂
(ℓ,−1)
t + β̂

(ℓ,0)
t +

∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t V

[i−1]m′→ℓ
t

(30)

V
[i]m→ℓ
t =

1

1 +
∑

ℓ′∈L∗
t

ζ
[i−1]ℓ′→m
t

(31)

In equations (30) and (31), the inter-iterations are performed
for each value of i until i takes on all values from 1 to I .

β̂
(ℓ,−1)
t = 1− r̂ℓt (32)

β̂
(ℓ,0)
t = r̂ℓt × (1− PD) (33)

P ℓ
ass = P (a

(ℓ)
t = m) =

{
β̂
(ℓ,m)
t /Dℓ

t ,m ∈ {−1, 0}
β̂
(ℓ,m)
t V m→ℓ

t /Dℓ
t ,m ∈ {1, ...,Mk}

(34)

Dℓ
t = β̂

(ℓ,−1)
t + β̂

(ℓ,0)
t +

∑Mt

m′=1
β̂
(ℓ,m′)
t V

[I]m′→ℓ
t (35)

P ℓ
non = P (bmt = 0) =

1

1 +
∑

ℓ′∈L∗
t

ζ
[I]ℓ→m
t

(36)

where P ℓ
ass is the probability of correlation among robots, and

P ℓ
non is the probability that the observed value corresponding

to the particle state is robot-independent, which is fed redun-
dant Bernoulli information into the next iteration.

5) Observations update: The association weights are up-
dated via messaging and the observations are modified ac-
cordingly. This includes the updated network probabilities and
spatial probability density functions for grouped robots.

ω̂(ℓ)j
at

=

Mt∑
ℓ∈L∗

t \L(X∗
t )

m=0

β̂
(ℓ,m)
t ×ω̂(ℓ)j

at
,m ∈ {0, 1, ...,Mt} (37)

ω̂(ℓ)
p =

ω̂
(ℓ)j
at

Np∑
j

ω̂
(ℓ)j
at

(38)

r̂ℓt =
∑

β̂
(ℓ,m)
t ,m ∈ {0, 1, ...,Mt} (39)

where ω̂
(ℓ)j
at is the weight related to the observation and the

robot, ω̂(ℓ)
p is the updated particle weight, and j is the particle.

r̂ℓt denotes the existence probability or networking probability.
Lastly, through standardized post-processing, pruning and

resampling techniques for state estimation, we attain reliable
robot presence probabilities r̂ℓt+1 and state estimates ŝℓt+1.
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C. Optimization of communication structure
In this section, we adopt a multi-robot communication

approach using a cyclic structure. The cyclic structure enables
bidirectional information flow among robots, promoting a
comprehensive exchange of observation and measurement data
among neighbors [52].

In the state update process within the communication mod-
ule, we design a novel approach to assign the coefficients in the
state update equation based on the robot survival probability
r̂ℓt obtained from the LMB filter. The state update equation is
as

(Σi
t+1)

−1 = c0(Σ
i
t)

−1 +
∑

j∈Ci,t

cj(Σ
j
t )

−1

(40)

ŝit+1 = Σi
t+1 ×

c0(Σi
t)

−1
ŝit +

∑
j∈Ci,t

cj(Σ
j
t )

−1
ŝjt

 (41)

where, c0 and cj represent the coefficients used to weight
the fused robot states. By incorporating robot presence prob-
abilities into the coefficient assignments, we can fuse the
information from different neighboring robots.

