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Abstract

Structural complexity is vital to coral reef systems and is threatened by direct and indi-
rect anthropogenic acts, resulting in a global decline of reef health. As such, these systems
are regularly assessed and monitored. The use of computational techniques in surveys is
becoming more commonplace, but is an intensive process and often only covers small areas
of a reef. Non-coral reef systems are rarely considered in terms of their structural com-
plexity and do not have standardised metrics or methodologies, nor are structural links to
health known. They are monitored in terms of biodiversity, but often structure and ben-
thos are excluded from these assessments. To improve the capabilities of computational
analysis of benthic environments, this thesis first developed and tested a multi-camera
array for surveying of coral reefs, then utilised an array in a survey of a distinct rocky reef
environment. The surveying method demonstrated a rapid approach to data collection
that successfully generated 3D modelled environments that enabled successful data ex-
traction. The complexity metrics used, however, appeared to be disconnected from in-situ
observations of the rocky reef environment. From this, a novel assessment of relief and the
use of tailored fractal dimension was developed to contextualise rocky reef complexity and
link it to commercially relevant associated species. From this, links between structural
complexity and associated species were found, and relief proved to be a distinct form of
complexity on the rocky reef. Additionally, the development of the ImageCLEFcoral task
is outlined: a global benchmarking competition which aimed to further the capabilities of
automatic annotation of coral reef substrates. A series of submitted runs were produced
for the 2021 edition of the task and are also presented here. Though the annotation ap-
proaches are not yet successful enough for practical use, the annual task has continued to
develop and will likely improve year on year. When fully utilised, computational analysis
would enable researchers to focus on furthering knowledge rather than surveying restric-
tions and repetitive data extraction. While the approaches presented here do require
in-situ data collection and researcher interaction, the benefits lend themselves to widely
expanded analysis capabilities and shareable data stores. Multi-camera arrays allow for
data collection to span larger areas in less time, while automatic annotation increases the
data volume without manual intervention. When used appropriately, research can become
more efficient, cost-effective, replicable, and accurate.
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1 | Introduction

1.1 The value of coral reefs

Coral reef systems are vital to the health and prosperity of the oceans and the commu-

nities that rely upon them. They are some of the most biodiverse and productive naturally

occurring ecosystems in the world, and provide a wide range of ecosystem functions and

services [1]. Despite coral reefs covering less than 0.1% of the ocean floor, they support

around 25% of marine fishes and a third of marine species at some point in their life

cycle [2]. For those that make up the benthos, these species can be separated broadly

into reef-building and non-reef-building organisms. Reef-builders are those that provide

some form of structure or substrate to the reef itself, along with the natural geological

structure of the seabed and the dead organisms layered below the living ones. While a

considerable component of this is scleractinian coral (those that secrete carbonate with a

positive carbonate budget) [3], other organisms make up a vital part of the reef structure.

Soft corals, rocks, sponges, and algae all provide ranging microhabitats through complex

and varied morphology [4, 5]. The diversity and abundance of these substrates allows for

the healthy function of a reef system, wherein they provide services and functions to the

reef and the organisms living on it [1].

The Millennium Ecosystem Assessment classifies ecosystem services in four ways: pro-

visioning, regulating, cultural, and supporting [6]. The complex physical structure of a

reef is critical to many of the ecosystem services that they provide to these communities

and to the environment and can be considered a supporting service itself [7]. It underpins

the entire ecosystem, maintains the vast array of life present, and bolsters many other

services provided by the reef system [8].

Provisioning services of coral reefs are vital to the survival of many coastal commu-

nities. Many people who live within 30 km of a reef system reside in nations that are

heavily reliant on coral reefs for food and income [9]. Fishery and material services of

1
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coral reefs rely on 3D reef structure to sustain the marine life and promote resilience [10].

Reef fish and invertebrates across most trophic levels are valuable as a protein source for

these communities and can provide considerable income, although higher trophic levels

are worth more when sold [11]. Similar to fishing for food, the aquarium trade is also an

economic avenue for small scale fisheries to earn money. Target species for aquaria may

differ from those desired as a food source, with smaller colourful fish being more valuable

[12]. Western medicine has seen corals used for anti-inflammatory and anti-carcinogenic

purposes [13]. The traditional medicine trade is also somewhat reliant on coral reefs,

using animals such as seahorses, sea cucumbers, and pipefish in medicinal practices [14].

Alternative medicine may also see a turn towards coral as a resource for treatments and

prevention for a range of ailments, including cancers and deformities [15].

Many key services provided by coral reefs regulate nearby coastal and marine envi-

ronmental factors. The physical barrier that a coral reef can provide to the land enables

them to deplete 97% of energy in tidal water that could otherwise destroy these areas [16].

87% of this dissipation comes from the reef crest which, along with the slope, is one of

the reef areas of highest complexity [17]. The monetary value of this has been estimated

at $4 billion through the protection of over 197 million people in reef-side communities

[18]. This structure similarly protects shorelines from erosion, which is a threat to many

communities, particularly in smaller towns and villages [16].

Coral reefs can also provide culturally based services and benefit local economies

through tourism. Eco-tourism can benefit reef systems through conservation-related ac-

tivities and by bringing awareness and funding to local organisations working to protect

a reef system. Often this tourism is reliant on a healthy ecosystem with prosperous,

structurally complex reefs encouraging underwater recreation, while the calm waters and

seafood also provided by the reefs structure and services support for land and sea activi-

ties [7]. However, unsustainable tourism has had a negative impact on reef health through

direct damage by SCUBA divers, fishers and swimmers interacting with the reef and by

tourist infrastructure, like hotels and stores, being improperly developed and increasing

pollutants through waste and construction [9, 19].

The economic value of reef systems are closely linked to biological functions and ecosys-

tem services that the particular reef can provide, which has led to the overexploitation

of resources [9, 20, 21]. Coral reefs are expected to change drastically in coming decades
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[22, 23], with 24 of 27 world heritage coral reef sites predicted to bleach twice per decade by

2040 if the atmosphere continues to warm at its current rate [24]. Repeated bleaching over

time impacts reef sites, with loss of coral cover, diversity, and reproductive output being

common outcomes, but specific changes vary per reef depending on coral size, location,

ambient water temperature, and other stressors [25, 26].

Contrasting the amount data and predictions on the future of coral reef environments,

there has been far less research into non-coral reef systems. Rocky reef environments are

formed by the erosion of hard substrate through tidal and wave action and can be highly

productive and diverse habitats with complex and varied structures [27]. Investigations

of these ecosystems is less extensive than with coral reef systems, but they are hubs of

temperate biodiversity that provide many ecosystem services to their environment [28, 29].

1.2 Rocky reefs as important habitats

Rocky reefs are composed of a rocky substratum with varyingly sized rock, from

bedrock to boulders, and cobbles; and contain sand patches, macroalgae, sponges, sea-

grasses, and other benthic structures within them [30, 31, 32]. The structure of the rocky

reef itself, as with coral reefs, influences species richness, abundance, and diversity, with

greater complexity being associated within each of these variables [33]. For individual

fauna, this structure provides greater availability of refuge areas, feeding grounds, and

mating sites [31].

Many of the provisioning ecosystem services provided by rocky reef environments are

analogous to those provided by coral reefs. Rocky reefs are often structurally complex

habitats that support biodiversity through benthic availability for settling organisms and

refugia for mobile ones [33, 34]. In British Columbia, rugose rocky reefs had 800% more

temperate reef fish biomass (of small reef fish) compared to less complex reefs [35]. Rocky

reef coastlines in Britain have seen new species discoveries [36]. Some rocky reefs are able

to provide services even when no longer living: rocky corralline algae reefs can continue

to provision habitat, structural complexity, and refuge after death [37]. Rocky reefs can

be supported and enhanced by algae, kelp, and other flora that provide additional habitat

and resources to the system. Overfishing in these environments can lead to a cascading

habitat shift through subsequent algal and kelp losses leading to a barren-reef phase shift
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[38]. Rocky reef ecosystems can act as environmental buffers to coastlines. Coastal pro-

tection from wave action and storms is key to minimising erosion of both natural coastal

environments and of man-made structures nearby [28]. Where rocky reef systems are home

to sufficient flora they can act as blue carbon sinks, providing essential regulation of both

the local and global environment [34]. Rocky reef habitats encourage tourism to rural

areas, greatly influence the local economy, and provide a strong tradition (often through

fisheries) that fuels a sense of community [29]. Rocky reefs support sandy beaches and

therefore also benefit the activities that are linked to them: sports, recreational fishing,

and even casual time outdoors [28].

Rocky reef systems composed of chalk substrates are globally rare. 57% of European

coastal chalk is found in Britain, and it is still scarce there, composing only 0.6% of coast-

lines predominately in Kent and Sussex [39]. Chalk is a relatively soft rock, though there

are varying levels of hardness depending on its composition [40]. Associated fauna and

flora utilise and exploit this feature to their benefit: boring invertebrates, as an example,

can penetrate the chalk more easily than other substrate materials [41]. Chalk habitats

can be flat planes of smooth chalk or contain boulders, cobbles, and other substrate types,

such as rock, mud, or sand. Often a combination of these structures and materials com-

pose the entire substratum and they can occasionally form distinct reef areas wherein the

chalk substrate is “topographically distinct from the seabed” [42].

While coral reefs are highly valued and widely publicised to be in decline, other ma-

rine reef systems are also vulnerable to the combination of human impacts and climate-

exacerbated events [34], but these impacts are less well understood. The lack of focus on

them means that they are far less monitored and assessed. Because of limited surveying,

dedicated and relevant methods and metrics are not commonplace. The differences in type

of organisms present on these reefs and in substrate composition, when compared to coral

reefs, would suggest that the assumptions made when examining coral reefs should not

be assumed true for other systems, and that the same pressures and responses cannot be

applied by default.

The loss of reefs would be catastrophic to the marine environment and those that rely

upon it, directly or indirectly. Monitoring and, where possible, counteracting decline in

structure, diversity, and all associated features is essential for the future of these systems

and the prosperity of oceans and people alike.
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1.3 Environmental monitoring of marine reef ecosystems

The ability of coral reefs to provide vital ecosystem services is declining worldwide as

they are continually degraded [43]. Management and monitoring of these systems is vital

to maintain their health and function, but must be done with a focus on reef structure

to increase the resilience of reefs [10]. The monitoring of reef systems is a complex and

challenging task with many techniques used globally. Quadrat and/or transect surveys

can be used to assess species richness, species abundance, percentage cover, and other

metrics [44, 45, 46]. These assessments are repeatable to a certain extent, but rely heavily

upon in-situ SCUBA work and so are limited by time, conditions, cost, diver skill (in both

diving itself and in the tasks required by thesurvey), and the subjective view of the diver.

As technology has progressed, the use of 3D modelling to extract coral reef data has

become more common, often by image or video collection through SCUBA diving and

sometimes followed by Structure-from-Motion (SfM) 3D modelling or digital elevation

models (DEMs) [3, 17, 47]. These methods benefit from greatly reduced time constraints

as once data/images are collected they can be reused in any number of ways (e.g. for

continuous/repeated assessment in the future). As such, the methods for this data capture

are varied, but all follow along the same vein.

Most prevalent are single camera data capture methods, with a single action camera

or DSLR used to capture images at a set interval (i.e. 1 frame every 1, 3, or more seconds)

or to take video footage with stills to be extracted post-survey. These methods are is often

restricted to a top-down view of the reef that limits the model accuracy to a birds-eye

view of the substrate, poorly rendering or excluding the overhangs and crevices that are

commonly found in reef systems [17, 47, 48, 49]. Analysis of data from remote sensing

surveys can be more intensive, particularly with video and photo data. They are also often

restricted to a top-down view of the reef that limits the model accuracy to a birds-eye

view of the substrate, poorly rendering or excluding the overhangs and crevices that are

commonly found in reef systems [17, 47, 48, 49].

The choice of camera in underwater modelling is a balance of price, image/video qual-

ity, and the number of cameras needed. While there are many types of camera available,

generally those used underwater are limited to mirrorless, DSLR, “rugged” cameras (those

that are waterproof, drop resistant, etc.) and action cameras. Popular choices include
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GoProTM and other similarly styled action cameras [48, 50, 51, 52] and DSLRs with a

wide-angle lens or standard lens set to a wide angle (≤ 35mm) [47, 53, 49, 54, 55, 56, 57].

Action cameras are widely available, cost-effective, and waterproof to a certain depth, with

inexpensive casings available to extend their maximum operating depth. They are also

exceedingly user friendly with very few buttons and simplified settings. These cost benefits

are balanced by more restrictive customisation, a single lens with 1-3 preset focal lengths,

and lower image and video quality than DSLRs at the more affordable side of the scale.

Current, more modern or higher-cost action cameras have much improved image quality

compared to their predecessors. Although DSLR and other fully customisable cameras do

provide a quality and adaptability advantage, the increased cost of the camera and of a

separate waterproof housing puts them out of reach of most monitoring programs. Cost

plays an even larger role when considering multiple camera set-ups [17, 58].

With further advances in computational power, automated annotation in marine mon-

itoring is becoming a more prevalent and powerful tool [59, 60, 61, 62, and others]. It

allows for images to be captured en masse and labelled by a trained computational net-

work, speeding up data analysis for researchers. When considering coral reef systems,

generally an image is cropped to only show 1 class per frame [63] or, where a wider-scale

image is used, a selection of pixels are annotated rather than an entire image [64]. Gómez-

Ŕıos et al. [63] used publicly available data to compare the use of different convolutional

neural networks (CNNs) and related techniques. Of the two datasets used, one used eight

semantic labels (all but two of which were scleractinian coral) another used 14 (most of

which were species specific), while the last used nine (delineated only as five coral and

four non-coral). Data augmentation techniques of random image rotations, flips, shifts,

and zooms were not found to improve the accuracy of their best performing models sig-

nificantly, with a shift augmentation improving the accuracy in one data set by 0.18%

and zoom improving another by 0.68%. Misclassifications highlighted the challenges of

using a dead coral class, most probably because it incorporated all coral types when dead

so morphology and texture would more closely match an image with other classes than

this class in many cases. They also had issues with morphologically similar species dis-

tinctions, which would require many more images with expert annotation to train upon

and, as noted in their findings, may be helped by the use of full coral colony images aside

from exclusively close up frames. Mahmood et al. [64] utilised an Australian data set to
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train a deep CNN to annotate coral reef images. Their training image annotation labelling

covered the most common benthos within one region (Western Australia) and applied to

50 pixels within each image. The algorithm best performed when trained and tested on

images from one year (97.00% accuracy) and worst performed when trained on one year

and tested on others (92.45% accuracy). This is likely a reflection on the highly fluctuat-

ing structure of reef systems. Reef-wide events such as storms and bleaching can change

the appearance of many substrate types rapidly, while the form of faster growing species

can also be more fluid and change on a smaller scale year on year. Some attempts have

been made to use CNNs to capture the health of corals: in the Persian Gulf, coral disease

has been detected to 95% accuracy [60].

ImageCLEF1 is a global effort aiming to advance the field of automatic image anno-

tation and eliminate language as a barrier to semantics. Research groups can propose

tasks that they think are valuable and interesting, and which individuals and teams can

sign up to develop a methodology and compare it to others in the same task, with the

overarching outcome of furthering the tasks results rather than “winning” a competition.

The first marine themed ImageCLEF task was LifeCLEF, a fish species identification task

(2014-15) that developed into SeaCLEF from 2016-17, identifying both fish and whales.

Both tasks utilised the abundance of image and video data from ecological surveys that

would otherwise require a large amount of time and effort to annotate. When considering

the increases in marine image data each year, automatic annotation is likely to become an

essential tool for ecosystem monitoring.

1https://www.imageclef.org
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1.4 Research objectives

The overarching aim of this research was to develop a feasible method for monitoring

marine reefs through 3D modelling. This should be simple to perform and relatively

quick to execute and analyse on both large and small scales. After a review of associated

literature, a series of tools and metrics were investigated and developed to achieve this

aim through the thesis research questions.

RQ1 - Can multiple cameras be used to the same accuracy of single cameras

in Structure from Motion photogrammetry in less time?

Single camera methods of capturing coral reef data are common and there are in-

stances of stereo image/video capture, but both require several, if not many, passes

to capture reef areas in their entirety [48, 49]. The time required for this is extensive,

with few areas of relatively small scales, often 2m by 2m areas, captured per dive

[48]. Multi-camera methods are essential for more rapid surveying, particularly with

the scale of changes occurring on reef systems during this time of global change.

With multiple cameras comes the question of number of cameras, placement, and

angles. The number of cameras impacts the total field of view of the device, and

therefore the effectiveness and speed of surveying. Modelling software best performs

with 60-70% overlap in adjacent images, so position on a frame and angle need to

account for the necessary overlap while also capturing the widest area of reef pos-

sible. Collected data needs to build models to the same or better quality as single

camera methods and allow for data extraction to be just as accurate and reliable,

if not more so, to be a viable replacement methodology - inaccurate results would

negate the benefits of faster surveying. As such, they need to both provide accurate

reconstruction and look realistic enough to be used as visual aids when communicat-

ing research. The survey method and software pipeline for building the 3D models

must therefore provide a precise model quickly enough to be viable for practical use

in reef monitoring.

This research objective is explored in chapter 3, where the proposed approach is

developed and tested in a coral reef environment, and in chapter 4, where it is used

in a temperate chalk reef survey.
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RO2 - Are coral reef complexity metrics developed for tropical systems of use

to temperate habitats?

The structural complexity metrics used in coral reef surveys and assessments often

look at the diversity of benthic organisms or at small scale topographic changes

provided by the varied substratum [65, 66, 48]. Though there are some general

metrics [65, 66], most have either been developed specifically for coral reef systems

or adjusted to suit them prior to use [66, 65, 48]. Their suitability for other reef types

is unknown and links to local biodiversity, structure, and other site characteristics

may not be legitimate if the metric does not represent the substrate accurately.

Comparing the relationships of commonly used metrics on different reef types would

demonstrate each measures’ appropriateness. Novel measurements of complexity

may be required that are tailored to individual ecosystem types and can represent

topographical changes that complexity metrics do not adequately measure in rocky

reef systems. These metrics can then be explored with other ecosystem variables,

such as species abundance, diversity indices, and damage assessments.

This research objective is explored in chapter 4, where unchanged metrics for coral

reefs are applied to a temperate chalk reef, and chapter 5, where adapted metrics

are tailored to the chalk reef habitat.

RO3 - Can coral reef substrates be automatically annotated from 2D images

accurately?

The most time consuming element of marine surveying, both in- and ex-situ, is

species diversity and the subsequent indices associated with diversity and abundance.

Automating the process would not only reduce the time needed for species counts

and identification, but could also eliminate the need for human interaction with

the dataset outside of uploading images. Neural networks are often used in image

detection and recognition, but the varied morphology within coral reef species’, and

even genera, mean that developing an accurate and reliable network is extremely

challenging. Some morphological groups may be easier to identify, but even they

may still be too narrow for an algorithm in its early stages. A convolutional neural

network (CNN) trained on coral reefs will inevitably be skewed in favour of the

particular reefs it is trained on, but making one generic enough to be applied globally

Chapter 1 9



Computational analysis of reef structure and benthic composition

is an essential element of a useful annotation network. Similar networks could also

benefit the monitoring of other reef types as they are less biodiverse than coral reefs

and may be both easier to detect and easier to recognise to genus or species level.

This research objective is explored in chapter 6, where a new task is developed

for ImageCLEF to annotate coral reef images, and chapter 7, where an attempt at

developing a network to annotate the ImageCLEF data set with additional images

from other sources is described.

1.5 Research contributions

Research contributions made throughout this thesis are listed per research objective

below.

For research objective 1:

1. Collection of coral reef images and reconstruction of 3D models, and subsequent

extraction and analysis of model and substratum data in chapter 3. Substratum

complexity data was used to form part of an in-prep paper on multi-camera arrays

for 3D modelling.

2. A comparative assessment on the accuracy of a custom 5-camera data capture

method versus standard single camera data capture in chapter 3. This provided

the groundwork for integrating further cameras in image data capture approaches.

For research objective 2:

1. Extraction and analysis of substratum data from 3D models of the Cromer Shoal

Chalk Bed MCZ and analysis of related species abundance data in chapter 4. This

provided the data for a formal advisory report sent to the Eastern Inshore Fisheries

Agency (EIFCA) to highlight current and potential substrate damage, and to inform

management and further research at the site.

2. Development of a complexity assessment method in chapter 5 to better relate the

Cromer Shoal Chalk Bed substrate structure to organism abundance on the chalk

reef. This was independently developed as a novel method for extracting this com-

plexity type in a chalk reef environment and a novel python script (Appendix IV).
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For research objective 3:

1. Annotation of image data in chapters 6 and 7 as well as administration of images

annotated by others. This data-set was used and expanded upon in each year of

ImageCLEFcoral.

2. Participation in the 2020 NOAA GPU Hackathon as preparation for an ImageCLEF-

coral 2021 submission in chapter 7. This included working within a team to replicate

and troubleshoot a previous ImageCLEF submission as a first exposure to neural

networks.

3. Further testing of a neural network to automatically annotate coral reef images with

the addition of non-standardised publicly available data and colour enhancements

in chapter 7, and coordination of the task participation group. This submission to

ImageCLEFcoral 2021 was the first edition of the task to use alternative data sources

and demonstrated potential issues that can arise from this.

1.6 Research publications and presentations

Publications and presentations are listed per research objective below, with the specific

contribution stated.

For research objective 1:

1. An in-prep article demonstrating the theory and application of a novel camera layout

in 3D photogrammetric data capture. Contributions include in-situ testing; model

building and analysis; and drafting and editing the paper.

[J. Chamberlain, L. Clift, J. Wright, and A. Clark, “Multi-camera photogrammetry

using dodecahedron-based structures for terrestrial and underwater surveying,” in-

prep, 2023]

2. A public talk on 3D modelling in marine environments and post-modelling com-

plexity extraction for Pint of Science. Contributions include creating the slides for

complexity analysis and giving the presentation.
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For research objective 2:

1. A research report to provide a preliminary assessment of potential damage at the

Cromer Shoal Chalk Bed MCZ. Contributions include project planning, ex-situ data

extraction, statistical analysis, figure creation, and drafting and editing the report.

[F. Tibbit, J. Love, J. Wright, J. Chamberlain, “Human impacts on Cromer Shoal

Chalk Beds MCZ: Chalk complexity and population dynamics of commercial crus-

taceans,” Natural England, Tech. Rep., 2020.]

2. An in-prep article demonstrating the use of a novel relief assessment on the Cromer

Shoal Chalk Bed MCZ and comparing relief to other common structural metrics,

as well as contrasting these results with those of a coral reef system. Contributions

include the capture and building of coral reef models, conceptualising the method,

developing the code required, analysis of 3D models, and writing the paper.

[J. Wright and J. Chamberlain, “Investigating Human Impacts on Rocky Reefs Using

Measures of Complexity and Relief from 3D Photogrammetry,” in press, 2024]

3. An oral presentation to the Natural England Norfolk project team covering the

basics of 3D reconstruction with SfM and common complexity metrics that could be

applicable to the chalk reef. This presentation was given at the start of the project

before specific plans were set to demonstrate the capabilities of computation analysis.

A similar presentation was given over zoom two years later to a new group of staff

on the project. Contributions include creating the slides for complexity analysis and

giving the presentation.

For research objective 3:

1. A conference paper detailing the motivation, planning and results of the first Im-

ageCLEFcoral task. Contributions include determining substrate annotation labels;

training of image annotators; image annotation and administration; and reviewing

the paper draft.

[J. Chamberlain, A. Campello, J. Wright, L. Clift, A. Clark, and A. Garćıa Seco de

Herrera, “Overview of ImageCLEFcoral 2019 task,” in CLEF2019 Working Notes,

ser. CEUR Workshop Proceedings, vol. 2380. CEUR-WS.org, 2019]
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2. A conference paper detailing the motivation, planning, and results of the 2020 Im-

ageCLEFcoral task. Contributions include determining substrate annotation labels;

training of image annotators; image annotation and administration; and reviewing

the paper draft, as per the previous year.

[J. Chamberlain, A. Campello, J. Wright, L. Clift, A. Clark, and A. Garćıa Seco

de Herrera, “Overview of ImageCLEFcoral 2020 task: Automated coral reef image

annotation,” in CLEF2020 Working Notes, ser. CEUR Workshop Proceedings, vol.

2696. CEUR-WS.org, 2020]

3. A conference paper outlining the submission of a run to the ImageCLEFcoral 2021

task. Contributions include project planning, image colour enhancements, submis-

sion run troubleshooting, creating figures, and writing the paper.

[J. Wright, I-L. Palosanu, L. Clift, A. Garćıa Seco de Herrera, and J. Chamberlain,

“Pixelwise annotation of coral reef substrates”, in CLEF2021 Working Notes, ser.

CEUR Workshop Proceedings. CEUR-WS.org, 2021]

4. An oral presentation outlining coral reef substrate identification for each ImageCLEF

semantic label and the use of custom software to annotate images. Contributions

include creating and giving the presentation.

5. An oral presentation outlining the motivation and outcome of the ImageCLEFcoral

2019 task. This talk was designed to provide others in the Natural Language and

Information Processing research group with context on the research. Contributions

include creating and giving the presentation.

6. An oral presentation outlining the ImageCLEFcoral 2021 paper submission for other

ImageCLEF participants. Contributions included creating the presentation and pre-

senting the motivation and theory behind the project as well as the results.

7. A poster outlining the context and design of the ImageCLEFcoral 2019 task. This

poster was targeted to Biological Science research students to demonstrate the use

of image annotation in conservation research. Contributions include creating the

poster and discussing it at a general poster session.
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2 | Literature review

2.1 The importance of structural complexity in reef systems

Structural complexity is a vital component of a healthy and biodiverse reef habitat

[67, 68, 69, 70] - it provides the architecture for organisms to become established and

is also sustained by those same organisms. It is a measure of the physical diversity of

a system and its 3D characteristics, often also looking at the quality of structures to

determine the state of the habitat. A wide range of terms have been used to describe the

concept. Risk [46] defined spatial heterogeneity as the “actual surface area of a substrate

as compared to its horizontal projection area,” and was referred to by Luckhurst and

Luckhurst [71] who used the term interchangeably with habitat complexity and substrate

complexity. McCormick [66] described habitat complexity as the spatial arrangement

and diversity of surface types. Pittman et al. [45] took topographic complexity to be a

measurable form of surface heterogeneity, but offered no further definition. Di Franco et

al. [38] further characterised habitat complexity as the “tri-dimensionality of the habitat

... determined by abiotic (e.g. the physical rugosity) and biotic (e.g. the architecture of

the benthic cover) elements.” These terms all encompass the same idea - that structural

complexity is a mathematical description of the fundamental morphology of a system that,

in ecology, has long been used as a measure of ecosystem health and resilience.

2.1.1 Coral reef structure, health, and biodiversity

The most commonly thought of reef type is coral, wherein scleractinian corals make

up the dominant organism in a biogenic marine habitat. A coral reef is one part of a

connected biological system, linking with other reefs, terrestrial environments, seagrass

meadows, and mangrove forests and augmenting reef resilience [1, 72]. This connectivity

allows for ontogenetic species dispersal, providing nursery grounds and refuge for a variety

of reef-associated organisms [72], and for carbon sequestration (though individually coral
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reefs act as a carbon source [73] their interaction with other ecosystems allows for greater

carbon uptake and increases coral calcification [74]).

Structural complexity is widely studied on coral reefs and is a key to maintaining

a biodiverse system [67]. Many biological functions are enabled or supported by this

complexity [53] so it is often used as a proxy for reef health and resilience; greater structural

complexity is connected to increased food sources, breeding areas, refuge and settlement for

the organisms living in these environments [3, 4, 65]. Complex structures support diversity,

which brings organisms that provide more complex structures (Fig. 2.1). The different

morphologies of substrate-bound benthic organisms provide an intricate framework of

crevices, overhangs, and refugia that not only support other reef-associated organisms but

also provide settlement and expansion grounds for new or expanding substrates. With

increasingly strong environmental stressors, complexity is being lost as corals bleach and

die out [23] or are damaged by extreme weather and inattentive human actions (from

divers, snorkellors, and swimmers, boat anchors, etc.) [9].

Figure 2.1: Positive reef interactions creating a feedback loop that maintains coral domi-
nance on a reef system and promotes structural complexity and recruitment of reef fauna.

General consensus across studies is that structural complexity in a reef system is a vital

driver of biodiversity and therefore ecosystem health [67, 65, 75, 76]. Greater complexity

is reflected in greater coral cover [77], greater abundance of fish (as biomass and density)

[65, 78] and invertebrates [79], and reduced algae cover which could be be reflective of

intensified herbivorous activity [65].
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Structural complexity also has positive implications for coastal protection in reef areas.

While reefs are thought of as a form of protection outright, qualitative evidence has been

found showing that structurally complex reef systems offer greater protection than their

less complex counterparts. An analysis of research on the impact of structural complexity

on reef systems by Graham and Nash [65] showed that the effect was consistent despite

geographic distance from the shore, although the scale of the effect may vary. Some

studies within their review were inconclusive when assessing coral cover, algal cover, and

sea urchin density in the Caribbean region but when compared with other studies in the

review, trends held with other regions.

2.1.2 Coral reef complexity decline in the Anthropocene

Although slowly changing climates are a natural process, the increased rate of change

due to anthropogenic pressures is well recorded [80, 81]. The compounding pressures of

stress events, both long and short term, cause damage to reef systems across the globe

[24, 82]. The outcomes of this can in turn create a cycle of damage that acts as a feedback

loop, continuing and compounding reef degradation to an irrecoverable state [83]. With

every harmful impact on coral reefs, structure can be lost.

Increasingly warming sea surface temperature (SST) has a multitude of direct and

indirect effects that can diminish structural complexity. Increased temperatures are well-

recognised to cause coral bleaching in many regions of the world [82, 84, 85], an effect

compounded by higher levels of ocean acidification [86]. Increasing atmospheric CO2

causes greater uptake of CO2 into the ocean, leading to a greater volume of H+ thus

reducing pH. Lower oceanic pH can reduce the density of coral skeletons, weakening their

structure, and reduce calcification rates [87].

