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Abstract— Cooperative localization is critical for multi-robot sys-
tems to accurately ascertain their positions in the environment. This
paper presents a robust and convergent distributed cooperative lo-
calization algorithm to effectively address localization inaccuracies
and inconsistency caused by intermittent or limited absolute ob-
servation capabilities. The algorithm integrates three key modules:
propagation, observation, and communication, enabling each robot
to estimate its states and measure noise covariance simultane-
ously. To enhance the estimation consistency, inter-vehicle relative
observations and landmark absolute observations are modeled as
multi-Bernoulli random finite sets (RFSs), with robot states updated
using a coupled correlation scheme. By combining extended parti-
cle filtering, and covariance intersection techniques, the algorithm
efficiently handles intermittent observations, leading to substantial
improvements in localization accuracy and estimation consistency. Further, the proofs of convergent consistency are
provided in the paper, validating the algorithm’s robustness and convergence.

Index Terms— Cooperative localization, multi-robot systems, labelled Bernoulli random finite set, communication.

I. INTRODUCTION

MULTI-ROBOT Cooperative Localization (CL) has
emerged as a pivotal research area within the domain

of modern intelligent robots and autonomous systems. It has
garnered increasing attention from researchers due to its broad
applicability in various fields, including search and rescue [1],
[2], [3], warehousing [4], [5], [6], and military applications [7],
[8]. In practical scenarios, multiple robots must collaborate
and communicate with one another to effectively navigate
and accomplish tasks collectively. In scenarios where no
observations or only intermittent observations are available
within the environment, robotic systems could face challenges
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in acquiring accurate absolute positional information. This
could result in information gaps during the navigation process.
Additionally, limited collaboration among the robots could
give rise to redundant information and repeated computations,
thereby impacting the overall accuracy and consistency of
navigation algorithms. Therefore, it is of significant research
importance and practical value to address the challenges asso-
ciated with collaborative multi-robot localization in complex
environments.

Researchers have applied a collaborative approach for multi-
robot localization, which involves fusing data from on-body
and external sensors, as well as utilizing wireless communi-
cations. Centralized cooperative localization (CCL) achieved
success in some tasks but suffers from single point failures
and/or heavy communication overheads [9], [10], [11], [12],
[13], [14], [15], [16]. In contrast, Distributed Collaborative
Localization (DCL) [17], [18], [19], [20], [21], [22] adopted
a decentralized algorithm to improve reliability, real-time per-
formance, and reduce communication costs, making it suitable
for large-scale multi-robot navigation tasks.

DCL approaches face positioning accuracy and consistency
challenges. To address these challenges, controlling the es-
timate correlation through data flow management has been
explored. Leung et al. [23] proposed an information transfer
scheme that allows distributed robots to obtain latency esti-
mates comparable to centralized robots but requires a large
amount of communication due to data relaying. Su et al.
[24] introduced a new information exchange mechanism using
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entropy for confidence probability computation, which could
reduce unnecessary exchanges but rely heavily on synchronisa-
tion, potentially increasing pose estimation uncertainty. Bailey
et al. [25] proposed a state-exchange-based approach, sharing
independent estimates within the vehicle network to mitigate
the over-convergence risk. However, it has drawbacks: limited
benefit beyond visible neighbors and increased computational
overhead.

Covariance intersection (CI), an estimation method, ad-
dressed the inconsistent state estimation problem in distributed
cooperative localization [21]. It enables the vehicles to main-
tain a group state estimate and share it with neighbors for
consistency. Zhu et al. [26] mentioned that estimating the
cross-correlation reduces the computation of redundant infor-
mation. However, CI and cross-correlation estimation suffer
from reduced accuracy due to observation noise variance
expansion [19], [27], [28]. Estimation-based approaches offer
advantages: over-convergence risk is eliminated, and low com-
munication demands avoid extensive information relay. Chang
et al. [29] introduced Global State–Covariance Intersection
(GS-CI) by combining the state exchange and estimation-
based ideas to achieve accuracy comparable to centralized
methods. Nonetheless, GS-CI’s performance could be deterio-
rated in constrained observation scenarios, affecting estimation
accuracy and consistency.

In brief, existing research has extensively explored multi-
robot navigation algorithms. However, the accuracy of po-
sitioning and the convergence consistency of distributed CL
algorithms, particularly in intermittent measurement environ-
ments, still pose significant challenges. This study aims to
address some of these research challenges and develop a
more robust and reliable multi-robot CL system through four
specific objectives. Firstly, a novel algorithm titled “Labeled
Multi-Bernoulli on Global State by Extended Particle Filter
(LMB-GS-EPF)” is designed. This algorithm seamlessly in-
tegrates three distinct state updating strategies: propagation,
observation, and communication. This contributes to the si-
multaneous estimation of robot position and measurement
noise covariance, ultimately enhancing overall positioning
accuracy. Secondly, Random Finite Set (RFS) and Labeled
Multi-Bernoulli (LMB) of particles are employed to take
the correlation between observations into consideration and
incorporate more historical information into the observation
updating process. This innovation significantly enhances the
algorithm’s ability to associate and integrate diverse obser-
vation data, thereby bolstering its robustness. Furthermore,
advanced techniques including extended particle filtering and
CI are leveraged for precise state estimation and probabilistic
correlation. These steps collectively improve the algorithm’s
overall accuracy and reliability. Lastly, meticulous design of
communication topology and strategy coefficient allocation en-
sures effective information exchange among robots. This final
phase not only encompasses the comprehensive multi-robot
cooperative localization algorithm but also rigorously proves
its convergence consistency, further affirming its robustness
and effectiveness.

This paper is structured as follows: section II reviews related
work on cooperative navigation, focusing on RFS and LMB

techniques. In section III, we offer an overview of Coop-
erative Localization (CL) modeling for multi-robot systems,
emphasizing explicit communication. section IV details the
integrated observation update strategy employing the LMB
filters. The design of communication topology and coefficient
assignments for the update strategy, along with the proof of
algorithm convergence consistency, is presented in section V.
Experimental results and algorithm analysis are discussed in
section VI. Finally, section VII provides a conclusion and
future work.