V. LMB-GS-EPF ALGORITHM AND CONVERGENCE
CONSISTENCY

A. LMB-GS-EPF algorithm
Our proposed algorithm aims to improve the accuracy and

consistency of CL. The algorithm simultaneously estimates
the robot’s state and covariance by using parallel multimodal
robot state update strategies such as motion model, observation
model and communication model, as detailed in Algorithm
1. By the particle based LMB filtering algorithm, we couple
relative and absolute observations. Moreover, we optimize the
communication structure by means of a cyclic directed graph.
Leveraging the robot existence probabilities computed by the
LMB filter, we achieve an optimized allocation of coefficients
in the state update equation. The LMB-GS-EPF algorithm we
proposed can be summarized as follows:

1) Global State Representation: our LMB-GS-EPF employs
a global state representation to capture the interrela-
tionships and collaborative historical behaviors among
multiple robots for enhancing localization accuracy.

2) Labeled Multi-Bernoulli Filter: our LMB-GS-EPF intro-
duces the labeled multi-Bernoulli filter for modeling and
labeling multi-robot state information as labeled RFS.
It couples the relative and absolute observations, dis-
carding negligibly weighted assumption and redundant
computation. It retains the historical information with
high confidence and offers a flexible state update strat-
egy in communication mode, addressing the limitations
in intermittent observation environments. The dynamic
grouping process improves the computational efficiency
and handles the scenarios with low detection probability
and high false alarms without sacrificing the estimation
accuracy.

3) Parallel Communication and Observation: our LMB-GS-
EPF incorporates the parallelism by treating communi-
cation and observation as an integral mechanism. Using

a cyclic communication topology, the algorithm assigns
the coefficients based on the existence probability of the
Bernoulli filter. This approach enhances flexibility and
scalability, resulting in more robust and efficient multi-
robot systems.

Algorithm 1 LMB-GS-EPF by Robot i
Initialization
Set Si0 and Σi

0 for robot i.
Motion Model
input: odometer vi

t

Ŝit+1 = [fT
1 (ŝi1,t, v

1
t ), ..., f

T
i (ŝii,t, v

i
t), ..., f

T
M (ŝiM,t, v

M
t )]T,

Σi
t+1 = Σi

t +Σqi = Σi
t +Diag(Σu1, ...,ΣuM ).

Observation Model
input: camera oij

Ŝit+1 = Ŝi1,t +Σi
tH

ijTR−1
oij (o

ij −Hij Ŝit),
(Σi

t+1)
−1 = (Σi

t)
−1 + (Hi)TC(θit)R

−1
oijC

T(θit)H
i,

Determine the particle and weight {si0:t+1,ω
i
t+1}

Np

j=1,
Optimization of robot state ŝit+1 using PF algorithm.
LMB Initial
Determine L∗

B using P ℓ
non > PG, according to P ℓ

non =
P (bmt = 0) given PG, m ∈ {0, 1, ...,Mk}, create new
Bernoulli component {ri, si}Mi=1.
LMB propagation
Determine r̂ℓt+1 and ω̂ℓ

p.
Associated weight update
Determine β

(ℓ,m)
t+1 , m ∈ {−1, 0, 1, ...,Mt}, with β

(ℓ,m)
t+1 ,

m = −1, with β
(ℓ,m)
t+1 , m = 0, with β

(ℓ,m)
t+1 , m ∈ {1, ...,Mt},

Determine ω̂
(ℓ)j
at+1 .

LMB-BP Message Passing I interactions
Determine ζ

[i]ℓ→m
t+1

→←V
[i−1]ℓ→m
t+1 , i is the interaction index,

Determine P ℓ
ass = P (aℓt+1 = m) and P ℓ

non = P (bmt+1 = 0).

Probabilities update and spatial probability update
Calculation of ω̂(ℓ)

p and r̂ℓt+1 using equations (38) and (39),
Post-processing by pruning and re-sampling to optimize
ŝit+1 and Σi

t+ .
Communication Model
input: ŝkt , Σk

t from robot k
(Σi

t+1)
−1 = c0(Σ

i
t)

−1 +
∑

j∈Ci,t

cj(Σ
j
t )

−1
,

ŝit+1 = Σi
t+1 ×

[
c0(Σ

i
t)

−1
ŝit +

∑
j∈Ci,t

cj(Σ
j
t )

−1
ŝjt

]
,

The allocation of coefficients to c0 and cj is determined
based on the presence probability of the robot transmitting
the message.