Rising sea levels can increase local sedimentation through land run-off, which can

smother coral polyps and prevent feeding, stressing, and starving corals to the point of

bleaching and death [9, 19, 88]. Pollutants can not only poison reef systems and encourage

disease [19, 89], but also reduce light penetration and encourage algal blooming [90]. Algal

blooms compound the reduced light effect, or create it, by blocking the sunlight (specif-

ically photosynthetically active radiation) from coral reefs, preventing photosynthesis in

the coral holobiont which stresses and starves the coral [91]. Algal mats can increase sed-

iment accumulation which leads to increase nutrient loads, smothering, and coral disease,
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and excessive algal presence could lead to an extreme spectrum of dissolved oceanic O2

causing shifts in community composition and lowered local pH [92], which itself can result

in reduced accretion rates, stunted growth, and dissolved coral skeletons [83]. These ef-

fects cause brittle coral skeletons that are easily fragmented in storms or by human impact,

leading to rubblisation of the coral and reduced structural complexity [83].

A more immediate example of reef structural loss from the effects of climate change

is the increased frequency of destructive storms. Cyclones, tornados, tsunamis, and other

natural disasters can be catastrophic for reef systems. Harmful effects, both direct and

indirect, can devastate a reef’s structure and its ability to recover. The strength and force

behind water movement can fragment and uproot coral colonies, with those colonies then

fracturing further colonies still attached to the substratum [93]. More complex corals are

more susceptible to this type of damage - branching corals are most often broken up by

storms [67, 93]. Fragmented and broken coral can take decades to recover, and storms can

occur multiple times a year on some reefs, which compounds the effect of these weather

events and damages the reefs’ capability to maintain a diverse and robust ecosystem [9].

Anthropogenic activities can also directly harm system complexity through removal

of, or damage to, marine substrates. Exploitation of reef resources is common in several

industries, including the food, aquarium, and jewellery trades [1, 94, 95]. Harmful fishing

practices are prevalent in poorer regions where coral reefs are vital for individuals as a

resource of income and food. Blast fishing, mostly with dynamite or fertiliser, kills many

fish with minimal effort - maximising profit - but can decimate the area where the bomb

was thrown. Coral, sponges, other animals, and even the rock below the benthos can be

destroyed, removing structure and species abundance in an instant. Cyanide fishing is a

more opportunistic method that supplies the food and aquarium trades with fish, inver-

tebrates, and coral [9]. Cyanide fishing is particularly harmful to corals when repeatedly

done, stressing the colony to the point of death [19], and because fishers will break corals

open to extract hiding fish [94], immediately removing their microhabitat and structure

from the reef.

Terrestrial development can cause considerable degradation to reef systems [19, 96, 97,

98]. Development often leads to pollutants in coastal waters, particularly sewage water

with high nutrient levels. The increase in nutrients can lead to phytoplankton blooms

that increase light attenuation thereby reducing coral health and resilience and propa-
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gating algal growth in areas previously dominated by corals [90]. Building on shorelines,

particularly on intertidal zones, often leads to increased sedimentation in the water column

that increases light attenuation and can block coral polyps, reducing the corals’ ability to

feed [9, 19, 88].

Phase shifts

Coral reefs are so called because scleractinian corals are the dominant organisms.

Changes to community structure can alter this dominance and push the reef into a phase

shift: an ecosystem-wide shift in community structure that leads to a change in the dom-

inant organism(s) (Fig. 2.2). These phases shifts, exacerbated by climate and anthro-

pogenic stressors, can be detrimental to reef complexity and health. Competition for

dominance on coral reefs is a constant shifting pressure between slow and persistent or-

ganisms, such as corals, and faster growing organisms, such as algae or Crown of Thorns

starfish. Sponge reefs are also now considered a possible phase shift outcome for hard

coral dominant systems in some regions [99, 100], as are corallimorpharians, soft corals,

and some other benthic groups [100].

The balance of species abundance within a reef system is delicate. Hard corals often

can’t outpace the growth of other species and instead rely upon herbivores, spongivores,

and even tidal action to remove or maintain the level of competing benthic organisms

[101]. The removal of these animals can upset reef dynamics and, when buoyed by other

disturbances, a phase shift can be unavoidable. Many reefs in the Caribbean have moved

to algal dominance through extensive herbivore loss, storm impacts, and disease [102],

as well as sedimentation and eutrophication [103]. Overgrowth of coral can cause their

smothering, suffocation, and eventual death. Dead corals easily fragment to form rubble,

eradicating structure and further alienating a range of species’ that would otherwise aid in

maintaining relative species abundances [88]. This creates a feedback loop that perpetuates

the new reef phase (Fig. 2.2).

Coral reefs have been able to recover from phase shifts in some instances. Though a

spatially restricted study, the Dairy Bull reef on the north coast of Jamaica, which was an

algae dominated system before 1998 in part due to a loss of herbivorous activity, showed

a dramatic decline in algae (∼90% loss) and increase in scleractinian corals (∼132%

gain) between 1995-2004 that resituated hard corals as the dominant group. This change
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was potentially due to a high abundance of Montastraea annularis coral colonies, which

provide a significant contribution to reef structural complexity and are resilient to extreme

weather events [104], and reflected by increased black sea urchin, Diadema antillarum,

density which may have in turn been influenced by the grazing of other urchin species

[105]. In the Florida Keys, the herbivorous crab species Maguimithrax spinosissimus was

able to remove 50-80% on algae cover which subsequently led to great increases in coral

recruitment and fish abundance [106]. Cases of recovery are uncommon, but do provide

some hope for amelioration with and without human intervention.

Figure 2.2: An example of the causes of phase shifts between a coral reef, an algal reef,
and a sponge reef.

2.1.3 The structure of non-coral reefs

Coral reefs are not the only type of reef. Natural reefs are geological bars formed from

any number of organisms or materials. Oyster reefs, for example, are formed from living

and dead oysters and provide structure and habitat for nekton species (those that are able

to move freely in the water column) in normally muddy-bottomed ecosystems, allowing

more diverse substrate to be exploited through “physical ecosystem engineering” [107].
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Sponge reefs are also becoming more common and, for bioeroding sponges, could increase

the complexity of reefs even after out-competing corals [108]. Alternatively, abiogenic reefs

are commonplace in marine and freshwater environments and can be formed of sand, rock,

chalk, and other similar materials. Each of these form in different ways, creating unique

and varied structures that can greatly differ from each other in their complexity.

There has been comparatively little research into non-coral reef systems. Where it oc-

curs, it generally focuses on organisms living on/around the substrate rather than on the

substrate itself. Where structural complexity has been assessed a range of relationships

have been found, dependant on the reef type. Temperate rocky reefs, for example, show

a positive association with rugosity and small fish biomass but a negative one with larger

fish in some instances, potentially through a flora-associated enhancement of resource

availability and refuge provisioning [35]. An experiment with oyster reefs of varying com-

plexity showed that higher rugosity systems showed higher densities of many, though not

all crab species, with the larger crabs showing the greatest preference for more complex

areas [109]. Contrasting these findings, habitat complexity is not always found to have

an impact on fish assemblages in temperate rocky reef environments, showing that not all

ecosystems follow expected patterns [110]. In some cases, the type of benthos impacted a

rocky reef’s biodiversity more than structure and no-take fishing zones did [38].

There is a clear need to continue to monitor the physical structure of coral reefs to

track and predict topographical shifts, and an even more prevalent need for investigation

into other reef types to assess if they are following the same trend and, if so, whether they

are losing complexity for the same reasons. Large scale, cost-effective, and time-efficient

methods are required for future efforts to keep up with the scale of marine systems and

the potential changes to their substrate.

2.2 Reconstructing marine environments

Mapping and reconstruction of underwater structures is an intensive task with a range

of methods and applications. Measuring the changing depths of the ocean is known as

bathymetry, and is the foundation of early mapping. The first bathymetric map was cre-

ated in 1853 and is extremely coarse in detail compared to those in later centuries (Fig.

2.3). Weighted lines were originally used in these surveys, also known as “plumb lines”
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[111], before sound waves became a common method to gather underwater depth data.

Single beam echo-sounders were developed to emit a beam of sound and record the speed

at which this beam returned. The resulting data allowed for large areas of ocean depth

to be measured, but had no way to determine if the depth measurement was coming from

directly below the device or anywhere within its 30-60◦ focus beam [112]. Following this,

multibeam echo-sounders greatly improved the resolution of resulting data by using cross-

beam like soundwaves and noting the intersections of said beams. This advancement in

technology allowed the entire seafloor to be mapped in much greater detail than before

[112]. With both single and multibeam echo-sounders, the shallower the water the more

accurate the data - the less distance a sonic wave has to travel, the less of a spread area

the angle of the beam can reach, meaning a smaller region is surveyed in greater detail.

(a) (b)

Figure 2.3: Bathymetric maps of the North Atlantic ocean, from (a) 1853 by Matthew
Fontaine Maury1 and (b) 2021 generated through the GEBCO Grid2.

2.2.1 The history of photogrammetry

Photogrammetry allows for the extraction of measurements from objects within an im-

age or set of images. It was developed - using a foundation of Leonardo da Vinci’s principles

of object perspectivity - relatively soon after the invention of photography (1839) and the

development of the first camera (1851), with measurements from camera images used in

documenting public buildings from 1858 [113]. Photogrammetry was initially carried out

by hand before becoming automated from the 1950s, allowing for ”basic to photogram-

metric restitution” to project 2D image coordinates into associated object coordinates in
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3D [113].

Photogrammetry may have been imagined before the photograph was even invented.

Notebooks from da Vinci depict “points, lines angles, surfaces and volumes on the picture

plane” [114], beginning his work into optical projection. Mathematicians used da Vinci’s

work to develop the field of projective geometry - looking at central projection, or how

geometric objects and their projections onto other surfaces relate to each other.

Konecny [113] divided photogrammetry’s advancement into 4 stages, defined by the

rapid development early on in each. Plane table photogrammetry (1850-1900) used, and

was named for, plane table surveying principles to map topography [115]. The start of

this stage is attributed to the French engineer, Colonel Laussedat, who lead experiments

into topographical surveying is the first instance of extracting measurements from images

for mapping [116]. Analogue photogrammetry arose from 1900 to 1960 with the invention

of the aeroplane and development of better equipment allowing for aerial mapping [117].

The improvements in technology lead to new instruments; 1908 saw the invention of the

stereoautograph from Eduard von Orel - a plotter utilisable in mountain surveys [117]. The

use of aerial surveys was revolutionary, particularly as a resource in both World Wars. A

short period between 1960-1985 was known for analytical photogrammetry with improved

outputs from both computing developments and a new mathematical process [115]. These

improvements overcame most previous constraints in photogrammetry and allowed for

further uses, including in extraterrestrial missions [118]. Despite the advancements made

in such a short time, the expense required for photogrammetry kept it out of reach for

most.

From 1985 to the present day, computational photogrammetry has risen as a simple,

relatively inexpensive tool. The rapid increase in computing power and the normalisation

of technology in schools and homes lent itself to great steps forward. The development of

imaging capture and processing tools led to vastly improved accuracy in photogrammetry;

digital cameras, with charged couple devices instead of film, are both more accurate and

much easier to interface with computers [119]. Digital computers replaced photogram-

metric plotters and enabled large datasets to be utilised with better hardware (i.e. larger

HDDs, then SSDs, and more powerful RAM) and software that allowed for user-friendly

1https://photolib.noaa.gov/Collections/Voyage/History-of-Oceanography-Collection/Bathymetric-
Maps-Collection/emodule/1287/eitem/72846

2https://download.gebco.net
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data processing with fully automated algorithms. The ease of access into digital technology

and related software has lead to a boom in 3D modelling and subsequent photogrammetric

data extraction in marine monitoring and surveys [3, 56, 17, 120]. Low-cost approaches

have been developed using more affordable equipment and software [48, 121, 122], allowing

more research to access these methods and move towards computational approaches.

2.2.2 3D modelling of underwater systems

3D reconstruction can occur through several methods. The most common by far in

marine applications is Structure-from-Motion (SfM) photogrammetry, which determines

the environment and camera positions to project a 3D reconstruction accurately through

recovering the position of shared points in images. This can be done with one moving

camera or with multiple cameras capturing different angles simultaneously [48, 123]. Other

methods include photometric stereo and shape-from-shading, both of which utilise a single

camera in a static position while a light source moves in each still, and reflection on the

camera lens is used to determine object position in 3D space. The practicality of these in

real-life marine survey situations is limited, considering the time constraints of SCUBA

and light refraction in water.

3D reconstruction of reef systems is becoming a prevalent and promising method for

quantifying substrate variables and visualising reef changes [3, 56, 17, 120]. The use of

modelled systems has allowed for easier and more advanced metrics to be taken, improving

the accuracy and speed of data collection. Currently many 3D modelling techniques only

cover a small area of the reef at a time, with 2x2m areas generally used per model. This

limited scale reduces the efficiency of data collection as, though more metrics can be used,

the number of dives required is still high. Image collection of large scale areas in single

dives is an essential next step in 3D reconstruction of coral reefs to optimise data collection

and increase the efficacy of monitored reefs.

Generating a 3D model using SfM requires images of an environment wherein the

modelled objects do not move. These images can come directly from photographs (images)

or taken as video frames (stills). The use of stills and images is not consistent between

data collectors, though the effect this has on the validity of data extracted from a model

is unknown. The convenience and insurance of a video still extraction can be highly

beneficial to combat image blurring and a need for more images than anticipated, but
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there is a trade-off with the data embedded into stills being considerably less than that

in images. Some papers [3, 124, 49] suggest that calibration of cameras is preferable

during data collection, but others suggest that this is unnecessary [125, 48], likely due

to the processing involved during SfM incorporating processes that account for unknown

calibrations.

Most papers working in SfM of coral reef systems utilise one camera [47, 49, 48, 54,

55], though some use two [58], and predominantly use Metashape3 (previously named

Photoscan) for processing and generating 3D models. The workflow used is consistent

across papers, with many following the procedure set out in Burns et al. [49]. As a

relatively low cost, commercial program, Metashape is well suited to model development

while remaining accessible and there are many informed papers and guides to allow for a

wide range of people to use it. This is beneficial for pushing 3D modelling to widespread use

in short- and long-term research and monitoring. Some papers rely on other algorithms

and mapping software in model creation, i.e. VisualSFM to MeshLab [124], or on in-

depth user interaction throughout processing [58], which may produce accurate results

but is inaccessible, particularly to monitoring projects, and is unlikely to be replicated by

others unless it becomes more comprehensible, despite being open source.

Any camera used in image/still collection needs to be of good enough quality so that

common points across images can be found. This is particularly true of underwater data

collection, as light refraction, light attenuation and turbidity can all contribute to inad-

equate image collection. To combat this, the distance of the camera from the modelled

object/area is often closer than it would be on land. Camera type may also come into

effect with clarity, as higher resolution cameras will be able to generate clearer images.

The use of digital SLR cameras in underwater housing is common when images are used

instead of video stills [3, 47, 53, 54, 120] and generally capture images from 2m [47, 120]

to 3m [3, 53, 54] above the substrate, though up to 5m distances have been used [120].

Closer capture is used when video footage is captured, from 1m-2m [126, 122] with high-

definition video cameras to as close as 0.5m-1m using GoProTM action cameras. Stereo

camera set-ups, while not common in modelled reef capture, have been used from 1.5m

above the substrate [127]. DSLR cameras provide the widest photographic footprint across

literature, but their cost and the price of housings required have lead to lower cost meth-

3https://www.agisoft.com
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ods using action cameras to be identified and used [48] to make modelling systems more

accessible to monitoring and other research groups, and these camera types have been

found suitable for both trained researchers and “citizen scientists” for 3D modelling [50].

A major practical component to 3D modelling habitats is the scale that can be cov-

ered. Smaller areas offer a much quicker processing time and may be well suited for

some projects. To truly proliferate through research and monitoring, the ability to model

large areas is vital and, to an extent, have been modelled by some groups [47, 54, 58]. As

with any program, increasing the images used in model generation also increases processing

time. Larger areas need more images by default, but ensuring that generation is optimised

requires only enough for accurate modelling. To ensure this, adequate image overlap is re-

quired. While there have been suggestions of up to 90% overlap being necessary [120, 128],

many have found that less, between 70-80%, is sufficient [53, 49, 125, 54, 127, 51]. There

are of course some exceptions, with overlaps as low as 60% [48] and as high as 95% [47].

2.2.3 Processing 3D models in Agisoft Metashape

Imaging a reef is only the first step in creating a 3D reconstruction. The building

of a model can utilise many varied techniques, but SfM is both common across marine

monitoring and assessment [3, 17, 48, 122], and is relatively inexpensive and simple to

carry out compared to many other reconstruction methods. It relies on the extrapolation

of camera position in 3D space through common points between adjacent images to build

an accurately scaled and positioned model of the environment. Metashape is one of several

software options available in generating SfM 3D models and is commonly used, potentially

because it has automated these steps into user-friendly software with customisable settings

and interactive models [3, 49, and others].

Selecting workflow settings for SfM reef modelling

A common theme in adjusted settings is the aim of minimising processing time as

much as possible while maximising the model quality. Some studies adjust a few settings

in one or more steps, while others fully customise model creation in each stage of the

process. A subset of studies using Metashape (or Photoscan prior to the renaming) with

adjusted settings are compared below. Where a setting is not mentioned or is called

standard/generic, it is presumed to have been left to the default.
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When aligning photos, accuracy was generally set to high [47, 54, 51, 129], though it

has been set to medium [48] and low [124] with success, though the low quality did show

increasing error with models that contained structurally complex features when combined

with the other adjusted settings (see [124] for details). This study was also the only one

to turn off pair preselection. Key point limit was only changed once, increasing to 50,000

initially and further to 70,000 if any images were not aligned [54]. Tie point limit was

also increased in some cases, to either 5,000 (or 8,000 if images were not aligned) [54] or

10,000 [17, 47] and was once decreased to 1,000 [124]. Dense cloud quality was lowered

to “medium” in some cases [124, 48, 54, 51] but no other settings appear different to the

standard. Mesh face count was set to high in some cases [54, 51], but a custom value

of 3,000,000 was used once to increase the resolution of a relatively small scale model

[48]. Only two studies altered the texture settings. One increased texture size to 30,000

[51] while the other increased size to 16,384 while also using the adaptive orthophoto

mapping mode [54]. Little clarity was provided in the above studies as to why settings

were specifically selected and what impact they had on model quality or processing speed.

Photogrammetry has become increasingly common in marine monitoring, particularly

in the reconstruction of coral reef systems [3, 56, 17, 120, 48, 122]. Its use shows a

clear benefit over exclusively in-situ assessments by providing reusable data that can be

utilised in a range of studies with limited SCUBA diving requirements. This data could

even enable future research to be carried out on soon-to-be “historical” datasets with

assessments that may not yet exist, effectively future-proofing substrate data. Linking

3D reconstruction with previously collected “analogue” structural complexity metrics is

key to driving research towards computational analysis and providing a stepping stone

between exclusively in-situ versus ex-situ research.

2.3 Measuring structural complexity in marine habitats

Measuring complexity in-situ is complex and often inaccurate but is accepted as a

relatively easy-to-replicate and cheaply performed assessment. Many in-situ methods of

reef surveying rely on the use of transects, quadrats, or both. These provide areas for

study that can be chosen at random or be selected for repeated measures over a period

of days, months, or years. The two can be combined to survey habitat complexity and

26 Chapter 2



Computational analysis of reef structure and benthic composition

species interactions as part of coral reef monitoring [130].

The classification of reef substrate can give an insight to the composition, complexity

and functions of a reef system. There are many ways to approach this classification and

choice is dependent on the question being answered by surveying. Species abundance

and distribution measures can be used as they provide an in-depth view into substrate

composition, although when only looking at complexity it can be more appropriate to

measure at a higher taxonomic level or via growth forms.

2.3.1 Reef complexity with analogue metrics

While many habitat surveys include a complexity assessment of some sort, the range

of metrics available have led to a large amount of research that is relatively incomparable.

The act of measuring complexity in-situ can be a challenge in and of itself. Rugosity is

the most common metric in reef ecology for determining the complexity of a system. It

has been used consistently for decades [4, 71, 65, 131]. Rugosity of a reef system is often

determined from a spatial index assessed using the common chain-and-tape measure. This

is limited by chain link length, the presence of organisms such as soft corals that can bend

and twist under the chain weight, crevices and overhangs that cannot easily be navigated

around, and the difficulty of repeating measurements in the same place that they have

been done previously. Subjectivity in chain placement can limit the replication of the

method, as can chain link length, which can cause misleading distance errors at larger

scales [132].

Having this metric allows for comparisons to be drawn from different reef sites, but

chain-link length is an important factor to consider when undertaking cross-study analysis

[133]. Visual assessments of complexity are also relatively common, especially in research

where only a descriptive appraisal of in-situ complexity is needed [4]. These are more

subjective than rugosity due to the influence of observer skill and experience, however

they do allow for large areas of reef to be assessed rather than isolating one specific

complexity component as a representation of the whole system.

2.3.2 Computational methods to extract complexity

With the current shift in monitoring techniques to digital methods, more sophisticated

analyses of structural compelxity are possible. Metrics that are difficult or impossible to
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carry out in-situ are now available to research teams, allowing those that are more accurate

or suitable to be utilised [48]. There are, of course, those that are both common in-situ

and feasible in 3D model data extraction. Linear rugosity is an example of this and has

been consistently used throughout the rise of reef mapping in modern monitoring either

linearly as done in-situ [48] or across an entire substrate area [47]. Other metrics include

the rare use of vector dispersion in 3D modelled complexity [48, 134] many years after it

was adapted for use on coral reefs in-situ [135], as well as fractal dimension [56] and slope

[56]. These metrics, and others, are explored in Section 2.3.3.

3D modelling is becoming more commonplace in marine ecology as a way of map-

ping reef systems and extracting complexity measures [47, 48, 122]. The use of 3D maps

is thought to provide more precise measures for complexity and be more replicable in

repeated studies and monitoring programs [48]. Newly proposed methods of collecting

structural data from models are often compared to in-situ data gathered from the same

site. This ground-truthing is a vital part of developing a new method, but can be chal-

lenging in the context of metrics and environments that have complex or time-consuming

in-situ data collection methods, but ex-situ testing can show the strength of a test that

is then assumed to be reflective of in-situ measurements [48]. Generally, the extraction

of complexity variables is done with different software than that used to build the 3D

model. The most common of these are Rhinoceros 3D from Robert McNeel and Asso-

ciates4 and ArcGIS from the Environmental Systems Research Institute5. Each offers a

different toolset for analysis. Rhino provides the ability to run python scripts that allow

for completely customised assessments, though this requires at least some knowledge of

writing script and in depth knowledge of the metric in question. ArcGIS provides many

built-in assessments with far less user input required, which is more user-friendly and more

restrictive to available metrics. Open-use software is available, such as Gwyddion6 and R7,

which enable anyone to analyse models to some extent, though as they are not designed

for use with 3D models. Analysis can also be performed within Metashape, allowing the

entire methodology to be performed with a single piece of software, though there are far

more restricted capabilities compared to other software options [17].

When standard top-down imagery is used, models can struggle to capture for crevices

4https://www.rhino3d.com
5https://www.arcgis.com
6http://gwyddion.net
7https://www.r-project.org
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and caves in reef systems [56], but time is often a prohibitive factor in marine surveying.

When collecting data, efficiency is key to keep constraints caused by access to sites, budget

and any seasonality from affecting the ecosystem. To increase the accuracy of many in-

situ methods would require greatly increasing the time taken to carry out data collection

and this is often not feasible. The use of computers to aid data collection can reduce the

amount of time currently spent in water collecting data [48], which also provides a safety

benefit to research by minimising the risks associated with SCUBA as much as possible.

2.3.3 Complexity metrics in marine monitoring

With the importance of structural complexity in marine research comes an influx of

metrics, some with their own variations. Complexity measurements can become incom-

parable with those from other studies, even when the research is done in the same area.

Below, some of the more common metrics are described. A summary table follows to

provide a quick overview of key features (Table 2.1).

Rugosity

Rugosity is a common complexity metric in ecology and measures the ratio of two

distances - the linear distance of a substrate as a contour and as a straight line. There

are various manners to measure the rugosity of a substrate, with the customary method

utilising a chain-and-tape. The first instance of chain-and-tape complexity had a chain

draped to follow contours in a 1m2 quadrat (Eq. 2.1) [46].

T =
n∑

i=1

(t1 + ...+ tn)
2 (2.1)

Where T is total substrate topographic complexity, n is the number of chains laid and

t is the length of chain required to follow the contour over a set area, first demonstrated

by Risk [46]. Although this is not a ratio, it is the earliest instance of rugosity in marine

ecology. The surface area of the substrate was assumed to be a function of the linear

contours found using the chain, as per “point-counting,” and to be a representation of

heterogeneity.

Having rugosity as a ratio allows for greater comparisons to be drawn between sur-

veyed points, though often important features for replication such as chain-link length are
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excluded from publications [4, 71, 65, 131]. Depending on the requirements/parameters of

the survey being carried out, the chain-and-tape method (Fig. 2.4) can be applied in one

of two ways, with the key difference being one uses a set chain length and only traverses

the relative contoured distance of that chain (Eq. 2.2) and one stretches across a preset

distance of substratum, often used with a quadrat of set size (Eq. 2.3). The first instance

of this ratio used Equation 2.2 [71]. There are notable issues with using a chain on coral

reefs. Where the benthos has tightly grouped complex regions, a chain may not be able to

follow the contour as it is and instead have to drape over top, missing much of the viable

area. Holes and crevices that are deep or difficult to get into may also be omitted from

measurement due to the inability to accurately map the chain to them. In both instances,

the resulting measurements can be highly variable [132]. The use of a chain itself can also

be troublesome, particularly if it gets caught on substrate and causes damage.

R =
length of undraped chain

length of draped chain
(2.2)

R =
contoured distance

linear distance
(2.3)

Figure 2.4: Rugosity calculated using linear distance and contoured chain distance, C.

Rugosity has also been applied non-linearly to cover the surface of an area [58, 136, 137],

sometimes called a Relief Index [138], though this is far less common than the linear

projection of complexity. It is similarly calculated to linear rugosity (Eq. 2.4).

R =
surface area of contoured terrain

projected surface area of uncontoured terrain
(2.4)

The introduction of computational complexity assessment has not steered studies away

from the use of rugosity, so it is often used for comparison when testing new methods of

data collection. In a study testing the power of digital metrics, Young et al. [48] found that
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in-situ rugosity strongly correlated with virtual chain rugosity extracted from Structure-

from-Motion (SfM) models. Friedman et al. [137] used Triangular Irregular Network

(TIN) based reconstruction to compare in-situ chain and tape rugosity measurements to

both virtual chains and virtual area rugosity measures. A strong correlation between in-

situ and virtual chains showed that the two were similar when compared, though in-situ

measurements were found to be higher in virtual ones. The variation found in virtual

chain measurements lead to testing with surface area rugosity, which showed similarly

strong correlations with in-situ chains with less variability than that found with virtual

chains. Similarly focused on surface rugosity over chain rugosity, Bryson et al. [58] used

SfM models to determine the accuracy of the measure and found that variance occurs

with changing environmental conditions. This is an important consideration when collect-

ing data, particularly in regions with variable weather and/or where surveying requires

multiple days.

Vector dispersion

Carleton and Sammarco [135] described vector dispersion as a mathematical “estimate

of vector variance for all vectors normal to the individual planar surfaces considered;” a

normal vector is one that is perpendicular to the surface (which in this instance is a reef

substrate). It was measured using a 3D profile gauge and calculated ex-situ (Eq. 2.5)

wherein 1
k is vector dispersion and R1 is found through Eq. 2.6.

1

k
=

i−R1

i− 1
(2.5)

R1 =

√(∑
cosxi

)2
+
(∑

cosyi

)2
+
(∑

coszi

)2
(2.6)

Wherein cosxi = directional cosine of vector normal to the surface of the individual

triangle, i, with respect to the X-axis, and equivalent for cosyi and coszi in their respective

axes, where (0, 0, 0) is the midpoint of the triangle.

Though vector dispersion has been long established as a complexity assessment [139]

and metric [135], it has not often been compared between in-situ values and digital values.

Carleton and Sammarco [135] determined vector dispersion to be highly suited to measur-

ing surface irregularity compared to other metrics assessed in the same study using a 3D
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profile gauge in-situ. This approach poses similiar data collection issues as the rugosity

chain: difference in step between points on the gauge would provide highly variable results.

The only test of vector dispersion accuracy on coral reef systems digitally was carried out

by Young et al. [48] using 3D printed structures and submerged concrete structures of

the same shape. They found SfM modelled vector dispersion to be highly accurate and

repeatable.

Vector ruggedness

Vector ruggedness is conceptually similar to vector dispersion [48] but uses square

planes to generate vectors instead of triangular planes [53, 54]. First developed by Sap-

pington, Longshore and Thompshon [140] and calculated by Eq. 2.7, it looks at the

variation of slope and aspect to provide an alternate view of the environment to a single

metric.

R = 1− |r|
n

where; (2.7)

|r| =
√(∑

x
)2

+
(∑

y
)2

+
(∑

z
)2

(2.8)

where |r| is the magnitude of the resultant vector of x, y, and z, and R is a dimensionless

value between 0 (flat), and 1 (complex).

Vector ruggedness has not been used in-situ for complexity assessment: Sappington

et al. [140] used ArcView to calculate the metric. Fukunaga et al. [57] found that vector

ruggedness strongly correlated to both surface area rugosity (called surface complexity)

and slope using digital elevation models (DEMs).

Angular standard deviations

A 2D representation of vector dispersion, called vector standard deviation, was de-

scribed in McCormick [66]. The equation for this is:

R1 =

√∑(
Xi −X

)2
n− 1

(2.9)

Where X is the angle of a vector, i. A similar metric was also proposed as substratum

angle standard deviation and calculated as above with Y in place of X (Fig. 2.5).
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Figure 2.5: Measurement of angular standard deviations of vectors X and angles Y .

