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Abstract—Coronary Artery Disease (CAD) diagnostic to be a
major global cause of death, necessitating innovative solutions.
Addressing the critical importance of early CAD detection and
its impact on the mortality rate, we propose the potential of one-
dimensional convolutional neural networks (1D-CNN) to enhance
detection accuracy and reduce network complexity. This study
goes beyond traditional diagnostic methodologies, leveraging the
remarkable ability of 1D-CNN to interpret complex patterns
within Electrocardiogram (ECG) signals without depending on
feature extraction techniques. We explore the impact of varying
sample lengths on model performance and conduct experiments
involving layers reduction. The ECG data employed were ob-
tained from the PhysioNet databases, namely the MIMIC III and
Fantasia datasets, with respective sampling frequencies of 125 Hz
and 250 Hz. The highest accuracy for unseen data obtained with
a sample length of 250. These initial findings demonstrate the
potential of 1D-CNNs in CAD diagnosis using ECG signals and
highlight the sample size’s role in achieving high accuracy.

Index Terms—Convolutional Neural Networks, Electrocardio-
gram, Coronary Artery Disease, Myocardial Infarction.

I. INTRODUCTION

Coronary Artery Disease (CAD) is a significant contributor
to mortality worldwide, as reported by the World Health
Organisation (WHO) [18]. The condition arises due to the
accumulation of plaques, composed of lipid-based substances,
which impede the circulation of blood within the arteries.
Therefore, timely detection of CAD is imperative, given that
the ailment can give rise to debilitating complications such
as Congestive Heart Failure (CHF) and Myocardial Infarction
(MI), among others. Therefore, it is essential to diagnose an
early CAD and prevent death. Numerous studies have stated
that no definitive biomarkers or precise electrocardiographic
segments can unequivocally indicate the presence of CAD,
as different waves and segments are required to be detected
[3], [16]. With the development of artificial intelligence
technologies, machine learning and deep learning techniques
are being increasingly employed to analyse medical data,
encompassing signals, X-rays, Magnetic Resonance Imaging
(MRIs), and other modalities. In general medical practices, the
electrocardiogram (ECG) is the foremost modality utilised for
the preliminary screening of various Cardiovascular Diseases
(CVDs). Although a recorded ECG may aid in the prelimi-
nary diagnosis of CHF and angina, additional tests such as

echocardiography and exercise testing are generally required
to confirm the diagnosis [4].

Fig. 1. Representation of ECG waveform components [10]

The morphology of an ECG in a single cycle comprises
distinct waveforms, namely, P, Q, R, S, and T waves as
shown in Fig. 1. ST segment deviation is a vital marker
employed in the diagnosis of ischemic conditions, such as
CAD, MI, and others. ST depression indicates severe coronary
lesions and underscores the significance of an early invasive
treatment approach in managing unstable coronary artery
disease. Conversely, ST elevation implies complete obstruction
of the affected coronary artery and is a hallmark of myocardial
infarction or heart attack. In light of recent technological
advancements, a multitude of investigators has devised cutting-
edge computational diagnosis systems to facilitate the diagno-
sis of diverse CVDs [1], [5], [14]. The analysis of ECG signals
for diagnosing CVDs has gained significant attention and
has been the focus of an increasing investigation. Numerous
deep learning techniques have been employed to classify heart
diseases using ECG signals; CNN, Long Short-Term Memory
(LSTM) networks, Recurrent Neural Networks (RNNs), and
autoencoders [12], [15]. In recent years, there has been a
significant surge in interest among researchers towards using
deep learning techniques to diagnose CAD. The majority
of researchers have primarily focused on employing CNN
techniques for the diagnosis of AF [5], MI [2], and arrhythmia
[13]. However, the current research in CAD diagnosis is not
yet conclusive due to the limited availability of data and the
complex nature of ECG signals in CAD diagnosis. Therefore,



a relatively small group of researchers have conducted their
work on CAD diagnosis using similar techniques [1], [3], [16].
In [16], the 1D-CNN was combined with LSTM for CAD
diagnosis. It was implemented to extract relevant features from
CAD ECG signals. Then, LSTM and a fully connected layer
were utilised to conduct the classification. The model is fully
automated and needs less feature engineering. However, the
limitation of CAD data caused a lower diagnostic performance.
Several studies have implemented 1D-CNN for the automated
detection of CAD, aiming to enhance diagnostic accuracy
and improve patient outcomes. For instance, Acharya et al.
[1] proposed an automated CAD diagnosis system based on
1D-CNN, which demonstrated promising results in terms of
both accuracy and computational efficiency. Feature extraction
techniques were combined into a model structure, which
later obtained reliable accuracy. However, the model training
was time-consuming and needed a large amount of data.
Feature extraction still plays an important role in the data
pre-processing stage by identifying and selecting informative
features in numerous ECG signal processing works [1], [6],
[9], [11].

