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Abstract

The surge in online retail, driven by population growth, technology, and the

Covid-19 pandemic, emphasizes the need for efficient last-mile delivery. This

thesis explores Robot and Drone-Assisted Delivery Problems, addressing the need

for innovative solutions in the integration of trucks and delivery robots or drones.

Recent technological advancements allow drones to be launched or collected

from moving vehicles without human intervention, challenging the common

notion of restricting these actions to when the truck is stationary. Chapter 3 of

this thesis introduces the Covering Salesman Problem with Nodes and Segments

Using Drones (CSPNS-D), a problem whose approach determines the maximum

coverage area of nodes or links serviced by a drone as the truck traverses the

corresponding node or link. Three Mixed Integer Linear Programming (MILP)

models, representing various drone coverage areas, were proposed to minimize

the truck’s working span. Results demonstrate optimal solutions for up to 35

customers, with substantial savings compared to the Traveling Salesman Problem

(TSP). Additionally, a computationally efficient link removal heuristic is presented

for larger instances.

Chapter 4 introduces the Robot-Assisted Delivery Problem (RADP), integrating

trucks, robots, and local depots. Two consistent MILP models, RADP-1 and RADP-

2, optimize delivery schedules, with RADP-1 proving more efficient due to a large

number of feasible operations in RADP-2. RADP-1 considers each arc and node

separately in the modelling process, whereas RADP-2 treats combinations of arcs

and nodes as a single operation. Unlike the CSPNS-D models, RADP only allows

launching and collection of robots when the truck is stationary. RADP models, like

CSPNS-D, pose NP-hard challenges, necessitating heuristic approaches for larger

problems. The proposed P-Heur and K-Heur heuristics prioritize operations based
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on the node-time ratio and employ a K-Means algorithm for cluster decomposition

and MILP solution, respectively, effectively addressing larger-scale challenges.
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Chapter 1

Introduction

1.1 Introduction

Online shopping is becoming increasingly prevalent, particularly in developed

countries, gradually replacing the traditional in-store shopping experience where

customers physically visit retail stores. The emergence of online shopping has

had a substantial impact on retail companies, boosting their sales and reshaping

business dynamics. It enables retailers to enhance customer service by ensuring

timely delivery to specified locations.

In-store shopping has witnessed a significant decline, primarily due to the

global COVID-19 pandemic. This shift in consumer behavior may persist even

after the pandemic subsides. Online retail has experienced remarkable growth over

the past few decades, driven by technological advancements, population growth,

and urbanization. Business-to-Consumer sales have been consistently increasing

at a high rate annually. The COVID-19 pandemic has further accelerated online

retail sales as people turned to online shopping while confined to their homes. In

1



1.1 Introduction 2

the UK, the proportion of online spending reached an all-time high during the

COVID-19 pandemic in April 2020, surging to 30.7%, a substantial increase from

the 19.1% reported in April 2019 before the pandemic [2]. Government-imposed

stay-at-home orders during the pandemic have altered shopping habits, which

are likely to endure beyond the crisis, favoring e-Commerce and digital shopping

experiences. As the number of online shoppers continues to rise, retail companies

are confronted with challenges such as maximizing profit, delivering a satisfactory

customer experience, and reducing carbon emissions. Therefore, they seek more

efficient methods for distributing goods across their logistics networks.

Despite a reduction in road transport in the UK in 2020 due to nationwide

lockdowns, the transportation sector remains the largest emitter, responsible for

nearly a quarter of emissions (24%), surpassing even the energy supply sector

at 21% [3]. To mitigate the negative impact of conventional trucks for last-mile

deliveries, which include high logistics costs due to rising fuel and energy expenses,

longer delivery times, and extended truck operation hours, several innovative

concepts have been proposed. These include automated delivery robots and aeriel

drones, designed to minimize truck travel time and emissions during deliveries [4],

[5]. Companies like Amazon, DHL, and Google have introduced automated modes

of freight distribution. For instance, Amazon’s Prime Air and DHL’s Parcelcopter

are used to deliver packages in areas with low accessibility or long delivery times.

Google’s Project Wing is developing drones capable of delivering larger items than

Prime Air and Parcelcopter [6], [7]. Mercedes Benz has partnered with Starship

Technologies to create autonomous robots for last-mile deliveries, monitored by
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customers via smartphones, allowing cargo compartment access upon the robot’s

arrival [8].