Both of these metrics were carried out in-situ by McCormick [66] using a 2D profile

gauge. Vector standard deviation was noted as a 2D equivalent to vector dispersion.

Neither has since been used in standard in-situ or 3D modelled assessments, though vector

standard deviation was successfully used with laser lines to detect differences between

substrate types [141].

Verticality

Verticality is a measure of the changing height of the substratum [17] along a transect

(Fig. 2.6):

A(x) =

∣∣∣∣f(b)− f(a)

i

∣∣∣∣ (2.10)

Where A(x) is the average rate of change in bathymetric height, f(a) and f(b) are

positions on the substrate relative to intervals along the substrate of length i (chosen

based upon other relevant information such as mean body size of organisms of interest).

Figure 2.6: Measurement of verticality of a linear section of substrate.

Verticality may be a better assessment of linear complexity in environments that are

not formed with small scale complexity changes but are instead notable for their larger
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shifts in topography. Adapting i to suit the environment is a far simpler change than

increasing the size of rugosity chain links (either in-situ or computationally). This has

also been called slope in some instances, where slope is not in reference to the rate of

change of variables in a figure [57].

Curvature

Originally described as the rate of change of slope [142], curvature is becoming a more

common metric in complexity assessment [3, 54, 134, 57].

Z = Ax2y2 +Bx2y + Cxy2 +Dx2 + Ey2 + Fxy +Gx+Hy + I (2.11)

Where A through I are calculated by Lagrange polynomials of a 9x9 matrix of elevations

Z1 through Z9, per Zevenbergen et al. [142].

Where Z = 0 the surface is flat, while positive and negative values show convex and

concave substrates. It has been suggested having a range of values for an area is more

suited to describing complexity than a mean value, and that it may be more reflective of

complexity than vector ruggedness [134], though pairing the two could be beneficial for

capturing the structural variation across the morphologically varied coral growth forms

and of overall reef structure [57].

Consecutive substratum height difference

First described in a method comparison paper [66], consecutive substratum height

difference is a simple linear measure looking at changing substratum height, much like

verticality (Fig. 2.6). The equation was not printed but in-text explanations indicate:

∆h =
∑

(a1 − b1)
2 + (a2 − b2)

2 + ...+ (an − bn)
2 (2.12)

It has been referred to as
∑

dh2 as it is “the sum of squared differences in height from

one point to the next” [143].

McCormick [66] originally described the metric and found it to be a slight improvement

on other metrics tested.
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Fractal dimension

Fractal dimension (D) is a metric that links complexity to size categories by demon-

strating changes in 3D structure across given spatial scales. Though first described for

linear dimensions [144], the equation for fractal dimension can be used in 3D as well:

Dx1−x2 =
log

(
N(x1)
N(x2)

)
log

(
x2
x1

) (2.13)

Where x1 = size 1, x2 = size 2, and N = number of times x is required to cover the

substrate surface (Fig. 2.7). As with most metrics, the higher a value, the greater the

complexity.

Fractal dimension is a metric first applied to the study of coral reefs in 1983 [145].

The scale of study reported fractal dimensions between 1.9-2.0, later refuted and shown

as between 1.13-1.16 [146], which contrasts with more recent equations that calculate this

metric between 2.0-3.0 [48, 54, 134, 138]. Several other uses of fractal dimension show

different ranges of values, making it hard to cohesively compare fractal dimensions across

studies [56, 143, 144, 147].

A study [148] utilising rugosity chains of differing link sizes calculated fractal dimen-

sions of a reef system as:

D = 1− log(R2)− log(R1)

log(C2)− log(C1)
(2.14)

Where R is rugosity and C is chain link length for link sizes 1 and 2.

More recently [48, 54, 57], fractal dimension has been calculated as:

D = 2− slope of

[
logS(σ)

log(σ)

]
(2.15)

Where σ and S(σ) represent the resolution of a DEM or 3D model and the 3D surface

area at that resolution. This allows for the D to fall between 0-1, which is much simpler

when comparing fractal dimensions with other metrics, particularly graphically.

The limits of D are set by the topological dimension of the substrate in question.

As a fractal, D must be greater than the topological dimension of the surface: planes

have topological dimension 2 and so, in theory, D should always be greater than 2. As

evidenced above, this is not always true, potentially due to substrates not necessarily being
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Figure 2.7: A Koch snowflake (black) example of fractal dimension (Eq. 2.13), where
dimension, x, is shown in red. The top snowflake demonstrates x1 = 3 and N(x1) = 4,
and the bottom shows x2 = 1 and N(x2) = 16. In this instance, D1−3 = 1.26.

self-similar [138]. Likely the most applicable of the methods used to calculate D are those

using varied resolutions, as they create self-similar planar areas of squares.

Viewshed

Viewshed is a proportion of an area that is visible from a set point. While commonly

used in terrestrial terrain planning, it has been adapted for marine substrate complexity

assessments in recent years [136] and used to determine how “open” an area of reef is from

the view of an imagined observer [54].

V =
∑

A
(
v(p)

)
where; (2.16)

v(p) = {q ∈ τ | d(p,r,θ,σ) ≤ r and q is visible to p} (2.17)

Where V = total viewshed, v = viewshed of a point, q on terrain, τ , A = area of v,

p = observer, r = detection range, θ = horizontal field of view, σ = vertical field of view,

d = distance of maximum visible range.

A similar but alternative method has been used to assess the potential for a fish to

detect predators whilst feeding [17].
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Figure 2.8: Field of view of a fish when grazing where a is the highest point of the substrate,
b is the eye a fish grazing 2.5cm off the susbtrate and θ is the angle between the eyeline
and a secant to point a.

Complexity metric summary

A summary of the above metrics is provided in Table 2.1 below.

Structural complexity is a key component of coral reef health with a myriad of metrics

to accompany its many facets, but the organisms that provide this structure are equally

important [101]. Different organisms provide different types of structure and therefore dif-

ferent ecosystem functions and services. Current assessments are heavily skewed to in-situ

quadrat and transect surveys with manual identification and counts [11, 65, 149]. With

the push towards computational assessments of structural complexity, similarly computa-

tional methods by which coral reef substrate organisms are identified and counted would

also be of great benefit to reef monitoring. Increasing the speed and automation of these

surveys would both free up researcher time and allow for much larger data sets to be used.

2.4 Automatic image annotation

Annotation of features has been essential in the development of image retrieval. This

was first carried out manually and was then driven towards content based image retrieval

(an automatic method that relies upon simple image features) to negate human subjectiv-

ity in annotations. The disparity in results showed the difference between human semantics

in labelling and computational assessments of image colour, texture and other features.

Automatic image annotation (AIA) then developed to connect images to semantic labelling

which allows for searching images with keywords [150].

Automatic image annotation is an invaluable tool in a world with an ever increasing

amount of photographs and pictures. When processing an image, the aim is to detect
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Table 2.1: A brief summary of habitat complexity metrics.

Metric Key notes

Linear Rugosity Widely used and easily performed.
Restricted linear view.

Relief Index Encompasses entire substrate area.
Not commonly used.

Vector dispersion Accurate view of surface irregularity.
Only one computational use.

Vector ruggedness Correlates will to other metrics.
Only possible computationally.

Angular standard deviations Linear form of vector dispersion.
Restricted linear view.

Verticality Suited to environments with larger topographical
change.
Restricted linear view.

Curvature Range of values for broader view.
Not yet widely used.

Consecutive substratum height
difference

Compasses larger height changes.

Restricted linear view.

Fractal dimension Links complexity to target species.
Size scales could be restrictive.

Viewshed Highly distinct metric of complexity.
Assessed for specific points on terrain.

objects (i.e. a car, a person, a building) by relating the pixel information within the image

to the context of it. Labels of the image and/or the objects within it are then produced

based on an analysis of pixels and predictions derived from them. Manually annotating

images, aside from the time required, is cumbersome in data analysis due to the training

required and sheer volume of images needed to produce a viable dataset. The more specific

the image content, the more training required and the more time each image could take

to annotate. This then leads to the overarching goal of AIA - to label unseen images

appropriately with reliable accuracy, without the need for human intervention.

2.4.1 Methods for automatic image annotation

There are numerous approaches to automatic image annotation, many of which have

slightly different aims and assumptions that provide their distinctions. Some models base
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their algorithms on the premise that visually similar images contain the same labels to

some degree, and therefore search for already labelled images when presented with a new

query, such as with nearest neighbour models. Others, such as conditional models, focus

on labels themselves and the boundary between them to determine the probability of a

class’ presence in a new image.

Before deep learning became wide-spread, image segmentation occurred with relatively

simple algorithms compared to those used today. Deep learning techniques have improved

the accuracy of image segmentation efforts [151]. Initial processing requires a convolu-

tional neural network (CNN) to determine the features within an image, then a separate

technique is applied to assign semantic labelling to each feature [151]. This is commonly

based on either pixel level relationships with labels (semantic) or distinction of specific

objects (instance). Semantic segmentation utilises predefined categorical labels to classify

an image on a pixel-by-pixel basis whereas instance segmentation further characterises an

image by defining adjacent objects of the same type distinctly, rather than as one segment

(Fig. 2.9).
(a) (b) (c)

Figure 2.9: (a) An image with cars and billboards sectioned as in (b) semantic segmenta-
tion, where any adjacent pixels with the same semantic label are joined as one object, and
(c) instance segmentation, where every instance of a semantic label is grouped individually
whether it is adjacent to other objects or not.

Convolutional neural networks

CNNs are a type of artificial neural network that take an input image array (consisting

of the number of images, each images width and height, and the number of image channels)

and run it through a series of “layers,” or processing steps, to provide a subsequent output

array (Fig. 2.10). The input moves sequentially through the layers producing an output

for each layer that acts as an input for the next. Pre-annotated images are used to

train the CNN, wherein the processing parameters are learnt. A training image is passed
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through the model to a “loss layer,” which assesses the difference between the training

images ground-truth and its predicted output and signals the CNN to adjust the model

parameters and continue training. Parameter adjustment is done in epochs, where 1

epoch is one run of all training images followed by appropriate parameter changes, as

these changes must consider all training images to ensure that reducing the ground-truth

to prediction discrepancy in one does not increase it in others.

Feature extraction

Classification

Convolution

Pooling

Convolution

Pooling

Fully connected layers

Figure 2.10: The classification of an image through a simplified convolutional neural net-
work model, beginning with an input image (yellow), through to convolutional (green)
and pooling (red) layer outputs, to the fully-connected layer outputs from flattening (light
blue) and assigning a semantic label to features (mid blue) to a final result with associated
semantic labels and their probabilities (dark blue).

Determining the appropriate number of epochs for model training is a balance of

increasing accuracy/reducing loss while avoiding overfitting. Early stopping is a common

technique to prevent overfitting as much as possible, wherein a subset of training images

are used to monitor the error rate with every epoch and act as the “canary in a coalmine”

to stop model training. However, increasing error rate can be a false flag as models can

have a decrease-increase-decrease pattern to error per epoch, known as double descent

[152]. Too many epochs in training overexposes the model to specific data, causing it

to learn the specifics of the training data set rather than gaining a generalised view of

features and labels.

Once training is complete, the model can be used on previously unseen and unlabelled

data. Once imported, images are run through a series of layers (Fig. 2.10). The first layer

of a CNN is a convolution layer, which passes a kernel (filter) over each image to create a

feature map with predicted classes. This layer takes each image and determines the scalar

product of a portion of the image and one or more smaller kernel matrices (composed
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of learnable parameters), reducing the image to a 2 dimensional map per kernel stride

(to cover all image pixels, stride = 1). Following this, pooling layers reduce the scale

of each image further by calculating either the maximum or average of a portion of the

image, moving similarly to a kernal to cover the entire image. This minimises the volume of

detail to be passed on through the model while ensuring the essential details pass through.

The convolution and pooling layers can be repeated as many times as desired, with several

convolutions occurring before any pooling in some models. The fully connected layers lead

to the output, and begin by flattening the previous outputs before giving each feature a

label by applying weights. Each label is then given a probability when the output is

produced showing the likelihood that the associated label is correct.

2.4.2 Coral reef image annotation

There have been a variety of attempts to utilise the power of automatic image annota-

tion to aid in coral reef research and monitoring. The first, by Marcos et al. in 2005 [153],

looked at simple delineation of living coral, dead coral, and sand or rubble from video

footage using colour and texture features only. The premise for these features was the

distinct colours and regular texture of live coral, the monochromatic whiteness of dead

coral, and the monochromatic and varied texture of sand and rubble. They compared

results of their video stills using a neural network and a two-step classifier, both of which

showed considerably good outcomes considering both the novelty and difficulty of the task

set. Though the network provided a higher recognition rate with a lower error, they noted

that the classifier benefits from a simpler approach with the capability to add new fea-

tures if needed. This work shows the capabilities of automatic annotation to be useful in

coral reef imagery, but is severely limited by its broad categories. Despite this limitation,

as the first method to develop an algorithm for reef benthos annotation, it signified the

possibility of an innovative step forward in coral reef research.

In 2012, Beijbom et al. also utilised the varying colour and texture combinations of

reef benthic substrates in their annotation model [154]. They built on a previous method

by allowing for multiple patch sizes (to account for the different scales within their coral

reef data set) and adding colour as a variable. They highlighted the difficulties a changing

reef-scape poses to annotation, as their results worsened when testing across different

yearly images, with the exception of identifying coral versus not coral objects. Results
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were improved in their third iteration, training on 2 years of data and testing on a third,

which they attribute to an adjusted random classification baseline level. A follow-up paper

from Beijbom et al. [155] altered their algorithm with the aim of increasing accuracy while

decreasing the model’s runtime. They tested a semi- and fully automatic system, with

the former allowing the algorithm to “flag” images that it finds too challenging to a

human annotator and the latter running without human interaction. While promising,

the need for human interaction to such a degree is impractical for the large scale datasets

produced in coral reef monitoring. Their use of a semi-automatic model showed predictions

were similar to those done entirely by a human annotator when 50% of annotations were

done each by the system and a human annotator. Their fully automated system results

highlighted the need for a greater input of training images.

A more recent use-case of automatic image annotation of coral reef imagery by Hop-

kinson et al. [156] attempted to map semantic labels to a 3D reconstruction of a coral

reef. They began by building the 3D model, then determined the images associated with

a particular triangle within the models mesh layer. For a subset of the mesh triangles,

these images were presented to a human annotator to label with one of ten classes cover-

ing 10 benthic susbtrate groups, some at functional group level (i.e. algae) and others at

genus/species level, to produce network training data. Their algorithm was then trained

and used to predict the labels of all other images. They then applied three distinct clas-

sification methods to associate a label with each mesh triangle; (1) the class with the

most predictions across all associated images was chosen, (2) the class with the greatest

averaged probability was chosen, or (3) using a neural network designed to merge multiple

views into one label. Their technique applied to 3D reconstructions well, but notably

was unable to annotate vertical or overhanging reef areas due to their imaging technique.

They did find that increasing the number of different viewpoints of the mesh triangles

subsequently increased class prediction accuracy in most cases. However, the method is

highly restricted, focusing on semantic labels for substrates associated to reefs within the

study area only, and is not generically applicable to other reef systems.
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2.5 Summary

While many coral reef habitat surveys include a complexity assessment of some sort

[65, 66, 11], the range of metrics available have led to a large amount of research that is

relatively incomparable. In-situ surveying is rarely repeatable as assessing the exact points

of a specific location accurately underwater, even when removing the challenges of SCUBA-

based research, is functionally impossible. The push to computational reconstruction and

assessments is therefore key for accurate, reliable, and future-proof data sources [48, 47, 49].

The limitation of this assessment type is often in its execution, with the most common

approach providing top-down views from a solitary camera that insufficiently captures the

complex and shifting topography of marine reef substrates [50], and time requirements,

where a single camera has to cover one portion of reef multiple times to capture it well

enough for 3D reconstruction [48]. Increasing the number of cameras used and varying

their viewpoints could provide a faster image capture technique, and is the focus of research

question 1.

Throughout this section, the prevalence of coral reef research over that of other reef

types is clear. This demonstrates a clear gap in knowledge of both the current state of

structural complexity in other reef systems, as well as the appropriate assessment of it and

potential factors affecting it. Research question 2 therefore focuses on assessing a non-

coral reef environment and comparing its apparent structural complexity using a range of

metrics.

The 3rd research question of this thesis focuses on automatically annotating coral

reef benthos and was motivated by the need to link structural complexity to coral reef

composition. The lack of research in this area is likely a reflection of the difficulty of

annotating highly complex images such as those of coral substratum, but a push into this

field is needed to further enhance coral reef research with computational analysis and allow

for vast data sets to be utilised to their fullest potential.
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monitoring

3.1 Introduction

The intricate morphology of sclerectinian corals supports a wide range of ecological

niches, creating a diverse and robust system [65]. As such, reefs dominated by complex

coral types support a greater number of niches than their less complex counterparts [67].

Substrate complexity has a well-established relationship with ecosystem health and bio-

diversity. It is often monitored as a reflection of this [65, 67, 129]. The methods for these

assessments, however, are often time consuming and limited in scale. Even with the ad-

vancement of 3D technologies and remote sensing, there are limits to the size of areas that

can be assessed within pragmatic time scales (such as the duration of a SCUBA dive). The

efficiency of surveying methods for projects with a limited budget that monitor marine

systems repetitively should be a priority to support marine conservation.

The complexity of marine reefs is in decline [157]. Monitoring these systems can track

this change, but often cannot trace the cause, so assessments should additionally measure

defined substrate damage, tailored to either the ecosystem type (e.g., coral reefs, rocky

reefs, sand banks, etc), the specific region of interest, or both. Any newly proposed method

for substrate monitoring needs to not only be rapid and robust, but also as cost-effective

as possible [48]. It also needs to include metrics that can relate to past data, or the

monitoring risks becoming obsolete and may suffer from shifting baselines.

Though there are many computational processes available to monitor ecosystems,

Structure-from-Motion (SfM) 3D modelling is become a popular approach [48, 56, 3, 17, 47,

and others]. Building a 3D model from a set of images requires specialist software. There

are many commercial and open-source tools for SfM models, all with varying user control
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and settings. Agisoft Metashape (previously Agisoft Photoscan) is a popular choice in

marine surveying for its relatively affordable pricing and simple interface [3, 17, 48, 120].

This chapter compared the use of single camera data capture to that of a custom multi-

camera array when 3D modelling coral reef environments. A comparative assessment of

build quality settings was performed on single-camera image data to clarify the use of

specific specific settings when creating models, as often these are not explained or justified

(see Section 2.2.3). The construction of a multi-camera array was then described. As this

array relied upon overlapping camera views, the field of view of commonly used action

cameras was tested ex-situ against the settings claimed by manufacturers. Finally, models

generated of a coral reef by single and multi-camera approaches were used to find reef

complexity, which was then compared to assess the accuracy of the multi-camera array.

3.2 Methodology

3.2.1 Reef model sites

The Wakatobi Marine National Park of Indonesia (WMNP) is located in South East

Sulawesi, encompassing 4 main islands (Wangi, Kaledupa, Tomia, and Binongko) and

several smaller ones within 1.4million ha of sea. It is in the centre of the Coral Triangle,

an area known to be a hotspot of marine biodiversity that is home to 627 species of hard

coral (74% of all species) [158]. The area hosts several mangrove forests and seagrass beds

- both essential habitats connecting to coral reef systems [1]. Its status as a national park

and a hub of diversity has pushed the WNMP to a priority area for marine conservation.

Communities within the WMNP rely on reefs for food and income but, when com-

bined with regional and global stress events and historically poor management practices,

degradation has occurred throughout the park [159]. Blast fishing with dynamite is com-

monplace and can decimate the structure of the reef, negatively impacting reef complexity

and biodiversity [9, 159]. Dive tourism is common and has potentially harmful impacts

on coral reefs as divers can knock into the reef and may remove things from it [160].

Pulau Hoga, an small island north east of Kaledupa, is home to several reef sites on the

island’s fringing reef and is close to several others, including a highly degraded site (ad-

jacent to the Sampela Bajo village) and a mangrove site (on Kaledupa island). Hoga reef

encompasses a range of microhabitats with few direct stressors, although localised blast
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fishing may have led to increased rubble load on the reef [161] and decreasing complexity.

A Pulau Hoga home reef site, Pak Kasims, is part of the island’s fringing reef. It

begins 350m off shore, with a shallow crest and flat (5m) moving to a 40-70◦ slope, which

descends to sand flats at 50m (05◦27.569S, 123◦45.179E). It is considered a more pristine

area than many others surrounding Pulau Hoga. Though in better condition, it has still

been affected by fishing activities leading to an increased rubble load [161].

The Sampela reef site, a lagoon reef subject to overfishing, crests at 1-5m and slopes

to sand flats at 10-15m interspersed with coral bommies along one side and sparse reef

on the other (05◦29.300S, 123◦45.100E). It has shown such a loss in coral that it only

had 10% cover from 2014-2016 [162, 163]; this is likely higher than current coral cover

if decline has followed its recent trends. The reef has been heavily impacted by fishing

and high sedimentation. The decrease in herbivorous fish has lead to increased algae and

sponge cover, with subsequent coral loss reflected in a low complexity region [164].

As the Sampela reef has more challenging environmental conditions that can impede

data collection (i.e. increased sedimentation and benthos that moves in currents), there

may be a site impact on model creation to be considered through the processing pipeline.

3.2.2 Single camera data capture

Four sites of six 4m2 quadrats, forming a 4m by 6m rectangle, were randomly placed

along each reef’s slope for survey between depths of 5-16m (Fig. 3.1). Metal pins were in-

serted into non-living substrate to semi-permanently mark areas for re-imaging as needed.

6m

4m

2m

2m

Figure 3.1: Positioning of quadrats at each reef site showing the placement of semi-
permanent metal pins (black) that were used to mark quadrats. Six 2×2m quadrats
(green) were placed within one 6×4m quadrat (red) per site. The 6×4m quadrat is offset
for visualisation but shared the outer border of the 2×2m quadrats in-situ.
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When collecting data, images can be taken directly or an area can be recorded with

stills extracted at a later time. Both approaches have advantages to be considered. Pho-

tographs taken directly are generally of higher quality than extracted stills and contain

useful metadata (e.g. focal length) [3]. Stills extracted from video, while of lesser quality

and without some metadata, can avoid blurred or otherwise unusable images by extracting

another frame to maximise the usable data for model generation [48]. Depending on the

environment and equipment used, both have their place. Land-based surveys, those in

clear water, or those that utilise high quality camera equipment are more able to capture

images reliably enough for use, while lower quality equipment or less favourable conditions

(e.g. turbid environments) are more likely to produce lower-quality images with blur, ob-

scured areas, or backscatter that impedes model creation and benefit from the flexibility

that video provides [59].

The images or stills all have an ideal overlap, where they feature the same section of

reef over a portion of the image (most commonly 70-80% [53, 49, 125, 54, 127, 51]), to

create an accurate reconstruction. To obtain this overlap, a swimming pattern is repeated

- a straight line for transect lines or the “lawnmower” or “expanding circle” (Fig. 3.2)

for quadrats [17, 48]. These methods require the camera to be consistently facing directly

downward. The patterns are used to cover the entire quadrat with the optimal overlap

between every adjacent image even, in the case of the lawnmower pattern, when the same

area is imaged non-sequentially. Here, the lawnmower method was performed.

(a)
(b)

Figure 3.2: Substrate image capture using a single camera method with (a) the lawnmower
pattern and (b) the expanding circle pattern.

Field of view (FoV) is often provided in a camera or lens’ instructions, and can be

calculated with the distance above seabed to determine substrate area captured in each
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image (Eq. 3.1). This can then be used to calculate image overlap - a camera with 100◦

horizontal and vertical FoV held 1.5m above the seabed would capture a 2.38×2.38m area

of substrate and would therefore need a 1.43-1.67m overlap between adjacent images.

E = 2 · D

tan(a)
(3.1)

Where E is the captured distance of the substrate, D is the distance between the

camera and substrate, and a is found through 90− FoV
2 (Fig. 3.3).

Camera

D

E

a

b

c

Figure 3.3: 2D representation of the captured area of a camera held a set distance above
the seabed. Angle a = c, angle b represents the cameras field of view, length D is the
distance between the camera and substrate, and length E is the captured distance of the
substrate.

3.2.3 Single-camera 3D model build quality

Quadrats stills were extracted at 1-3 frames per second depending on the swimming

speed during filming to provide an approximately even number of stills per model with a

∼70% overlap using a free video to image converter1.

A four-stage process is used to generate models. First images are aligned to determine

the cameras’ position and orientation and the moment of capture. This generates a sparse

point cloud of the area using common points within adjacent images. Step 2 involves

building a dense point cloud, where camera depth is taken into account for positioning,

then step 3 builds a mesh from these points. The mesh is a connected polygon combining

all points with those adjacent to them. Texture is added to the polygon mesh in step

4, which uses the polygon mesh and original images to project appropriate colouring

1https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm
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onto the model. Within this, a variety of settings are customisable to suit the model

requirements and computing capabilities (Appendix I). Photo resolution scaling is the most

easily adjustable setting, where faster processing speed is balanced with lower processing

quality.

A combination of settings were tested across eight coral reef quadrats (2×2m) in

Agisoft Metashape to determine the impact of lower quality processing on model rendering

and associated data to assess build quality. The top-left quadrat from each site at Pak

Kasims and Sampela reef were used to cover a range of substrate compositions.

Each align images quality setting (“Lowest,” “Low,” “Medium,” “High,” and “High-

est”) was tested to determine the most optimal choice for model rendering. The setting

with best image alignment was be taken forward to the build dense cloud testing.

Dense clouds were built at each quality setting (“Lowest,” “Low,” “Medium,” “High,”

and “Ultra high”). The clouds were imported to CloudCompare2 for a cloud-to-cloud

distance comparison between adjacent settings per quadrat (i.e. “Lowest” compared to

“Low,” then “Low” to “Medium”). The setting used was selected by comparing the mean

dense cloud points and cloud-to-cloud distances with processing time for each setting.

At the build mesh stage, custom maximum face count values were used. The default

“High,” “Medium,” and “Low” settings were calculated by Metashape based on each

model’s dense cloud. A custom face count allowed specification of the number of polygons

in the generated mesh, providing standardisation. Starting values were set at 3 million

and 10 million, from Young et al. [48] and the Agisoft Metashape user manual (which

states that any value above 10,000,000 “is likely to cause model visualisation problems

in external software”) [165], respectively. A further face count was set at 6.5 million to

provide a middle ground between these two settings, and the default medium value was

also used to test its capabilities against custom numbers. Cloud-to-mesh distances were

calculated in CloudCompare for each face count level against the models associated dense

cloud.

3.2.4 Multi-camera arrays

A multi-camera method of data capture that uses 5, 10, or 20 cameras across a whole or

half dodecahedron frame was then compared to the single-camera approach. The cameras

2CloudCompare version 2.12 for MacOS: https://www.cloudcompare.org/
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were spaced evenly and positioned to face outward from the frame, not downward, to

provide overlap and greater accuracy in construction of all angles of benthos, including

those protruding sideways or overhanging.

To obtain the minimum overlap desired consistently, the cameras used must be set

and positioned appropriately according to its FoV. For a 20 camera array, a 360◦ total

FoV should be provided, with other setups covering the FoV required to capture the entire

substrate of a system. The angle of overlap can be calculated by considering any 2 adjacent

cameras on the array (Fig. 3.4). For the standard array, SJCam action cameras are used,

set to 170◦ FoV, length F = 1m and G = 20 cm. Using this and the equation for captured

substrate area (Eq. 3.1), the angle for a 70% overlap, d, can be found.

72◦

a
b

c

108◦

c

d

d

G

G

F

E

Figure 3.4: Angles associated with 2 cameras of a multi-camera array based on a regular
dodecahedron frame with pentagonal faces (not to scale).

Assuming the 170◦ FoV (i.e. a = 170):

c =
360− 108− 170

2
(3.2)

50 Chapter 3



Computational analysis of reef structure and benthic composition

Therefore c = 41, so:

d = 180− 2(41) (3.3)

The angle of overlap in this instance is 98◦. From this, to calculate the captured seabed

from these two cameras, the distance from the camera array frame can be calculated

(Equation 3.4, assuming that G = 20 as with the standard array, then the captured sea

floor can be calculated with Equation 3.5, in this case assuming that F = 100 i.e the array

is held 1m above the substrate).

Distance to overlap =
10

tan(41)
(3.4)

By splitting the area between the array and initial overlap into two right-angle triangles

to find that Distance to overlap = 11.5 (to 1 d.p.), the distance from the initial point of

overlap to the sea floor is 100− 11.5 = 88.5m. Therefore from Equation 3.1:

E = 2 · 88.5

tan(41)
= 203.6 cm, or ∼ 2m (3.5)

The expanded FoV of the array therefore allows a simpler camera path. When com-

pared to a lawnmower method, the array could cover a 4× 6m area in two quick passes,

whereas the single camera lawnmower method required six separate quadrats, each taking

6-8 passes and 3-5 minutes each.

3.2.5 Action camera field of view

The custom array used SJCam action cameras, but can use GoPros or a combination

of both, so the field of view (FoV) of these cameras was tested at a range of distances

from an imagined substrate. FoV on the SJCam can be set to 70◦ or 170◦ FoV, while the

GoPro provides “medium” or “wide” without stating the angle.

Each camera was held 1, 2, 3, 4, 5, 7, and 10 metres from an imagined substrate (a

wall) in portrait and landscape. A tape measure was moved until it could just be seen at

the edges of the captured area from top to bottom, then left to right, to show distance

captured and FoV was calculated for the 1m and 2m distances, as this is a common height

at which to swim above substrate in surveying.
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3.2.6 Single versus multi-camera complexity

To test the array’s capabilities, a comparison of extracted complexity took place with

a single-camera technique [48]. First, the mulit-camera array was used to model the Pak

Kasims reef sites previously captured with the single-camera method. The array was swum

over each 6×4m quadrat (Fig. 3.1) in 2 passes as opposed to the lawnmower pattern (Fig.

3.2a) used in the single-camera imaging. Models were built to the same processing level,

per Young et al. [48] (all settings default, medium quality, 3 million face count).