In this paper, the primary focus is to investigate the potential
applications of a novel and compact 1D-CNN architecture
with reduced complexity, with a specific aim of early onset
detection. Early detection of CAD is crucial, as it enables
timely and suitable treatment, resulting in better health out-
comes for patients. To achieve this goal, the proposed 1D-
CNN architecture will be developed in order to maintain high
performance and minimise computational resource usage. This
enhances the model’s applicability when performing real-time
processing with limited resources. Additionally, the proposed
model will be applied to CAD ECG signals obtained from the
MIMIC database. The model’s purpose is to capture patterns
and distinctive waveform characteristics that serve as markers
for the early stages of CAD. To ensure consistent input for
our model, a data normalisation technique is implemented to
standardise and adjust the ECG signal data, mitigating the
impact of noise, variations and artefacts in medical data. By
elaborating on these novel aspects of our 1D-CNN archi-
tecture, this paper presents a comprehensive and impactful
contribution to the field of CAD detection. The model’s
innovation lies in its efficient architecture, optimising filter
counts and kernel size while using dropout layers strategically
to enhance early-onset CAD detection precision while con-
serving computational resources. Through its advancements,
the proposed model has the potential to revolutionise early
onset CAD detection, ultimately leading to improved patient
care and outcomes.

II. METHODOLOGY

The proposed method consists of three main steps: data col-
lection, pre-processing, and deep learning model. The model
will be designed and implemented for CAD classification
using the ECG signals through our extensive experiments.
Each step will be explained in detail in the following sections.

A. Data preparation

The main portion of ECG data used for training and testing
is obtained from the MIMIC III and Fantasia database from
the Physionet website [7], [8]. A total of approximately
2,840 patients, constituting approximately 7.1% of all hospital
admissions, are identified as having coronary atherosclerosis
of the native coronary artery in the MIMIC database. The Fan-
tasia database contains ECGs of 40 healthy patients, including
20 young and 20 adult patients. Three distinct subsets of data
are generated for the experiments; D1, D2 and D3. The first
subset (D1) is created by selecting a cohort of 5 individuals
diagnosed with CAD from the MIMIC database, and 5 healthy
individuals are chosen from the Fantasia database for the pur-
pose of training and testing the model. The second subset (D2)
is specifically composed to examine the predictive capabilities
of our model further. It comprises 20 CAD subjects from
the MIMIC database, alongside 20 non-CAD individuals from
the Fantasia database. A third subset (D3) was compiled by
selecting patients diagnosed with CAD from the St. Petersburg
database [17]. The St. Petersburg database comprises a total
of 7 CAD subjects, with each subject’s record spanning a
duration of 30 minutes. Each record in the St. Petersburg
database consists of 12 standard leads, sampled at a frequency
of 257 Hz. The subset D2 and D3 are then utilised for
prediction.

B. Data pre-processing

The ECG signals were obtained from patient records, each
exhibiting different lengths of signal recordings spanning sev-
eral minutes. To conduct our experiments effectively, specific
segments of these ECG signals were chosen. Initially, the ECG
signal data was retrieved from the records of each patient,
as shown in Figure 2. Subsequently, each ECG signal was
selected, ranging from 0 to 1000 samples. This segment corre-
sponds to approximately 8 seconds of signal data. The selected
data contains a complete cycle of the cardiac waveforms and
is then stored in a dataframe. Prior to inputting into the
classifier, the pre-processed data is subjected to labeling. A
binary label was assigned to each ECG segment within subsets.
Specifically, a label of 0 indicated non-CAD subjects, while a
label of 1 indicated CAD subjects. This crucial step is essential
for building the basis of supervised learning. The classifier can
then acquire valuable features and make informed predictions
based on the provided labels. During experiments, the sample
lengths were potentially segmented to accommodate the study
of the impact of varying lengths on model performance.

Data normalisation was then employed to transform numer-
ical data into a standardised range, typically between -1 and 1.
This process is achieved by scaling the data based on its mean
and standard deviation or by applying a linear transformation
to shift and re-scale the data. The standard deviation formula
was used for re-scaling, as shown in (1).

s =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (1)



where s is the normalised signal, N is the number of
samples, x is the average of a given signal, and xi is the
signal value at the ith position in ECG data. The standard
deviation measures the spread or dispersion of the signals
in the dataset. A smaller standard deviation indicates that
the signals are clustered closely around the average, while a
larger standard deviation indicates that the signals are more
spread out. By re-scaling the data using standard deviation,
we obtained normalised data, which was then utilised in
classification.