II. RELATED WORK

RFS is a probabilistic framework widely applied in mod-
eling and handling situations with uncertain and dynamically
changing target quantities, particularly in the domains of multi-
robot systems and sensor fusion. In [30], RFS is employed
to model the birth/death of targets, extending the Probability
Hypothesis Density (PHD) filter for recursive propagation
of tracking density for environmental detection and targets.
However, limitations arise when dealing with uncertain dy-
namic targets and limited sensor ranges. [31] successfully
reduces false negatives and false positives in target detection
with limited sensor visibility, enabling a robot swarm to
effectively track the targets. Meanwhile, [32] introduces a Rao-
Blackwellized labeled multi-Bernoulli SLAM (LMB-SLAM)
filter and utilizes Gaussian mixture LMB filters for MAP
estimation, thereby obtaining a more accurate map and im-
proving single-vehicle trajectory estimation. In contrast, [33]
discusses full-distributed multi-robot simultaneous localization
and mapping (SLAM), where maps of multiple robots are
updated using RFS and PHD. However, this approach neglects
the uncertainty in data association, resulting in decreased
localization performance. To mitigate this issue, the covari-
ance intersection (CI) technique is employed to consider the
correlation between target states, and improve the accuracy.

In addressing dynamic estimation and convergence issues
for multiple vehicles, [34] employs RFS and PHD filtering for
dynamic estimation of multi-vehicle states, and [35] proposes
two approximation strategies to address constraints in GCI
fusion. However, these methods inadequately consider the
system consistency during information exchange and fusion
among sensors. [36] employs RFS theory to propose decision
and control algorithms, enabling collaborative work among
agent teams in handling randomly appearing and disappearing
targets in a surveillance area. [37] introduces RFS con-
cepts, proposing a joint spatial registration and state estima-
tion solution to enhance positioning accuracy, yet still faces
communication and computation challenges in collaborative
multi-vehicle localization. [38] applies the ICI algorithm and
introduces a distributed particle filter that optimizes the entire
network iteratively. This approach ensures the asymptotic con-
sistency in target tracking. Additionally, [39] introduces LMB
to provide a more flexible modeling approach without the need
for high signal-to-noise ratio for formal trajectory estimation.
[40] proposes a fast implementation method for the LMB

filter based on joint prediction and update, converting the
predicted LMB distribution into its corresponding �-GLMB
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representation. However, the LMB �lter incurs higher compu-
tational costs, especially in scenarios with a high number of
measurements, exhibiting cubic growth in computation costs.

Several studies have addressed the challenges of communi-
cation and computation burdens. [41] presents an innovative
approach that signi�cantly reduces these costs by employing
strongly weighted Gaussian component sharing and spatial
merging of neighboring sensors. [42] introduces an ef�cient
distributed fusion algorithm for sensor networks, which uti-
lizes GCI fusion rules and reduces computation and mem-
ory requirements through approximation techniques and fast
clustering algorithms. To mitigate computation and communi-
cation costs, [43] adopts a centralized Kalman �lter estimator
distributed into a dimensionality reduction �lter. In [44], a par-
allelized fusion approach for the GCI-GMB fusion posterior
effectively reduces computation and memory costs in target
tracking tasks by discarding negligibly weighted assumptions.
However, this approach lacks an investigation into the estima-
tion of consistency issues that may arise when implementing
the algorithm in distributed sensor networks. Furthermore,
[45] addresses the multidimensional assignment problem with
the multi-sensor generalized labeled multi-Bernoulli (GLMB)
�lter, while [46] resolves the labeled random �nite set (LRFS)
density fusion problem using the minimum information loss
criterion and introduces the cost rank allocation optimization
(RAO) to address the label mismatch (LM) issues between
LRFS densities. [47] designs a recursive distributed fusion
estimator (DFE) that achieves local state estimation through
covariance intersection fusion criteria and transmits local es-
timates to a remote fusion center (FC) via a communication
network, providing convenience for multi-sensor interaction
fusion estimates. In [48], a network architecture introduces
point-to-point communication among robots and interaction
with a central server for information exchange and sharing.
Although the algorithm mitigates the effect of sensor noise
on localization accuracy through information sharing, state
updates in communication mode still play a supplementary
role. For intermittent measurement environments, designing a
parallelized communication update strategy and topology is
crucial for improving the overall localization performance of
multi-robot systems.

In summary, RFS technique and LMB �lters in multi-
robot collaborative localization achieve ef�cient data fusion for
target identi�cation and collaborative localization. However,
there is a lack of research on high-precision localization and
communication architecture for large-scale robot groups in
intermittent measurement environments.

III. BACKGROUND

This section brie�y reviews the multi-robot state update
model required for this paper, including the motion model,
observation model and communication model, and brie�y
describes the CL algorithm used for GS-CI [29].

A. Motion and Observation Models

We consider the scenarios where multiple robots interact
with landmarks with known positional information in a two-

dimensional plane. Each robot is equipped with both proprio-
ceptive and exteroceptive sensors: an odometer for self-motion
measurement and a camera for collecting measurements to
landmarks or measurements between robots. The index set of
the multi-robot system is denoted as
 = f 1; 2; :::; M g, and
the set of landmarks as� , resulting in
 � = 
 [ � . At any
given timet, the state of roboti is represented by the vector
Si

t = [ x i
t ; yi

t ; � i
t ]

T . Consequently, the state of the system is
denoted bySt = [ S1

t ; :::; SM
t ]T .

The robot's motion model is established based on the
odometer to describe its spatio-temporal displacement. The
odometer sensor is classi�ed as a proprioceptive sensor, pro-
viding measurements of the robot's linear velocityv i

t and
angular velocity! i

t . Let � t be the time interval between two
consecutive motion updates. The discrete motion propagating
model for roboti is represented as follows.

Si
t +1 = f i (S

i
t ; v i

t ; ! i
t ) =

2

4
x i

t + vi
t � t cos(� i

t )
yi

t + vi
t � t sin(� i

t )
� i

t + ! i
t � t

3

5 (1)

where Si
t = [ x i

t ; yi
t ; � i

t ]
T , [x i

t ; yi
t ]

T denotes the position of
robot i in the absolute coordinate system, and� i

t denotes the
orientation of roboti at time t.