B. Convergence consistency proof

First, we establish the convergence consistency of the
message-passing algorithm. Subsequently, we demonstrate the
convergence consistency of the message-passing embedded
within the explicit communication algorithm.

We establish the fractional forms of equations (30) and
(31) in accordance with the requirements of the guaranteed
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convergence proof. By using the fractional expression function
f in equation (30), we construct the representation distance
function d such that there exists a contraction factor α < 1
satisfying d(f(x), f(y) <= αd(x, y), )),∀(x, y) [54]. When
the function f is in fractional form, any sequence derived
from repeated applications of the function f converges to the
same fixed value. Subsequently, the measure for information
is defined as

d(ζ, V ) = max{max
ℓ,m

ζℓ→m

V m→ℓ
,max

l,m

V ℓ→m

ζm→ℓ
} (42)

The dynamic log distance form is defined as

d(f(x), f(y)) ≤ d(x, y)α,∀(x, y) (43)

so that log d(f(x), f(y)) ≤ α log d(x, y),∀(x, y).
We define the update ζℓ→m = f(V m→ℓ) in equation (30),

and ζm→ℓ = g(V ℓ→m) in equation (31). Now, we present
a list of preliminary lemmas concerning the form of the
contraction factor that will be utilized.

Lemma 1 [53]. For c > 0 and L > 1, we have the following

α(L, c) =
log( 1+cL

1+c )

logL
(44)

The function value is strictly less than 1 and increases mono-
tonically with L.

The following two lemmas demonstrate that the LMB-RFS
updates in equations (30) and (31) are contractions.

Lemma 2. For all (V, Ṽ ) with d(V, Ṽ ) ≤ L̄, The update
of message f(·) in equation (30) is a contraction about the
dynamic distance measure d(·, ·) with the factor α(L̄,mtW ),
i.e.,

d(f(V ), f(Ṽ )) ≤ d(V, Ṽ )α(L̄,mtW ) (45)

where mtW = max
ℓ,m

∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1

β̂
(ℓ,−1)
t+1 +β̂

(ℓ,0)
t+1

).

Proof. It is assumed that ∀(ℓ,m), ζℓ,m and ζ̃ℓ,m bounded
with 0 < ζℓ,m ≤ 1 and 0 < ζ̃ℓ,m ≤ 1, when ζℓ,m or ζ̃ℓ,m is
zero, it guarantees any (ζ, ζ̃) resulting from equation (31), let

1 ≤ L
∆
= d(V, Ṽ ) ≤ L̄ <∞ (46)

It is easy that V ℓ,m ≤ LṼ ℓ,m and Ṽ ℓ,m ≤ LV ℓ,m.
Since the association weight β̂(ℓ,m) is non-negative and

bounded, if β̂(ℓ,m) = 0 then in equation (30), i = I and the
superscript of iteration process I is omitted, get f(V ℓ,m) =

f(Ṽ ℓ,m) = 0 and f(V ℓ,m)/f(Ṽ ℓ,m) = 0/0
∆
= 1. Otherwise,

the division is considered.
Define β̂

(ℓ,−1)
t+1 + β̂

(ℓ,0)
t+1

∆
= A, one obtains the following.

f(V ℓ,m)

f(Ṽ ℓ,m)
=

β̂
(ℓ,−1)
t+1 +β̂

(ℓ,0)
t+1 +

∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1 Ṽ m′→ℓ

t+1

β̂
(ℓ,−1)
t+1 +β̂

(ℓ,0)
t+1 +

∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1 V m′→ℓ

t+1

=

A+
∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1 Ṽ m′→ℓ

t+1

A+
∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1 V m′→ℓ

t+1

≤
A+

∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1 LV m′→ℓ

t+1

A+
∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1 V m′→ℓ

t+1

(47)

