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Abstract—This work addresses resource allocation challenges
in multi-cell wireless systems catering to enhanced Mobile Broad-
band (eMBB) and Ultra-Reliable Low Latency Communications
(URLLC) users. We present a distributed learning framework
tailored to O-RAN network architectures. Leveraging a Thompson
sampling-based Deep Reinforcement Learning (DRL) algorithm,
our approach provides real-time resource allocation decisions,
aligning with evolving network structures. The proposed ap-
proach facilitates online decision-making for resource allocation
by deploying trained execution agents at Near-Real Time Radio
Access Network Intelligent Controllers (Near-RT RICs) located
at network edges. Simulation results demonstrate the algorithm’s
effectiveness in meeting Quality of Service (QoS) requirements for
both eMBB and URLLC users, offering insights into optimising
resource utilisation in dynamic wireless environments.

Index Terms—eMBB, DRL, URLLC, Resource Allocation, O-
RAN.

I. INTRODUCTION

Traditional radio access networks (RAN) often rely on a
single-vendor model, presenting a monolithic, black-box solu-
tion that hinders flexibility and innovation. In contrast, open
RAN (O-RAN) disrupts this paradigm by separating hardware
from software and promoting open interfaces [1]. This allows
network operators to customise their infrastructure according
to the requirements. The architecture of O-RAN incorporates
several foundational elements, namely the Radio Unit (RU),
Distributed Unit (DU), Central Unit (CU), and RAN Intelligent
Controller (RIC). RIC is an innovative network component that
introduces new services and optimisation capabilities in the
network. More specifically, RIC encompasses both near real-
time and non-real-time variants, fostering programmable-based
functions that significantly enhance network flexibility and
efficiency. By integrating embedded AI capabilities, RIC can
dynamically adapt radio resource [2], mobility, and spectrum
management operations, which includes admission control,
radio resource allocation and scheduling [3], power allocation,
and radio link management, to meet the specific requirements
of applications. This adaptability proves especially crucial in
Beyond 5G (B5G) networks, which cater to a diverse range of
vertical industries, by ensuring network operations are finely
tuned to serve varying demands efficiently [4].

In the context of O-RAN in B5G networks, two pivotal
service categories are enhanced Mobile Broadband (eMBB)
and Ultra-Reliable low latency communications (URLLC). The

eMBB targets high data rate applications, aiming for improved
data rates and reliability, with a focus on supporting a packet
error rate (PER) target of 10−3. URLLC, in contrast, is
engineered for critical applications requiring immediate data
transmission with minimal delay, such as autonomous driving
and remote surgery. It prioritises ultra-high reliability (PER
around 10−5) and low latency, necessitating significant physical
and MAC layer adjustments in 5G NR to increase throughput
capacity and reduce transmission time intervals, control sig-
nalling overhead and outage probability [5]. Accommodating
these requirements is crucial for O-RAN’s adaptability and
performance in diverse B5G applications. The coexistence of
eMBB and URLLC services within the same network in-
frastructure necessitates innovative radio resource management
(RRM) strategies to satisfy the contrasting requirements of
high throughput for eMBB and low latency and high reliability
for URLLC [6]. Conventional optimisation approaches face
limitations in providing real-time solutions for the coexistence
of eMBB and URLLC [7]. Deep Reinforcement Learning
(DRL) is essential in this context as it enables systems to learn
and adapt in real time, leveraging experience to make decisions
in dynamic environments. The authors in [8] present a dual-
strategy approach integrating risk-sensitive optimisation and
DRL to optimise resource allocation for eMBB and URLLC
coexistence in 5G. Their proposed approach improves the
reliability of URLLC while protecting the eMBB reliability.
The superposition scheme’s efficacy for facilitating uplink com-
munication among eMBB, mMTC, and URLLC service classes
is addressed in [9], where the authors highlight the advantages
of employing superposition in this context. Existing DRL-
based solutions for eMBB and URLLC co-existence employed
the ϵ-greedy approach for action policy, primarily focused on
exploitation by consistently selecting the action estimated to
yield the highest potential reward. This approach may result in
sub-optimal solutions or being trapped in local optima. Unlike
the above-mentioned studies, which mainly focus on eMBB
and URLLC co-existence in a generic ideal RAN scenario,
this paper focuses on the non-ideal front haul (FH) scenario.
In this paper, we employ the Thompson sampling-based DRL
approach to balance exploration and exploitation, addressing
the co-existence challenges between eMBB and URLLC in O-
RAN.