The observation model describes the relative position of
object j as observed by roboti . Therefore, the observation
model for roboti can be represented as follows.

oij = C T (� i
t )

��
x j

t

yj
t

�
�

�
x i

t
yi

t

��
= C T (� i

t )H
ij St (2)

whereC is the rotation matrix containing the angle parameter
� . It is worth noting that the observation modelj contains the
observation of roboti on the robotj or landmark� . The H
is calculated based on the relative observation information of
the robot, as follows.

When roboti observes another robotj , H ij is denoted as:

H ij =

2

402� 2 � � � � I 2|{z}
i

� � � I 2|{z}
j

� � � 02� 2

3

5

2� 2N

(3)

where I 2 denotes a2 � 2 unit matrix. If observationj is a
landmark,H ij is denoted as:

H ij =

2

402� 2 � � � � I 2|{z}
i

� � � 02� 2

3

5

2� 2N

(4)

In this paper, the observation process is carried out by
an external camera sensor. The relevant observed variables
include the relative distancedij and the relative attitude� ij .
Consequently, the observation of the relative spatial position
between roboti and objectj is expressed as follows.

oij = dij

�
cos(� ij )
sin(� ij )

�
(5)

B. Communication Model

In a system comprisingM robots, we introduce the concept
of a communication directed graph denoted asGc

t = (
 ; E c
t ),

where
 represents the set of robots, andE c
t � 
 � 
 is the



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

set of edges representing their communication links between
the robots at timet. When roboti receives a message from
robot j at time t, it signi�es the existence of a directed edge
(j; i ) 2 E c

t . It is worth noting that we assume the presence
of self-looping edges(i; i ) 2 E c

t , 8i 2 
 , implying that
each robot can utilize its own information. At timet, the
communicating neighbor set of roboti is de�ned asN c;i

t =
f ` j (`; i ) 2 E c

t ; 8` 6= i; ` 2 
 g. Subsequently, the inclusive
communicating neighbor set of roboti is I c;i

t = N c;i
t [ f i g.

Similarly, we de�ne a directed sensing graph denoted as
Gs

t = (
 ; E s
t ) to describe the robot-to-robot measurements,

whereE s
t � 
 � 
 denotes the set of edges, indicating the

detection links between robots at timet. If robot i detects
robot j at time t, it implies the presence of a directed edge
(j; i ) 2 E s

t . At time t, we de�ne the set of robots detected
by robot i as N s;i

t = f l j (`; i ) 2 E s
t ; 8` 6= i; ` 2 
 g, i.e.,

the set of other robots that roboti detects. We consider that
for each robot, the communication radius is greater than the
sensing radius of all robots. This setting allows the robots to
share information within their communication range, thereby
facilitating collaboration among multiple robots.

C. Cooperative Localization Algorithm

The GS-CI [29] localization algorithm employs the EKF
framework. We denote the state estimate of each roboti asŜi

t
and its corresponding covariance as� i

t .
1) Motion Propagation Update: For robot i , the covariance

update during the motion propagation process is as follows.

� i
t +1 = � i

t + � qi = � i
t + Diag (� u1; :::; � uM ) (6)

where � i
t represents the state covariance at timet, � qi is

determined by the input noise, which is the diagonal matrix
of � ui and depends on the availability of information from
neighboring robots.

For robot i , the linear velocity inputvi
t is disturbed by a

zero-mean Gaussian random variablen v , with a covariance of
� 2

n v
. Linearizing equation (1) [49], which no longer takes into

account the estimation of� , but is continuously given by the
on-board odometer, the error propagation equation for roboti
itself is

Ŝi
t +1 �

�
x̂ i

t
ŷi

t
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�
(7)

where the orientation estimation error model~� i
t = � i

t � �̂ i
t com-

prises a zero-mean Gaussian random variable, with Gaussian
variance denoted as� 2

~� i
t

= E[(~� i
t )

2] bounded by� 2
~� i

t
which is

the given variance. The covariance matrix increment can be
expressed as follows.

� ui = (� t)2C (� i
t )

�
� 2

n v
0

0 v2
i � 2

~� i

�
C T (� i

t ) (8)

2) Observation Update: The observation update is based on
measurementsoij from the camera, following the standard
EKF procedure. With reference to equation (2), the estimated
observation error~oij = oij � ôij can be approximated as

~oij � H oij ~S+ C T (�̂
i
t )H

ij ~Si
t �

~�
i
+ n oij (9)

This approximation distinguishes two uncorrelated error
terms: the state estimation error~S and the measurement noise
n oij , whereH oij

= C T (� i )H ij . When the observation result
oij is obtained from the camera, the covariance matrixR oij

of n oij can be expressed as

R oij = C(� ij )diag
�

� 2
dij ; (dij )

2
� 2

� i

�
CT (� ij ) (10)

The overall covariance update can be represented as

(� i
t +1 ) � 1 = (� i

t )
� 1 + ( H i )T C (� i

t )R
� 1
oij C T (� i

t )H
i (11)

3) Communication Update: In the communication update,
robot i utilizes CI [21] to update its estimated information
based on external information received from other robots. This
process involves incorporating the information sent by robot
k to robot i . The covariance update in the reference baseline
[29], where only robotk provides information to roboti , can
be represented as follows.

(� i
t +1 ) � 1 = � (� i

t )
� 1 + (1 � � )(� k

t ) � 1; � 2 (0; 1) (12)

The coef�cient value � is determined by minimizing
det(� i

t +1 ) or tr (� i
t +1 ) during the estimation fusion process.

As � increases, the own estimates for roboti gain more
signi�cance in the fusion process.

4) Problem Statement: In this paper, we explore the GS-CI
baseline algorithm, which consists of three key components:
motion propagation, observation updates, and communication
updates. While existing algorithms update localization esti-
mates independently through observation and communication,
the GS-CI baseline algorithm separates communication from
observation, considering communication imperfections due
to intermittent or limited observation capabilities. However,
this reliance on an one-way chain communication topology
in the baseline algorithm introduces limitations, resulting in
biased and inconsistent localization results. We also identify
potential issues associated with this communication topology.
This research aims to address these limitations and enhance
localization accuracy and consistency.