3.2.7 Data analysis

To assess the impact, if any, of quality setting and site (degraded or pristine) on each 3D

model generation stage, Kruskal Wallis testing was performed due to the non-parametric

nature of the data sets. Cloud-to-mesh data was normalised and a two-way ANOVA was

used to assess any effect face count or site had on the measured distance. No testing was

carried out for texture generation, and standard settings were used, as it is used for visual

purposes only and does not alter the structure of the model.

Differences in complexity (rugosity, vector dispersion, and fractal dimension) between

3D models generated with a multi-camera array compared to a single camera approach

were assessed by pair-wise t-tests.

3.3 Results

3.3.1 Build quality testing

When aligning images of coral reef quadrats (4m2, n = 48) in Metashape, reef site

had no impact on the percentage alignment (p > 0.05), but quality of alignment did

(H6 = 31.934, p < 0.001). Post-hoc testing showed that the “Lowest” quality setting

significantly differed from all other settings (p < 0.005), while no other settings differed.

Despite this, the “Medium” setting was taken forward to the Build dense cloud testing

as it showed 100% alignment in all quadrats, whereas “Low” quality alignment had some

unaligned images in two cases, and the processing time difference between the two was

negligible (within 5% for all models).

The total number of points created in the dense cloud did not vary by site (p > 0.05)
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but did vary by quality setting (H4 = 37.463, p < 0.001), with each setting increase

showing a significantly greater number of points within the dense cloud (Fig. 3.5a). The

cloud-to-cloud distance between adjacent qualities also did not vary by site, but did per

quality comparison (H3 = 16.401, p < 0.0.001). The smallest range was seen when

comparing “High” and “Ultra high” quality dense clouds (range = 0.04), showing the

smaller variance in dense cloud output between these quality levels (Fig. 3.5b). When

considering the mean dense cloud points and cloud-to-cloud distance comparison with

processing time, high quality dense clouds were used for the Build mesh stage.
(a)

(b)

Figure 3.5: (a) Mean points generated and (b) mean cloud-to-cloud distance per dense
cloud build quality across models rendered with medium image alignment quality.

When building model meshes, face count had no significant effect (p > 0.05) on cloud-

to-mesh distance, whereas the site did impact the distance between the mesh and dense

cloud points (F1 = 9.298, p < 0.01, Fig. 3.6). Site and face count did not have any

interaction effect on the cloud-to-mesh distance (p > 0.05). Increasing the face count did

not appear to change the processing time in any noticeable way. Considering only the
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models tested here, the pre-set medium face count setting was used to generate the model

texture.

(a) (b)

Figure 3.6: The mean cloud-to-mesh distance across a range of models rendered with
medium image alignment quality and high dense cloud quality per (a) face count setting
and (b) site.

Each stage of the model building process can be seen in Fig. 3.7.

(a) (b) (c) (d)

Figure 3.7: A section of coral reef modelled in Agisoft Metashape at different stages of
processing showing (a) aligned photos (at medium quality), (b) the dense cloud (at high
quality), (c) the mesh (at medium face count), and (d) the final model with texture.

3.3.2 Action camera field of view

Measured captured distance increased in a linear pattern when action cameras were

held in portrait and landscape mode (Tables II.1 and II.2). For both camera brand at all

FoVs, landscape orientations appeared to capture a wider area than portrait orientations,

showing a data error. Using Equation 3.1 and Fig 3.3, FoV was found at 1m and 2m

(Table 3.1). None of the FoV’s found matched with those reported.
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Table 3.1: Field of view (FOV) calculated per action camera at all FoV settings, at 1m
and 2m, where the camera is postioned to capture landscape and portrait images.

FOV at 1m (◦) FOV at 2m (◦)
Camera & FOV setting Portrait Landscape Portrait Landscape

SJCam - 70◦ 21.5 33.5 22.0 31.2
SJCam - 170◦ 41.7 58.9 39.6 51.7
GoPro - Medium 33.4 47.8 35.3 52.0
GoPro - Wide 48.6 60.7 47.8 61.6

3.3.3 Single versus multi-camera complexity

There was a significant difference between the complexity extracted from 3D models

created from single-camera and multi-camera approaches in terms of rugosity (t143 =

−2.6628, p < 0.01) and vector dispersion (t1535 = 13.935, p < 0.001), but no difference

when considering fractal dimension at any scale (p > 0.05) (Fig. 3.8). Several attempts

were made to extract rugosity and vector dispersion values from models with adjusted

positioning of the associated helper files for each metric, but placement was never at the

exact same point due to the differences between models in scale.

Figure 3.8: Fractal dimension at 4 size scales of coral reef models generated by a single or
multi-camera method.

3.4 Discussion

3.4.1 3D model build quality

The varied and highly detailed composition of coral reefs provides a challenging task

for 3D modelling software. The number of images provided for model creation was varied

due to the nature of still extraction. Differences in video length can occur due to changes
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in swimming speed, current, or conditions (e.g. increased sedimentation, changing sub-

stratum height, etc.). This could have been countered and precise frame extraction could

provide the same number of images per quadrat, but this would not reflect the “real-world”

use of the data capture technique [48]. As there was no impact of site on image alignment

when creating models, it is unlikely that there was an impact from the number of stills

provided.

When aligning photos in Metashape, only the “Lowest” quality setting showed a dif-

ference in overall alignment. This may show the power of the software when performing

this process, or the increasing quality of modern camera equipment, but could change on

larger modelled areas with many more images and more varied substrate. Further testing

would be needed on large scale areas to assess this further.

As with aligning photos, when building the dense clouds no setting was impacted by

site but quality provided an increasing number of points per cloud, as could be expected.

With each improved quality setting, a non-linear increase in dense cloud points was found.

This was reflected by a greater concentration of points in the higher quality clouds (shown

by shorter cloud-to-cloud distances as quality increased). Selection of dense cloud is likely

a balance between the desired use of the model output, processing power, and available

time. Where a model is required very quickly, many must be created, or where they

are only used for visual demonstration and not measurement, would be well-suited to

lower quality dense clouds. Where data is to be extracted, higher quality settings may be

required.

Site-related effects were seen when building meshes, with the Sampela quadrats show-

ing far smaller cloud-to-mesh distances than the Pak Kasims quadrats. Further tests could

be performed to further define the cause of this difference, generating models of the same

sites using a range of cameras, image counts, image overlaps, and prior build quality set-

tings. This would demonstrate whether the cloud-to-mesh distance was truly impacted

by the site itself, or if image and model quality were more important than currently seen.

Contrastingly, changing the face count when building meshes did not impact cloud-to-

mesh distance significantly. This may be due to the relatively small scale models rather

than a lack of required processing power, though more testing with image sets or varying

scales would be required to determine any size-related effect.
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3.4.2 Action camera field of view

Field of view testing showed a variation in angles at different distances, likely highlight-

ing a flaw in data collection rather than a changing FOV within the cameras. Averages

could be taken, but the variation in some measurements suggests that these may not rep-

resent the FOV accurately (a 30.4◦ discrepancy is seen with the wide angle GoPro in the

landscape orientation). Nevertheless, the smallest angle between the 1-2m range would

provide the minimum overlap position needed for each camera when held at the standard

distance for this type of substrate survey.

In-situ testing of FoV would be beneficial when testing image collection methods and

related equipment. The water-related distortion of images may reduce the captured sub-

strate area. Wide-angle views may be more susceptible to this type of distortion, par-

ticularly as they already tend to feature a “fish-eye” effect that may impact the edge of

images [48]. Any array built should either be tailored to the specific camera used to ensure

adequate image overlap, or be based on the minimum likely field of view to ensure that

all images are identical to at least 60% of their adjacent images.

3.4.3 Single versus multi-camera complexity

When comparing the substrate complexity of models created by single and multi-

camera methods, both rugosity and vector dispersion differed. The helper files used to

extract these metrics [48] intersect with the model mesh at a specific point and replication

on the same model would require the precise location to be found again, or would produce

a different result. Extracting complexity from a different model, though the model was of

the same site, is therefore extremely challenging and finding the same point is unlikely.

Fractal dimension did not face the same issue, likely as it used the whole quadrat to

create a single value, instead of averaging values from individual regions of the quadrat.

This removes the need for such precision and benefits replication, as demonstrated by the

lack of difference found in fractal dimension at any scale.

3.5 Summary

Using multiple cameras to capture an area of substrate requires more preparation and

equipment than a single camera approach, but saves on time and increases the area imaged
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per dive/survey [122, 123]. Monitoring of larger areas of reef would likely benefit from a

method using 5 or more cameras (with the number determined by the sites topographical

characteristics) to increase the efficiency and scope of data collection.

Comparing in-situ models’ extracted complexity from single versus multi-camera cap-

ture methods showed a difference in values of rugosity and vector dispersion, which is

unsurprising when considering the placement of associated helper files is nearly impossible

to match perfectly and subsequent data would reflect different portions of the model due

to the nature of the metric calculations [48]. The similarity in fractal dimension, which

relies upon the entire area rather than set points, is expected when models are reflective

of the environment captured and show the power of the multi-camera array in accurately

capturing and reconstructing marine substrates.

The shortened imaging path, faster surveying time, and replicated fractal dimension

values demonstrated proof-of-concept for the multi-camera array. Following this, the sub-

sequent chapter details the testing of this array in distinct rocky reef environment with

different structures to those of a coral reef.
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a chalk reef system

4.1 Introduction

Chalk benthic habitats form rocky reefs in temperate waters and are relatively rare.

They are formed through deposition from calcareous ooze and calcite shells that build

up into stretches of chalk reef with different characteristics [166]. The complex structures

formed by the erosion of chalk result in varied habitats that allow a wide range of organisms

to thrive. They provide spawning, grazing, and hunting grounds, refuge from predation,

and a range of environmental conditions that suit species’ occupying different ecological

niches. The complexity of chalk is created by the layering of deposits over millennia [167]

and so any damage done, either naturally or anthropologically, is permanent and prolonged

destruction of the system could lead to a dramatic ecological change [168].

Shellfish fisheries are the second largest in the UK and traditional potting is a common

approach. Potting most often involves shanks, consisting of pots (or creels, or traps),

rope, and anchors (Fig. 4.1) deployed in lines. Pots are known to cause damage from

their contact with the seabed, through abrasions caused by water movement, and when

they are set and removed [169]. The use of single pots as opposed to a shank has been

tested experimentally; single pots’ heavier weight had a more damaging impact when

being deployed and in water, but a lesser impact when being hauled in as pots were not

dragged along the seabed [170]. Pots are known to cause damage from their contact with

the seabed, through abrasions caused by water movement, and when they are set and

removed [169].

Though potting is a long-used fishing technique, there is little-to-no research into the

structural damage caused by it. Research into potting damage often finds no evidence of

59



Computational analysis of reef structure and benthic composition

significant harm caused directly. Often, however, these studies are limited in scope either

due to their lack of temporal or spatial comparisons, or a lack of ecologically contextualising

data.

Figure 4.1: A typical potting shank used in crustacean fisheries, with anchors and surface
marker buoys at each end and rope tethers attaching each pot to the main shank line. A
typical shank used in the Cromer fishery is ∼ 200m in length with 10 pots attached.

This chapter details a preliminary survey into the impacts of crustacean potting un-

dertaken in collaboration with Natural England (NE; an advisory body to the government

aiming to protect and manage the environment) to provide statutory advice to the East-

ern Inshore Fisheries and Conservation Agency (EIFCA; a government agency aiming to

manage inshore fisheries and their associated environments) on their management of the

Cromer Shoal Chalk Bed MCZ. The assessment aimed to provide this advice by deter-

mining whether adult and juvenile crustaceans are more prevalent in more structurally

complex chalk reef areas and if more complex chalk features show a greater incidence or

severity of human impact. Surveying also provided the opportunity to test the capabilities

of the multi-camera array described in Chapter 3 in a challenging non-coral environment

to assess the connection between structural complexity and species’ abundance.

4.2 Methodology

4.2.1 Study sites

The Cromer Shoal Chalk Bed was designated as an MCZ in January 2016 (Fig. 4.2).

This classifies it as a site of “nationally important, rare or threatened habitat,” with the

objective of maintaining the system of specified features [171]. The MCZ stretches from

Weybourne south-eastward to Happisburgh in Norfolk, UK. It begins 200m offshore (of

Mean Low Water) and extends for 5-10 km seaward, to a total of 320.5 km2 [172].
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Figure 4.2: Cromer Shoal Chalk Bed Marine Conservation Zone (MCZ) map with anno-
tated designated features [172].

The EIFCA are responsible for the fisheries management of the Cromer Shoal Chalk

Bed MCZ. They are required to assess it and, where possible, support the conservation

of the area. The crustacean fishery on the chalk reef follows the minimum landing sizes

of the EIFCA region: 115mm carapace width for Cancer pagurus and 87mm carapace

length for Hommarus gammarus [173]. This is smaller than other UK regions [172].

Despite being fished with fewer boats, advancements in fishing gear have allowed each

boat to have a larger region of operation, and landings from crab and lobster from this

region provide over £1.75 million to local business and fishers [29]. The smaller boats of

local fishers, generally ≤10m in length, stay closer inshore (within 2 nautical miles) over

the larger areas of chalk reef. This, particularly as a potting fishery, puts the fishing gear

over a delicate system that is particularly susceptible to damage [174]. The shanks used

by North Norfolk fishers are known to be stored at sea when not in use. These pots are

thought to be stored on flatter ground past the reef itself (EIFCA, personal communication,

2019), but stored and lost post have been seen damaging areas of complex chalk on the

reef [175].

Four actively set shanks were used as transect lines to survey across the accessible

regions of the The Cromer Shoal Chalk Bed MCZ chalk reef; two at West Sheringham

Chapter 4 61



Computational analysis of reef structure and benthic composition

(WS1 and WS2), one at West Runton (WR), and one at East Runton (ER)1. Each transect

was approximately 200m and had 10 pots each (up to five of which were used as surveying

sites (4m2 quadrats) per dive). The sites had unique features that presented different areas

of interest:

WS1 A flat area of flint, sand, gravel and chalk cobbles with no areas of

exposed chalk bed.

WS2 A region of reef predominantly covered in a thin algae layer with 2m

high ridges and gullies between 5 - 10m wide composed of flat chalk and

sand. There were minimal regions of cobbles.

WR A similar area to WS2 with smaller ridges of approx. 1m high and less

well defined gullies of sand, chalk, and cobbles.

ER An area of small ridges approx. 0.5m high with ill-defined chalk, rubble,

cobble, and sand regions.

No control site existed as no area of the chalk reef is free from pot fishing.

4.2.2 Chalk reef imaging

The in-situ data collection was carried out by a team of six divers - four in water and

two standby divers on the surface. The in water divers were then split into two teams; the

imaging team gathered topographical and damage data, and the biological team collected

abundance and habitat assessment data.

Each imaging team diver used a five-camera array to gather modelling data with an

additional camera recording perpendicular to the seabed for damage analysis. Five SJCAM

action cameras were attached to a plastic frame facing outwards at an oblique angle and

an additional GoPro camera was set facing directly down (Fig. 4.3). All were set to video

mode and still frames were extracted in post-processing. Although image capture provides

higher quality data for 3D reconstruction, the extraction of lower quality stills from video

footage was more beneficial due to the logistical difficulty of surveying the reef.

Recording began at the start of a transect. Each diver held a multi-camera array and

swam along one side of the transect (∼2m apart with the shank between them) at ∼1m

above the substrate. Each array was held in the same position and direction throughout the

survey and divers swam at a consistent pace when moving. After each pot was encountered,

one of the team swam ahead (a random number of fin kicks approximately 5-10m from

1GPS locations of the study sites have not been released as per agreement with the fishing industry.
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Figure 4.3: The camera array used for surveying the Cromer Shoal Chalk Bed MCZ.

the pot) to place an A4 control marker under the shank before returning and continuing

with the video survey (Fig. 4.4). The team continued to the end of the transect or until

the maximum dive time was reached.

Pot Control Pot

20m

5-10m

2m

Figure 4.4: Transect surveying layout between 2 pots on a shank line with a control marker
between them, showing the camera array (pentagon) and the location of the first (red),
second (green), and third (yellow) point of image collection for 3D model generation.

4.2.3 Substrate damage assessment

The video footage from the sixth camera added to each array was reviewed by three

annotators, each working independently to identify and categorise damaged chalk across

each transect area as well as the timecode of each incidence. The start and end of each

transect were also noted, as well as any pot or control markers in the footage. The

data was then consolidated first by timecodes (recordings within 4 seconds of each other

were considered the same instance), then by category (where 2+ annotators agreed on

damage type the instance was automatically included, where damage was not agreed it

was reviewed before determining to include or discard). Annotator 1 had experience at

the sites and developed the assessment, annotator 2 had experience in annotation of video

footage of marine environments and annotator 3 was an intern with Natural England with

no prior experience at the time of the surveys.
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To carry out a damage survey on the site a categorisation system was developed using

evidence collected from the biological team action camera footage, anecdotal evidence

from both dive teams, and evidence from consultants. 11 distinct damage categories were

identified, described in appearance and severity, and probable causes were determined

(Table 4.1). Damage type was assessed visually and severity was classed by the degree of

disturbance to the chalk. Epiflora was removed in all cases.

Low Only surface chalk was removed.

Medium Chalk structure was broken but not removed.

High Chalk structure was broken and removed/detached.

4.2.4 Crustacean assessment

The biological assessment began with a visual habitat characterisation survey as stan-

dard for Natural England surveys. This included a site description and noted physical

characteristics of the reef and the community upon it. The team then followed the transect

after the imaging divers, with one diver on each side of the rope. When they encountered

a pot or control marker, they recorded a count of all commercial crustaceans (C. pagurus

and H. gammarus) as well as their age (juvenile or adult, determined by catch limit sizes)

within a 4m2 quadrat directly ahead of the pot/marker. Control markers were removed

as they were passed. Information on each pot encountered was noted, including size.

4.2.5 Data analysis

3D models were built for pots and control markers along the first 100m of each transect

(WS1 n = 6; WS2, WR, and ER n = 10). Stills were extracted from videos at 1 frame per

second and were colour corrected. Models were built in Agisoft Metashape using medium

settings for image alignment and dense cloud construction. They were then imported into

Rhinoceros (version 7) to extract complexity metrics per Young et al. [48], using either

the pot length (90 cm) or control marker (A4) for scale (Tables III.2, III.3).

Comparisons of complexity at the four sites aimed to identify high level characteristics

of the sites before investigating species abundance and human damage. Each models’

(n = 34) rugosity (R) and vector dispersion ( 1k ) was considered as a mean value (nR =

6, n 1
k
= 64), while fractal dimension produced one value per size scale.
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Table 4.1: Damage categories observed on the chalk bed, with most likely causes and
severity indicated. Low severity was classed as damage that only removed the surface
chalk layer, medium severity caused broken chalk structure without removal of chalk, and
high severity caused broken and removed chalk. Natural causes are shown in italics.

Damage Description Diagram Likely causes Severity

Lift
(LIF)

Shattered chalk at edges with
one edge lifted out.

Pot, Anchor High

Grating
(GRA)

Rubbed epifauna and chalk of
non-horizontal areas creating
uneven grooves and chalk de-
bris below the site.

Pot, Anchor,
Scour

High

Angular
Rubble
(RUB)

Angular chalk cobbles that
indicate disturbance but with
no clear cause.

Pot, Anchor,
Water movement

High

Saw
(SAW)

Broken angular rubble in a
line as a result of continued
vertical burns.

Rope High

Cut
(CUT)

Single line of horizontal
indentation of approximate
equal width.

Rope High

Level
Shear
(LSH)

Horizontal and flat area of ex-
posed chalk as a result of a
complete cut.

Rope High

Unlevel
Shear
(USH)

Flat (but not horizontal or
level) area of exposed chalk
from an incomplete cut or a
large amount of chalk distur-
bance in one impact.

Pot, Anchor,
Rope,
Water movement

High

Strike
(STR)

A vertical strike with a visi-
ble impact site and shattered
chalk in edged pieces.

Pot, Anchor Medium

Drag
(DRA)

Single lines of chalk indenta-
tions of unequal width.

Pot, Anchor Low

Abrasion
(ABR)

Rubbed epifauna and chalk
forming a flattened horizontal
plane.

Pot, Anchor,
Rope,
Scour

Low

Burn
(BUR)

Single line of vertical inden-
tation of approximate equal
width.

Rope Low
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Damage annotation aggreement was initially assessed using Fleiss’ kappa, κf , followed

by the removal of annotator 3 and the use of Cohen’s kappa, κc. Annotator 3’s responses

were removed to highlight the value of experience in video annotation in marine environ-

ments when performing this type of surveying method. Agreement to disagreement moves

linearly from +1 to -1. κ < ±0.4 is considered poor, ±0.7 < κ ≤ ±0.4 is considered fair

to good, and ±0.7 ≤ κ is considered strong.

Sliding windows of damage were used to investigate any association between chalk

reef damage and complexity (Fig. 4.5). A pot or control marker’s damage window began

and ended at the pot or marker either side of it, i.e. pot 3’s window was from control

2 to control 3, to form an approximately 20m by 2m quadrat. WS1 was removed from

damage analysis as there were no incidences observed and it was not on the chalk reef.

Low incidence of damage in several categories limits statistical analysis of this variable.

(a)

(b)

(c)

Pot Control Pot

Pot Control Pot

Pot Control Pot

Figure 4.5: Sliding windows of damage showing the transect region where (a) damage
annotations would be associated with a pot, (b) the following damage window associated
with a control marker, and (c) a third damage window associated with another pot.

Abundance data were combined into catch and non-catch crabs, determined by local

minimum catch size, and lobster counts were excluded due to their low occurrence (Table
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III.1). All ER quadrats and two WS1 quadrats were excluded from analysis as no counts

were carried out due to diving restrictions.

Statistical analyses of the variations between sites, abundances and complexity were

performed using t-tests (paired and unpaired) and one-way ANOVAs. Pearson correlation

coefficients were used to test correlations between variables.

4.3 Results

4.3.1 Complexity metric variation between chalk reef sites

There was a significant difference in rugosity (n = 216) between the sites (F3,212 =

6.425, p < 0.0005), with WS1 being less rugose than all other sites (p < 0.0001). WS2,

WR and ER showed no difference in rugosity (p > 0.05).

Vector dispersion (n = 2304) also differed between sites (F3,2300 = 12, p < 0.0001).

There was no difference between WS1 and WS2 (p > 0.05), nor between WR and ER

(p > 0.05). There was, however, a difference when considering WS1 and both Runton

sites (WR and ER) (p < 0.0005, p < 0.0001), and WS2 and both Runton sites (p < 0.001,

p < 0.0005). In both cases the Runton sites showed higher vector dispersion than the

Sheringham sites.

Fractal dimension (n = 36) showed differences across the sites at the scales D60−30

(F3,32 = 2.944, p < 0.05), D30−15 (F3,32 = 4.775, p < 0.01), and D15−5 (F3,32 = 12, p <

0.05), but not at D5−1 (p > 0.05). A post-hoc Tukey test showed no significant differences

between sites at D60−30, however. D30−15 differed between WS1 and WR (p < 0.01), as

did D15−5 (p < 0.05).

Complexity at pot and control sites (n = 36) differed in terms of rugosity (t =

2.2458, p < 0.05) and vector dispersion (t = 4.7274, p < 0.0001), with pot complex-

ity being higher in both cases. There was no difference in complexity between the two in

fractal dimension of any scale.

4.3.2 Damage annotator agreement

Analysis of annotator decisions using Fleiss’ kappa, κf , showed significant but poor

agreement between all three annotators for when damage occurred (κf = −0.226, p <

0.001) and the category of damage (κf = 0.203, p < 0.001). Weak disagreement was
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found when detecting incidence of damage in all cases. For all other agreement where

κf was significant, the strength of agreement was increased with two annotators instead

of three. Categories with fewer instances of damage generally had lower agreement or

non-significant agreement, whereas abrasion damage, that which had the cumulatively

greatest incidence, had significantly strong agreement in all cases with two annotators,

approaching κf = 1 at WR and ER.

Removing annotator three (who had no experience in marine annotation) then found

47.76% initial agreement of damage incidence across all sites, with 65.13% agreement at

WS2, 46.88% agreement at WR and 28.24% agreement at ER. Using Cohen’s kappa, κc,

could then be used to reassess agreement with only 2 experienced annotators (Fig. 4.6).

κc no significant agreement was seen with regards to damage incidence when consid-

ering all sites and when looking at WR (p > 0.05). At WS2, a significant, though poor,

agreement was seen (κc = 0.229, p < 0.001) and there was fair disagreement when look-

ing at ER (κc = 0.473, p < 0.001). Where an incident of damage was agreed upon,

κc was used assess agreement of damage category. When considering all damage types

collectively, there was fair to good agreement at all sites (κc = 0.481, p < 0.001) com-

bined and individually (WS2 κc = 0.426, p < 0.001; WR κc = 0.549, p < 0.05; ER

κc = 0.505, p < 0.01).

Drag damage showed strong agreement at all site combined and atWS2 (κc = 0.658, p <

0.001 and κc = 0.655, p < 0.001 respectively). Abrasions were strongly agreed upon at

WR and ER (κc = 1.000, p < 0.01 in both instances) and fairly agreed upon at WS2 and

when considering all sites (κc = 0.426, p < 0.001 and κc = 0.481, p < 0.001 respectively).

Grating showed fair agreement at WS2 (κc = 0.481, p < 0.005) and significant but poor

agreement at all sites combined (κc = 0.353, p < 0.01), and showed no significant agree-

ment at WR and ER (p > 0.05). Angular rubble was recorded with very strong agreement

across all sites combined (κc = 0.815, p < 0.001) and at ER (κc = 1.000, p < 0.01),

with good agreement at WS2 (κc = 0.642, p < 0.001). Level shears were significantly but

poorly agreed upon at all sites (κc = 0.299, p < 0.05) and at WS2 (κc = 0.323, p < 0.05),

but showed no signficant agreement at WR (p > 0.05). Unlevel shears were agreed upon

fairly well at all sites (κc = 0.467, p < 0.001) and at WS2 (κc = 0.549, p < 0.001) but

were not significantly agreed upon at WR or ER (p > 0.05).

Other damage could not be tested using κc as only independently noted instances were
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Figure 4.6: Cohens’ Kappa (κ) between two experienced annotators in damage annotation
at all sites (red), WS2 (green), WR (yellow), and ER (blue). Significant agreement (p <
0.05) is shown as solid colour with non-significant agreement as transparent. Agreement to
disagreement moves linearly from +1 to -1. κ < ±0.4 is considered poor, ±0.7 < κ ≤ ±0.4
is considered fair to good, and ±0.7 ≤ κ is considered strong.

included. Any recording of these categories occurred after consolidating annotations.

4.3.3 Complexity and observed human impacts

WS1 was excluded from damage analysis as it was not a chalk reef site. WS2 had 83

instances of damage, WR had 37 and ER had 72 across each category (Table 4.2).

Of this damage, 65 incidents across all sites could be directly attributed to human

impacts, either because the damage only had human causes or the damage cause itself was

present at the time of the survey (i.e. a pot was observed to be causing an impact).

Grouping damage by severity (n = 65) showed variation in damage per site (χ2
4 =

16.2131, p < 0.05), with more instances of high and low severity damage seen at WS2, and

more medium severity damage seen at ER (Fig. 4.7). When focusing on potting impacts

specifically (n = 65), pots and anchors caused more low and medium severity damage and

ropes cause the most high severity damage (χ2
2 = 13.9719, p < 0.05) (Fig. 4.7).

No correlations were found between damage observed in sliding damage windows (Fig.

4.5) and the complexity metrics from the associated pot or control quadrat (p > 0.05).
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Table 4.2: Damage to the Cromer Shoal Chalk Bed per type at the sampled sites.

Damage type WS2 WR ER

All 83 37 72
Lift 0 0 2
Grating 3 3 4
Angular Rubble 5 3 26
Saw 1 0 1
Cut 1 0 1
Level Shear 7 1 1
Unlevel Shear 11 6 13
Strike 2 3 12
Drag 1 0 0
Abrasion 49 20 12
Burn 2 1 0

4.3.4 Complexity and species abundance

No difference was found in any complexity metric and species abundance overall (n =

28), as adults, or as juveniles at pot or control sites (p > 0.05). Species abundance did not

correlate with complexity in most cases, except for with adult crabs in terms of rugosity,

D60−30, and D30−15 (Table 4.3).

All biological data is archived in Appendix V of the report published with Natural

England from this survey [172]. C. pagurus and H. gammarus abundance is additionally

detailed in Appendix III.

4.4 Discussion

4.4.1 Human-attributed impact to the chalk bed

The damage assessment here shows that permanent damage is occurring to the chalk

bed as a result of human activity and crab and lobster potting. The ecological signifi-

cance of this damage is as yet unknown and should be the focus of further studies in the

MCZ. Previous reports have highlighted that the soft nature of chalk leaves it vulnerable

to abrasion pressures generated by static fishing techniques [176, 177]. Hartnoll [176] ac-

knowledged the potential for repeated incidents of damage from the same rope, pot, or

anchor.

The visually raised features of the West Sheringham site seemed to attract the most
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Figure 4.7: Incidence of high severity (dark red), medium severity (red), and low severity
(pink) damage at Cromer Shoal Chalk Bed sites and caused by pots and anchors or ropes.

level shears, suggesting that the ropes of a shank were pulled taught across raised chalk

when pots settled, shearing off these features. At WS2, divers noted that pot tethers

(∼ 2m) were not of adequate length to allow the pot to rest on the chalk bed, and instead

pots were left hanging over the chalk (Fig. 4.8). Subsequent severe chalk damage (from

grating, shears, and other damage types) was observed across the top of the chalk features.

The swinging and movement of the pot is also a culprit of damage, more so than if the pot

was settled securely on the chalk bed. Extending rope tethers between pots and shank

lines could minimise chalk damage by both taut rope and hanging pots, though too much

loose rope can also be a risk, particularly to boats moving across the reef. Ropeless pots,

as trialled in Scotland and the United States (US) [178, 179], could be a solution to both

not enough and too much rope causing chalk damage. All of these observations were

anecdotal and not shown by correlations in the data. A more extensive approach covering

more transects is required, but was out of the scope of this preliminary survey.