C. CNN model

A CNN model consisting of four convolutional layers, a
max-pooling layer, four dropout layers, a flattened layer, and
a fully connected dense layer was designed. The first layer of
the network comprises 512 filters with a kernel size of 32, and
the subsequent layers contain 256 filters with the same kernel
size. By utilising 512 filters with a kernel size of 332 in the
initial layer and subsequently reducing the number of filters to
256 while keeping the kernel size consistent, the reduction in
parameters contributes to enhancing the model’s compactness.
The Rectified Linear Unit (ReLU) activation function was
used in the convolutional layers to introduce non-linearity
into the model. Three dropout layers with a rate of 0.2 were
added after the convolutional layers to prevent overfitting. The
max pooling layer with a pool size of 128 was then applied
to reduce the spatial size of the feature maps and improve
generalisation. The flattened output of the max pooling layer
was then fed into a fully connected (dense) layer with 128
neurons and ReLU activation, which enabled the model to
learn complex representations of the input data. To further
prevent overfitting, another dropout layer with a rate of 0.5 was
introduced prior to the final output layer. The final output layer
consists of two neurons and softmax activation, which enable
the model to classify the input data into one of two possible
categories. Additionally, to optimise the model’s performance,
the Adam optimizer with a learning rate of 0.0001 was chosen
for parameter optimization. Adam’s adaptiveness in adjusting
the learning rate for each parameter based on past gradients
and magnitudes is particularly beneficial for training CNNs,
especially in ECG, where the model must effectively navigate
complex, high-dimensional parameter spaces to accurately
classify ECG data. The model was compiled using the binary
cross-entropy loss function, which is particularly effective
for binary classification tasks, such as distinguishing between
CAD and non-CAD.

Figure 2 illustrates the process of classifying ECG signals
using the proposed 1D-CNN model. The process starts with
raw ECG signals, which are normalised to reduce the impact
of variations in amplitude and baseline. The normalised signals
are then inputted into the 1D-CNN model, which processes the
data and extracts relevant features. The model subsequently
uses these features to classify the signals as either CAD or
non-CAD. In our study, we proposed a modified 1D-CNN
model that included some modifications, such as changes in

filter size and the incorporation of dropout layers. This model
was employed throughout the CAD analysis process.

III. EXPERIMENTAL RESULTS

In our experiments, we utilised the three subsets prepared
during the data preparation stage. The subset D1 was split into
70% for training and 30% for testing. This split is commonly
used in machine learning because it allows for a sufficient
amount of data to be used for training, while also providing
enough data for testing the model’s generalisation ability.
Furthermore, the subset D2 and D3 were used for prediction
where the trained model was put to test with these entirely
new and unseen subsets.

The accuracy was calculated as shown in (2), which mea-
sures the proportion of correctly classified instances out of all
instances in the dataset. It is a common evaluation metric used
to measure the performance of a classification model.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Additionally, other critical metrics such as
Misclassification Rate = FP+FN

TP + TN + FP + FN , Precision = TP
TP+FP ,

Sensitivity = TP
TP+FN , and Specificity = TN

TN+FP were used,
where True Positives (TP) are the CAD cases that the model
correctly identifies as CAD, True Negatives (TN) are the
non-CAD cases correctly identified as non-CAD, False
Positives (FP) are the non-CAD cases mistakenly identified
as CAD, and False Negatives (FN) are the CAD cases
mistakenly identified as non-CAD.

A. Result

Table I presents the overall performance of the 1D-CNN
model in classifying ECG data into CAD and non-CAD
categories using different sample lengths, as we aim to deter-
mine the optimal sample length for accurate CAD diagnosis
using the proposed 1D-CNN model. In the experiment, sample
lengths of 1000, 500, 300, 250, 200, and 150 data points
were manually selected from the lead II of each ECG subject.
Varying the sample length of the input signal can reveal the
impact of signal length on the classification model’s accuracy.
A longer sample length may provide more information about
the ECG signal but may also require more sophisticated
techniques and longer processing times. On the other hand,
a shorter sample length may not be as complex but may lead
to lower accuracy due to the loss of critical information in the
ECG signal. Hence, identifying the optimal length is essential.