Define c= (
∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1 V m′→ℓ

t+1 )/(β̂
(ℓ,−1)
t+1 + β̂

(ℓ,0)
t+1 )

f(V ℓ,m)

f(Ṽ ℓ,m)
=

A+ cAL

A+ cA
=

1 + cL

1 + c
(48)

where c =

∑Mk

m′=1
m′ ̸=m

β̂
(ℓ,m′)
t+1 V m′→ℓ

t+1

β̂
(ℓ,−1)
t+1 +β̂

(ℓ,0)
t+1

≤ mtW .

Using Lemma 1

f(V ℓ,m)

f(Ṽ ℓ,m)
=

1 + cL

1 + c

≤ 1 +mtWL

1 +mtW
= Lα(L,mtW ) ≤ Lα(L̄,mtW )

(49)

Those similar steps are followed as

f(Ṽ ℓ,m)

f(V ℓ,m)
≤ 1 +mtWL

1 +mtW
≤ Lα(L̄,mtW ) (50)

Now we establish the same validation of interactive step in
equation (31).

Lemma 3. For all (ζ, ζ̃) with d(ζ, ζ̃) ≤ L̄, The update
of message g(·) in equation (30) is a contraction about the
dynamic distance measure with d(·, ·) the factor α(L̄, ℓtW ),
i.e.,

d(g( ζ), g(ζ̃)) ≤ d( ζ, ζ̃)α(L̄,ℓtW ) (51)

Proof It is assumed that ∀(ℓ,m), V ℓ,m and Ṽ ℓ,m bounded
with 0 <= V ℓ,m <= 1, if V ℓ,m or Ṽ ℓ,m is 0, it guarantees
any d(ζ, ζ̃) resulting from equation (31), let

1 ≤ L
∆
= d(ζ, ζ̃) ≤ L̄ <∞ (52)

We prove it in the same step,

g(ζℓ,m)

g(ζ̃ℓ,m)
=

1+
∑

ℓ′∈L∗
t+1

ζ̃ℓ′→m
t+1

1+
∑

ℓ′∈L∗
t+1

ζl′→m
t+1

≤ 1+ltWL
1+ltW

≤ Lα(L̄,ntW )

g(ζ̃ℓ,m)
g(ζℓ,m)

≤ 1+ltWL
1+ltW

≤ Lα(L̄,ntW )

(53)

Now we present Theorem 1 to prove LMB-GS-EPF algo-
rithm’s convergence consistency when the robot information
source is camera to landmark absolute observation data or
camera to neighborhood robot relative observation data.

Theorem 1. Regardless of different initializations, GS-
EPF-LMB iterative operations f(·) in equation (30), g(·) in
equation (31) will converge to the same point.

Proof Let us start with an initial vector V
[1]m→ℓ
0 . Then,

using equation (30), we have ζ
[2]m→ℓ
0 = f(V

[1]m→ℓ
0 ). Now,

consider the iteration process ζ [i]m→ℓ
0 = f(g(ζ

[i−1]m→ℓ
0 )). We

can see that L = d(ζ0, ζ1) < ∞, where d is the distance
function measuring the difference between ζ0 and ζ1.

Using Lemmas 2 and 3 d(ζk, ζk+1)≤Lα(L̄,max{mt,nt}W )2Ik .
When Lα(L̄,max{mt,nt}W )2Ik→ 1.
When the robot has no available information source, the GS-

EPF-LMB algorithm uses a new communication mechanism to
update the estimates and its convergence consistency follows
[29].
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TABLE I
SYMBOL OR VARIABLE DESCRIPTIONS

Symbol Description
St State set of multiple robots
vit Linear velocity of robot i at time t

ωi
t Angular velocity of robot i at time t

θit Heading of robot i at time t

oij Observation of robot i on target j (neighbor robot or land-
mark)