The GS-CI algorithm's limited assumption of robotk
transmitting information to roboti can hinder communication
adequacy. Consequently, it yields suboptimal performance in
CL accuracy and estimation consistency. To address this issue,
our paper focuses on integrating historical correlation data into
the observation update process while optimizing the communi-
cation framework, thereby improving estimation consistency.
This enhancement serves as the primary motivation behind our
research.

IV. METHODS

A. Design Idea of the Proposed Method

To improve the CL accuracy and estimation consistency,
we propose a new algorithm, called LMB-GS-EPF algorithm.
Firstly, this new algorithm introduces a labeled multi-Bernoulli
�lter to consider the correlation between observations and
incorporate more historical information into the observation
updating process. Secondly, we utilize a particle �lter to
overcome the limitations of EKF algorithm since the system is
nonlinear. In addition, we optimize the communication update
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part by creating a richer communication structure that allows
information exchange between multiple robots, thus improving
the accuracy of localization and consistency of estimation.
With these improvements, we aim to effectively achieve more
robust and accurate cooperative localization.

B. Multi-Labelled Bernoulli Coupled Observation Update

1) Labelled multi-Bernoulli (LMB) and random �nite sets
(RFS): To represent the state estimates of robots in a multi-
robot motion platform, our RFS for the multi-robot motion
platform is de�ned as follows.

X t =
n

x1;` 1

t ; :::; xn;` n

t

o
(13)

where each elementxn;` n
is on the spaceR � L where R

and L denote the state space and the labeled discrete space,
respectively, andx 2 R, ` 2 L. Similarly, the �nite set of
absolute and relative observations for a multi-robot platform
can be de�ned as follows:

o�
t =

n
o1

t ; :::; o
 �

t

o
(14)

where * represents the observation set of random collaborative
robots in network, each observation component iso
 �

t 2 R,
whereR represents a vector �eld, and
 � represents the index
value of the observed neighbor or landmark.

Bernoulli RFS represents uncertainty about the existence
of a single object in a straightforward way. The parameter
r represents the probability of the existence of a robot,
s(x) represents the state matrix of multiple robots, which is
abbreviated ass below; the probability thatX is an empty set
is 1 � r . The prior distribution of LMB-RFS is given as

� (X ) =
�

1 � r ` ; X = ;
r ` � s` (x); X =

�
x1; :::; xM

	 (15)

where X is the union of M independent multi-Bernoulli
random �nite setsX i , for example,X = [ M

i =1 X i . A multi-
Bernoulli RFS is de�ned by a parameter setf r i ; si gM

i =1 . The
LMB-RFS with state spaceX and label spaceL is given by
parameter set� = f r ` ; s` gl 2 L .

The RFS representing a multi-robot label in a non-�xed
collaborative robot network can be denoted as follows.

X �
t = f (r `

t ; s` (x1
t )) ; :::; (( r `

t ; s` (xn t
t ))g; ` 2 L �

t (16)

whereX �
T contains the LMB-RFS component information of

multiple robots,r denotes the existence probability, ands
denotes the state of a single object, and * is the mark of the
random collaborative robot network.s denotes the state of a
single object and is markedS in equation (1).

2) Particle �lter: In order to establish a reliable prior value
for LMB, we use extended Kalman �lter (EKF) as the initial
calibration value of our particle �lter algorithm (PF). Through
the use of the PF-EKF algorithm [50], we are able to acquire
the initial optimized statêsi

t +1 and covariancê� i
t +1 of robot

i . The optimized state signi�cantly reduces the uncertainty in
position estimation, while the optimized covariance provides
parameters for the LMB correlation probabilities, thereby
enhancing the correlation between relative and absolute ob-
servations.

3) LMB prediction and associated weight update: Initially,
we set a probability threshold,PG . This threshold is based
on the camera's detection range. Its purpose is to �lter out
newly born vehicles. We de�ne these newcomers as part
of the networking group. Simultaneously, it helps eliminate
redundant Bernoulli information.

Pnon ( P(bm
t = 0)) > P G ; m 2 f 0; 1; :::; M k g (17)

where Pnon indicates the probability that the observation
corresponding to the current particle state is not associated
with the motion platform. Equation (17) indicates that the
measurements correspond to particle states generated by newly
born network members, rather than by surviving network
members.

The state of the LMB-RFS motion platform is then com-
bined with robot observations to generate particles using a
likelihood function. This results in the generation of related
parameters, including the particle state, particle weight, and
multi-vehicle platform networking probability.

! `
p =

1
Np

; x ` = K (o); ` 2 L �
k ; r ` =

� B

M
p`

non (18)

where Np is the total number of particles,x ` is the spatial
probability density function (pdf) of the particle. The func-
tion K (�) represents the likelihood function, and! `

p is the
initial weight of the particle. Additionally,r ` is the existence
probability of the robot, and� B is the probability of birth
networking platform mean.

It is noted that the label space of new objects (B) and the
label space of existing objects (L) are complementary and
satisfyB \ L = � .The RFS is then divided into two parts: the
multi-Bernoulli RFS of the survived networked robots (marked
as S) and the multi-Bernoulli RFS of the new birth network
robots (marked asB ).

X �
t +1 = X S�

t [ X B �
t +1 (19)

where the superscriptS indicates the members who have
formed a surviving networked group at timet and in the
networked group at the next timet+1 and its Bernoulli compo-
nent isf (r `

S;t ; s`
S;t (x t ))g` 2 L S �

t
, The superscriptB means not

in the networking group at stept, and a new member in the
networking group at the next stept +1 , that is, a new member
and is the Bernoulli component. Those surviving members
retain the Bernoulli information, and their corresponding label
set �elds follow as

�
L �

t +1 = LS�
t [ LB �

t +1

LS�
t \ LB �

t +1 = �
(20)

According to equation (15), the pdf of LMB-RFS can be
expressed as

f (X � ) == �( X � )
Y

` 02 L � nL (X � )

(1 � r ` 0
)

Y

x 2 X �

1L � (`)r ` s` (xn )

(21)

L (X � ) �=
n

` (1) ; ` (2) ; :::; ` (n )
o

(22)

�( X � ) = � jX � j (jL (X � )j) (23)
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where `0 is labelled as not participating in the networking,
1L � (`) is an inclusive function, and̀ 2 L � is 1, otherwise it
is 0. L (X � ) represents the robot label set of LMB-RFS,� is
the Kronecker function.