While both drones and robots offer similar advantages, such as faster deliveries,

increased sales, and reduced traffic and emissions [1], they possess distinct strengths

and weaknesses. Table 1.1 below provides an overview of the delivery challenges

associated with autonomous robots, drones, and traditional trucks across key areas.

Drones are known for their faster travel between two points in Euclidean space [9].

On the other hand, robots exhibit superiority in various aspects, with the potential

for multiple compartments and a higher covering range for multiple deliveries

in a single trip, along with a greater payload capacity to compensate for their

slower speed [10, 11]. Although both contribute to emissions reduction, drones

tend to consume more energy than robots, especially in windy conditions, whereas

robots are less sensitive to weather conditions [12]. Drones also face higher legal

concerns due to legislation, as they are perceived to pose greater threats to public

infrastructure [10]. Finally, robots move silently on pedestrian walks without

privacy interference [11], whereas drones can generate noise pollution that might

raise public health concerns [13].

Table 1.1: Delivery Challenges of emerging and traditional delivery method [1]

Delivery Challenges
Emerging Deliveries Traditional Deliveries

(ADRs) Drones Trucks/Vans

Payload Capacity Medium Low High
Speed Low High Traffic Dependent
Range Low-Medium Low High
Control Autonomous Autonomous Human
Traffic impact Depends Low High
Energy efficiency High Medium Low
Legal concerns Medium High Low
Noise Low High High
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Autonomous Delivery robots (ADRs) and autonomous aerial drones are used

in conjunction with traditional trucks to optimize delivery schedules. Due to their

limited capacity, they serve as assisting modes in conventional freight distribution.

1.2 Thesis Organization

Chapter 2 provides an overview of drone-assisted and robot-assisted delivery

problems, detailing various variants of the Traveling Salesman Problem (TSP)

and the Vehicle Routing Problem (VRP) involving drone/robot-assisted delivery

mechanisms.

Chapter 3 introduced the Covering Salesman Problem with Nodes and Seg-

ments using Drones (CSPNS-D), a problem integrating a single truck with multiple

drones allowing for robot launch and collection while the truck is en route. Three

Mixed Integer Linear Programming (MILP) models, considering different drone

coverage areas, were formulated to minimize delivery time in the drone-assisted

truck delivery system. The models were tested on benchmark data sets, and a

link/node removal heuristic is proposed for larger instances. The chapter also

explores insights into drone flying capabilities and geographic features of the

service area.

Chapter 4 introduces the Robot-Assisted Delivery Problem (RADP), integrating

a conventional truck, robots, and local depots into a comprehensive model where

a customer can be serviced by either the truck, a robot, or from a local depot.

Two distinct but consistent Mixed Integer Linear Programming (MILP) models,

RADP-1 and RADP-2, were developed to optimize delivery schedules, minimizing
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the total truck working time. The chapter also presents the performance of the

models on small-scale scenarios.

Chapter 5 proposes two heuristic approaches, P-Heur and K-Heur, to enhance

RADP solutions for larger instances. P-Heur is a greedy heuristic that prioritizes

operations based on the node-time ratio within the RADP-2 model, while K-Heur

decomposes the problem into sub-problems and addresses them using CPLEX.

The heuristics are discussed in detail with an illustration. The chapter also presents

the results of the heuristics on larger instances.

Chapter 6 provides an overall conclusion based on the results from the previous

chapters. It discusses the pros and cons of the work and outlines potential directions

for future research.

Appendix A proves Proposition 1, which asserts that any point P on the

boundary of the ellipse defined by the foci (E,B) lies inside the ellipse defined by

(D,B).

Appendix B proves Proposition 2, which states that the Link-Node-Link

Operation extends the coverage area of the Link-Node Operation for all α > 1.

Appendix C presents statistical comparisons of CSPNS-D’s results on bench-

mark instances.



Chapter 2

Literature Review

2.1 Introduction

This chapter discusses various literature related to the Traveling Salesman Problem

(TSP), Vehicle Routing Problem (VRP), and their respective variants that incorporate

delivery robots and drones within the delivery system. In recent years, a spectrum

of innovative concepts for last-mile deliveries has emerged. These concepts

includes alternative fuel vehicles, autonomous/self-driving vehicles, and controlled

access to car trunks. Interested readers looking for a more in-depth understanding

of these concepts can refer to [4] and [14]. Interestingly, among these innovations,

the use of autonomous vehicles such as drones and robots stands out as one of the

most popular options.