II. SYSTEM MODEL

We model a wireless network that delivers two distinct
services, namely, eMBB and URLLC, as illustrated in Fig.
1, where we strategically placed several edge cloud servers
at the near-RT-RIC, establishing connections with a regional
cloud server at non-RT-RIC. According to [1], Non-RT RIC is
situated at the regional cloud server, while the Near-RT RICs
are implemented on the edge cloud servers. In the considered
model, we have multiple small cells, and set of all BS is defined
as K = {1, ...,K}, where a BS k ∈ K covers a set of eMBB
users Ve

k = {1, ..., V e
k }, and URLLC users Vu

k = {1, ..., V u
k }

present in the network. Moreover, each BS is linked with
a single-edge cloud server. The radio resources in 5G-NR
can be depicted in both the frequency and time domains.
These domains are further subdivided into a set of M radio
resources, commonly known as RB. Each RB is characterised
by a bandwidth denoted as B. Every time slot is subdivided
into L mini-slots. In general, the eMBB service extends over
several TTIs to improve spectral efficiency (SE). However, due
to the strict latency requirements, the incoming URLLC traffic
cannot be delayed. Puncturing eMBB slots are employed to
address URLLC’s stringent latency and reliability demands. By
puncturing eMBB slots, dedicated resources can be allocated
to URLLC traffic, ensuring timely and reliable delivery of
critical information. The URLLC service is scheduled with a
brief TTI of 0.5 ms, while a longer 1 ms duration is allocated
for the eMBB service. The immediate scheduling of URLLC
transmission, which entails disrupting eMBB traffic, can exert
a notable influence on the system’s capacity and reliability.
This, in turn, may result in a decline in the eMBB service’s
performance. Therefore, an appropriate framework is required
to fulfil the QoS requirements.
eMBB rate: The immediate scheduling of URLLC transmis-
sion can degrade the rate of the eMBB service. A puncturing
decision variable is introduced as follows:

ηk,vm,l(t) =


1, if the lth mini-slot is punctured by the

vth URLLC user, ∀ m ∈ M, k ∈ K
0, otherwise.

(1)

The signal-to-noise-interference-ratio (SINR) of the eMBB
user v can be determined as follows

χe,v
k,m(t)=

pe,vk,m(t)ge,vk,m(t)∑
k′∈K
k′ ̸=k

pe,vk′,m(t)ge,vk′,m(t)︸ ︷︷ ︸
eMBB interference

+
∑

k′∈K
k′ ̸=k

pu,vk′,m(t)gu,vk′,m(t)︸ ︷︷ ︸
URLLC interference

+σ2
,

(2)
where pe,vk,m(t), and ge,vk,m(t) refers to the transmitted power and
channel gain, respectively, of eMBB user v of BS k over RB
m, and σ2 denotes the noise power. The achievable rate of an
eMBB user v of BS k on RB m at time slot t can be computed
as

re,vk,m(t) = B

(
1−

∑L
l=1 η

k,v
m,l(t)

L

)
log2 (1 + χe,v

k,m(t)), (3)

Fig. 1: Illustration of System model of O-RAN

where the expression
∑L

l=1 ηk,v
m,l(t)

L indicates the degradation of
eMBB rate caused by puncturing. We make the assumption
that each BS reserves an RB for a single user. We define the
RB allocation binary decision variable as (βk

v,m(t)), that takes
the value of 1 if RB (m) of BS (k) is assigned to the eMBB
user (v), for all (k) in the set (K). It is set to 0 in all other
instances. Thus, the total sum rate obtained by the eMBB user
v can be computed as

rek,v(t) =
∑

m∈M
βk
v,m(t)re,vk,m(t). (4)

URLLC rate: To ensure minimal transmission delay, it is
necessary to limit the blocklength in URLLC. Shannon’s
capacity theorem is relevant when dealing with an infinite
blocklength. A study in [10] delves into analysing resource
management challenges specific to URLLC services, consid-
ering the achievable data rate within the finite blocklength
regime. The achievable rate of URLLC for finite blocklength
can be computed as

ru,vk,m(t) =
∑

m∈M
Bm

(∑L
l=1 η

k,v
m,l(t)

L

)[
log2 (1 + χu,v

k,m(t))

(5)

−

√
Y u,v
k,m

Wu,v
k,m(t)

.Q−1(x)

]
,

where Wu,v
k,m(t) refers to the number of symbols, and χu,v

k,m(t)
denote the SINR of URLLC user, formulated as

χu,v
k,m(t) =

pu,vk,m(t)gu,vk,m(t)∑
k′∈K
k′ ̸=k

pu,vk′,m(t)gu,vk′,m(t)︸ ︷︷ ︸
URLLC interference

+
∑

k′∈K
k′ ̸=k

pe,vk′,m(t)ge,vk′,m(t)︸ ︷︷ ︸
eMBB interference

+σ2
.