Since the cardinality distribution of labelled RFS is the same
as that of unlabeled RFS, the subscripts of� jX � j is denoted
the same labelX � = ( jL (X � )j), when the labels inX � are
independent of each other,� X � = 1 and 0 otherwise. The
update of particle �ltering on the new robotics platform.

f
�
X �

t +1 jo�
t

�
= f (X �

t jo�
t ; W �

t ) (24)

where W �
t is the noise set of networked robots, and then

we update the existence probability, association weight by the
parameter set� = f r ` ; s` g` 2 L , (`; m) 2 L � � f 1; :::; M t g.

r̂ `
t +1 = r `

t +1 � PS (25)

!̂ `
p = ! `

p �
1

p
2�v dv�

e
� 1

2 �
ko ij (1) � d `

ij k2

v 2
d � e

� 1
2 �

ko ij (2) � � `
ij k2

v 2
�

(26)

� ( `;m )
t +1 = r l

t +1 j t � � ( `;m ) = r `
t +1 � PD �

N pX

j =1

!̂ `
p=! cul (27)

wherePS represents the survival probability of each robot at
the speci�c moment. The variablesoij (1) and oij (2) denote
the distance and orientation information in the observation
of the robot, respectively. Moreover,d`

ij and � `
ij represent

the relative distance and relative orientation of the neighbors,
while v2

d and v2
� are the variances of ranging noise and

orientation, respectively.� `;m
t +1 indicates association weights,

PD indicates the detection probability,! cul indicates the
probability of incorrect observation, andNp represents the
number of particles of the �lter.

4) Probabilistic data association observation update based
on belief propagation: The edge association probability is
determined by employing the belief propagation algorithm,
which relies on the factor graph model. Once the association
weights are updated, redundant variables are integrated into
the model. For the association probability fast marginalization
introduce the association vectora t and the corresponding
variablebt [51].

a ( ` )
t 2 f� 1; 0; � � � ; M t g; ` 2 L �

t ; m 2 f� 1; 0; 1; :::; M t g
(28)

where a ( ` )
t = m denotes the association variables corre-

sponding to the`-th robot state estimation and them-th
measurement.m = 0 indicates that it is not associated with
any measurement,m = � 1 indicates that it does not exist.
When b(m )

t = ` 2 L �
t , it means that there is an observation

related to the robotm. Whenb( ` )
t = 0 , it means that there is

no observation related to the robot.
The joint associated probability mass function is

p(a t ; bt ) / 	( a t ; bt )
Q

l 2 L �
t

�̂ ( `; a `
t )

t

	( a t ; bt ) =
Q

` 2 L �
t

M tQ

m =1
	 `;m (a ( ` )

t ; b(m )
t )

(29)

when a ( ` )
t = m; b(m )

t 6= ` or a ( ` )
t 6= m; b(m )

t =
`; 	( a( ` )

t ; b(m )
t ) = 0 , and 1 otherwise, which de�nes the

representation motion platform to match with the observation
set. The message passing in the LMB collaborative navigation
system, with the introduction of redundant variables, can be
described as

� [i ]` ! m
t =

�̂ ( `;m )
t

�̂ ( `; � 1)
t + �̂ ( `; 0)

t +
P M k

m 0=1
m 06= m

�̂ ( `;m 0)
t V [i � 1]m 0! `

t

(30)

V [i ]m ! `
t =

1

1 +
P

` 02 L �
t

� [i � 1]` 0! m
t

(31)

In equations (30) and (31), the inter-iterations are performed
for each value ofi until i takes on all values from 1 toI .

�̂ ( `; � 1)
t = 1 � r̂ `

t (32)

�̂ ( `; 0)
t = r̂ `

t � (1 � PD ) (33)

P `
ass = P(a ( ` )

t = m) =

(
�̂ ( `;m )

t =D`
t ;m 2 f� 1; 0g

�̂ ( `;m )
t V m ! `

t =D`
t ;m 2 f 1; :::; M k g

(34)

D `
t = �̂ ( `; � 1)

t + �̂ ( `; 0)
t +

X M t

m 0=1
�̂ ( `;m 0)

t V [I ]m 0! `
t (35)

P `
non = P(bm

t = 0) =
1

1 +
P

` 02 L �
t

� [I ]` ! m
t

(36)

whereP `
ass is the probability of correlation among robots, and

P `
non is the probability that the observed value corresponding

to the particle state is robot-independent, which is fed redun-
dant Bernoulli information into the next iteration.

5) Observations update: The association weights are up-
dated via messaging and the observations are modi�ed ac-
cordingly. This includes the updated network probabilities and
spatial probability density functions for grouped robots.

!̂ ( ` ) j
a t

=
M tX

` 2 L �
t nL (X �

t )
m =0

�̂ ( `;m )
t � !̂ ( ` ) j

a t
;m 2 f 0; 1; :::; M t g (37)

!̂ ( ` )
p =

!̂ ( ` ) j
a t

N pP

j
!̂ ( ` ) j

a t

(38)

r̂ `
t =

X
�̂ ( `;m )

t ;m 2 f 0; 1; :::; M t g (39)

where !̂ ( ` ) j
a t is the weight related to the observation and the

robot, !̂ ( ` )
p is the updated particle weight, andj is the particle.

r̂ `
t denotes the existence probability or networking probability.
Lastly, through standardized post-processing, pruning and

resampling techniques for state estimation, we attain reliable
robot presence probabilitieŝr `

t +1 and state estimateŝs`
t +1 .
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C. Optimization of communication structure

In this section, we adopt a multi-robot communication
approach using a cyclic structure. The cyclic structure enables
bidirectional information �ow among robots, promoting a
comprehensive exchange of observation and measurement data
among neighbors [52].

In the state update process within the communication mod-
ule, we design a novel approach to assign the coef�cients in the
state update equation based on the robot survival probability
r̂ `

t obtained from the LMB �lter. The state update equation is
as

(� i
t +1 ) � 1 = c0(� i

t )
� 1 +

X

j 2 C i;t

cj (� j
t )

� 1

(40)

ŝi
t +1 = � i

t +1 �

2

4c0(� i
t )

� 1
ŝi

t +
X

j 2 C i;t

cj (� j
t )

� 1
ŝj

t

3

5 (41)

where, c0 and cj represent the coef�cients used to weight
the fused robot states. By incorporating robot presence prob-
abilities into the coef�cient assignments, we can fuse the
information from different neighboring robots.