Furthermore, the table shows the results of the experiment
conducted on varied lengths of sample size on three different
subsets. The model’s accuracy in the subset D1 was highest
when the sample length was 300 data points, with training
accuracy of 100% and testing accuracy of 96%, respectively.
However, the model’s accuracy remained relatively high across
all sample lengths for all types of data. Moreover, it indicates
that smaller sample lengths generally lead to slightly lower
accuracy for train and test data in some sample lengths. The
accuracy is significantly increased for unseen data in subset



Fig. 2. Flowchart of the proposed approach

D2 and D3 when smaller sample sizes are employed. The
results indicate that the model achieved the highest accuracy
for unseen data when the sample length was 250, with an
accuracy of 82.5% in D2 and 85.7% in D3.

Figure 3 illustrates the performance metrics for CAD de-
tection in D2 and provides valuable insights into the model’s
effectiveness. With an accuracy of 82.5%, the model demon-
strates its capability to correctly classify all CAD and non-
CAD instances, indicating a solid overall performance. How-
ever, the misclassification rate of 17.5% indicates room for
improvement in accurately categorising cases. A precision
of 85% represents that when the model identifies a positive
case as CAD, it is correct approximately 85% of the time,
showcasing its ability to minimise false positives. A recall of
80% reflects the model’s success in capturing about 80% of
actual CAD cases, which is crucial for avoiding missed diag-
noses. Additionally, a specificity of 84% highlights the model’s
proficiency in accurately identifying negative cases, implying
a satisfactory ability to distinguish non-CAD instances.

Overall, the results suggest that a sample length of 250 data
points might be optimal for achieving the highest accuracy in
subsets D2 and D3 while still maintaining high accuracy for
the train and test data in subset D1. This finding could be due
to the presence of key features in the ECG signals that indicate
CAD, such as ST segments and other important ECG features
that may be better represented in a sample length of 250.
However, further research is needed to confirm this finding
and to explore other factors that might impact the model’s
performance.

Table II provides a comparative overview of the perfor-
mance of three distinct approaches for CAD detection us-

TABLE I
AN OVERALL PERFORMANCE OF 1D-CNN ON CAD CLASSIFICATION

USING DIFFERENT SAMPLE LENGTHS ON THREE SUBSETS.

3*Sample length Accuracy (%)

Subset 1 (D1) Subset 2 (D2) Subset 3 (D3)

Train Test Unseen Unseen

150 95.5 85 75.5 81.3

200 94.6 90 73.8 85.6

250 97.3 89 82.5 85.7

300 100 96 71.9 82.4

500 98 82 66.7 63

1000 95.6 89 63.6 65

Fig. 3. Confusion matrices on dataset D2 with 250-sample length

ing the MIMIC III dataset. The Baseline 1D-CNN approach
demonstrates a reasonable level of performance, achieving an
accuracy of 83% on the training set. This result indicates its



TABLE II
COMPARISON OF EXISTING APPROACHES PERFORMANCE ON CAD

APPLICATIONS USING THE MIMIC III DATASET.

2*Architecture Accuracy (%)

Train set Test set

Baseline 1D-CNN [3] 83 74

Hybrid CNN-LSTM [3] 94 94

Proposed model 97.3 89

TABLE III
COMPARISON OF DROPOUT LAYER CONFIGURATIONS AND PROBABILITIES

IN THE PROPOSED MODEL

2*Architecture Accuracy(%)

Unseen (D2) Unseen (D3)

No dropout layers 62 60

one dropout (0.2) 68 71

two dropout (0.2) 65 57

three dropout (0.2) 65 62

three dropout (0.2) and a dropout of (0.5) 79 86

capacity to learn from the training data and identify patterns
associated with CAD. However, a noteworthy observation is
the decrease in accuracy to 74% on the test set. The complexity
of the model could lead to the capturing of irrelevant features
during training, resulting in a noticeable decrease in testing
accuracy. The Hybrid CNN-LSTM approach enhances the
ability to identify relevant CAD features by introducing LSTM
layers. This model achieved an accuracy of 94% in both
the training and test sets, indicating effective generalisation
and feature extraction capabilities. Lastly, our proposed model
demonstrated remarkable accuracy, achieving 97.3% on the
training set and 89% on the test set. However, the noticeable
drop in accuracy on the test set warrants further exploration
and investigation.