(6)
Here, Y u,v

k,m = 1 − 1

(1+χu,v
k,m(t))

2 refers to the dispersion of the

channel.



Fig. 2: URLLC 2 symbols HARQ RTT

A. URLLC frame structure

The URLLC frame structure in 5G is designed to meet
stringent latency requirements for mission-critical applications.
The 3GPP has acknowledged the diverse needs of users and
adopted different TTI durations, such as 0.5 ms slots composed
of 7 OFDM symbols or 0.143 ms mini-slots composed of 2
OFDM symbols, are considered to provide greater flexibility
and adaptability to various use cases [11]. In this work, we
consider a mini-slot comprised of 2 OFDM symbols. Since
we consider non-ideal FH, it’s crucial to address the challenge
posed by hybrid automatic repeat request (HARQ) round-trip
time (RTT) and the associated latency target of 1 ms for
URLLC. The standard 8× 0.143 ms HARQ RTT exceeds the
specified 1 ms latency target, which may impact reliability.
To mitigate this, the study explores the reduction of HARQ
RTT to 4 TTIs as shown in Fig. 2, allowing room for one
HARQ retransmission. Considering one HARQ retransmission,
the maximum allowable latency is reduced to 0.86 ms (6x0.143
ms), which meets the strict latency demands of URLLC service.
This calculation does not include queuing delay.

III. PROBLEM FORMULATION

Organising URLLC traffic alongside eMBB users experienc-
ing varying channel quality imposes additional strain on eMBB
transmissions. We assume that the URLLC users generate
small packet fragments. The rate at which packets arrive in
mini-slot l, where l belongs to the set L = {1, ..., l, ..., L},
during TTI t, follows a Poisson point process (PPP) distribution
and is represented by ϕl(t). Moreover, the total number of
URLLC packets received during the TTI t can be calculated as
ϕ(t) =

∑
l∈L ϕl(t). Based on ϕ(t), the reliability of URLLC

service can be estimated as

Pr
[
ru,vk,m(t) ≤ ρϕ(t)

]
≤ Ψu, ∀k ∈ K (7)

where ρ denotes the packet size associated with the URLLC
service. More specifically, the expression states that the prob-
ability of the achievable data rate of a URLLC user at a given
time slot t is less than or equal to the product of URLLC
packet size. The total number of arrived URLLC packets should
be less than or equal to a small positive value, denoted Ψu.
In practical terms, this ensures that the system can reliably
handle the communication requirements of the URLLC traffic
and also ensures that the probability of failure (not meeting the

specified data rate constraint) remains below a predefined limit.
As mentioned earlier, the proposed system model considers
non-ideal FH, and in order to incorporate the round-trip delay
of HARQ retransmission into the outage probability of URLLC
service, we have to modify the reliability equation given at
(7). In other words, the HARQ retransmissions introduce an
additional delay, and the outage probability should consider
the reliability of both the initial transmission and potential
retransmissions. Therefore, the updated reliability considering
non-ideal FH and HARQ can be expressed as

Pr
[
ru,vk,m(t+ ΛRTT ) ≤ ρϕ(t)

]
≤ Ψu, ∀k ∈ K, (8)

where ΛRTT denotes the round-trip delay of HARQ retrans-
mission in TTI units. This modification reflects the fact that
we are considering the achievable data rates for URLLC users
at time (t + ΛRTT ) instead of time t. The modification to
ru,vk,m(t+ΛRTT ) is meant to account for the time at which we
assess the reliability of the system. The success probability for
each HARQ transmission can be modelled based on the BER
[12], [13]. At time (t+ΛRTT ), we estimate the probability of
successful transmission by considering the CDF of the BER. A
Bernoulli experiment is run to determine whether the Transport
Block (TB) transmitted to each user is successful or not
based on the estimated success probabilities. This modelling
approach allows us to evaluate the impact of delays on the
success or failure of HARQ transmissions and, subsequently,
on the overall data rate for URLLC services. Consequently,
we formulate an objective function aimed at enhancing the
allocation of eMBB resource blocks, optimising transmission
power for eMBB users, and refining the scheduling strategy for
URLLC users in the following manner.