Human-attributed damage is not isolated in itself but combines with natural damage

and erosion to weaken the structure and resilience of the reef [180]. Natural degradation

of chalk could be sped-up by the smallest instances of damage from pots, ropes, anchors,

or other man-made objects. Chalk covered in epifauna is likely to weather at a slower rate

than exposed chalk, and therefore small-scale impacts from potting may be speeding up

the natural process of erosion, which will eventually impact the structure of the chalk.
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Table 4.3: Pearson correlation coefficients between median rugosity and crab abundance
across the Cromer Shoal Chalk Bed.

Metric Abundace r r2 p

Rugosity Total crab -0.0214 0.0005 0.0024
Adult crab 0.6717 0.4512 0.0003
Juvenile crab -0.1440 0.0207 0.5020

Vector Dispersion Total crab -0.1591 0.0255 0.4580
Adult crab 0.3113 0.0969 0.1387
Juvenile crab -0.2142 0.0459 0.3153

D60−30 Total crab -0.1061 0.0113 0.6220
Adult crab 0.5361 0.2874 0.0069
Juvenile crab 0.0063 0.0000 0.9767

D30−15 Total crab 0.0555 0.0031 0.7967
Adult crab 0.5627 0.3166 0.0042
Juvenile crab -0.0483 0.0023 0.8237

D15−5 Total crab 0.0457 0.0021 0.8321
Adult crab 0.1593 0.0253 0.4576
Juvenile crab 0.0158 0.0002 0.9416

D5−1 Total crab -0.0880 0.0077 0.6826
Adult crab 0.1372 0.0188 0.5226
Juvenile crab -0.1117 0.0125 0.6056

The lack of association between damage and complexity has several implications. The

least likely is that damage is simply not more commonly seen in areas with large, complex

chalk features. A review of video footage showed that more damage was seen on larger

outcropping chalk (WS2 footage) and that flatter chalk areas showed only abrasion type

damage. Kaiser et al. [181] have shown the detrimental affect of bottom-towed fishing

gear is exacerbated with increased structural complexity so a logical assumption would be

for the relationship to apply to static fishing gear as well, though perhaps less severely. A

more comprehensive study would provide more conclusive answers.

4.4.2 Annotation of damage

Damage analysis showed varying agreement between annotators of damage incidence

across all sites. The variation could be for any number of reasons, including video quality,

turbidity, experience of the site conditions, experience of video annotation, etc. The good-

to-strong agreement found for damage categories overall, at WS2, and at WR shows the

capability of similar assessments in producing robust data but there is always a need for
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Figure 4.8: A pot attached to a shank by a rope tether ∼ 2m long. The tether is too
short to allow the pot to sit on the chalk bed substratum so it is left hanging with the
ropes pulled taut on the chalk reef.

annotator training and a consolidation stage to resolve disagreement. In this project, data

were consolidated and agreed upon by the annotators after independent assessment.

The lack of strong agreement between annotators highlights issues with the damage

categorisation, annotator training, the video quality, or all three. Categories may have

been too similar; lifts, grating, angular rubble, sawing, and strikes may all show rubble-like

debris that could have made them difficult to distinguish from one another, particularly

when combined with the relatively poor video quality. Consolidating categories with sim-

ilar appearance or impact may enable better agreement between annotators, and possibly

easier and quicker analysis. This would, however, remove the fine detail analysis enabled

by the more distinct categories. With more surveys, the benefits of more extensive training

and/or fewer categories may be seen.

Greater agreement was seen for damage categories that were more prevalent across

the sites, such as for abrasions and angular rubble, indicating that greater exposure to

damage categories increases familiarity and recognition. This also appeared to be the case

for drag damage and unlevel shears to some extent, perhaps due to the distinctness of

these damage types in the chalk. Categories that look similar, like strikes and level shears,
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may be harder to ascertain with both limited instances and lower quality video footage.

Increasing the number of annotators should not be considered a solution unless video

quality is so poor that greater corroboration and consolidation are needed. Better training

and understanding of damage is a more desirable outcome so that videos can be annotated

and verified/consolidated between 2 annotators to minimise the time spent collecting data.

The disparity in annotator agreement highlighted the difficulty in annotating footage

that is of poor quality, as here through sedimentation and poor light. Scaling up sur-

veying is essential for continued monitoring, but impractical with the current annotator

burden. To reduce the required effort and scale up monitoring, an automatic benthic an-

notation method could be developed for use, though this would be an intensive imaging

and development task.

4.4.3 Commercial crustacean preferences in habitat complexity

The significant positive correlation between adult Cancer pagurus abundance and ru-

gosity, fractal dimension at 30-15 cm, and fractal dimension at 60-30 cm demonstrated that

adult commercial crab are more often seen in areas containing large, complex chalk fea-

tures. The lack of correlation between juvenile C. pagurus abundance and any complexity

metric conversely suggests that juveniles show no preference for either flat or structurally

complex regions. A possible cause of this variation in crab density is the crevice and

refuge size in areas with lower complexity (particularly fractal dimension) cannot support

the larger crab and as such they will move to more complex areas, whereas smaller crab do

not face the same size issue. The territorial and cannibalistic nature of adult crabs could

also be a factor, leading to the exclusion of juveniles from the preferred, more rugged areas

of chalk [182]. Consequently, juvenile crustaceans can find suitable refuge in both highly

and lesser complex areas of chalk, unlike the larger adults, potentially because their size

may enable them to fit into the smaller cracks and fissures.

Hunter and Sayer [183] have previously noted a preference for complex habitats in C.

pagurus on temperate rocky and artificial reefs. This relationship between commercial

crustaceans and habitat complexity suggests that a reduction in the complexity of the

chalk would also lead to a reduction in abundance of crab and lobsters. This would have

knock-on effects both on local marine biodiversity and the North Norfolk fishery.
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4.4.4 Survey limitations

The survey faced constant and numerous complications. The logistics of collecting

field data were more complex and more expensive than anticipated. The field techniques

required training that could only occur during the excursions and ate into the surveying

time. The 5 day assessment was also subject to bad weather, boat failures, and inconve-

nient launching facilities. The most unfortunate ramification of this was a limited amount

of data collected.

In-situ limitations included a limited amount of commercial crustacean data, partic-

ularly with H. gammurus being so rare that analysis of them could not occur. Adult C.

pagurus were also rare but could still be analysed, although the low abundance did provide

less robust conclusions. The complexity assessment was undertaken using metrics tailored

and scaled to coral reef studies. The different compositions and structural styles of chalk

and coral reefs likely mean that the metrics used were not able to fully encompass the

sweeping shifts of chalk reef topography. Even fractal dimension scales used here were

tailored to those of coral reef fish abundance [48]. Rugged chalk was a focus of this study

by default (the assumption being that more complex topography would be most sensitive

to impact based on photographic evidence), so the flatter plain of chalk reef was ignored

particularly with the time constrictions faced.

The damage assessment, mostly due to its novelty, was a source of potentially sub-

jective data. Though the assessment and severity categories were determined by experts

and experienced divers, the variation in reef damage could easily lead to discrepancies be-

tween individual assessors. Some categories are similar in appearance and some areas may

have experienced two impact types, which could change the damaged chalk’s appearance

and therefore categorisation. The nature of severity is also inherently subjective. Minor

amounts of a high severity damage, such as a shear, may be less destructive than masses

of abrasion damage, which was designated as low severity.

Some of these limitations are unavoidable without more resources and funding for

regular and repeated surveying at a greater scale and/or further study into damage extent

on chalk. The use of potentially improper complexity metrics is however simpler to test

as an ex-situ comparison of already generated models.
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4.5 Summary

The preliminary survey carried out in this chapter acted as both proof-of-concept for

assessing the Cromer Shoal Chalk Bed MCZ and to provide an indication of the current

state of the chalk reef. Surveying marine environments with multi-camera arrays and 3D

photogrammetry can drastically reduce fieldwork surveying time and cost, and provide

accurate measures of complexity across survey sites. However, these complexity measures

may not be relevant to the environment surveyed if as the topography is vastly different

to that of coral reefs, which the metrics were tailored to. Developing one or more com-

plexity metrics specifically suited to chalk reefs, or to any protected marine environment,

is essential when monitoring substrate to generate ecologically meaningful results.

The following chapter takes the survey data and applies tailored complexity metrics in

an attempt to clarify any relationships present between chalk reef complexity, C. pagurus

abundance, and chalk damage.
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chalk reef

5.1 Introduction

The layered deposition of chalk and continuous water movement creates a gradually

changing structure with transitions between high and low areas characterised by the pres-

ence of gullies, arches, stacks, and ledges [42]. This may limit the appropriateness of

many established marine complexity assessment metrics as they are often tailored for

small changes to a system, such as branching corals on tropical reefs, rather than shifts in

the topography of a rocky seabed [66, 48]. This was evident when comparing site descrip-

tions and physical characteristics of each transect to the apparent complexity produced

from measurements of rugosity and vector dispersion in chapter 4.

In marine monitoring, substrate height can be described by a wide range of reef met-

rics. Several height measurements were developed by McCormick [66] relating to height

that showed varying success in plotting height changes, separating substrate types, and

correlating to fish abundances. Elevation is usually used to describe the height of some-

thing above sea level or a given point. Slope and gradient are also common measures

used in ecology that may refer to the same value in some cases. Gradient is measured as

the ratio of vertical to horizontal distance between two points. Slope refers to either this

measurement or the angle of the horizontal to vertical points, with the horizontal being

0◦. Reef gradient is also used in coral reef ecology to refer to the different areas of a coral

reef (i.e. crest, slope) without using any quantitative measurement.

Relief measures the height difference between 2 points that may not necessarily be

directly vertical (as with height) nor do they need to be set (as in elevation). Relief has

been found to correlate with an abundance of reef-associated fish on a rocky reef area
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in Sweden [184], experimentally tested through constructed, high-profile structures. This

relationship, and visual assessments of the type of structures on the Cromer Shoal Chalk

Bed MCZ, determined that relief would be tested as a metric on the chalk reef.

The chapter presents an alternate assessment of the Cromer chalk reef survey data

(Chapter 4) to propose a novel measurement of relief through 3D reconstructions of marine

environments. First, the relief metric must provide a distinct view of complexity when

compared to other metrics in rocky reef environments. To benefit the Cromer MCZ survey,

relief must also be assessed for any link to commercial species or to human impacts on

the chalk reef. Here, relief is taken as the absolute vertical increase of a substrate within

a given area. This took the linear assessment of verticality/slope [17] and applied it to a

surface area for a targeted view of the complex substratum.

5.2 Methodology

5.2.1 Model analysis

The chalk reef models analysed here were created in Chapter 4 from West Sheringham

(WS1 and WS2), West Runton (WR), and East Runton (ER). Coral reef models were also

analysed from Pak Kasims and Sampela reef (Chapter 3). The Cromer chalk reef site (see

Section 4.2.1) was compared to the two coral reef regions (see Section 3.2.1), exploring the

suitability of the relief metric for these less complex reef types.

A computational approach to assessing relief was performed on all models, where the

total height difference across an area was calculated (Fig. 5.1). All models were assessed

to determine the largest scale area that could be consistently used, then a closed object

was created - in this case a 64m3 cube. The object was placed to intersect with the model

mesh and encompass the area, then was split across the intersection to provide halves

ending in the contour or inverse contour of the reef surface.

Relief = |a− b| (5.1)

Where a = height of split object with surface contour, and b = height of split object

with inverse surface contour. A novel script for relief was developed (Appendix IV).

A key feature of fractal dimension (D) is the connection between an organism and its
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(a)

(b) (c)

Figure 5.1: Relief assessment of an area of reef. (a) A solid box scaled to be greater than
the largest relief across all models was intersected with the model mesh. (b) The box was
split across the intersection, matching the contour of the mesh. (c) The box was separated
to show the contour of the substrate and the inverse. The height of one split was then
subtracted from the height of the other and the absolute value was the relief of the area.

habitat when considering spatial scale (Section 2.3.3). In Chapter 4, D was carried out to

size scales appropriate for coral reef fish [48], likely limiting the usefulness of the results.

To rectify this, a tailored approach was taken and size categories were adjusted to suit the

carapace width of Cancer pagurus catch size: Dcatch for D between 345mm and 115mm,

and Dnon-catch for D between 115mm and 28.75mm. Coral reef models were not evaluated

for fractal dimension here as the size scales used are irrelevant to that ecosystem.

5.2.2 Ecosystem data

C. pagurus classification as adult or juvenile was determined by catch size limits so

counts remained, per Chapter 4 (Table III.1). Hommarus gammarus were not incorporated

as there were so few seen and they were excluded from analysis. Damage categories,

severity (Table 4.1) and counts (Table 4.2) remained as originally determined. Surveying

time restrictions limited the number of pots and control markers that could be imaged

on each transect. To account for this, only the first 100m of each transect was used for

further analysis as all pot and control quadrats were within this area.
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5.2.3 Statistical analysis

A replication of previous tests was performed (Section 4.2.5). Pearson correlation

coefficients were used to test correlations between complexity metrics. Analyses of the

variations between sites, abundances and complexity were performed using t-tests (paired

and unpaired) and one-way ANOVAs. Low replication and incidence of some damage

types limited analysis. Damage was then grouped by severity and tested.

5.3 Results

5.3.1 Relief and metrics of complexity in coral and chalk reefs

Relief had a weak-moderate positive correlation with rugosity (r = 0.3781, t34 =

2.3817, p < 0.05), but not with vector dispersion, Dcatch or Dnon-catch (p > 0.05) on the

chalk reef (Fig. 5.2c). Pak Kasims coral reef site showed a moderate correlation between

vector dispersion and relief (r = 0.4657, t22 = 2.4685, p < 0.05), and a potential moderate

correlation between rugosity and relief (r = 0.4023, t22 = 2.0608, p = 0.051) (Fig. 5.2a).

The Sampela coral reef also showed a moderate correlation between vector dispersion and

relief (r = 0.4934, t22 = 2.6609, p < 0.05) and a moderate-strong correlation between

relief and rugosity (r = 0.6703, t22 = 4.2361, p < 0.0005) (Fig. 5.2b).

5.3.2 Relief and species abundance on chalk reefs

No difference was found in Dcatch, Dnon-catch, or relief between pot and control sites

(p < 0.05). Dcatch showed variation (F3−32 = 4.461, p < 0.01) across the sites; WS1, the

non-chalk site, was less complex than WS2 (p < 0.05) and WR (p < 0.01). Dnon-catch did

not differ (p > 0.05). Relief followed the same trend as Dcatch between sites (F3−32 =

4.606, p < 0.01); WS1 and WS2 (p < 0.01), and WS1 and WR (p < 0.05).

When considering tailored fractal dimension, adult crab (≥115mm) abundance cor-

related with Dcatch but not Dnon-catch. Juvenile crabs (≤115mm) did not correlate with

either D at either size scale, supporting the original findings that juveniles do not rely

upon complexity in their distribution, but adult crabs prefer more complex areas (Table

5.1). Relief did not correlate with crab abundance overall or by age group.
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(a) (b)

(c)

Figure 5.2: Linear correlations between relief and other complexity metrics (rugosity, vec-
tor dispersion, and fractal dimensions - Dcatch for fractal dimension between 345-115mm,
and Dnon-catch for fractal dimension between 115-28.75mm) at (a) Pak Kasims and (b)
Sampela coral reef sites, and (c) Cromer chalk reef. Fractal dimension is excluded from
(a) and (b) as the size scales used were different from that for Cromer sites.

5.3.3 Relief and observed human impacts on chalk reefs

WS2 had more low severity damage than any other category (53), whereas ER had

mostly high severity damage (48) (Fig. 5.3).

Due to the modelled complexity and species abundance data available, analysis of

damage incidence was only carried out for first 100m of damage (Table 5.2).

Damage totals and severity did not vary between pot and control quadrats (p > 0.05);

however, control sites had more than double the incidence of abrasion than pot sites

(t23.106 = 2.4676, p < 0.05). Damage did not correlate with crab abundance at either size

category.

Damage incidence was different at each site (F2−27 = 6.453, p < 0.01), with WR

having significantly less damage than both WS2 (p < 0.05) and ER (p < 0.01). High

severity damage varied between sites (F2−27 = 6.205, p < 0.01), with significantly more

at ER than WR (p < 0.005).

This is similar to the variation in rubble (F2−27 = 8.789, p < 0.005), as ER had more

than both WR (p < 0.01) and WS2 (p < 0.01) (Fig. 5.3). Medium severity damage was

significantly greater (F2−27 = 4.778, p < 0.05) at ER than at WR (p < 0.05). This can
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Table 5.1: Correlations between crab abundance and fractal dimension, and crab abun-
dance and relief at different size scales (n = 36). Significant is indicated by bold text.

Metric Abundance r r2 t p

Dcatch Total 0.0552 0.0030 0.2594 0.7977
Adult 0.4499 0.2024 2.3629 0.0274
Juvenile -0.0280 0.0008 -0.1314 0.8967

Dnon-catch Total -0.0492 0.0024 -0.2314 0.8191
Adult 0.2676 0.0716 1.3027 0.2061
Juvenile -0.0975 0.0095 -0.4595 0.6504

Relief Total -0.0629 3.9554e−3 -0.2956 0.7703
Adult 0.1466 0.0215 0.6950 0.4943
Juvenile -0.0887 7.8757e−3 -0.4179 0.6801

Table 5.2: Incidence of damage by severity level.

Site All High Medium Low

WS2 49 18 2 29
WR 18 8 1 9
ER 55 36 8 11

be attributed to strike damage as the only category at this severity level. There was more

low severity damage (F2−27 = 5.953, p < 0.01) at WS2 than at WR (p < 0.01) or at ER

(p < 0.05). This is reflective of the high incidence of abrasion (F2−27 = 7.122, p < 0.005)

at WS2 versus that at WR (p < 0.005) and ER (p < 0.05).

When correlating damage incidence with complexity, no relationship was seen with R,

1
k or Dcatch. Medium severity damage correlated with Dnon-catch (r = 0.3751, t28 =

2.1412, p < 0.05). Relief correlated with low severity damage (r = 0.3931, t28 =

2.2625, p < 0.05), specifically with abrasions (r = 0.4109, t28 = 2.3849, p < 0.05).

5.4 Discussion

5.4.1 Complexity and relief on chalk and coral reefs

Relief provides distinct information about rocky reef habitats. The relief metric was

selected for the type of complexity seen in the environment itself, over the use of rugosity

and vector dispersion, to detect medium-scale changes in structure compared to other

common metrics used in other studies with similar aims [17, 66, 48].

Relief had a weak correlation with rugosity that is likely reflective of R’s ability to
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(a) (b)

(c) (d)

Figure 5.3: Incidence of high severity (dark red), medium severity (red), and low severity
(pink) damage by category for (a) All sites, (b) WS2 (n = 83), (c) WR (n = 37), and (d)
ER (n = 72).

track changing height of the substrate if it is constant in one direction - i.e. an increase

is not matched by a decrease in the same measurement. Rugosity likely captured the

complexity of the gullies and ridges in some areas of the chalk reef. The lack of correlation

with vector dispersion on the Cromer Shoal Chalk Bed showed that relief focuses on a

different resolution and scale. Neither category of D correlated with relief, likely as the

metrics are focused on entirely different factors of the ecosystem.

Cromer reef pot and control models showed no difference in complexity, potentially

due to the similarity of conditions across each sample site and shanks being dropped in

roughly, but not exactly, the same location repeatedly. This would spread any impact on
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the reef across the entire fished area rather than in dedicated points. Cromer site variation

suggested, as previously in Section 4.3, that WS1 was less complex than WS2 and WR.

When considering relief, the greatest complexity was found at WS2, matching with in-situ

visual observations. This indicates that the chalk substrate present along parts of the

North Norfolk coast may be providing complexity to the region that cannot be attributed

to sandy and stone covered substratum. ER was not dissimilar to any region, likely as

its mixed substratum provided areas of elevated chalk and flat sand and stone grounds

similar to other sites. For greater clarity and more definitive implications there is a need

for a more extensive study of the chalk reef to increase the number of sites surveyed.

For rocky reefs, relief provides a different view to other common complexity metrics

across a 3D area of reef, one that may better represent the complexity of other medium-

scale rocky reef features, such as Kimmeridge ledges in the UK.1 Here, the relief of chalk

may also associate with the abundance of catchable crustaceans on the chalk reef with

more data, as fishers often prefer to place their pots on “rough ground,” their term for

complex chalk substrate.

At the coral reef sites, rugosity had moderate to strong correlations with relief, and

vector dispersion had moderate correlations with relief. Pak Kasims was a sloping site with

raised and settled substrate whereas Sampela had coral bommies, but both would provide

elevation. Both sites’ relief, therefore, also led to more intricate complexities in rugosity

and vector dispersion on the coral reefs. Coral reef relief could highlight areas providing

both medium- and small-scale complexities, such as bommies and raised substrate that

allow for more settlement of complex organisms.

5.4.2 C. pagurus preferences in habitat complexity

Adapting the size categories of fractal dimension to suit the target species, C. pagurus,

did not alter the overall findings of the original assessment (Section 4.4). Adult crab were

again positively correlated with fractal dimension, in this case with Dcatch, highlighting

the importance of scale-associated complexity. Juvenile crab were not correlated to either

fractal dimension scale, showing their dispersal across the reef system in contrast to the

preference of adults for complex substrates. The distinction in complexity and species

abundance with regards to fractal dimension was more reflective of real-world separation

1A example of the topography can be seen at: https://skfb.ly/o6zt9 last accessed 8/9/2021
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in C. pagurus individuals here than those in the previous tests (Section 4.3), that found

correlations between the two only at scales above the minimum landing size (starting

at 15 cm and upward). The adjusted metric connects the findings to the specific species

targeted by fishing and may be a more viable foundation for policy changes and supporting

research.

The increased Dcatch at the more complex chalk sites indicates that these are preferred

by catch-size C. pagurus. Higher C. pagurus abundance was not associated with flatter

environments. This is supported by the correlation between Dcatch and adult crab abun-

dance, and the lack of correlation with Dnon-catch or juvenile crab at either complexity.

The lack of apparent habitat preference with juvenile crab could be due to all sites hav-

ing the same Dnon-catch, indicating that complexity preference for juvenile crabs was the

same across the study, or because of the territorial nature of adults, particularly males,

C. pagurus causing smaller individuals to be pushed out of their preferred environment

[185]. Relief was also not correlated to species’ abundance overall or by age/size. This is

likely as the smaller intricacies of complexity favoured by C. pagurus are not detected by

the medium-scale assessment of relief performed here.

5.4.3 Monitoring human impacts on chalk reefs

The difficulty in assessing chalk damage limits the conclusions that can be drawn.

The number of damage types may be restrictive when analysing collected data and the

number of distinct categories with indistinct classification may not be useful ecologically.

Grouping damage by either severity or cause would provide fewer groups with greater

incidence while also enabling managers of the chalk reef to have a clear indication into

both the level of damage and the potential targets for further investigation.

When looking at damage in this manner, areas of higher relief showed increased levels

of low severity damage and of abrasion damage. This could indicate that more elevated

sites may be more susceptible to pots scraping down chalk to settle below, abrading the

substrate, and to ropes dragging across them to scrape off surface algae and score into

the chalk. The slight increase in Dnon-catch with increased medium severity damage (and

therefore strike damage) may be due to the loss of large chalk shattering into smaller

sections, creating crevices that could provide areas only accessible to non-catch size crabs

(those smaller than 115mm in width). The correlation between metrics here and damage,
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when compared to the lack of correlations seen in Chapter 4, highlight the need for tailoring

complexity metrics to the environment.

The types and occurrences of damage at different sites, with different topographies,

substrate and ecological functions need more surveying to explain (e.g., higher rates of

damage at WS2 and ER compared to WR). Visual assessment at WR indicated an algae

layer as with WS2 and this may offer protection from some impacts. For ER, when also

considering its higher instances of rubble and strike damage, this could indicate a chalk

composition and/or structure that is more susceptible to breaking than at the other sites.

A more refined method for testing chalk hardness than used in the Natural England report

[172] could be used. Greater incidence of low severity damage at WS2 than the other sites

appears entirely reflective of abrasion damage (Fig. 5.3). This could be due to varied

relief of the site as indicated in visual characterisation and in the changes measured. This

supports the correlation of low severity damage, and specifically abrasion, with greater

relief.

We know how human objects impact the substrate but not the extent across the site;

partly because of the mixture of substrates and complexity and partly because fishing

pressures are unevenly distributed across the MCZ due to the location of shore launching

sites and nomadic fishing boats. Increasing the data collected may bring out patterns

already appearing to emerge in the damage observations. The clustering of damage along

the survey sites is a potential avenue for further investigation to determine if particular

chalk features and characteristics are more at risk of certain types of damage. Further

surveys along shanks, or alternatively reference areas of reef, could provide greater insight

into this when combined with both complexity assessments, visual descriptions of the site

and hardness measurements of the chalk itself.

5.4.4 Limitations of the survey

The extraction of relief data would benefit from vertical reference in each modelled

area, such as a float [48]. As the models here used visually assessed alignments from video

footage, the modelled substrate is at a “best guess” orientation that may not be entirely

accurate to the in-situ substrate.
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5.5 Summary

Capturing the complexity of the Cromer Shoal Chalk Bed MCZ in terms of relief pro-

vided a distinct view of the environment not shown by other metrics. Tailoring fractal

dimension to commercially catchable C. pagurus demonstrated an association between the

adult crab and complexity, highlighting the importance of scale when looking into rela-

tionships between fauna and habitat. Tailoring complexity metrics to target environments

or species is a key step in gaining insight into community interactions with a habitat. The

study of rocky reef environments that feature gullies, arches, stacks, and ledges would

benefit from an analysis of relief and other adaptive complexity assessments (i.e. tailored

fractal dimension where studies include benthic-associated species).

A larger and more comprehensive study into damage on the Cromer Shoal Chalk Bed

is vital to understand the severity, frequency, and causes of human impacts on the habitat.

A non-fished control area would be also beneficial more definitively compare human and

naturally caused damage, as well as a site with ropeless potting technology to contrast

pot/anchor and rope damage [179]. Most important, however, is a continuing narrative

between the local community, the MCZ management, and researching academics involved

with the chalk reef to protect both the habitat and its heritage.

The investigation into the human impacts on the Cromer Shoal Chalk Bed MCZ has

highlighted the need for urgent action and more data is vital for accurate assessments of

interactions between structural complexity and the species communities that make use of

niches. Future work with Natural England, EIFCA, conservation groups, and the fishing

industry aims to address these challenges through adaptive risk management.
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6 | Automatic annotation of reef

substrates

6.1 Introduction

Identification of coral reef substrate from video footage, images or directly while diving

is a common assessment carried out in reef research and monitoring [186]. It is vital for

grounding research into the wider reef system and for assessing and detecting changes

in substrate composition. It is also, unavoidably, very time consuming. The constantly

increasing volume of image and video data in ecology could be a vital resource in tracking

ecosystem changes and trends locally, regionally, and globally, but the sheer quantity limits

the usefulness as it is impractical if not impossible to annotate, tag, or label manually.

Automatic annotation of benthic substrates from video stills or photographs would greatly

increase the speed and scale of feasible coral reef monitoring, and could free up reef experts

to focus on other areas to gain a wider view of shifting ecosystem dynamics.

The use of machine learning in ecology is becoming more prevalent following the pop-

ularity of image data collection in surveying and research [187]. The reduction in camera

costs combined with the increasing quality and resolution of less expensive equipment en-

ables a greater number of research teams to utilise image data in their research [47, 48, 122,

and others]. Combined with the smaller size of equipment required (some action cameras

no longer require housing to certain depths, whereas previous imaging required large cam-

eras with lighting, buoyancy aids and intricate housings), this has widened the scope of

in-situ imaging in marine monitoring globally.

These advancements required a new focus on utilising computer vision techniques for

detection and classification of objects and images, which offers a valuable avenue into

decreasing processing time and increasing the efficacy of digital image usage in ecological
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research. This could reduce the need for more intensive forms of data collection and

increase the information available from sites that are more difficult to access safely.

This chapter details the planning, development, and outcomes of the ImageCLEFcoral

annual task from 2019 to 2021. ImageCLEFcoral is a recent addition to the ImageCLEF

benchmarking campaign tasklist [188, 189, 190, 191] with an alternative marine focus,

aiming to develop an accurate method of automatically annotating coral reef substrates.

Developing an algorithm that is transferable to coral reef systems globally would be of great

benefit to reef monitoring in general, but also when looking at global reef connectivity and

changes in substrate bound fauna and flora.

6.2 ImageCLEFcoral tasks

ImageCLEFcoral was split into two subtasks of different difficulties and detail level:

Subtask 1 Coral reef image annotation and localisation

This subtask aimed to produce a bounding box around substrate fauna and flora,

adding an associated semantic label identifying the substrate category. This is the

simpler subtask of the two, but is less detailed.

Subtask 2 Coral reef image pixel-wise parsing

This subtask aimed to produce a polygon around substrate fauna and flora following

their outline, adding an associated semantic label identifying the substrate category.

This is a more complex task but provides a more detailed output.

Three metrics were used to assess the results produced in 2019:

mAP 0.5 IoU - Mean average precision (mAP), where intersection over union (IoU)

≥ 50% of each images ground truth, in predicting both semantic label and location.

mAP 0 IoU - Unlocalised mAP (IoU = 0%), wherein a semantic label is found within

the image but it’s location is irrelevant.

R 0.5 IoU - Mean recall, where IoU ≥ 50% of each images ground truth, when predict-

ing both semantic label and location.

Precision is a calculation of the accuracy of correct predictions (i.e. where a substrate

is found, is the class correct?), while recall calculates the ease of finding correct predictions
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(i.e. how many substrates that exist were identified?). These values can then be plotted

and mAP is calculated as the area under the curve, where both axes run from 0-1.