V. LMB-GS-EPF ALGORITHM AND CONVERGENCE

CONSISTENCY

A. LMB-GS-EPF algorithm

Our proposed algorithm aims to improve the accuracy and
consistency of CL. The algorithm simultaneously estimates
the robot's state and covariance by using parallel multimodal
robot state update strategies such as motion model, observation
model and communication model, as detailed in Algorithm
1. By the particle based LMB �ltering algorithm, we couple
relative and absolute observations. Moreover, we optimize the
communication structure by means of a cyclic directed graph.
Leveraging the robot existence probabilities computed by the
LMB �lter, we achieve an optimized allocation of coef�cients
in the state update equation. The LMB-GS-EPF algorithm we
proposed can be summarized as follows:

1) Global State Representation: our LMB-GS-EPF employs
a global state representation to capture the interrela-
tionships and collaborative historical behaviors among
multiple robots for enhancing localization accuracy.

2) Labeled Multi-Bernoulli Filter: our LMB-GS-EPF intro-
duces the labeled multi-Bernoulli �lter for modeling and
labeling multi-robot state information as labeled RFS.
It couples the relative and absolute observations, dis-
carding negligibly weighted assumption and redundant
computation. It retains the historical information with
high con�dence and offers a �exible state update strat-
egy in communication mode, addressing the limitations
in intermittent observation environments. The dynamic
grouping process improves the computational ef�ciency
and handles the scenarios with low detection probability
and high false alarms without sacri�cing the estimation
accuracy.

3) Parallel Communication and Observation: our LMB-GS-
EPF incorporates the parallelism by treating communi-
cation and observation as an integral mechanism. Using

a cyclic communication topology, the algorithm assigns
the coef�cients based on the existence probability of the
Bernoulli �lter. This approach enhances �exibility and
scalability, resulting in more robust and ef�cient multi-
robot systems.

Algorithm 1 LMB-GS-EPF by Roboti
Initialization
SetSi

0 and � i
0 for robot i .

Motion Model
input: odometerv i

t
Ŝi

t +1 = [ f T
1 (ŝi

1;t ; v1
t ); :::; f T

i (ŝi
i;t ; vi

t ); :::; f T
M (ŝi

M;t ; vM
t )]T ,

� i
t +1 = � i

t + � qi = � i
t + Diag (� u1; :::; � uM ).

Observation Model
input: cameraoij

Ŝi
t +1 = Ŝi

1;t + � i
t H

ij T
R � 1

oij (oij � H ij Ŝi
t ),

(� i
t +1 ) � 1 = (� i

t )
� 1 + ( H i )T C (� i

t )R
� 1
oij C T (� i

t )H
i ,

Determine the particle and weightf si
0:t +1 ; ! i

t +1 gN p
j =1 ,

Optimization of robot statêsi
t +1 using PF algorithm.

LMB Initial
DetermineL �

B using P `
non > P G , according toP `

non =
P(bm

t = 0) given PG , m 2 f 0; 1; :::; M k g, create new
Bernoulli componentf r i ; si gM

i =1 .
LMB propagation
Determiner̂ `

t +1 and !̂ `
p.

Associated weight update
Determine � ( `;m )

t +1 , m 2 f� 1; 0; 1; :::; M t g, with � ( `;m )
t +1 ,

m = � 1, with � ( `;m )
t +1 , m = 0 , with � ( `;m )

t +1 , m 2 f 1; :::; M t g,

Determine!̂
( ` ) j
a t +1 .

LMB-BP Message PassingI interactions
Determine� [i ]` ! m

t +1
! V [i � 1]` ! m

t +1 , i is the interaction index,
DetermineP `

ass = P(a`
t +1 = m) andP `

non = P(bm
t +1 = 0) .

Probabilities update and spatial probability update
Calculation of!̂ ( ` )

p andr̂ `
t +1 using equations (38) and (39),

Post-processing by pruning and re-sampling to optimize
ŝi

t +1 and � i
t + .

Communication Model
input: ŝk

t , � k
t from robotk

(� i
t +1 ) � 1 = c0(� i

t )
� 1 +

P

j 2 C i;t

cj (� j
t )

� 1
,

ŝi
t +1 = � i

t +1 �

"

c0(� i
t )

� 1
ŝi

t +
P

j 2 C i;t

cj (� j
t )

� 1
ŝj

t

#

,

The allocation of coef�cients toc0 and cj is determined
based on the presence probability of the robot transmitting
the message.

B. Convergence consistency proof

First, we establish the convergence consistency of the
message-passing algorithm. Subsequently, we demonstrate the
convergence consistency of the message-passing embedded
within the explicit communication algorithm.

We establish the fractional forms of equations (30) and
(31) in accordance with the requirements of the guaranteed
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convergence proof. By using the fractional expression function
f in equation (30), we construct the representation distance
function d such that there exists a contraction factor� < 1
satisfying d(f (x); f (y) < = �d (x; y); )) ; 8(x; y) [54]. When
the function f is in fractional form, any sequence derived
from repeated applications of the functionf converges to the
same �xed value. Subsequently, the measure for information
is de�ned as

d(�; V ) = max f max
`;m

� ` ! m

V m ! ` ; max
l;m

V ` ! m

� m ! ` g (42)

The dynamic log distance form is de�ned as

d(f (x); f (y)) � d(x; y) � ; 8(x; y) (43)

so thatlogd(f (x); f (y)) � � logd(x; y); 8(x; y).
We de�ne the update� ` ! m = f (V m ! ` ) in equation (30),

and � m ! ` = g(V ` ! m ) in equation (31). Now, we present
a list of preliminary lemmas concerning the form of the
contraction factor that will be utilized.

Lemma 1 [53]. Forc > 0 andL > 1, we have the following

� (L; c) =
log( 1+ cL

1+ c )

logL
(44)

The function value is strictly less than 1 and increases mono-
tonically with L .