P : max
β,P,η

∑
v∈Ve

k

rek,v

 (9a)

subject to
∑
v∈Ve

k

βk
v,m(t) ≤ 1, ∀m ∈ M, k ∈ K (9b)

∑
v∈Vu

k

ηk,vm,l(t) ≤ 1, ∀m ∈ M, k ∈ K (9c)

∑
l∈L

ηk,vm,l(t) ≤ L, ∀m ∈ M, k ∈ K (9d)

Pr
[
ru,vk,m(t+ ΛRTT ) ≤ ρϕ(t)

]
≤ Ψu, ∀k ∈ K

(9e)∑
v∈Ve

k

∑
m∈M

pe,vk,m(t) ≤ Pmax, ∀k ∈ K (9f)

pe,vk,m(t) ≥ 0, ∀v ∈ Ve,m ∈ M (9g)

βk
v,m(t) ∈ {0, 1}, ∀v ∈ Ve,m ∈ M (9h)

ηk,vm,l(t) ∈ {0, 1}, ∀v ∈ Vu,m ∈ M (9i)

where (9a) refers to the objective where we look to maximize
the rate of eMBB service. Constraint (9b) defines the eMBB
RB allocation constraint, ensuring that only one user is linked
to a RB. Whereas (9c) ensures that no more than one URLLC



user can puncture a specific mini-slot on a particular RB at
a given time slot. Constraint (9d) defines that the punctured
mini-slots should be less than or equal to the total number
of mini-slots. Constraint (9e) defines the URLLC reliability
constraint. Constraints (9f) and (9g) refer to the eMBB power
allocation constraints. Likewise, the constraints (9h) and (9i)
specify the limitations on resource allocation visibility.

IV. PROPOSED DECENTRALIZED DRL-BASED
FRAMEWORK

The DRL agents are positioned at the edges of the network,
while a core training module operates from the regional cloud
server for simplicity of implementation and enhanced stability.
The central cloud server conducts training globally, utilising
experiences accumulated from all agents. This method facili-
tates quicker convergence and improves overall performance.
Despite sharing common learning parameters from the central
cloud server, each agent independently takes decisions, with no
awareness of the decisions made by others. Solving the mixed-
integer programming challenge presented in (9) is typically
classified as NP-hard. Furthermore, the scheduling parameter
for URLLC is intricately linked with the RB and power
allocation parameters, thereby increasing the intricacy of the
optimisation challenge. We present a DRL-based framework to
address the optimisation problem presented in (9), where we
model it as a Markov decision process (MDP) for K agents.
The agent selects an action from its action space based on the
observations associated with the state, and the action is guided
by the policy π.

State space: The set of state space can be defined as
S = {S1, S2, ..., Sk, ..., SK}. We assume that each edge cloud
server acting as an agent exclusively gets its individual state,
specifically the information of users within the same cell. This
approach is adopted to minimise the overhead resulting from
information exchange across cells. It can be represented as
sk(t) = {gek(t), guk (t), ϕk(t), V

e
k , V

u
k }, where it comprises the

channel information of both eMBB and URLLC users, along
with the traffic information at time slot t.

Action: The set of action space can be defined as A =
{A1, A2, ..., Ak, ..., AK}. Each agent takes action on selecting
eMBB RB β, eMBB power allocation P , and URLLC schedul-
ing η.

Reward: We design the global reward function by consider-
ing the requirements of URLLC service. The reward function
can be formulated as

r(t)=(

I︷ ︸︸ ︷∑
v∈Ve

k

rek,v)− Φ(t)(

II︷ ︸︸ ︷∑
v∈Vu

k

ru,vk,m(t+ ΛRTT )− ρϕ(t)) (10)

where we introduce the time-varying weight coefficient Φ(t)
to ensure the URLLC reliability constraint. It can be updated
as

Φ(t+ 1) = max {Φ(t) + Ψ(t)−Ψu, 0} , (11)

where Ψ(t) refers to the achieved outage probability as men-
tioned in (8). In the first part, we aim to maximise the rate

of eMBB users, while the second part represents the constraint
for URLLC. The objective of the agent is to choose an optimal
policy (π) by balancing the trade-off between low outage
probability and high eMBB data rate.