Mean recall was no longer used as an evaluation metric in 2020, as mAP provides a

broader view of model performance and encompasses recall in its calculation. Agreement

per class (Eq. 6.1) was added as a metric to the evaluation to provide further insights into

the difficulty variance across each substrate type.

agreement =
number of true positives

number of false positives + false negatives + true positives
(6.1)

In 2021, participants were encouraged to augment the dataset with that of the NOAA

NCEI1 and/or CoralNet2. For the NOAA images, a format conversion table was provided.

6.3 Coral reef image datasets

Images collected by the Marine Technology Research Unit at the University of Essex

as part of a continuing data collection project were used. SJCam action cameras with

external red filter attachments captured the images. These formed the ImageCLEFcoral

dataset, but were originally for a monitoring project and as such many have a tape measure

running through them. Images were collected from reefs across the globe, but the initial

2019 training (n = 240) and test (n = 200) set were both exclusively taken from the

Wakatobi region of Indonesia.

The 2020 training data consisted of both the training and test set from 2019 (n = 440).

The test image dataset was expanded to include images from reef systems in four distinct

regions. The provided test set contained 400 images from:

Region 1 (Wakatobi) - The training set location (n = 100).

Region 2 (Spermonde) - Geographically and biologically similar (n = 100).

Region 3 (Seychelles) - Geographically distinct but biologically similar (n = 100).

Region 4 (Dominica) - Both geographically and biologically distinct (n = 100).

The decision to include images from different reefs was to test the importance of ge-

ographical and ecological distinctness on the algorithms used. Spermonde archipelago is

1https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0211063
2https://coralnet.ucsd.edu/
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located on the opposite side of Sulawesi to the Wakatobi and was considered geographically

and ecologically similar as it is within the Coral Triangle. The Seychelles are geograph-

ically distinct from the Wakatobi region, but were considered ecologically similar - both

are a part of the Indo-Pacific biogeographical reef region [192]. The reefs of Dominica

comprise of geographically and ecologically distinct rocky reef systems when compared

to the Wakatobi due to their different biogeographical region [192] and species’ differing

evolutionary pathways and morphologies [193].

The 2021 training data consisted of both the training and test set from 2020 with some

additional images added (n = 879). The provided test set contained images from the same

regions as in 2020 (n =). The task images formed completed sets that could be used to

generate 3D models of coral reef environments. In practice, this meant that each image

would have several others containing at least two thirds of the same substrate, increasing

the number of incidences of each substrates’ occurrence.

6.3.1 Habitat feature classification

Determining the specific semantics used in annotation required an understanding of

coral reef benthic fauna and flora with a focus on their morphology and function. To

simplify the algorithm required where possible, labels were based on either functional

groups or morphology rather than being genera specific (Table 6.1). The variations in reef

fauna and flora morphology presents a challenge not regularly seen in automatic image

annotation, and were predicted to cause issues with shape recognition and segmentation

from the image’s background [59, 194]. Even within the same semantic label, the shape

and structure of benthos can vary greatly. Colour distinction is valuable when segmenting

an image [195], but as corals, rocks, sponges, and other substrate and non-substrate bound

organisms can appear very similar it adds another challenging aspect to the task.

Each substrate morphology can be indistinct from others due to the variation in that

class’ species. This is particularly true of classes that are not broken down into morpho-

logical groups, i.e. “soft coral,” and less of an issue with classes that are split, i.e. each

“hard coral” group. Difficulties can also arise from traits of the organisms within a group,

such as in soft corals and some sponges which can appear fleshy and bulbous, and in some

cases can have floating parts in the movement of the water column.
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6.3.2 Image annotation and validation

Annotator training

All images in the ImageCLEF coral task had to be accurately hand annotated to

both train algorithms and test their accuracy. An online annotation tool was developed

specifically for the task (Fig. 6.1), allowing polygons to be drawn and labelled by an initial

annotator, then sent to an administrator for validation before being included in the final

dataset. The scale of the image set required was large enough that the project benefited

from a group of Tropical Marine Biology postgraduate students, who were trained in

the expected benthos morphology and in the annotation process (see Appendix V for

an example image of each substratum type). Administrators were a PhD student with

experience in coral reef surveying and substrate identification within the Wakatobi region,

and a marine technology academic with similar prior experience at a range of reef sites

and with image annotation.

Figure 6.1: The custom annotation tool used when labelling images for the ImageCLEF-
coral task. The larger image is the one to be annotated and can be zoomed in and out.
The right hand side shows the options to (from top to bottom) “submit the image for
validation,” “undo the previous label created,” “change the undo mode to remove indi-
vidual points from a labels outline,” “select a semantic label from the drop down menu,”
the option to “highlight a label to administrators to indicate uncertainty,” to “complete
a specific polygon and associated label,” and shows the colour a polygon will appear, and
an example of the current selected substratum type.

To use the annotation tool, the students were required to place points sequentially
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within the boundaries of the selected organism/organisms (Fig. 6.2a). Adjacent organisms

could be grouped together if the same semantic label would be applied (Fig. 6.2b). It

was important that no polygon overlapped, so the foremost organism took precedence. To

aid understanding, annotators were shown a presentation with relevant substratum types,

given an annotation guide PDF, and all annotation was completed at scheduled times with

at least one administrator present to verify selections.

(a) (b)

Figure 6.2: A vase sponge (a) outlined by selection dots just inside the objects boundary,
and (b) the polygon created by connecting a semantic label to the dotted outline.

Figure 6.3: One of 5 training images used to test the accuracy and capabilities of prospec-
tive annotators to aid in the ImageCLEFcoral task.
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Image annotation

The initial task required 440 images to be annotated (Fig. 6.3). An training exercise

assessed the capabilities of annotators to fulfil their task: five images were provided within

the tool that demonstrated a range of substratum types that had been annotated previ-

ously by a administrator to pixel level accuracy (Fig. 6.3). Agreement per class was then

calculated using IoU (Eq. 6.1) to identify any annotators who did not achieve sufficient

accuracy (IoU < 15%) so that their images could be excluded.

Once images were annotated, administrators worked together to assess each one indi-

vidually. Images were checked for accurate boundaries and semantics of labelled polygons,

incorrectly placed polygons, missed substrates, and any polygons tagged for review. Any

uncertainties were discussed before a decision was made to minimise errors as much as

possible within the manual annotation.

6.3.3 Training image analysis

Within the 2019 training dataset, 76.44% of all pixels were considered background

and had no substrate class annotations. The remaining 23.56% of pixels were repre-

sented across the substrate class semantic labels (Table 6.2). The large disparity in each

substrate’s representation in the data set will likely skewed predictions to favour certain

classes over others. Combining the small volume of images used for training with the

variable quality of underwater imagery and the presence of foreign objects (tape measures

and occasionally metal nails with tape can be seen throughout the image set), the task

was challenging.

Table 6.2: Benthic substrate distribution, as a percentage of pixels with an associated sub-
strate class (23.56% of all pixels) in the ImageCLEFcoral 2019 training set. Background
pixels were not annotated (76.44% of all pixels).

Substrate class Pixel representation %

Branching coral 13.7%
Massive coral 22.9%
Encrusting coral 3.3%
Soft coral 49.3%
Sponge 6.8%
Barrel sponge 2.3%
Remaining classes 1.7%
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In the 2020 dataset, 17.19% of pixels were represented across the substrate class labels

(Fig. 6.4). Soft corals represented 50.55% of all classified pixels. Massive (boulder) corals

were the next most prevalent (16.92%), followed by branching corals (11.23%). Sponges

and encrusting corals were the next most common (8.26% and 4.77% respectively) with

the remaining substrate classes collectively comprising the remaining 8.26%. As in 2019,

the skew towards certain substrates, particularly soft corals and branching corals, would

likely skew participants algorithms in favour of more prevalent classes. Although the

number of training images increased by over 80%, there was little training data compared

to a standard neural network designed to annotate images, which may hamper accuracy

and reduce the mAP scores of submitted models.

Figure 6.4: Analysis of the training and test data from the 2020 ImageCLEFcoral task
showing classified benthic substrate pixel proportions (%) within the image set.
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In the 2021 training dataset, classified pixels (20% of total pixels) were predominantly

composed of soft corals (27.84% of classified pixels), massive corals (20.45% of classified

pixels), and branching corals (17.34% of classified pixels). This reflects the patterns of

substrate abundance from 2019 and 2020, and again will likely result in algorithms that

are better at predicting these classes.

Table 6.3: Benthic substrate distribution, as a percentage of pixels with an associated
substrate class (20% of training image pixels; 23% of test image pixels) in the ImageCLE-
Fcoral 2021 image set. Background pixels were not annotated (80% of test image pixels;
77% of test image pixels).

Pixel representation %
Substrate class Training

images
Test images

Branching coral 17.34% 24.28%
Submassive coral 8.50% 19.57%
Massive coral 20.45% 10.83%
Encrusting coral 5.79% 4.30%
Table coral 3.16% 9.81%
Foliose coral 0.94% 0.03%
Mushroom coral 0.30% 0.05%
Soft coral 27.84% 2.48%
Gorgonian 0.71% 0.14%
Sponge 7.68% 14.89%
Barrel sponge 2.02% 1.31%
Fire corals 0.09% 0.03%
Algae 5.18% 12.28%

6.4 ImageCLEFcoral submissions

ImageCLEF tasks are open to submission from teams across the globe. For Image-

CLEFcoral each team could submit up to 10 runs, where 1 run is one round of predictions

generated by the network, per task (Table 6.4). In 2019, five teams produced results for

one or both of the subtasks. In 2020, four teams produced results for one or both of the

subtasks, with one team having also participated in the 2019 task. In 2021, three teams

produced results for one or both of the subtasks, with two team having also participated

in either the 2019 or 2020 editions of the task.
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Table 6.4: Teams of the ImageCLEFcoral task

Number of runs
Year Team Institution Subtask 1 Subtask 2

20
19

ISEC [196] Coimbra Institute of Engineering 1 0
VIT [197] Vellore Institute of Technology 5 0
HHUD [198] Heinrich Hein Universität Duesseldorf 9 1
SOTON [NA] University of Southampton 0 3
MTRU [199] University of Essex 0 1

20
20

FZ PiVa [200] University of West Bohemia 10 10
FZ CV [201] University of West Bohemia 2 1
HHUD [202] Heinrich Hein Universität Duesseldorf 10 0
FHD [203] Fachhochschule Dortmund 10 10

20
21

Pilsen Eyes
[204]

University of West Bohemia 2 1

UAlbany [205] University of Albany 1 0
MTRU [206] University of Essex 0 4

6.5 Results

6.5.1 Subtask 1 - annotation and localisation

2019 annotation and localisation

When focusing on subtask 1, coral reef image annotation and localisation, teams

were required to produce an annotated bounding box around each substrate in an im-

age. HHUD, VIT, and ISEC each produced runs for this subtask, with the HHUD team

being most successful in terms of mAP 0.5 IoU in 4 of their 9 runs (Table 6.5).

HHUD’s approach began by augmenting the dataset through noise and blur to main-

tain the bounding boxes within the training data, and generated a new data set from the

bounding boxes themselves to triple the volume of images available to train their network

on. They then increased the contrast of all images and sharpened each pixel according to

neighbouring pixels. They used two methods in their runs, the first of which applied a You

Only Look Once (YOLO) approach and the second that they developed independently.

YOLO takes the entire image into account when predicting bounding boxes, rather than

splitting it like R-CNN approaches, by dividing the image into square cells and predicting

bounding boxes inside. The features of the entire image are therefore kept intact and

inform the algorithm, reducing background errors by accounting for image context. The
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Table 6.5: Results of ImageCLEFcoral 2019 subtask 1, from the top down showing the
most successful per the maP 0.5 IoU metric.

Run ID Team Approach mAP 0.5 IoU mAP 0 IoU R 0.5 IoU

27417 HHUD YOLO 0.243 0.488 0.131
27416 HHUD YOLO 0.229 0.501 0.131
27419 HHUD YOLO 0.220 0.442 0.122
27418 HHUD YOLO 0.210 0.455 0.122
27349 VIT R-CNN 0.140 0.431 0.068
27348 VIT R-CNN 0.134 0.424 0.072
27115 VIT R-CNN 0.085 0.424 0.046
27350 VIT R-CNN 0.048 0.287 0.029
27347 VIT R-CNN 0.041 0.272 0.027
27421 HHUD Custom 0.003 0.205 0.004
27414 HHUD Custom 0.003 0.228 0.004
27415 HHUD Custom 0.003 0.291 0.005
27398 HHUD Custom 0.003 0.272 0.004
27413 HHUD Custom 0.002 0.203 0.003
27497 ISEC Random Forest 0.001 0.001 0.001

strength of a predicted bounding box and the probability of its associated label are cal-

culated across several steps throughout the YOLO algorithm. HHUD’s own method was

based on the principle that the background across all images looks different to the labelling

categories and looks similar across all images. From this, they split each image into “tiles”

and extracted the tiles’ colour, texture, and shape features. These features were then used

to train a binary classifier to distinguish areas of “coral” (or substrate classes) and non-

coral (background) reef. After finding their bounding boxes, semantic labels were assigned

using k-nearest neighbour (k = 15) and by CNN with a simple and then deeper approach

using a pre-trained VGG19 network with transfer learning, an already popular method.

The VIT team [197] was less successful than some of HHUD’s runs, but more successful

than others and than the run of ISEC (Table 6.5). They augmented the dataset using

horizontal and vertical flips of the images, as well as with 90◦ rotations and random

contrast and brightness adjustments. VIT then used faster R-CNN variants. Faster R-

CNNs expand on the capabilities of standard CNNs by applying the CNN algorithm to

generate a feature map, but then utilise a separate network for localisation and a pooling

layer to classify said localised position, whereas CNNs themselves cannot predict multiple

instances of an object within one image. Three separate backbones were used (NasNet,

Inception V2, and ResNet-101), all of which are pre-trained with 300,000 images across 80
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categories. The VIT team further trained the networks with the provided training images.

The ISEC team had the poorest overall performance of any team in their single submit-

ted run (Table 6.5). They calculated the mean, standard deviation, entropy of greyscale

version of the image and hue ratio within a 5× 5 pixel neighbourhood around each pixel

within an image and used a variety of models to test for classification accuracy. They de-

termined that a random forest algorithm provided the best outcome, which uses decision

trees to determine a substrate class for a particular region.

2020 annotation and localisation

All teams produced runs for this subtask, with the FZ PiVa team being most successful

in terms of mAP 0.5 IoU in four of their 10 runs (Table 6.6).

Ignoring location and focusing on substrate classification alone, no run performed

better than others in all classes (Table V.3). Best performance in all classes except soft

corals were found in runs by HHUD and FHD, which did not perform best overall (Table

6.6). The best soft coral performance was seen in the worst overall run from FZ PiVa (run

ID 67857), which was also the highest overall IoU per benthic substrate class.

When adding in location as a factor, again no team outscored any other across all

substrate classes in a run (Table V.4). Soft corals had the second best performance

in any run with 0.5116, while branching corals had the highest score (0.5925) in a run

with relatively poor performance in the other substrate categories. Unexpectedly, this

high branching coral accuracy came from the Seychelles (the ecologically similar but ge-

ographically distinct) and not the Wakatobi (same) or Spermonde (similar ecologically

and geographically). Most of the highest substrate scores were seen in the test data from

the Wakatobi (same location as training set), with the runs from FHD and FZ PiVa each

having 5 top scoring categories.

2021 annotation and localisation

The Pilsen Eyes team was the most successful in terms of mAP 0.5 IoU in both of

their runs for subtask 1 (Table 6.7).
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Table 6.6: Results of ImageCLEFcoral 2020 subtask 1, from the top down showing the
most successful per the maP 0.5 IoU metric.

Run ID Team Approach mAP 0.5 IoU mAP 0 IoU

68143 FZ PiVa R-CNN 0.582 0.853
67863 FZ PiVa R-CNN 0.565 0.851
68094 FZ PiVa R-CNN 0.530 0.825
68145 FZ PiVa R-CNN 0.517 0.814
67539 FZ CV SSD 0.490 0.822
68181 FHD R-CNN 0.457 0.775
68188 FHD R-CNN 0.440 0.725
67862 FZ PiVa R-CNN 0.439 0.774
68187 FHD R-CNN 0.424 0.729
68182 FHD R-CNN 0.422 0.762
68146 FZ PiVa R-CNN 0.415 0.747
68186 FHD R-CNN 0.410 0.730
68183 FHD R-CNN 0.405 0.759
68201 HHUD RetinaNet & YOLO 0.392 0.806
67914 FHD R-CNN 0.391 0.720
68184 FHD R-CNN 0.388 0.707
67919 FHD R-CNN 0.383 0.703
68138 FZ PiVa R-CNN 0.377 0.721
68185 FHD R-CNN 0.369 0.722
67858 FZ PiVa R-CNN 0.357 0.712
68093 FZ PiVa R-CNN 0.349 0.709
67857 FZ PiVa R-CNN 0.347 0.728
68202 HHUD Unknown 0.323 0.753
68198 HHUD Unknown 0.313 0.702
68205 HHUD RetinaNet & YOLO 0.303 0.727
68196 HHUD Unknown 0.280 0.684
68212 HHUD RetinaNet 0.263 0.663
68197 HHUD Unknown 0.245 0.628
67558 FZ CV R-CNN 0.243 0.664
68213 HHUD Unknown 0.233 0.644
68178 HHUD Unknown 0.010 0.206
68179 HHUD Unknown 0.010 0.274

Table 6.7: Results of ImageCLEFcoral 2021 subtask 1, from the top down showing the
most successful per the maP 0.5 IoU metric.

Run ID Team Approach mAP 0.5 IoU

138115 Pilsen Eyes R-CNN 0.121
137821 Pilsen Eyes R-CNN 0.105
139118 UAlbany Wave-CLASS 0.001
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6.5.2 Subtask 2 - pixelwise parsing

2019 pixelwise parsing

When focusing on subtask 2, coral reef image pixel-wise parsing, teams were required

to produce an annotated polygon around outlining each substrate in an image. MTRU,

SOTON, and HHUD each produced runs for this subtask, with the MTRU team being

most successful in terms of mAP 0.5 IoU in their 1 run (Table 6.8).

Table 6.8: Results of ImageCLEFcoral 2019 subtask 2, from the top down showing the
most successful per the maP 0.5 IoU metric.

Run ID Team Approach mAP 0.5 IoU mAP 0 IoU R 0.5 IoU

27500 MTRU DeeplabV3 0.042 0.240 0.049
27343 SOTON DeeplabV3+ 0.000 0.048 0.002
27324 SOTON DeeplabV3+ 0.000 0.090 0.000
27212 SOTON DeeplabV3+ 0.000 0.071 0.000
27505 HHUD YOLO 0.000 0.000 0.000

The MTRU team augumented the image dataset primarily using random cropping,

with 16 squares of varying sizes per image. All crops were then scaled to the same size

and randomly flipped vertically and horizontally to further augment the data. This trained

their network on a range of scales and orientations of the substrate classes in an attempt to

combat the model overfitting utilising DeeplabV3, which avoids a separate post-processing

model. MTRU used a ResNet-101 backbone for feature extraction (but noted that others

could be used). To finalise their training, areas of images with poor network performance

were cropped and removed, and the network was then retrained on the remaining image

sections. Post-processing work included polygon approximation and other basic algorithms

to adapt the data to the submission format.

The SOTON team submitted 3 runs, only one of which produced a positive mAP 0.5

IoU value, which used a pre-trained DeeplabV3+ network, further trained with the Im-

ageCLEF coral training set using a one-versus-all pixel-wise classifier. This method trains

binary classifiers to recognise one particular substrate category. As with several other

teams, their pre-processing augmentation involved rotating, flipping, and shearing the

training images. Their output utilised a conditional random field, which adds contextual

information to the model using previously predicted semantic labels, to assign substrate

categories to polygons.

102 Chapter 6



Computational analysis of reef structure and benthic composition

The HHUD team used their previous approach (Section 6.5.1) in their run for this

subtask, but did not produce a positive result in any evaluation metric (Table 6.8).

Both SOTON and HHUD submitted self-intersecting polygons, which were excluded

from evaluation as they produce invalid geometry, where some sections with overlapping

edges would be classed as both inside and outside of the polygon at the same time.

2020 pixelwise parsing

Three of the four teams produced runs for this subtask, with the FZ PiVa team once

again being most successful in terms of mAP 0.5 IoU in 6 of their 10 runs (Table 6.9).

Table 6.9: Results of ImageCLEFcoral 2020 subtask 2, from the top down showing the
most successful per the maP 0.5 IoU metric.

Run ID Team Approach mAP 0.5 IoU mAP 0 IoU

67864 FZ PiVa R-CNN 0.678 0.845
68139 FZ PiVa R-CNN 0.664 0.842
68095 FZ PiVa R-CNN 0.629 0.817
68142 FZ PiVa R-CNN 0.624 0.813
68144 FZ PiVa R-CNN 0.617 0.807
68147 FZ PiVa R-CNN 0.507 0.727
68190 FHD R-CNN 0.474 0.715
68137 FZ PiVa R-CNN 0.470 0.701
67968 FHD R-CNN 0.469 0.708
67965 FHD R-CNN 0.453 0.720
67964 FHD R-CNN 0.449 0.717
67856 FZ PiVa R-CNN 0.441 0.694
67967 FHD R-CNN 0.435 0.695
68092 FZ PiVa R-CNN 0.434 0.689
67963 FHD R-CNN 0.433 0.694
68192 FHD R-CNN 0.424 0.668
68191 FHD R-CNN 0.416 0.692
68140 FZ PiVa R-CNN 0.407 0.675
679669 FHD R-CNN 0.376 0.629
68189 FHD R-CNN 0.371 0.632
67620 FZ CV R-CNN 0.304 0.602

When only considering substrate classification, similar to subtask 1 there was no clear

run that excelled with predicting all classes and locations (Table V.5). FHD did have the

highest scores in all substrates except submassive hard coral across all of their submitted

runs, with the highest overall substrate prediction being 0.545 for soft coral. Submassive

hard coral was best predicted by FZ PiVa at 0.026.

Taking location into account (Table V.6), FHD had the best run with the Wakatobi
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test set (same location), predicting all classes except fire coral, branching hard coral, and

submassive hard coral with greatest precision. Submassive corals were best predicted by

FZ PiVa, also in the Wakatobi region. Fire coral were not predicted accurately in any

location by any team, with scores of 0 in all runs, likely due to rare occurrence. Branching

corals were predicted with a score of 0.718, the highest of any substrate class, by FHD in

the Seychelles, the ecologically similar but geographically distinct location.

2021 pixelwise parsing

Chapter 7 details the 2021 edition of subtask 2 where, instead of organising, a series

of participation runs were submitted. mAP 0.5 IoU scores are outlined in Table 6.10.

Table 6.10: Results of ImageCLEFcoral 2021 subtask 2, from the top down showing the
most successful per the maP 0.5 IoU metric.

Run ID Team Approach mAP 0.5 IoU

139084 Pilsen Eyes R-CNN 0.075
138389 MTRU DeeplabV3 0.021
138443 MTRU DeeplabV3 0.018
138411 MTRU DeeplabV3 0.017
138449 MTRU DeeplabV3 0.011

6.6 Discussion

The first edition of the ImageCLEFcoral task confirmed the suspected challenges that

marine environments pose to automatic annotation. The use of low-cost action cameras to

collect images adds a dimension of difficulty that is highlighted by the results of the task

in its first year. The varying accuracy of subtask runs overall (Tables 6.5 and 6.8) and

per benthic substrate (Table V.1 and V.2) highlight the difficulties raised. The prevalence

of self-intersecting polygons in subtask 2 and their subsequent exclusion from evaluation

may have compounded the already demanding task and caused the low performance.

In 2020, the four highest mAP 0.5 IoU scores were over double that of 2019 when look-

ing at subtask 1 (annotation and localisation). This drastic improvement demonstrates

that annotation of lower quality substrate images is possible with moderate success. How-

ever, the lesser value of this task was highlighted by the FHD team, who were able to

increase subtask 1 performance by redefining the bounding boxes themselves. The range
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of non-normal shapes found in the substrate classes is clearly not best suited to this type

of annotation and it may not be worthwhile to include in future versions of the task.

The best run in 2020 was submitted for subtask 2 (pixelwise parsing), the more chal-

lenging of the two subtasks. This run showed a large improvement from the best subtask 2

run of 2019 (2019 = 0.042, 2020 = 0.678). This improvement is likely due to the increased

training data made available for model training, and again highlights that the pixelwise

parsing task is likely the most viable for future years of ImageCLEFcoral. As such, there

is a clear need for an increased volume of data, particularly for the rarer substrate classes

as these were often the worse scoring in evaluation metrics.

In both subtasks in 2020, branching corals were predicted better than any other sub-

strate class, both in the Seychelles region. This suggests that some substrate classes, po-

tentially those with more distinct morphological structure, are more able to be recognised

through transfer learning than others. The disparity in accuracy of predicting specific

substrates and overall scores for FHD could show issues within their approach when de-

tecting smaller polygons. Unexpectedly, the FZ CV team found that the models used for

both subtasks had greater power when predicting test images than the training images

they used for validation. This could be indicative of the capabilities of future algorithms

to be used on global datasets, as is one of the aims of the ImageCLEFcoral challenge.

The drop in mAP 0.5 IoU scores in both subtasks in 2021 when compared to previous

years is most likely due to the compounding difficulty when adding a variety of locations

to an already complex training dataset. The variation in substrate morphology from

geographically distinct reefs is well documented [207] and would hamper any algorithms

ability to predict classes with accuracy due to the contradictory appearances being defined

under the same semantic label. Even with an increased dataset it is likely that different

algorithms would be needed for this task based on geographical location, but thus far the

scale to which on algorithm could be relied upon is unknown.

6.6.1 Challenges of ImageCLEFcoral

Underwater imagery is often lower quality than that taken on land. Light attenuation

distorts colour detection, water turbidity can reduce image quality and with all underwater

imagery there is a greater chance for blurred or unfocused photographs. Taking steps to

investigate, process and augment the provided data is expected to improve the data quality
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and subsequent network results [200, 203]. There are several approaches to underwater

image enhancement that can provide balanced colouring and contrast across large data sets

without individually editing each photograph/still. Rayleigh enhancement is commonly

used [202, 203, 208, 209] and is based upon image histogram stretching to balance colour

input channels. Red-channel restoration has also been successful in improving the quality

of a range of underwater imagery, including coral reef images [210]. Another method to

balance the red channel commonly lost in marine imagery exploits the remaining colour

input channels in an image for colour balance [195].

The number of images required to train a model to annotate regularly shaped objects

(i.e. buildings, cars) is extensive. The added difficulty of indistinct, irregular geometry

with a lack of colour differentiation requires even more images that were simply not avail-

able to the ImageCLEF task. Adding further data with external image sets was suggested

to 2021 participants, but the difference in annotation and image styles was apparent when

adding this dataset did not improve the accuracy of substrate classification, but instead

reduced it greatly.

The time frame of the task may also be a limiting factor towards its success, though

repeating teams have access to previous data and can continue to improve their algorithms

throughout the year. The limited time may be a benefit in some cases, where teams are able

to push for results in a Hackathon style and produce short but meaningful improvements

each time they come together to work on their model.

The semantic labels selected for the ImageCLEFcoral task were chosen morphologically

to simplify the challenge as much as possible. These labels may not link well enough to

biological surveys to be useful as yet, but will be a good starting point to develop an

algorithm to work from. Once this version of the task is a success, a collaboration with

marine researchers may yield more beneficial semantic labelling to be used in further

annotations.

6.7 Summary

The overarching aim of ImageCLEFcoral is to add substrate labelling to reconstructed

3D coral reef models and to create a globally applicable model to annotate coral reef

substrate images. The first edition of the task in 2019 set the baseline with test and
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training images from a single location, 2020 added test images from three other locations

of varying similarities to the original region, and the 2021 edition of the task completed

image sets that combine to generate 3D models of coral reef environments. Continuing the

ImageCLEFcoral task with more image data should lead to improving results that may

eventually be able to fulfil these aims. Whether this is by creating one global algorithm,

or by creating a method for each biogeographical coral reef region, is yet to be determined.

The direct annotation of 3D models is highly complex, as the link between the dense

cloud points and a specific reef substrate would be exceedingly challenging. It was then

hypothesised that annotating 2D images before model construction and utilising the se-

mantic labels in the photogrammetric pipeline would generate a 3D reconstructed reef

system with associated substrate labels [211]. The data capture is directly linked to the

3D modelling aim, with action cameras set to video or time-lapse to collect images instead

of using DSLR cameras. This does impact image quality in terms of blurring, contrast,

and colour balance, but it is important as these cameras are commonly used in marine

monitoring projects [48, 51, 52] and link this task to real world applications of coral reef

conservation.
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annotation

7.1 Introduction

Deep learning algorithms may provide an answer to automatic annotation in marine

environments [64]. The underlying architecture of most is the Convolutional Neural Net-

work (CNN), often used for image and pattern recognition [212]. CNNs have been utilised

in benthic annotation studies across a range of substrates with varying success. Focusing

on object detection, CNNs have been successful in counting and identifying a range of

benthic fauna [62, 213, 214, 215]. At a larger scale, CNNs have been used with satellite

imagery to successfully (with 80-85% accuracy depending on the image source) identify

coral, seagrass, sediment, and other coral reef associated substrate at a global scale [216].

There have been several examples of CNN use looking specifically at annotation within

a coral reef environment [59, 194]. This type of task presents particular difficulties due

to the nature of reef characteristics. Coral colonies of different species or genera can look

highly similar, while coral colonies of the same species can look highly distinct due to a

range of factors. Some benthic organisms are much more prevalent than others and image

representation is often highly skewed towards these substrates [188, 189], so it is often

challenging to provide adequate training data for certain classifications. Often, openly

available annotated data sets focus on a combination of broad categories (i.e. “sand”,

“rock”) and highly specific ones for those species/genera that are most prevalent (e.g. the

EILAT dataset).

Attempts at classifying coral reef substrate from close-up imagery have been highly

successful on some data sets [63], though this “zoomed-in” style of imagery would not

necessarily translate to success in the annotation of larger regions that encompass many
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different substrate classes within a single image. Where images of multiple substrate

types are used, generally annotations are applied only to certain pixels instead of aiming

to accurately annotate the entire visible substrate [154, 217], or focus entirely on specific

scleractinian corals without annotating any other substrate features [194, 218].