C Rotation matrix related to heading
H Linear innovation matrix in the observation model
Σi

t State covariance of robot i at time t

Roij Covariance matrix of measurement noise
Xt State set of multiple robots at time t with associated labels
o∗t Observation set at time t

π(X) Prior probability distribution function of an LMB-RFS
X∗

t LMB-RFS component information set of multiple robots
rℓt Probability of the existence of a labeled robot
sℓt(x

i
t) State information of robot i with label ℓ

PG Given probability threshold for camera-based detection range
to filter out newly born vehicles

Pnon Probability that the current particle state corresponds to an
observation independent of the motion platform

ωℓ
p Particle weight corresponding to robot label ℓ

K(o) Likelihood function related to observation
β
(ℓ,m)
t+1 At time t+ 1, the robot-associated weights labeled as ℓ

α1, α2 Coefficients for weighted fusion of robot states in communi-
cation update mode

The table focuses on the key symbols and variables involved
in the algorithm of this paper.

C. Symbol Description

This section lists important symbols and variable descrip-
tions in the article, as shown in Table I.

VI. EXPERIMENT

This section presents the experimental dataset, outlines
baseline methodologies for comparison, specifies evaluation
metrics, and explains experiment results.

A. Experimental Dataset

The proposed LMB-GS-EPF algorithm’s performance was
evaluated using the UTIAS multi-robot CL and mapping
dataset provided by Leung et al [55]. Each robot was equipped
with a wheel encoder and a monocular camera, measuring
linear and rotational velocities at 67 Hz and capturing dis-
tance and orientation measurements with other robots and
landmarks. The position and orientation were obtained from
a 10-camera Vicon motion capture system at 100 Hz, with a
positional accuracy of approximately 1 mm.

B. Compared Baselines

We compared the proposed approach with two representa-
tive SOTA algorithms, including EKF-based DCL [29], [56]
and EKF-based CCL [12], [57].

C. Evaluation Metrics

The paper evaluated the algorithm using two commonly
indicators for CL: positioning error (RMSE) and state covari-
ance estimation error, corresponding to equations (54) and (55)
respectively. √

ΣN
i=1

∥∥ŝit − sit
∥∥2/N (54)

√
ΣN

i=1tr([Σsi ]i)/N (55)

D. Results

We executed all the algorithms and gathered the perfor-
mance data in two key dimensions: the accuracy of robot lo-
calization and the precision of tracking covariance estimation.
Additionally, we recorded the computational time each algo-
rithm consumed when applied to a 3-robot dataset operating on
a 200-second cycle. The comprehensive evaluation outcomes
have been organized and are showcased in Table II. The
metrics encompassed within the table include localization error
(measured in meters), tracking covariance (expressed in square
meters), and time cost (quantified in seconds). To ensure a
comprehensive assessment, we compared our algorithm (Our)
with the DCL-based GS-CI algorithm and the CCL-based Cen-
EKF algorithm. The tested localization accuracy results were
presented in Fig. 1. In this figure, the localization accuracies
of each robot associated with the various methods were shown
in the same subplot, with the vertical coordinate indicating the
localization accuracy and the horizontal coordinate indicating
the time series.

To enhance clarity, we had divided the axis into four
segments spanning from 0 to 200. Notably, our algorithm
consistently demonstrates exceptional performance in local-
ization accuracy and maintain an accuracy of approximately
0.1 meters. This result stands as a testament to the robust-
ness of the algorithm we developed. To validate the algo-
rithm’s consistency, we undertook a comparable evaluation
of tracking covariance accuracy. The outcomes are presented
in Fig. 2. Our algorithm significantly advances the tracking
covariance accuracy in comparison to the GS-CI algorithm.
This achievement can be attributed to the innovative cyclic
communication topology we formulated, and the strategic
assignment of communication update coefficients based on
existence probabilities.