A. Thompson sampling-based DDPG framework

The DDPG agent consists of two main components: an
actor and a critic. The actor is responsible for defining a
policy function, which maps states to corresponding actions.
The policy, denoted as π = πL

a , can be characterised by the
network state observed by the agent. The agent then performs
actions corresponding to the number of punctured mini-slots L
from each allocated RB. Subsequently, the reward is computed
by the agent using equation (10), considering the decisions
made. The updated state information of the network is then
provided to the agent. The objective of the actor is to acquire
a strategy that maximises the cumulative discounted reward.
It can be denoted as J =

∑T
t=1 µr(t)(s(t), a(t)), where µ

refers to the discount factor. To assess the effectiveness of the
actor’s chosen actions, the critic employs a state-action value
function denoted as Q(s(t), a(t)). This function calculates
the cumulative return over the long term by considering the
immediate reward (r(t)(s(t), a(t))) and the estimated future
returns (πQ(s(t+1), a(t+1))) resulting from taking action at
in-state s(t) according to the current policy. It utilises a Deep
DNN with parameters ΘQ, denoted as Q(s(t), a(t)|ΘQ), to
compute the Q-value for a given state-action pair (s(t), a(t)).
To ensure a stable learning process, both the critic and ac-
tor utilise duplicates of their DNNs. The critic employs Q-
networks, denoted as Q́(s(t+1), a(t+1)|ΘQ́), parameterized
by ΘQ́, while the actor utilizes a policy network π́(s(t+1)|Θπ́),
parameterized by Θπ́ . The critic undergoes training to enhance
the optimisation of ΘQ and ΘQ́, ensuring accurate computation
of the long-term return. The update of ΘQ using gradient
descent involves minimising the loss function as follows

Υ(ΘQ) = (Q(s(t), a(t)|ΘQ)− ζ(t))2, (12)

where ζ(t) = r(s(t), a(t))+µQ́(s(t+1), a(t+1)|ΘQ́) refers to
the target action-value. The parameter ΘQ́ is updated as follows
ΘQ́ = κΘQ + (1 − κ)ΘQ́. The actor undergoes training to
discover the most effective policy that maximizes the objective
function J , essentially identifying the optimal values for Θπ

and Θπ́ . The parameter Θπ is updated using a gradient ascent
algorithm along with the corresponding gradient as follows

∇ΘπJ = ∇πQ(s(t), a(t)|ΘQ)∇Θππ (s(t)|Θπ) , (13)

where ∇πQ(s(t), a(t)|ΘQ) denotes the policy evaluation. In
this paper, we use Thompson sampling to balance the ex-
ploration and exploitation. When an edge agent selects a
hypothesis before interacting with the environment, uncertainty
arises. Hence, achieving a balance between exploration and
exploitation becomes imperative to identify the optimal policy.
Each hypothesis, associated with parameter θ, undergoes train-
ing on a relevant subset D to shape the distribution over the
posterior knowledge Ṕ (θ|D). Approximating Ṕ (θ|D) entails



capturing the posterior distribution, a challenge arising from
the difficulty of precisely determining values. Instead, a variety
of hypotheses is extracted, and their distribution is dictated by
the prior distribution P (θ). We consider a set of actors A ∈ A,
each defined by specific parameters θi, where i ∈ A. These
parameters are sampled from the prior distribution P (θ). The
hypothesis in question encapsulates this ensemble of actors,
giving rise to the distribution Ṕ (θ|D), which is influenced by
the original distribution P (θ). To maintain the distribution,
each actor undergoes personalised updates contingent on its
specific sub-sample, as indicated by the mask value derived
from a Bernoulli distribution [14]. This binary mask value
serves to identify whether a given sample is part of the actor’s
subset or not. The implementation of Thompson sampling
entails a stochastic selection from the ensemble of actors. This
random selection process informs the formation of a hypothesis
aligned with the posterior distribution. This adaptive strategy
plays a pivotal role in striking a nuanced balance between
exploration and exploitation, contributing to the formulation
of an optimal policy for the eMBB resource block, power allo-
cation and URLLC scheduling. Therefore, the target function
is updated as follows

ζ(t)=r(s(t), a(t))+µmax
i∈A

[
Q́i

(
s(t+ 1), a(t+ 1)|ΘQ́

)]
. (14)

A neural network model undergoes training offline at the Non-
RT RIC. This controller is situated in the regional cloud server
and utilizes data gathered from all agents. After the training
process, the model is communicated to the DRL agents located
at the Near-RT RICs on edge cloud servers. The training
objective for the global model is to maximize the predefined
global reward function outlined in (10).