The following two lemmas demonstrate that the LMB-RFS
updates in equations (30) and (31) are contractions.

Lemma 2. For all (V; ~V ) with d(V; ~V ) � �L , The update
of messagef (�) in equation (30) is a contraction about the
dynamic distance measured(�; �) with the factor� ( �L; m t W ),
i.e.,

d(f (V ); f ( ~V )) � d(V; ~V ) � ( �L;m t W ) (45)

wheremt W = max
`;m

P M k
m 0=1
m 06= m

�̂ ( `;m 0)
t +1

�̂ ( `; � 1)
t +1 + �̂ ( `; 0)

t +1

).

Proof. It is assumed that8(`; m), � `;m and ~� `;m bounded
with 0 < � `;m � 1 and 0 < ~� `;m � 1, when � `;m or ~� `;m is
zero, it guarantees any(�; ~� ) resulting from equation (31), let

1 � L �= d(V; ~V ) � �L < 1 (46)

It is easy thatV `;m � L ~V `;m and ~V `;m � LV `;m .
Since the association weight̂� ( `;m ) is non-negative and

bounded, if�̂ ( `;m ) = 0 then in equation (30),i = I and the
superscript of iteration processI is omitted, getf (V `;m ) =
f ( ~V `;m ) = 0 and f (V `;m )=f ( ~V `;m ) = 0 =0 �= 1 . Otherwise,
the division is considered.

De�ne �̂ ( `; � 1)
t +1 + �̂ ( `; 0)

t +1
�= A, one obtains the following.

f (V `;m )
f ( ~V `;m )

=

�̂ ( `; � 1)
t +1 + �̂ ( `; 0)

t +1 +
P M k

m 0=1
m 06= m

�̂ ( `;m 0)
t +1

~V m 0! `
t +1

�̂ ( `; � 1)
t +1 + �̂ ( `; 0)

t +1 +
P M k

m 0=1
m 06= m

�̂ ( `;m 0)
t +1 V m 0! `

t +1

=

A +
P M k

m 0=1
m 06= m

�̂ ( `;m 0)
t +1

~V m 0! `
t +1

A +
P M k

m 0=1
m 06= m

�̂ ( `;m 0)
t +1 V m 0! `

t +1

�

A +
P M k

m 0=1
m 06= m

�̂ ( `;m 0)
t +1 LV m 0! `

t +1

A +
P M k

m 0=1
m 06= m

�̂ ( `;m 0)
t +1 V m 0! `

t +1

(47)

De�ne c= (
P M k

m 0=1
m 06= m

�̂ ( `;m 0)
t +1 V m 0! `

t +1 )=(�̂ ( `; � 1)
t +1 + �̂ ( `; 0)

t +1 )

f (V `;m )

f ( ~V `;m )
=

A + cAL
A + cA

=
1 + cL
1 + c

(48)

wherec =

P M k
m 0=1
m 06= m

�̂ ( `;m 0)
t +1 V m 0! `

t +1

�̂ ( `; � 1)
t +1 + �̂ ( `; 0)

t +1

� mt W .

Using Lemma 1

f (V `;m )

f ( ~V `;m )
=

1 + cL
1 + c

�
1 + mt WL
1 + mt W

= L � (L;m t W ) � L � ( �L;m t W )

(49)

Those similar steps are followed as

f ( ~V `;m )
f (V `;m )

�
1 + mt WL
1 + mt W

� L � ( �L;m t W ) (50)

Now we establish the same validation of interactive step in
equation (31).

Lemma 3. For all (�; ~� ) with d(�; ~� ) � �L , The update
of messageg(�) in equation (30) is a contraction about the
dynamic distance measure withd(�; �) the factor� ( �L; ` t W ),
i.e.,

d(g( � ); g( ~� )) � d( �; ~� ) � ( �L;` t W ) (51)

Proof It is assumed that8(`; m), V `;m and ~V `;m bounded
with 0 < = V `;m < = 1 , if V `;m or ~V `;m is 0, it guarantees
any d(�; ~� ) resulting from equation (31), let

1 � L �= d(�; ~� ) � �L < 1 (52)

We prove it in the same step,

g( � `;m )
g( ~� `;m )

=

1+
P

` 02 L �
t +1

~� ` 0! m
t +1

1+
P

` 02 L �
t +1

� l 0! m
t +1

� 1+ l t W L
1+ l t W � L � ( �L;n t W )

g( ~� `;m )
g( � `;m ) � 1+ l t W L

1+ l t W � L � ( �L;n t W )

(53)

Now we present Theorem 1 to prove LMB-GS-EPF algo-
rithm's convergence consistency when the robot information
source is camera to landmark absolute observation data or
camera to neighborhood robot relative observation data.

Theorem 1. Regardless of different initializations, GS-
EPF-LMB iterative operationsf (�) in equation (30),g(�) in
equation (31) will converge to the same point.

Proof Let us start with an initial vectorV [1]m ! `
0 . Then,

using equation (30), we have� [2]m ! `
0 = f (V [1]m ! `

0 ). Now,
consider the iteration process� [i ]m ! `

0 = f (g(� [i � 1]m ! `
0 )) . We

can see thatL = d(� 0; � 1) < 1 , where d is the distance
function measuring the difference between� 0 and � 1.

Using Lemmas 2 and 3d(� k ; � k+1 )� L � ( �L; max f m t ;n t gW )2Ik
.

WhenL � ( �L; max f m t ;n t gW )2Ik
! 1.

When the robot has no available information source, the GS-
EPF-LMB algorithm uses a new communication mechanism to
update the estimates and its convergence consistency follows
[29].
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TABLE I
SYMBOL OR VARIABLE DESCRIPTIONS

Symbol Description
St State set of multiple robots
v i

t Linear velocity of roboti at time t
! i

t Angular velocity of roboti at time t
� i

t Heading of roboti at time t
o ij Observation of roboti on targetj (neighbor robot or land-

mark)
C Rotation matrix related to heading
H Linear innovation matrix in the observation model
� i

t State covariance of roboti at time t
R o ij Covariance matrix of measurement noise
X t State set of multiple robots at timet with associated labels
o�

t Observation set at timet
� (X ) Prior probability distribution function of an LMB-RFS
X �

t LMB-RFS component information set of multiple robots
r `

t Probability of the existence of a labeled robot
s`

t (x i
t ) State information of roboti with label `

PG Given probability threshold for camera-based detection range
to �lter out newly born vehicles

Pnon Probability that the current particle state corresponds to an
observation independent of the motion platform

! `
p Particle weight corresponding to robot label`

K (o) Likelihood function related to observation

� ( `;m )
t +1 At time t + 1 , the robot-associated weights labeled as`

� 1 ; � 2 Coef�cients for weighted fusion of robot states in communi-
cation update mode

The table focuses on the key symbols and variables involved
in the algorithm of this paper.