This chapter details the work behind four submissions to the 2021 ImageCLEFcoral

task attempting to improve upon the previous yearly results to automatically annotate

coral reef substrates. An adaptation of the MTRU 2019 approach to ImageCLEFcoral task

(Section 6.5.2) [199] was used to focus on merging the ImageCLEF data with an additional

data set from NOAA NCEI, focusing on subtask 2 (pixelwise annotation; Section 6.2) as

it was considered more valuable for practical use in monitoring reef systems accurately.

7.2 Methodology

7.2.1 Supplementing the ImageCLEF dataset

The ImageCLEFcoral 2021 task run provided 879 images with a combined 21,748

annotations as training data followed by 485 unannotated test images at a later date. As

with previous years, the annotations were not evenly split across classes, likely as some

are more prevalent than others in reef systems (Fig. 7.1). The NOAA data set had 15,019

available images, each with 10 single-pixel points annotated. Machine limitations allowed

for 3,032 images to be downloaded; server timeout required restarting the download, which

would begin from the first image instead of allowing for specific images to be selected,

preventing further data being made available for the training set. Timeout limits could

not be changed. The additional NOAA images then had to be further reduced to enable

model training in a reasonable timeframe, again due to server timeout limitations.

To refine the NOAA images, five lesser represented substrate classes were selected

for: Fire Coral - Millepora, Hard Coral - Foliose, Hard Coral - Table, Hard Coral - Sub-

Massive, and Hard Coral - Encrusting. Though they also had few annotations, Soft Coral

- Gorgonian, Hard Coral - Mushroom, and Sponge - Barrel were not chosen from the

NOAA data set as they have more distinct morphologies than the selected classes, so were

more likely to be predicted despite relatively few occurrences. Algae - Macro or Leaves

were also not selected from the NOAA data set despite low incidence. Algae classification

of the ImageCLEF set only accounted for large leaf macroalgae, whereas the NOAA data

Chapter 7 109



Computational analysis of reef structure and benthic composition

Figure 7.1: Substrate annotations in the ImageCLEF training set of 879 images (n =
21, 748; green), and the additional NOAA images added to the Hard Coral - Encrusting
and Hard Coral - Foliose classes (n = 502; red) to increase the total number of training
images (n = 22, 403).

set also included other types such as turf and CCA, so conflicting annotations could have

hampered the model predictions. 502 viable NOAA images were found, within which two

of the five selected classes were found: Hard Coral - Encrusting and Hard Coral - Foliose.

This almost doubled the processing time per epoch (wherein all training data is scanned by

the network once), pushed the entire model training time from 10 hours to 17.5 hours (10

epochs total), and only increased the total number of substrate annotations from 21,748

to 22,403 (Fig. 7.1). The increased effort required for the additional data is unlikely to

balance with significantly increased predictive power in the model at this scale, but the

annotations were still utilised to test this process.

The NOAA data set contains a greater number of classification labels than the Im-

ageCLEFcoral classes. These classifications are of a single pixel (10 pixels per image)

so did not provide enough information for the image analysis and recognition algorithms

used here. A NOAA Translation processor was used to capture the classification types

within the data set and translate them via an expert defined translation matrix into the

ImageCLEFcoral classes. The processor then created an adjustable Region Of Interest
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(ROI) around the same pixel to provide an image patch, typically a 10x10 pixel area, that

enabled the machine learning routines to adapt to the NOAA data sets.

Editing and augmenting images

Following the premise that processing the images would improve the data quality and

subsequent network results [200, 203], images were visually assessed and split into those

with accurate colouring and contrast, those with a heavy green tint and those with a heavy

blue tint. Colour accurate images were not altered in any way. Green and blue images were

passed through an RGB histogram leveller followed by an RGB channel mixer, generalised

to green or blue images for speed (Fig. 7.2). This would allow all the images to be

processed easily but would not allow for image-specific editing.

(a) (b) (c)

(d) (e) (f)

Figure 7.2: Transformation of (a) a green and (d) blue image through two stages to an
image used in training. Each image had (b,e) balanced RGB levels, then (c,f) when
through a generalised channel mixing process to balance the colours while maintaining
image contrast. The leveling and mixing were selected to optimise substrate colour and
contrast with less focus on the background and water colouring.

Before training the model, each image was cropped into 12 squares which were each

then cropped at a random point to 480 px2. Random horizontal flips were also utilized

due to the limited amount of data. These pre-processing techniques present the model

with different iterations of the same images, increasing the size of the data set available.

The test images were also cropped into 12 squares to match the training images used

on the model. Each test image was then resized to a 520px square, which allowed us

to predict all test images despite system limitations. The predicted pixel array of each

test image was resized to its original dimensions before submission to match the ground

truth annotation mask. This was carried out using spline interpolation through the zoom
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function in SciPy1.

7.2.2 Submitted runs

The model

The base 2019 code utilised the DeepLabV3 model with a ResNet-101 backbone for

feature extraction [199]. Atrous convolution was applied to increase the field of view of

the final ResNet-101 layer with inserted 0-values in the network layer, followed by Atrous

Spatial Pyramid Pooling (ASPP) for pixel labelling using the resulting atrous convolution

rates. Evaluation of different crop and batch sizes found that a combination of 480 px2

crops and batch size 4 to provide the greatest overall accuracy, in terms of mean average

precision (mAP0.0 and mAP0.5), within system limitations.

Each team in the competition was allowed to submit up to 10 runs per task using the

collaboration platform AICrowd2. We chose to submit four files to the pixelwise-parsing

subtask only, representing four individual runs:

MTRU1 - The “baseline” run, using the 2019 submission [199] that was rewritten and

adapted by experimenting on crop × batch size combinations. Batch size 4 with

crop size 480 were found to give the best results and were used in this run.

MTRU2 - The edited ImageCLEF run, using the same settings as MTRU1. Poorly

coloured training images were enhanced to represent more accurate coloring of the

coral reefs.

MTRU3 - The NOAA run, using additional data from NOAA in three different sub-

strates. The images were not enhanced or edited in any way, and the same settings

from MTRU1 were used.

MTRU4 - The fully edited run, using same settings as MTRU1, with both the additional

NOAA data and image colour enhancements where needed.

All four runs predicted some images containing self-intersecting polygons. These poly-

gons invalidate a run and are not permitted in the submission file so must be removed.

The evaluation script was used to identify any images with self-intersecting polygons and

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html
2https://www.aicrowd.com
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the substrate type of the polygon. This process involved removing each polygon of the

relevant substrate type one by one, re-running the evaluation script each time to check if

the error was resolved.

Initial images were checked polygon by polygon in this manner to minimise any impact

on model accuracy, but the time constraints of the challenge required faster processing of

the latter runs. Images in these runs were checked in polygon “batches,” where several

at a time would be deleted before running the evaluation script. While this did increase

the speed of evaluation before submission, it is likely that a significant proportion of the

deleted polygons were not self-intersecting and as such the mean average precision (mAP)

of the runs would be both lower and less accurate.

Three of the four runs (2, 3 and 4) predicted images without any substrate class

annotations. While clearly an error as all images were of coral reef substratum, these

predictions were a part of our model outcome and therefore our submitted runs. The

evaluation script used upon submission blocks these images and deem runs with them

a failure so each had to be altered. As all images from the test set must be used, the

blank images could not be removed. Our solution to this was to include a small square

annotation in the center of the blank images and label it as Fire Coral - Millepora. This

class was used as it had the lowest number of annotations and had no additional images

added from NOAA images so was likely to be the least accurate class, limiting the effect

on overall accuracy as much as possible. It could not be removed from analysis as all

classes required predictions before submission, but any result for Fire Coral - Millepora

should be considered invalid.

7.3 Results

Results provided by ImageCLEFcoral after submission used two metrics. mAP0.5

showed the localised mean average precision using intersection over union (IoU) ≥ 0.5.

Accuracy per substrate calculated the segmentation accuracy as the number of correctly

labelled pixels of class over the number of pixels labelled with class in ground truth.

Overall results of the pixel-wise parsing subtask (Table 7.1) show that the MTRU runs

were less accurate and precise than the Isoukup team. When considering the accuracy

per class, however, there were some substrate categories that were better predicted by our
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model.

Across the MTRU runs, we saw the highest accuracy of submassive coral, table coral

and foliose coral predictions when images ran unedited and without additional NOAA data.

The greatest prediction accuracy of boulder corals and algae across the subtask occurred

when images were colour corrected, and of gorgonian soft corals occurred when unedited

ImageCLEF data and NOAA data were used. MTRU3 was the only instance of gorgonian

predictions with positive accuracy (0.002%) across all submissions. Similarly, MTRU1

was the only instance of positive accuracy in foliose coral prediction (0.097%). None of

our runs predicted mushroom corals, sponges, barrel sponges, or fire coral accurately.

Of our runs, the greatest precision was seen in MTRU1 (mAP0.5 = 0.021), though it

did not have the highest accuracy (2.767%). MTRU4 was most accurate (2.951%) despite

having the lowest overall precision (mAP0.5 = 0.011).

Table 7.1: Overall precision (mAP0.5), average accuracy (%) and substrate class accuracy
(%) of pixel-wise parsing subtask submissions to ImageCLEFcoral 2021. The best scores
for each category are shown in red.

Category MTRU1 MTRU2 MTRU3 MTRU4 Isoukup

mAP0.5 0.021 0.018 0.017 0.011 0.075
Average accuracy 2.767 2.531 1.942 2.951 6.147

Hard Coral - Branching 1.090 2.299 0.536 5.562 11.095
Hard Coral - Submas-
sive

3.022 0.279 1.036 0.039 2.704

Hard Coral - Boulder 9.607 12.787 7.601 8.827 5.385
Hard Coral - Encrusting 0.017 2.595 0.729 2.429 2.615
Hard Coral - Table 0.353 0 0 0 0.008
Hard Coral - Foliose 0.097 0 0 0 0
Hard Coral - Mushroom 0 0 0 0 0
Soft Coral 0 0 0.228 0 50.433
Gorgonian 0 0 0.002 0 0
Sponge 0 0 0 0 1.625
Barrel Sponge 0 0 0 0 0.329
Fire Coral - Millepora 0 0 0 0 0
Algae 0 0.027 0 0 1.0e−4

Overall precision and average accuracy were also lower than the 2019 run of this model

[199], however we did show improvement in the prediction of submassive corals (MTRU1

= 3.022%), 2019 = 0%) and table corals (MTRU = 0.353%, 2019 = 0%), neither of

which were predicted with any accuracy in 2019.

The colour adjustments made to the images increased the prediction accuracy of boul-
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der corals, encrusting corals, and algae (Table 7.1). Submassive corals were less accurately

predicted with image enhancement, as well as table corals, foliose corals, soft corals, and

gorgonians.

Of the two categories with increased annotations from the NOAA data set, encrusting

corals saw a greater accuracy while foliose corals had a lower prediction accuracy. Adding

NOAA data had a detrimental effect on the accuracy of most other substrate categories.

Where a prediction accuracy > 0 without NOAA data (MTRU1 and MTRU2), adding

NOAA annotations reduced the prediction accuracy of submassive, boulder, and table

corals as well as algae. Accuracy also decreased for branching corals between MTRU1 and

MTRU3 (unedited images), but increased between the colour enhanced runs (MTRU2

and MTRU4) by 5.026%. Predictions were also more accurate for soft coral (+0.228%)

and gorgonians (+0.002%) when NOAA data was added but no colour enhancement was

performed.

7.4 Discussion

Losses in predictive power in runs with image enhancement is likely due to the general

nature of the colour correction performed. While some images would improve with the

balancing and mixing at the levels set, others may have had colour blow outs or excessive

input from one or more RGB channels [208]. This could have a blur-like effect, wherein

neighbouring substrate categories look indistinct from each other due to a lack of colour

definition [195].

For boulder corals, colour enhancement may have distinguished them from other reef

substrates and enabled greater recognition of the coral over rocks and other substratum

that they can easily resemble. Encrusting corals would benefit for the same reasons. Algae

would likely show improvement with colour enhancement due to the removal of green image

tints, which would allow the natural green of the algae to become more defined and clear

[208]. Brown and red algae would also benefit from the red channel correction to make

them more distinct from surrounding substrate [210].

The increased accuracy in predictions of branching corals, soft corals, and gorgonians

in colour enhanced runs could be explained by the more distinct morphologies formed by

these categories across all locations that may have become more distinguishable with an
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increasingly balanced data set at the expense of the other classes. Although the soft coral

category encompasses several distinct organisms with different morphologies, the abun-

dance of annotations likely compensated by providing many examples of each structure.

The NOAA data used was from a different location than the ImageCLEF data which

could greatly impact mAP0.5 and prediction accuracy as substrates from different geo-

graphic regions can show vastly different morphologies. Encrusting corals are very similar

globally despite varying conditions, so increasing the number of annotations would likely

improve the models predictive power by adding distinctive pixels to train on. This is not

the case with foliose corals, which are more likely to show differing morphologies as they

are not flat to the substrate. Foliose corals also have extensive structures that often appear

layered and often appear to have many shadows that could hamper the training capabili-

ties of the model. Any shadows would look like black regions of the image, probably with

a flat texture [219]. These would provide no benefit to the model and may cause it to

relate any dark spots to foliose corals or to fail to recognise them at all. The reduced accu-

racy across several categories with added NOAA data could occur if the additional NOAA

annotations skewed the models perception of each category and altered the predictions

made as a result.

7.4.1 Limitations of the model

The use of a dedicated GPU greatly increases the computational power of machine

learning models. Training time can then be diminished and hyperparameters can be

improved. The machine we used to run our model was affected by a lack of GPU memory,

which can only be rectified by changing the graphics card to a more powerful one. The

memory limitation heavily impacted batch sizes testing, limiting tests to batch size 4 at

most. DeepLabV3 works best with a batch size of 16 (demonstrated on the PASCAL VOC

data set [220]). Using a computer with a better GPU would allow for a greater batch size

to be used which would improve the model parameters and strengthen the power of the

predictions.

7.4.2 Improving the approach

In the future, including a greater volume of NOAA data may prove beneficial when

training the model by increasing the number annotations per class across the training
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data. More specific pixel expansion would also enable more precise training and may

provided more pixels per class than otherwise achieved. A potential method could have

different expansion shapes set by class (i.e. boulder coral expands as a circle) and a pixel

selection/rejection threshold based on annotated pixel value.

Images and predictions would likely benefit from a more tailored colour correction

approach. This could be performed with the commonly used Rayleigh distribution [203,

208, 209] or with a different approach such as red channel weighted compensations [195]

that leverage the other colour input channels to colour balance an image with accuracy.

The addition of fluorescence imagery to accompany the standard pictures captured may

reduce prediction errors [61], though is likely impossible to procure for the already captured

areas. Newly added data would enable this type of image to be included, though it would

require more specialist equipment that would impede the low-cost and repeatable premise

of the ImageCLEFcoral task.

Using the results from this approach, developing a staggered pipeline may improve

prediction accuracy in the future. A bounding box approach to gain a generalised location

of each substrate could be used to then send images through different processing steps,

such as colour correction, blur reduction, contrast changes, etc, based on the class found.

This could then feed into a pixel-wise prediction model to find precise location of substrate

classes within an image.

7.5 Summary

Image colour enhancements can increase the accuracy of coral reef substrate predic-

tions when those substrates are otherwise difficult to distinguish from the surrounding

environment. It can also be detrimental when the editing performed is generalised in-

stead of image specific. Similarly, augmenting the training data set with annotations from

other sources can improve the predictions of substrates that are either morphologically

general across different geographical regions or those that form distinct structures despite

changing geography. Large increases in the number of annotations should be reflected in

a subsequent increase of accuracy in the represented classes. When this does not occur,

the abundance of data can impair the predictive power of the model by blurring the line

between substrate categories through incorrect annotation or by skewing the predictions
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made as a result of an imbalanced data set.

A combination of an augmented data set with distinct image enhancement pathways for

either different geographic locations or substrate categories may provide a more accurate

and precise prediction array. Combining these steps with improved hyperparameters would

enhance model performance and provide a coral reef substrate prediction tool that would

be applicable to reefs across the globe.
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8.1 Key findings

The work throughout this thesis primarily aimed to trial and improve upon compu-

tational approaches used in the monitoring of marine reef systems. To do this, three

questions were defined:

• Can multiple cameras be used to the same accuracy of single cameras in Structure

from Motion photogrammetry in less time?

• Are coral reef complexity metrics developed for tropical systems of use to temperate

habitats?

• Can coral reef substrates be automatically annotated from 2D images accurately?

Here, the outcomes of each area of work are discussed and interlinked to contextualise the

efficacy, benefits, and limitations of this type of methodology.

8.1.1 Multi-camera arrays for coral reef surveying

To begin a comparison of modelled complexity, 3D models of the coral reef environment

must be created. Despite SfM becoming a regularly used approach [48, 3], the parameters

used for model processing are often stated without explanation or not at all [47, 49]. This

raises the question of how impactful SfM processing quality could be on a model and

subsequently extracted data.

All data collected here relied upon action cameras of similar quality so the effect of

varying equipment could not be investigated. However, this did enable a clear view on the

impact of quality at each build stage relative to two coral reef environments (one relatively

pristine and one highly degraded). Results showed that low quality image alignment

performed as well as higher quality settings on the small scale (≈4m2) models created,

119



Computational analysis of reef structure and benthic composition

but that later build stages had increasing quality with each improved setting selection.

With higher quality dense cloud settings a more concentrated point cloud was produced,

as could be expected. From a model’s dense cloud, a mesh is generated to form a single

connected surface over the model by connecting adjacent dense cloud points into “faces”.

As such, the face count setting will create more polygons from connected points at higher

quality settings to form a more detailed mesh. This mesh is often what is used to extract

data from the model itself. Unexpectedly, increasing face count had no impact on mesh

quality. In practical terms, this implies that the quality of a model’s dense cloud is likely

to impact the accuracy of extracted data more so than the mesh. Mesh quality was the

only setting effected by site, though further investigations would be needed to determine

the cause of this difference. The overarching conclusions to be drawn here are that, when

processing images to create a model, the selection of appropriate settings is a balance

between computational power, time, and desired quality. Further testing comparing a

combination of settings with complexity metrics extracted from models may reveal the

need for a minimum standard of build quality and should be carried out when using

new equipment or when in new environments. Larger image sets/models should also be

investigated to evaluate any changes in setting requirements to render an accurate model

that can be used in complexity assessments.

Once model processing settings were determined, a comparison of captured complexity

from 3D models could take place. Comparing a group of metrics through a single camera

technique that has be previously evaluated [48] allowed the multi-camera array to be tested

against a precise method. When comparing the captured complexity of single versus

multi-camera image capture, exact data extraction proved challenging. The placement

of associated reef complexity helper files on models of different scales was challenging,

mainly when locating the exact positioning of the 2×2m quadrats within the larger 4×6m

quadrat. Any shift in the position of these helper files would change the output complexity,

nullifying the power of the comparison. Instead, specific ground-truthing relavant to the

multi-camera array (with each common number of cameras) should be carried out in- and

ex-situ to determine the exact discrepancies in real to modelled complexity for the array

alone, without the need to compare it to already established metrics.

Testing the multi-camera array against a single camera showed that site set-up and

image capture could be performed more rapidly at a greater scale (Fig. 8.1). Visual
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assessment of models also showed good rendering capabilities (Fig. 8.2). Though they did

take longer to reconstruct on a per-model basis, likely due to the larger volume of images

involved, processing for one larger model was faster than that of six smaller models.

When using a multi-camera array to capture a substrate, the number of cameras used

should reflect the structure of the substrate. Flat areas with no overhangs or bommies

would require fewer cameras than a widely varying substrate that has overhangs and cave-

like areas. Ensuring that only required cameras are used restricts the number of images

captured to only those focused on the desired area, removing views that would capture

unnecessary views (i.e. cameras facing water) that increase model processing time.
(a)

(b)

Figure 8.1: Aligned substrate images and common points showing the pathway used when
generating (a) six 2×2m quadrats with a single camera, and (b) the associated 4×6m
quadrat of the same reef area captured using a multi-camera array.
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(a)

(b)

(c)

Figure 8.2: Processing of a coral reef 3D model generated using images captured with a
multi-camera array, showing the creation of (b) the dense cloud, (c) mesh, and (b) texture.

When considering substrate complexity, only fractal dimension matched up between

models. This highlights the difficulty in replication when using certain methods to find

rugosity and vector dispersion [48], in contrast to the supposed benefits of 3D modelled

substrates in terms of repeated data extraction [121]. Other approaches to these metrics

may remove these difficulties and allow for a more general positioning of helper files, or
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remove the need for these additional files entirely [125].

There is also the potential that the mesh, which the helper file uses, differed enough

to prevent the same values of complexity to be found despite positioning accuracy, though

this was not tested. A future examination of the models could be performed by rebuilding

the single camera models in one combined process, collating the images from all six 2×2m

quadrats into one 3D model. Then, after cropping the models to the study area and

excluding uneven edges to ensure the scale was equal, this would allow for cloud-to-cloud

and mesh-to-mesh comparisons between the single and multi-camera methods to either

confirm or exclude one potential source of discrepancy in the extracted complexity.

Chapter 3 demonstrated the successful trial of a rapid, multi-camera approach to coral

reef image data collection and subsequent 3D modelling. This method then acted as the

foundation for the data collection undertaken in Chapter 4.

8.1.2 Expanding the cases for computational complexity measurements

Through a collaborative project with Natural England, the Cromer Shoal Chalk Bed

Marine Conservation Zone was used as a secondary testing site for the multi-camera array

developed in Chapter 3. This work was primarily undertaken for the Eastern Inshore Fish-

eries and Conservation Agency (EIFCA) and provided a habitat with distinct topography

and challenges to contrast the coral reef ecosystems previously assessed.

There are few studies looking into fisheries or potting effort in MCZs and there is not

enough data or research currently to comprehensively assess habitat vulnerabilities [170].

Prior research into crustacean fisheries investigated the effects on epifauna rather than the

structure of the system itself [?, 221]. Understanding the impact of the fishery on habitat

features is crucial for the management and conservation of reef systems. The management

of small-scale fisheries must incorporate conservation of ecosystems and socio-economic

factors into policies for the betterment of the environment and those that rely on it for

food and income [222].

The preliminary report into the state of the Cromer Shoal Chalk Bed [172] utilised

well-known complexity metrics [48, 65, 45, 56], scaled and defined in terms of coral reef

systems [48], simply because no metrics had yet been fully specified for rocky chalk reef

environments. The outcome of the assessment showed a great disparity in computational

complexity and in-situ visual assessments, so further testing was performed to investigate
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the type of complexity applicable to the environment.

In Chapter 5, when considering the species’ counts and commercial value, fractal di-

mension was scaled to C. pagurus minimum catch size and maximum overall size. This

was an essential step in relating the metric to the environment being assessed and would

allow far more valid connections to be drawn between the species and its habitat, particu-

larly with larger scale studies. Fractal dimension is easily adaptable and could be tailored

to each organism in a study on the Cromer reef as there are a limited array of fauna, and

very few considered of interest commercially and therefore relevant to the fishery on the

chalk reef [29]. Rugosity and vector dispersion were disregarded entirely. The relatively

small scale changes detected were not applicable to the sweeping shifts in topography seen

on the chalk reef and they were considered to provide little value to further analysis and

future assessments. Instead, a novel approach to calculating relief was developed to be

applicable at any model scale. Removing the dimensional restrictions from the complexity

assessment opens up surveying to fewer scale-based restrictions and, when combined with

mutli-camara imaging, could vastly increase the area that can be assessed at any one time.

Utilising the camera array in a distinct rocky reef environment with challenging sur-

veying restrictions and conditions demonstrated the advantages of rapid surveying. Large

areas of the chalk reef could be surveyed in a single dive, despite restricted dive time,

environmental hazards (i.e. the shank lines, fishing boats, etc.), and the requirement for

in-situ training with the equipment and surveying method itself. The array’s design al-

lowed for an additional camera attachment, vital for the collection of video footage of the

transects without the need for additional divers. The use of computational methods gen-

erally also proved essential. When the need for different complexity metrics became clear,

3D models could simply be re-evaluated without requiring another complex and expensive

survey. This allowed the metrics used in Chapter 5 to be developed and used quickly and

effectively.

Where Chapter 4 further demonstrated the benefits of multi-camera array in image

data collection, Chapter 5 highlighted the value of tailoring experimental approach to the

target habitat. Both chapters underscore the benefits of computational analysis in marine

environments, particularly where data collection is challenging to replicate regularly. As-

sessment of the Cromer Shoal Chalk Bed MCZ is ongoing, utilising the work undertaken

here.
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8.1.3 Automatic analysis of coral reef imagery

Where Chapters 4 and 5 demonstrate the use of computational methods in conjunction

with human assessment of species counts and other variables, Chapters 6 and 7 move

further towards fully computational approaches by leveraging the ImageCLEF initiative

to evaluate and advanced the capabilities of automatic annotation of coral reef substrates.

The development of ImageCLEFcoral leveraged the expertise of people outside of the

research group to create and improve upon algorithms to annotate coral reef substrates.

Enhancing image quality through colour adjustments was a clear thread through which

some teams began their task runs [203, 202] and is important to pursue in both this task

[208, 209] and in 3D modelling in general. Continuing the use of action cameras to provide

data allows for reef systems to be surveyed by monitoring teams with a range of budgets

and through images captured by non-researchers, either from citizen scientists or SCUBA

hobbyists and holidaymakers, but does stress the need for image enhancement prior to

annotation as the quality of images is less than that of high-end camera equipment and

more prone to blurring (often action cameras are used to capture video instead of images,

so a static position is not held while capturing the substrate).

While the initial 2019 ImageCLEFcoral task showed little success, the 2020 edition of

the task showed an unexpectedly large jump in performance: pixelwise parsing, considered

the more valuable task for future work, showed a in improvement from ≈4% success to

≈68% success in a single year. The increase in training data likely provided some ad-

vantages over the 2019 task, but the inclusion of coral reef images from other regions in

the test data was expected to nullify some of the predicting power. Though this didn’t

appear to be the case in 2020, when the 2021 training dataset included these distinct coral

reefs the results of both localisation and pixelwise parsing steeply declined; though, the

most successful pixelwise parsing run was still an improvement on the 2019 task. The

success rate of ImageCLEFcoral is not yet high enough to produce a reliable and accurate

annotation network but annual cycle of expanding datasets and using a competitive cam-

paign to progress has produced more insights into successful approaches (see Chapter 6

for detail) than could have otherwise been developed, tested and compared independently

in the same timeframe.

The overarching aim of ImageCLEFcoral is to integrate semantic annotations into the
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3D models of coral reef systems before the reconstruction pipeline. This has not thus

far been attempted for coral reef environments, though post-modelling annotation has

been investigated. Hopkinson et al. [156] created SfM 3D models using Photoscan (now

Metashape) and re-projected mesh triangles back to the original image set. A subset of

these elements used for training were then manually annotated, with up to six associated

images with a clear view of the mesh area used to determine its associated annotation

label (from 11.9 images per mesh triangle on average). Ten labels were used, with four

specific species, one genus, three functional groups (one of which was macroalgae/dense

turf algae), rubble, and sand used as semantic labels. Pierce et al. [223] have similarly

generated a post-modelling approach, though with fewer classes than Hopkinson et al.:

seven categories, only four of which were biological to classify fish, algae, massive corals,

and branching soft and hard corals. Not all labels were relevant to 3D modelling (i.e. fish

and water cannot be modelled with SfM as they are moving “objects”). Classes were se-

lected based on prevalence in their image dataset. Here, they produce a 3D reconstruction

and subsequently swap the original images with an automatically annotated set that then

allows them to independently generate the dense cloud, mesh, and texture.

The network from Hopkinson et al. [156] found 93% average accuracy across indi-

vidual classes, while Pierce et al. [223] had a high of 91% pixel accuracy. The use of

reef-specific labelling likely increases the accuracy of the model output, as relevant sub-

strates are both trained and tested on from the same reef, but this minimises its application

to other ecosystems. The restricted labels also limit the usefulness of this methodology

to other studies within this reef area. The merit of these studies cannot be understated,

but the restrictions they face through their annotation methodology limit their power in

wide-ranging monitoring and research. Pixel point annotation presents the same chal-

lenges of in-situ point transects, where rarer or smaller organisms are more likely to be

missed simply due to the sampling selection. Reef or study specific labelling prevents the

application of the model in other research and would require subsequent studies to apply

the methodology to their own training before it can be used. Though ImageCLEFcoral

has thus far had limited accuracy, the overarching global or biogeographical applications

provide an advantage over reef specific algorithms as they would not require every reef, or

indeed every study, to train and test their own network prior to use.

Chapter 6 outlined the work in creating the dataset for the ImageCLEFcoral task, the
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changes made to the task annually, and the results from 2019− 2021, while Chapter 7 de-

tailed the submission made to the 2021 edition of ImageCLEFcoral undertaken in place of

organising the task. Throughout these chapters, the challenge of automatically annotation

images of wider coral reef areas to a high level of detail is clear. With the continuation

of the annual task and advancements in automatic annotation, further improvements can

be expected in the future, hopefully leading to a fully annotated, 3D translatable, wide-

spread and more generic approach to annotations. While much more challenging and

time-consuming to develop when considering the wide ranging morphologies of coral reef

substrates from region to region, this would fill a clear gap in the furthering of automatic

annotation in coral reef research.

8.2 Limitations of the work

8.2.1 Data collection

The videos and stills used throughout this thesis were captured through SCUBA diving

surveys and faced the challenges commonly associated with this type of in-situ work (i.e.

time limits, depth limits, air limits). Varying day-to-day conditions on the coral reef led to

quality differences between repeatedly dived sites. Changes to turbidity, light attenuation,

current strength and direction, and even the work of other divers all compound to create a

complex working environment even before the complexities of SCUBA itself are considered.

Locating the sites themselves was also impacted by these factors, and though metal pins

were placed into non-living substrate, the transect tapes used to outline the 4×6m area

and the 2×2m quadrats within this area were laid by hand each day and likely shifted

slightly each time.