TABLE I: Simulation Parameters

Parameter Value
Frame duration 10 ms
No. of mini-slots in each TTI 7
sub-carrier spacing 15 Khz
No. of OFDM symbols/TTI 14
OFDM symbols/mini-slot 2
Bandwidth 20 MHz
URLLC packets length 32 Bytes
RB Bandwidth 180 kHz
Transmit power 38 dBm
Pathloss Model 120.8 + 37.5 log10(d)
Actor learning rate 10−5

Critic learning rate 10−3

V. PERFORMANCE EVALUATION

We consider four BSs in our network model, where each
BS provides coverage to an area of 250 square meters and
handles eMBB users as well as URLLC users. The eMBB
users generate constant full-buffer traffic, while URLLC users
produce Poisson traffic with an arrival rate denoted as ϕ.
This stochastic nature reflects the sporadic demands typical
in URLLC applications, where real-time responsiveness and
reliability are paramount. Within this framework, the network

Fig. 3: Impact of URLLC traffic

must balance the differing requirements of eMBB and URLLC
traffic, optimizing resource allocation and scheduling algorithm
to meet the diverse needs of both user types. We define
the simulation parameters in Table I. The proposed approach
undergoes training by varying the network environment.
Impact on eMBB rate: We investigate the impact of punctur-
ing on the eMBB data rate and conduct a comparative analysis
with alternative methods across different loads of incoming
URLLC traffic. In Fig. 3, we illustrate the impact of incoming
URLLC traffic on the eMBB rate. This influence arises from
prioritizing URLLC service users, leading to the allocation
of additional radio resources to meet the stringent latency
requirements associated with URLLC services. Our proposed
method strikes an effective balance between exploration and
exploitation, allowing the algorithm to explore the solution
space effectively while exploiting the knowledge gained. On
the other hand, greedy-based methods where ϵ value is varied
often prioritize the exploitation of known strategies rather
than exploring new possibilities. This can lead to sub-optimal
solutions when the environment is complex. However, as the
influx of URLLC traffic intensifies, the average data rate begins
to decline, yet the proposed approach consistently maintains a
higher level compared to greedy approaches.
URLLC reliability: In Fig. 3, we examine the performance

in terms of URLLC reliability by plotting the CDF of the
transmission error probability. Fig. 4a shows that in more
than 98% of instances, the proposed approach ensures that the
transmission error rate remains within acceptable limits. When
ϕ is 80 packets per time-slot, the proposed method manages to
uphold a high level of accuracy and reliability in transmitting
URLLC packets. However, it is crucial to note that in Fig. 4b,
increasing URLLC traffic rates can pose challenges to URLLC
reliability. Our proposed method still maintains reliability in
transmitting URLLC packets compared to varied ϵ values of
the greedy method. Unlike the greedy method, which relies on
fixed ϵ values and can become trapped in sub-optimal choices,
Thompson sampling continually explores and exploits new
strategies, ensuring that the system can respond effectively to



(a) CDF of URLLC transmission error probability when ϕ = 80
packets/slot

(b) CDF of URLLC transmission error probability when ϕ =
120 packets/slot

Fig. 4: CDF of URLLC transmission error probability for
different ϕ.

changing traffic patterns and network states. This adaptability is
crucial for URLLC, where even minor delays or packet losses
can have significant repercussions. By efficiently balancing the
exploration of new transmission strategies with the exploitation
of known successful ones, Thompson sampling minimizes the
risk of prolonged failure modes. It is evident from the results
that Thompson sampling improves performance by introduc-
ing a probabilistic element that helps deal with uncertainties
compared to fixed learning rates.

VI. CONCLUSION

This study has addressed the resource allocation challenges
in multi-cell wireless systems catering to eMBB and URLLC
users. Through the formulation of an optimization problem
and the development of a distributed learning framework,
particularly leveraging a Thompson sampling-based DRL ap-
proach,we have presented a solution capable of making online
resource allocation decisions. The proposed approach aligns
with the evolving O-RAN network architectures, allowing for

efficient learning over wireless networks. Our simulation results
demonstrate the effectiveness of the algorithm in meeting the
QoS requirements for both eMBB and URLLC users. This
research contributes valuable insights into optimizing resource
utilization in dynamic and heterogeneous wireless environ-
ments, paving the way for enhanced network performance and
user satisfaction across diverse communication services.
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