C. Symbol Description

This section lists important symbols and variable descrip-
tions in the article, as shown in Table I.

VI. EXPERIMENT

This section presents the experimental dataset, outlines
baseline methodologies for comparison, speci�es evaluation
metrics, and explains experiment results.

A. Experimental Dataset

The proposed LMB-GS-EPF algorithm's performance was
evaluated using the UTIAS multi-robot CL and mapping
dataset provided by Leung et al [55]. Each robot was equipped
with a wheel encoder and a monocular camera, measuring
linear and rotational velocities at 67 Hz and capturing dis-
tance and orientation measurements with other robots and
landmarks. The position and orientation were obtained from
a 10-camera Vicon motion capture system at 100 Hz, with a
positional accuracy of approximately 1 mm.

B. Compared Baselines

We compared the proposed approach with two representa-
tive SOTA algorithms, including EKF-based DCL [29], [56]
and EKF-based CCL [12], [57].

C. Evaluation Metrics

The paper evaluated the algorithm using two commonly
indicators for CL: positioning error (RMSE) and state covari-
ance estimation error, corresponding to equations (54) and (55)
respectively.

q
� N

i =1




 ŝi

t � si
t




 2

=N (54)

q
� N

i =1 tr([� si ]i )=N (55)

D. Results

We executed all the algorithms and gathered the perfor-
mance data in two key dimensions: the accuracy of robot lo-
calization and the precision of tracking covariance estimation.
Additionally, we recorded the computational time each algo-
rithm consumed when applied to a 3-robot dataset operating on
a 200-second cycle. The comprehensive evaluation outcomes
have been organized and are showcased in Table II. The
metrics encompassed within the table include localization error
(measured in meters), tracking covariance (expressed in square
meters), and time cost (quanti�ed in seconds). To ensure a
comprehensive assessment, we compared our algorithm (Our)
with the DCL-based GS-CI algorithm and the CCL-based Cen-
EKF algorithm. The tested localization accuracy results were
presented in Fig. 1. In this �gure, the localization accuracies
of each robot associated with the various methods were shown
in the same subplot, with the vertical coordinate indicating the
localization accuracy and the horizontal coordinate indicating
the time series.

To enhance clarity, we had divided the axis into four
segments spanning from 0 to 200. Notably, our algorithm
consistently demonstrates exceptional performance in local-
ization accuracy and maintain an accuracy of approximately
0.1 meters. This result stands as a testament to the robust-
ness of the algorithm we developed. To validate the algo-
rithm's consistency, we undertook a comparable evaluation
of tracking covariance accuracy. The outcomes are presented
in Fig. 2. Our algorithm signi�cantly advances the tracking
covariance accuracy in comparison to the GS-CI algorithm.
This achievement can be attributed to the innovative cyclic
communication topology we formulated, and the strategic
assignment of communication update coef�cients based on
existence probabilities.

TABLE II
ALGORITHM PERFORMANCE COMPARISON

Method Loc error (m) TraceCov (m2 ) Time Cost (s)
GS-SCI [56] 0.142 1.871 13.578

DCL GS-CI [29] 0.135 1.254 12.717
Our 0.095 0.536 14.651

CCL EKF-LS-CI [12] 0.492 0.120 10.683
Cen-EKF [57] 0.138 0.115 10.759

Evaluation results of all algorithms on the 3-robot dataset with a period of
200 seconds for the system as a whole.
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Fig. 1. Comparison of localization accuracy of all the algorithms
corresponding to the three robots.

Fig. 2. Comparison of tracking covariance accuracy for all the algo-
rithms corresponding to the three robots.

Fig. 3. Localization accuracy results of ablation experiments.

E. Ablation Experiment

A series of ablation experiments was conducted. This in-
volved the stepwise integration of individual improvements,

Fig. 4. Tracking covariance accuracy results of ablation experiments.

EPF, LMB �ltering, and communication structure Graph op-
timization into the GS-CI algorithm [29]. The experimental
results are shown in Fig. 3 and Fig. 4, where the Fusion
curve represents the integration of all three improvements in
the proposed LMB-GS-EPF algorithm.

Firstly, in our experimental setup where we introduced the
EPF, we witnessed a discernible reduction in the localization
error when contrasted with the GS-CI algorithm.

After the integration of LMB �ltering, we observed a stabi-
lization in localization accuracy, settling around 0.11 meters,
as demonstrated by the +LMB curve in Fig. 3. This result
is attributed to the fact that the LMB algorithm we designed
incorporates both relative and absolute observations.

In addition, we adopted a cyclic-structured directed graph
for multi-robot communication to realize the bidirectional
information �ow between robots, while the coef�cient assign-
ments in the updating equations (40) are accomplished with the
help of the robot survival probabilities obtained in the LMB
�lter while considering more historical information. As shown
in the +Graph curve in Fig. 4, the tracking covariance accuracy
of the robots is signi�cantly improved, ensuring robust state
consistency.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a novel distributed cooperative local-
ization algorithm (LMB-GS-EPF) tailored for multi-robot sys-
tems. This algorithm seamlessly integrates the motion, obser-
vation, and communication strategies, ensuring the concurrent
state and covariance estimation robustness and consistency. By
investigating the fusion of absolute and relative observations
using the LMB �lter and considering the incorporation of
more reliable historical observations, the algorithm's impact
on Cooperative Localization was analyzed. Additionally, the
optimization of multi-robot communication topology and the
re�nement of communication updates, guided by the robot
presence probability within the LMB �lter, were achieved.
The robustness and convergence of the proposed algorithm
was validated through theory and quantitative results. The
following conclusions are derived:
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