One avenue through which to minimise the challenges of SCUBA surveying may be

to use remotely operated vehicles (ROVs) or for data collection. Though this would

still require a human operator and a boat team, an ROV would likely be more stable in

strong currents and would negate dive-time limits, potentially allowing for a full site to be

surveyed in each data collection session depending on scale [224]. Concerning visibility,

lights could be fitted to the camera arrays to combat low light conditions, though their

strength would have to be balanced against a site’s turbidity to prevent backscattering

from impacting image quality from turbid water.
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8.2.2 3D reconstruction

The greatest limiting factor in 3D reconstruction is the computer itself. The larger

the dataset and the more accurate the 3D model, the more processing time and power

required. An ideal scenario would be to model an entire reef as one to the highest quality

possible, but the sheer expense monetarily and temporally may outweigh the usefulness

of such a model in many cases . In balance, the cost of the computer (as a whole or as

upgraded components) must be weighed against the reconstruction’s quality and scale to

provide a useful output quickly enough for monitoring use.

Testing a few representative models to assess the build quality required for data ex-

traction would be useful at the start of any survey, but this would require every research

team to perform ground truth testing and corresponding metric testing for each survey

carried out. In practical terms, the use of accessible software is a middle ground to a still

somewhat inaccessible field.

8.2.3 Automatic annotation

The number of images required to train a neural network to annotate regularly shaped

objects (i.e. buildings, cars) is extensive. The added difficulty of indistinct, irregular

geometry with a lack of colour differentiation (as with coral reef substrates) requires even

more images that were simply not available to the ImageCLEF task. Adding further

data with external image sets was suggested to 2021 participants, but the difference in

annotation and image styles was apparent when adding to this dataset did not improve

the accuracy of substrate classification, and instead reduced it greatly [204, 206].

Utilising a larger team of experienced annotators and administrators (annotators to

define the objects within images and administrators to assign a semantic label to these

objects) would enable a larger dataset to be trialled with less margin for error in the

groundtruth data. This would be particularly beneficial if more specific semantic labels

were used to better link a model’s results to biologically useful outputs.

8.3 Future directions for research

The research objectives tackled within this thesis provide a basis for further in-depth

study into the role of computation analysis in benthic monitoring and assessment.
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8.3.1 Reef-wide surveying of the Cromer Shoal Chalk Bed MCZ

The surveying carried out in Chapter 4 was a preliminary assessment into the area, in-

tended to indicate if further research was needed rather than to provide broad implications

into the ecosystem’s overall health. As such, the state of the chalk reef is still relatively

unknown in terms of damage and complexity. Capturing video surveys of the entire reef

would be an extremely intensive project, and simultaneously one of high value. These

videos would not only allow the chalk reef to be modelled for further assessments, but

would provide a record of the current condition of the ecosystem for future comparison.

This could be performed concurrently by citizen scientists (such as SeaSearch East,

an experienced group of local divers with an interest in the ecology of the system) and

by ROV and/or dive surveys from relevant bodies (i.e. the EIFCA, Natural England) for

sites not as accessible. The collating of data and subsequent analysis would likely require

a small team, but would allow for fully reasoned insights to be reached with less obscurity

in the data.

A full study into the impact of damage on the local ecosystem could also be instigated

with a temporary “no-take zone” and a ropeless potting area, with an initial damage and

stock survey followed by several more repeated assessments over a set time period to look

into the effect of human activity on the reef with more robust certainty.

8.3.2 Automatically annotating other substrate features

As highlighted throughout this thesis, coral reef systems are not the only important

marine reef environment. The use of automatic annotation on reef substrates focused on

coral reef ecosystems predominantly because of the scale of the available dataset, but other

environments would benefit from similar technology in their monitoring and conservation.

The chalk reef damage assessment proposed in Chapter 4 was challenging to action

in part due to video quality and its novelness, but also due to the need for continual

discussion between annotators before an agreement on category could be reached in a

considerable number of instances. Automating this processes, even to the point of simply

tagging damaged versus not damaged areas, has the potential to increase data processing

time and aid in reef-wide research on the Cromer Shoal Chalk Bed and other similar

environments.
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8.3.3 Computational habitat-wide assessments

Utilising computational analysis with outdated or oversimplified structural complexity

assessments limits the capabilities of modern techniques. Developing a tool set of the

most useful marine habitat metrics, where useful is classed as both relevant to a wide

range of assessments and not providing the same information as another metric without

a different context, for use on 3D reconstructions of reef ecosystems is an essential step

forward in modern research. Creating a globally accessible resource for use in common

software would allow researchers to select their desired metrics while also maintaining a

standard of assessment that in turn allows for cross-research analysis to take place without

differences in methodologies limiting comparisons.

8.3.4 3D printing in coral reef research

With repeated imaging surveys to provide a guide on historical reef structure and com-

position, loss of coral colonies through bleaching and rubbleisation, storms, blast fishing,

or other harmful action could be tracked. One possibility for combating the subsequent

complexity losses that lead to ecosystem decline is to 3D print lost structures in reef

friendly materials to replace and fill “gaps” in the reef [225]. This would counteract the

immediate topographical decline that often signals the beginning of reef fauna loss, which

can spiral to extremes of entire reef decline or phase shifts when it occurs on a reef-wide

scale [101].

Another use of 3D printing in reef research is for the creation of artificial reef systems

[226]. These environments are becoming more commonplace, either with wrecked objects

or deliberately placed structures forming the base [227]. The challenge with deliberate

structures is often the lack of initial complexity, which fails to entice reef organisms to mi-

grate and colonise the new environment. 3D printing coral-like, complex structures which

interlink to form an artificial reef would provide an immediately topologically intricate

ecosystem that would provide the desired habitat for reef-associated organisms while also

introducing a range of settlement areas for reef benthic organisms.
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8.4 Concluding remarks

Marine monitoring and surveying is an essential and invaluable tool in a world with

drastically shifting oceanic conditions. The range of tools available to researchers is ex-

panding with modern technological advancements, but often the measures and metrics

utilised are those used decades ago. These assessments were often developed for analogue

in-situ research that is subject to varied challenges and limitations that can impact the

outputs and results gathered, and therefore impact the conclusions drawn.

This thesis aimed to further the use of 3D reconstruction and other computational

tools in marine substrate monitoring. To that end, a multi-camera array demonstrated

the speed at which data can be collected with varying angles to minimise reconstructed

data loss. While comparisons to single camera methods were challenging, the use of multi-

camera arrays was proved beneficial in terms of speed and scale in both tropical coral and

temperate chalk reef environments. Using the multi-camera array on the chalk environ-

ment, structural complexity, species abundance, and substrate damage were investigated.

A set of tailored complexity metrics were computationally developed to better represent

the non-coral system, with the characteristics of the environment leading the determina-

tion of appropriate assessments over those commonly used in other reef types. Following

this, the viability of automatic annotation for coral reef substrates was tested, looking

to both increase the volume of analysed coral reef data and decrease the necessary time-

input of researchers. Though a challenging problem to navigate, there is clear promise in

incorporating this type of technology into coral reef substrate monitoring, though there is

still a vital need for further refinement and scale before a usable algorithm can be relied

upon for research.

The outcomes of these areas of work demonstrate the wide-ranging usefulness of mod-

ern techniques in ecosystem surveying. These tools can provide a myriad of tailored

assessments to researchers when used appropriately and could aid marine substrate re-

search in becoming a globally interlinked effort instead of a series of distinct and isolated

projects. Despite the challenges to computational research, the potential for mass data

analysis and comparable results is an essential step in the worldwide effort to conserve

marine ecosystems.
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terrain variables from underwater photogrammetry: A new approach to benthic
microhabitat modeling in a circalittoral rocky shelf,” Remote Sensing, vol. 12, no. 15,
p. 2466, 2020.

[216] A. Li, V. Chirayath, M. Segal-Rozenhaimer, J. Torres-Pérez, and J. van der Bergh,
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I | Agisoft Metashape outline

I.1 Processing 3D models in Agisoft Metashape

Imaging a reef is only the first step in creating a 3D reconstruction. The building
of a model can utilise many varied techniques, but SfM is both common across marine
monitoring and assessment [3, 17, 48, 122] and relatively inexpensive and simple to carry
out compared to many other reconstruction methods. It relies on the extrapolation of
camera position in 3D space through common points between adjacent images to build
an accurately scaled and positioned model of the environment. Metashape has automated
these steps into user-friendly software with customisable settings and interactive models.
Each key step is outlined below with the adjustable settings (italicised) detailed.

I.1.1 Step 1 - Photo alignment

The first stage of the SfM process is to align all images and orientate them in 3D
space, looking for commonalities in photos to associate them together. A sparse cloud of
common features is produced and extrapolated to determine the position of each image
(and the associated position of the camera when it was captured) in relation to others.
When selecting this process, several settings can be adjusted to customise the workflow.
The images do not have to be in any particular order, which is an advantage of SfM,
particularly when using multiple camera devices.

Accuracy alters the resolution of uploaded images within the workflow. It can be set to
either “lowest,” “low,” “medium,” “high,” or “highest” to, in turn, downscale the image
by a factor of 64, 16, or 4; use the original image; or upscale by a factor of 4. Downscaling
occurs when an image is used with a reduced pixel count and subsequent smaller storage
size but the same 2D scale, and upscaling is the reverse, to alter the resolution of the
images. Lower accuracy reduces the processing time of the model but must be balanced
with the desired output. A model that will have a lot of fine scale detail will be less
tolerant of lower accuracy than a less detailed one.

Generic preselection determines whether all images will be compared as inputted from
the start of processing, or if a pre-scan with lower accuracy versions of images will take
place to find commonalities and extract camera positions. This setting is either on or off
only. When selected, processing time is reduced as it negates the need for each image to be
compared to all other images at their largest size (in terms of computer storage and pixel
count); however, this can cause issues when lower image quality is used as the already
poor texture of the image can be lost in downscaling, so some common points and image
overlaps may not be detected.

Reference preselection and reset current alignment settings presume that an alignment
has already taken place on the current image set and is being reattempted. When selected,
they leverage the previous alignment to increase accuracy. This is useful if a lower quality
alignment was required to get initial positioning, but a higher quality model is desired.
Processing time is increased with every alignment iteration.

In photogrammetry, key points are distinct or interesting features within images (e.g.
an area with high contrast). The key point limit setting subsequently caps the number
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of key points to be found within an image. It has a default setting of 40,000, but can
have any input, with a 0 setting meaning no limit is set. The number of key points within
an image will not necessarily reach the set limit, particularly on poorer quality images
such as with underwater scenes, as images with similar colours, textures, or other features
throughout show fewer distinctions to be tagged as interesting. A higher limit, or no limit,
will increase processing time, but also increases the number of points available to construct
the 3D model. Finding more points may not be a benefit if the number of incorrect or
irrelevant points increases more than the number of useful ones.

Tie points are the key points that occur in more than one image, i.e. they “tie” images
together through common features. The tie point limit setting determines the number of
key points taken from each image to connect it to other images, with a default setting of
4,000 points. If key point limit and tie point limit were set to default, up to 40,000 key
points would be identified per image, of which up to 4,000 would be used to connect each
image to others. These points combine into a sparse cloud - a reconstruction of all tie
points in three-dimensional space. Upping the tie point limit will increase the number of
points in the sparse cloud at the cost of greater processing time. Tie points can be thinned
retroactively without affecting alignment, which could speed up later processing.

The apply masks to setting presumes that some part of an image or images have been
masked off. Masks can be applied to “tie points,” “key points,” or “none.” If applied to
key or tie points, masked areas will be ignored when those points are determined, or if set
to none, masked areas will be ignored and treated as normal image areas.

Selecting for guided image matching increases key points per image without affecting
the processing time greatly. It is used with particularly high resolution images, to minimise
missed feature detection. The option for adaptive camera model fitting automatically
selects camera parameters to be adjusted with calibrations and applies these to all images.

I.1.2 Step 2 - The dense cloud

Once the sparse cloud has been generated through photo alignment, a dense cloud of the
model points is constructed. This workflow uses combined depth maps (an intermediary
step that maps the distance between connected images and the position of the camera(s)
when they were taken) to create a small dense cloud for each image’s associated points
before merging them into the final dense cloud. This stage has the fewest adjustable
settings.

Dense cloud quality can be set to “lowest,” “low,” “medium,” “high,” or “ultra high.”
This quality setting performs in the same manner to the quality options in photo alignment,
but with “ultra high” as the original image, and each step down leading to a factor 4
downscale from the previous level. Adjusting this setting alters the number of points
within the dense cloud, with higher quality clouds containing more points.

A depth filtering setting is provided at this stage to avoid points from poor quality
images, which may be outliers to the model. Settings for this are “aggressive,” “mod-
erate,” “mild,” or “disabled.” Aggressive filtering is useful for models without intricate
details and will remove most of what it considers outlying points. Mild filtering acts in
the opposite manner, filtering minimally to maintain features with fine scale detailing.
Moderate filtering acts as a middle ground to these options. Though the option to disable
filtering is present, every potential outlier will be present which would produce a dense
cloud with excessive noise in most cases. The stronger the filter used, the less noise in the
dense cloud, but the greater the chance of lost detail in the model. Selection is therefore
specific to both model type and image quality.

Checkboxes can be selected or deselected, providing the options to reuse depth maps,
calculate point colours, and calculate point confidence. Reuse depth maps can only be
selected if “keep depth maps” was selected prior to processing and is useful if a model is
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being generated of the same object from a replicated camera path at the same settings.
Calculate point colours uses information from the original images to colourise each point.
This is useful if a general colour view is required and a lower resolution is not an issue, but is
unnecessary if adding texture, which will colour the model to the images original resolution.
Point confidence uses the number of depth maps used per point to map confidence across
the dense cloud, which allows the removal of low confidence points from the dense cloud,
which can be helpful if the cloud has a lot of noise or outlying points.

I.1.3 Step 3 - Meshing

The model mesh is a polygon layer connecting the dense cloud points into one cohesive
layer. Each dense cloud point is connected to its adjacent points with edges, which form
a loop to create each face within the mesh. There are many customisation options within
this process.

To build the mesh, the source data must first be selected. This can be one of three
options: “tie points,” “dense cloud,” or “depth maps.” Each has their own merits. Using
tie points allows for rapid construction, but produces a lower quality mesh. Dense cloud
based meshes take longer to generate but are of a higher quality. Depth map meshes are
less intensive to create than dense cloud meshes but, unlike dense clouds, they cannot be
edited, so noisy or low confidence data cannot be removed.

Surface type can be set to “arbitrary” or “height field.” An arbitrary surface can apply
to models of any type as no assumptions are made about the modelled object/region. A
height field surface is used for modelling flat surfaces, and is particularly designed for aerial
imagery and other types of planar fields. Arbitrary surface type requires more processing
power, but can be used on 3D structures and reconstructions. The quality, depth filtering,
use strict volume mask, and reuse depth maps settings become available if depth maps are
selected as the source type and follows the same settings as in the dense cloud settings.

Face count sets the number of polygons generated within the mesh. This can be set to
“high,” “medium,” “low,” or “custom.” The preset values are determined by the software
as 1

5 ,
1
15 , and

1
45 of the number of points in the cloud data supplied (dense cloud or tie

points) for high, medium, and low settings. The higher the face count value, the more
detailed the model to a certain degree, though too high a number will vastly increase
processing time and can cause issues with mesh visualisation. Too low a number can also
cause visualisation issues, this time because the mesh is too unspecific and not able to
overlay features appropriately.

The interpolation setting can be “disabled,” “enabled,” or “extrapolated.” Disabling
interpolation will only reconstruct the mesh per the source data, creating an accurate
model useful for further analysis or for precise reconstruction. Enabled interpolation will
connect meshes within a preset diameter around each point, which fills smaller gaps in
the mesh. Extrapolated interpolation creates a solid mesh without any holes. The latter
two options are more beneficial for purely visual models without the need for further
analysis, though with enabled interpolation may not negatively impact post modelling
results depending on the diameter used.

A setting can be selected to calculate vertex colours, which colours the mesh from
either source data or original image data.

I.1.4 Step 4 - Adding texture

To complete the 3D reconstruction within Metashape, texture is added to the model
mesh. This utilises a data set to map colour onto mesh faces and has several customisable
settings.
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Firstly, the texture type is selected. A “diffuse map” adds colour to the surface. A
“normal map” leverages the surface normal (or the direction that light would reflect from
the surface) of each pixel within the texture layer, modifying them to deviate from their
native direction to give the illusion of further 3D structure from apparent convex or concave
areas of the model texture. Normal maps are represented as RGB values (normalised on
a 0-1 scale) which translate to XYZ coordinates of the difference in actual to modified
surface normal. An “occlusion map” adds shading to the model by determining each
face’s exposure to ambient lighting, producing a monochrome model.

Source data can be selected as “images” or a “3D model.” Using images as a source
builds a diffuse map texture using either the images from the align input stage or from
another model’s texture map. Using a 3D model enables normal and occlusion maps to
be created, with the source 3D model being more detailed than the target one.

Mapping mode determines how the texture will be projected onto the mesh surface.
The default “generic” mode which allows Metashape to determine the way in which images
are connected into a texture atlas as uniformly as possible. “Orthophoto” mode uses a
orthomosaic to provide texture through orthographic projection of the horizontal view of
the model, without providing texture to the vertical. “Adaptive orthophoto” mapping
mode textures in the same manner as orthophoto mode, but also textures the vertical
sections of model separately. “Spherical” mapping mode is used for spherically structured
models and applies texture through a specially designed texture atlas. “Single camera”
mapping mode allows an image to be selected for use in texturing. “Keep UV” mode can
be used with texture maps from other software.

Blending mode determines how the different colours from each image associated with a
pixel will be combined and is not available with single camera mapping mode. When set to
the default “mosaic” mode, the closest image to the pixel is used to determine its colour.
“Average” blending mode takes the weighted average of the pixels colour values in all
associated images. “Max intensity” and “min intensity” take the maximum or minimum
bright pixel (i.e. the brightest or darkest) from all images for the pixel value. “Disabled”
blending mode is used with imported models that already have an associated texture.

Entering a texture size/count sets the pixel dimensions of the texture atlas. Greater
pixel dimensions and therefore higher texture resolution is enabled by using multiple tex-
ture files, the number of which is also specified in this setting.

Selecting to enable hole filling smooths the texture of surfaces where many small fea-
tures impact other regions, while selecting to enable ghosting filter removes the impact of
moving objects that were in images but not reconstructed from the model texture.
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II | Method testing data

Table II.1: Linear captured distance (cm) vertically and horizontally when holding an
SJCam action camera in portrait or landscape orientation, at each field of view (FoV)
setting and set distances from an imagined substrate.

FoV setting
Distance from 70◦ 170◦

substrate (m) Portrait Landscape Portrait Landscape

1 78.6 132.2 178.4 331.2
2 161.8 242.2 331.2 505.8
3 242.2 338.4 436.6 696.8
4 338.4 390.6 578.8 906.4
5 390.6 591.4 713.4 1116.2
7 591.4 857.2 1116.2 1622.6
10 857.2 1221.2 1622.6 2284.8

Table II.2: Linear captured distance (cm) vertically and horizontally when holding a
GoPro action camera in portrait or landscape orientation, at each field of view (FoV)
setting and set distances from an imagined substrate.

FoV setting
Distance from Medium Wide
substrate (m) Portrait Landscape Portrait Landscape

1 132.0 220.2 227.0 356.2
2 283.4 512.2 440.6 740.4
3 398.4 671.2 645.0 1025.4
4 570.8 839.4 999.0 1335.0
5 726.2 1039.2 1036.0 1671.8
7 900.6 1405.4 1223.4 2087.8
10 1258.6 2016.6 1849.2 3177.6
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Table II.5: Percentage of aligned photos from coral reef quadrats using different quality
settings in Agisoft Metashape.

Site Quadrat Setting Alignment (%)

PK 1 Lowest 13.6
Low 89.8
Medium 100
High 100
Highest 100

2 Lowest 53.4
Low 61.0
Medium 100
High 100
Highest 100

3 Lowest 72.0
Low 100
Medium 100
High 100
Highest 100

4 Lowest 12.5
Low 100
Medium 100
High 100
Highest 100

SAM 1 Lowest 7.1
Low 100
Medium 100
High 100
Highest 100

2 Lowest 94.9
Low 100
Medium 100
High 100
Highest 100

3 Lowest 65.6
Low 100
Medium 100
High 100
Highest 100

4 Lowest 16.7
Low 100
Medium 100
High 100
Highest 100
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Table II.6: Mean and standard deviation of cloud-to-cloud distance between dense clouds
built at varying qualities after medium quality photo alignment (to 3 d.p.).

Cloud quality setting
Site Quadrat Reference Comparison Mean SD

PK 1 Lowest Low 0.055 0.060
Low Medium 0.030 0.042
Medium High 0.016 0.023
High Ultra high 0.001 0.016

2 Lowest Low 0.187 0.166
Low Medium 0.095 0.124
Medium High 0.060 0.075
High Ultra high 0.042 0.065

3 Lowest Low 0.047 0.063
Low Medium 0.024 0.040
Medium High 0.127 0.015
High Ultra high 0.008 0.011

4 Lowest Low 0.055 0.071
Low Medium 0.034 0.060
Medium High 0.018 0.031
High Ultra high 0.011 0.019

SAM 1 Lowest Low 0.049 0.045
Low Medium 0.030 0.037
Medium High 0.016 0.018
High Ultra high 0.010 0.016

2 Lowest Low 0.059 0.047
Low Medium 0.033 0.035
Medium High 0.020 0.020
High Ultra high 0.014 0.022

3 Lowest Low 0.071 0.077
Low Medium 0.039 0.043
Medium High 0.023 0.025
High Ultra high 0.016 0.025

4 Lowest Low 0.030 0.036
Low Medium 0.017 0.025
Medium High 0.010 0.011
High Ultra high 0.006 0.112
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III | Cromer MCZ data

Table III.1: Cancer pagurus and Homarus gammarus abundance in the Cromer MCZ.

Site
Crustacean Abundance
C. pagurus H. gammarus

Location Type Juvenile Mature Total Juvenile Mature Total

WS1 Pot 0 0 0 0 0 0
Marker 0 1 1 0 0 0
Pot 0 0 0 0 0 0
Marker 0 0 0 0 0 0

WS2 Pot 0 0 0 0 0 0
Marker 0 1 1 0 0 0
Pot 0 1 1 0 1 1
Marker 1 0 1 0 0 0
Pot 0 0 0 0 0 0
Marker 3 0 3 0 0 0
Pot 1 1 2 0 0 0
Marker 1 0 1 0 0 0
Pot 14 0 14 0 0 0
Marker 4 0 4 0 0 0

WR Pot 0 0 0 2 0 2
Marker 1 0 1 0 0 0
Pot 1 0 1 0 0 0
Marker 0 0 0 0 0 0
Pot 1 0 1 0 0 0
Marker 2 0 2 0 0 0
Pot 1 2 3 0 0 0
Marker 3 0 3 0 0 0
Pot 3 0 3 0 0 0
Marker 1 0 1 0 0 0

ER Pot 15 0 15 0 1 1
Marker 15 0 15 0 0 0
Pot 5 2 7 0 0 0
Marker 5 2 7 0 0 0
Pot 15 10 25 1 1 2
Marker 15 10 25 1 0 1
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Table III.2: Rugosity values extracted from models generated at pot and marker sites on
the Cromer Shoal Chalk Bed. Rugosity 1-6 corresponds to a “chain” within the model.

Site
Rugosity
1 2 3 4 5 6 Mean SD

WS1 Pot 0.036 0.044 0.018 0.039 0.025 0.029 0.032 0.010
Marker 0.055 0.049 0.072 0.035 0.050 0.091 0.059 0.020
Pot 0.041 0.045 0.040 0.047 0.033 0.053 0.043 0.007
Marker 0.049 0.041 0.031 0.042 0.068 0.081 0.052 0.019

WS2 Pot 0.161 0.085 0.030 0.079 0.147 0.105 0.101 0.048
Marker 0.069 0.072 0.026 0.155 0.183 0.161 0.111 0.063
Pot 0.095 0.195 0.036 0.195 0.240 0.179 0.157 0.076
Marker 0.060 0.051 0.038 0.076 0.071 0.126 0.071 0.031
Pot 0.043 0.028 0.012 0.077 0.083 0.042 0.048 0.028
Marker 0.107 0.106 0.103 0.096 0.092 0.090 0.099 0.007
Pot 0.060 0.039 0.033 0.032 0.054 0.056 0.046 0.013
Marker 0.069 0.185 0.154 0.171 0.137 0.123 0.140 0.042
Pot 0.056 0.035 0.051 0.041 0.051 0.094 0.055 0.021
Marker 0.043 0.036 0.082 0.114 0.050 0.073 0.066 0.029

WR Pot 0.151 0.136 0.176 0.192 0.151 0.089 0.149 0.036
Marker 0.065 0.097 0.102 0.036 0.078 0.099 0.079 0.026
Pot 0.112 0.131 0.114 0.105 0.099 0.055 0.103 0.026
Marker 0.086 0.055 0.063 0.117 0.043 0.030 0.066 0.031
Pot 0.094 0.086 0.080 0.057 0.044 0.046 0.068 0.021
Marker 0.043 0.039 0.085 0.082 0.089 0.088 0.071 0.024
Pot 0.328 0.347 0.395 0.052 0.228 0.425 0.296 0.137
Marker 0.050 0.079 0.043 0.052 0.045 0.102 0.062 0.024
Pot 0.032 0.022 0.056 0.042 0.107 0.151 0.068 0.050
Marker 0.023 0.037 0.040 0.103 0.034 0.031 0.045 0.029

ER Pot 0.135 0.044 0.037 0.215 0.187 0.169 0.131 0.075
Marker 0.043 0.046 0.120 0.076 0.156 0.091 0.089 0.044
Pot 0.157 0.107 0.159 0.074 0.166 0.179 0.140 0.041
Marker 0.038 0.052 0.061 0.085 0.053 0.066 0.059 0.016
Pot 0.063 0.118 0.087 0.105 0.076 0.082 0.089 0.020
Marker 0.098 0.075 0.089 0.000 0.032 0.056 0.058 0.037
Pot 0.089 0.074 0.074 0.090 0.152 0.108 0.098 0.029
Marker 0.030 0.092 0.182 0.087 0.113 0.081 0.098 0.050
Pot 0.090 0.056 0.094 0.105 0.091 0.078 0.086 0.017
Marker 0.047 0.031 0.054 0.068 0.102 0.103 0.067 0.030
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Table III.3: Vector dispersion and fractal dimension extracted from models generated at
pot and marker sites on the Cromer Shoal Chalk Bed. Vector dispersion is shown as a
mean of 64 values per quadrat.

Site
Vector dispersion Fractal Dimension

1-5 cm 5-15 cm 15-30 cm 30-60 cm

WS1 Pot 0.0502 2.018 2.008 2.001 2.001
Marker 0.0759 2.044 2.009 2.004 2.000
Pot 0.0649 2.042 2.014 2.007 2.002
Marker 0.1008 2.040 2.009 2.003 2.001

WS2 Pot 0.0816 2.036 2.051 2.012 2.027
Marker 0.1070 2.028 2.033 2.043 2.032
Pot 0.0405 2.049 2.025 2.029 2.027
Marker 0.0855 2.055 2.038 2.035 2.027
Pot 0.0632 2.049 2.025 2.029 2.027
Marker 0.0597 2.053 2.041 2.055 2.029
Pot 0.0776 2.029 2.010 2.015 2.007
Marker 0.0945 2.068 2.115 2.033 2.086
Pot 0.1105 2.031 2.025 2.014 2.019
Marker 0.0716 2.047 2.043 2.016 2.005

WR Pot 0.1473 2.053 2.043 2.032 2.008
Marker 0.1185 2.056 2.031 2.021 2.023
Pot 0.0811 2.064 2.059 2.037 2.022
Marker 0.1360 2.035 2.032 2.036 2.015
Pot 0.0680 2.024 2.024 2.019 2.020
Marker 0.0879 2.048 2.055 2.035 2.048
Pot 0.0724 2.061 2.095 2.120 2.150
Marker 0.0936 2.037 2.031 2.020 2.010
Pot 0.0553 2.022 2.038 2.030 2.036
Marker 0.0506 2.025 2.020 2.028 2.006

ER Pot 0.0646 2.035 2.025 2.011 1.998
Marker 0.1282 2.052 2.056 2.020 2.022
Pot 0.1124 2.078 2.037 2.028 2.007
Marker 0.1295 2.039 2.029 2.025 2.011
Pot 0.0827 2.049 2.050 2.038 2.008
Marker 0.0805 2.045 2.046 2.009 1.960
Pot 0.0678 2.068 2.050 2.009 2.006
Marker 0.0756 2.059 2.032 2.018 2.013
Pot 0.0957 2.048 2.037 2.015 2.022
Marker 0.0842 2.038 2.019 2.018 2.007
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IV | Relief script

The script developed and used here can be found on GitHub.

The script below can be used to find the relief of a 3D model
in Rhino:

1 import rhinoscriptsyntax as rs

2

3 ### Split cube into concave and convex halves ###

4

5 box = rs.GetObject("Select cube to be split", rs.filter.mesh)

6 if box:

7 model = rs.GetObject("Select model to be cut along", rs.

filter.mesh)

8 if model: rs.MeshBooleanSplit(box , model)

9

10

11 ### Create bounding box around each half of split cube to get

relief ###

12

13 object_1 = rs.GetObject("Select top half of cube in front

view")

14 object_2 = rs.GetObject("Select bottom cube half in front

view")

15

16 bb_1 = rs.BoundingBox(object_1 , view_or_plane=None ,

in_world_coords=True)

17 bb_1_height = bb_1 [4].Z - bb_1 [0].Z

18

19 bb_2 = rs.BoundingBox(object_2 , view_or_plane=None ,

in_world_coords=True)

20 bb_2_height = bb_2 [4].Z - bb_2 [0].Z

21

22 relief_1 = bb_1_height - bb_2_height

23

24 print "Model relief is:", abs(relief_1)

160

https://github.com/jessica-pw/rhino_python_complexity_scripts


V | ImageCLEFcoral data
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