TABLE II
ALGORITHM PERFORMANCE COMPARISON

Method Loc error (m) Trace Cov (m2) Time Cost (s)
GS-SCI [56] 0.142 1.871 13.578

DCL GS-CI [29] 0.135 1.254 12.717
Our 0.095 0.536 14.651

CCL EKF-LS-CI [12] 0.492 0.120 10.683
Cen-EKF [57] 0.138 0.115 10.759

Evaluation results of all algorithms on the 3-robot dataset with a period of
200 seconds for the system as a whole.



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

Fig. 1. Comparison of localization accuracy of all the algorithms
corresponding to the three robots.

Fig. 2. Comparison of tracking covariance accuracy for all the algo-
rithms corresponding to the three robots.

Fig. 3. Localization accuracy results of ablation experiments.

E. Ablation Experiment

A series of ablation experiments was conducted. This in-
volved the stepwise integration of individual improvements,

Fig. 4. Tracking covariance accuracy results of ablation experiments.

EPF, LMB filtering, and communication structure Graph op-
timization into the GS-CI algorithm [29]. The experimental
results are shown in Fig. 3 and Fig. 4, where the Fusion
curve represents the integration of all three improvements in
the proposed LMB-GS-EPF algorithm.

Firstly, in our experimental setup where we introduced the
EPF, we witnessed a discernible reduction in the localization
error when contrasted with the GS-CI algorithm.

After the integration of LMB filtering, we observed a stabi-
lization in localization accuracy, settling around 0.11 meters,
as demonstrated by the +LMB curve in Fig. 3. This result
is attributed to the fact that the LMB algorithm we designed
incorporates both relative and absolute observations.

In addition, we adopted a cyclic-structured directed graph
for multi-robot communication to realize the bidirectional
information flow between robots, while the coefficient assign-
ments in the updating equations (40) are accomplished with the
help of the robot survival probabilities obtained in the LMB
filter while considering more historical information. As shown
in the +Graph curve in Fig. 4, the tracking covariance accuracy
of the robots is significantly improved, ensuring robust state
consistency.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a novel distributed cooperative local-
ization algorithm (LMB-GS-EPF) tailored for multi-robot sys-
tems. This algorithm seamlessly integrates the motion, obser-
vation, and communication strategies, ensuring the concurrent
state and covariance estimation robustness and consistency. By
investigating the fusion of absolute and relative observations
using the LMB filter and considering the incorporation of
more reliable historical observations, the algorithm’s impact
on Cooperative Localization was analyzed. Additionally, the
optimization of multi-robot communication topology and the
refinement of communication updates, guided by the robot
presence probability within the LMB filter, were achieved.
The robustness and convergence of the proposed algorithm
was validated through theory and quantitative results. The
following conclusions are derived:
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1) The integration of PF into the EKF-based CL algo-
rithm effectively mitigated the linear truncation issue.
Experimental results demonstrated the complementary
nature of PF and EKF, leading to improved accuracy and
consistency in CL. These improvements are particularly
valuable when dealing with the models of LMB-RFS.

2) The modeling of inter-vehicle relative observations and
landmark absolute observations as RFSs, coupled with
the LMB filter, showcased a remarkable enhancement in
positioning accuracy.

3) The proposed cyclic communication topology, coupled
with the inter-iterations coefficient allocation based on
robot survive probability and existence probability of the
LMB filter, significantly improved the tracking covari-
ance accuracy by 50%.

Our work suggests several avenues for potential improve-
ments in the field of CL. One promising avenue involves
exploring the integration of diverse sensors, such as visual
sensors, lidar, and radar, to bolster adaptability and accuracy
across various environmental conditions. Furthermore, en-
hancing communication strategies and investigating dynamic
reconfiguration techniques to accommodate evolving network
conditions could significantly augment the algorithm’s robust-
ness. These future research directions hold great potential for
advancing CL, enabling it to excel in real-world scenarios and
broadening its applications.
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