In addition, an ablation experiment encompassing diverse
configurations of dropout layers was conducted to evaluate
the efficacy of the integration of these layers on the optimal
sample length, as shown in Table III. The results of these ex-
periments reveal a significant improvement in the performance
of subset D2, achieved through the incorporation of four
dropout layers, each configured with dropout rates of 0.2 and
0.5. Notably, this configuration achieves the highest accuracy
of 79% in D2 and 86% in D3. This improvement strongly
suggests that adding dropout layers helps enhance the model’s
ability to generalise and effectively addresses concerns about
overfitting. However, it is important to exercise caution when
considering the inclusion of more dropout layers or higher
dropout rates, as these adjustments may not necessarily lead
to further performance gains. In fact, excessive dropout can
potentially hinder the network’s learning capacity. The exper-
imental results demonstrate the effectiveness of the 1D-CNN
model in accurately classifying ECG data into CAD and non-
CAD categories, regardless of the sample length. The model

achieved high accuracy for both train and test data across
all sample lengths, with the highest accuracy observed when
the sample length was set to 300 data points. This indicates
that the model was able to learn and generalise well from
various ECG samples, regardless of their length. Interestingly,
the experimental findings suggest that reducing the sample
length leads to a slight decrease in the accuracy of both train
and test data. However, this is compensated by a significant
improvement in the accuracy of unseen data, highlighting the
potential for better generalisation of the 1D-CNN model with
smaller sample sizes.

Additionally, we conducted an extensive examination of the
model’s complexity, as illustrated in Table IV. The Baseline
1D-CNN and the Hybrid CNN-LSTM models, each com-
prising 14 layers, exhibit significant differences in parameter
usage. The Baseline 1D-CNN employs 0.4 million parameters,
while the Hybrid CNN-LSTM utilises 4 million parameters
and achieves 83% and 94% accuracy, respectively. However,
the proposed model features a relatively complex architecture
with 12 layers and 8 million parameters. Remarkably, de-
spite its relatively lower complexity and the smaller dataset
size, it attains an impressive accuracy rate of 97.3%. The
proposed model outperforms the Baseline 1D-CNN and Hy-
brid CNN-LSTM in accuracy but requires significantly more
computational resources, limiting its practicality in resource-
constrained environments.

Furthermore, the proposed model demonstrates remarkable
efficiency in terms of computational complexity, as evidenced
by its significantly lower demand for Floating-Point Oper-
ations (FLOPs) compared to the Hybrid CNN-LSTM and
Baseline 1D-CNN approaches. With only 65,792 FLOPs, our
proposed model achieves outstanding performance, surpassing
the accuracy of the Baseline 1D-CNN and Hybrid CNN-
LSTM. This efficiency translates into a more cost-effective and
energy-efficient deployment, making it an attractive option for
real-world applications. However, it is important to note that a
direct correlation between a number of parameters and FLOPs
is not definitively established. Increasing these factors does
not consistently lead to better performance. In the proposed
model, it is noteworthy that it exhibits enhanced performance
while requiring fewer computational resources despite having
the highest number of parameters and the lowest number of
FLOPs.

To summarise, the proposed model emerges as a suitable
choice, distinguished by its exceptional computational effi-
ciency, high accuracy, and resource-efficient design in contrast
to the remaining models in the table. It successfully balances
complexity and performance, offering a practical and cost-
effective solution for real-world applications.

IV. CONCLUSION

Given the absence of precise CAD biomarkers, identify-
ing robust classification features becomes crucial. Exploring
alternative ECG channels for CAD detection is also deemed
essential. Extracting CAD-specific data from diverse patient
records in the MIMIC III database proved challenging due to



TABLE IV
COMPARATIVE ANALYSIS OF MODEL COMPLEXITY WITH EXISTING WORK

Metric Proposed Model Baseline 1D-CNN [3] Hybrid CNN-LSTM [3]

Number of Layers 12 14 14

No. of Parameters 8 M 0.4 M 4 M

Activation Function ReLU ReLU ReLU

Pooling Layers Max Pooling Max Pooling Max Pooling

Dropout Rate 0.2 and 0.5 0.2 0.2

Learning Rate 0.001 0.003 0.003

Floating-Point Operations (FLOPs) 65,792 71,936 23,609,344

Performance (Accuracy) 97.3% 83% 94%

Computational Resources Apple M2 Max Intel® Xeon(R) 16-core Intel® Xeon(R) 16-core

the varied ECG storage methods across channels. Future re-
search should persist in exploring feature extraction techniques
and their impact on model performance while considering
their limitations. Furthermore, upcoming studies could delve
into other critical factors influencing the model’s performance,
such as the number of ECG leads utilised, sample size,
and additional underlying medical conditions. One of the
most pivotal aspects to further address is reducing network
complexity, as it is directly correlated with model accuracy.
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