Our research aligns with existing work involving unmanned aerial drones and

autonomous robot-based delivery models. Consequently, we explore these aspects

within the literature discussion below.

6



2.2 The Drone Delivery 7

2.2 The Drone Delivery

A rich literature exists on drone-assisted delivery compared to robot-assisted

delivery. Despite their shared capability for autonomous operation, notable

differences between the two vehicles were discussed earlier in the previous

chapter.

Drone-assisted delivery can be viewed as an extension of the typical Traveling

Salesman Problem (TSP). To establish the foundation for our discussion, we first

provide a review of the TSP in Section 2.2.1. On the other hand, considering our

specific problem setting involving drones, it is worth noting that the drone can take

off at any point along the truck route to serve its customers. The area covered by

the drone’s flying range from the nodes and links of a given truck route exemplifies

the so-called Covering Salesman Problem (CSP). Therefore, in Section 2.2.2, we

delve into the CSP and explore its applications in existing works, paving the way

for the introduction of our Covering Salesman Problem with Nodes and Segments

using Drones (CSPNS-D) model.

2.2.1 Objects Assisted Traveling Salesman Problem

The Traveling Salesman Problem (TSP) stands out as one of the most well-known

challenges in combinatorial optimization. Numerous models and methodologies

have been developed to address both the traditional TSP and its extensions across

various domains. For a more comprehensive overview, please consult [15, 16].

However, our focus in this section is directed towards extended TSP models and

methodologies tailored for truck-drone delivery applications.
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In [17], objects to synchronize in VRP are categorized into various types, leading

to different solution approaches. Specifically, an object attached to a truck that

cannot operate independently falls under the category of non-autonomous vehicles.

An example of a non-autonomous VRP is the Truck and Trailer Routing Problem

(TTRP), where a customer can be served either by a truck with a combined trailer

or by the truck alone without a trailer [17]. Due to the NP-hard nature of such

problems, TTRP solutions typically rely on (meta-)heuristics such as Tabu Search

[18, 19] and Simulated Annealing [18–20]. In the context of CSPNS-D, a customer

can be served either by a truck carrying multiple drones or by a drone alone. A

crucial distinction is that a drone can serve a customer independently, whereas a

trailer cannot. Therefore, drones are considered autonomous vehicles [17].

[5] introduced the Flying Sidekick Traveling Salesman Problem (FSTSP) and

the Parallel Drone Scheduling TSP (PDSTSP). The FSTSP is applicable in situations

where the distribution center is relatively distant from customer locations, and

a single drone is synchronized to work in connection with the delivery truck.

The truck carries the drone onboard from the distribution center to customer

locations, where it can be launched to serve customer orders. However, if the

distance from the distribution center to customer locations falls within the drone’s

flight range, the PDSTSP is considered. In this case, the truck and the drone

operate independently from the distribution center to customer locations, with

no synchronization required between the two vehicles. A mixed-integer linear

formulation of the FSTSP is provided, which is then solved by a two-stage greedy

heuristic. In the first stage, a Traveling Salesman Problem (TSP) solution (Truck

only) is found, and in the second stage, this solution is improved by examining if
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some orders can be served by the drone. One remarkable feature of the FSTSP is

that the drone can take-off and land only at customer locations while the truck

is stopped. The PDSTSP is introduced in cases where a significant number of

customers are within the flight range of the drone from the distribution center.

In this scenario, these customers are served by the drone launched from the

distribution center. Due to the NP-hard nature of these problems, commercial

solvers might take several hours to solve the models, even with instances involving

only ten customers, to optimality.

[21] modified the FSTSP by allowing a single truck with multiple drones into

the multiple FSTSP (mFSTSP). Optimum solutions for only 8 nodes is obtained by

their MILP, they proposed a heuristic approach that consist solving a sequence

of three sub-problems.[22] introduced the capability for drones (when empty)

to pick up items in addition to their delivery function within the Parallel Drone

Scheduling TSP (PDSTSP). In this scenario, if a drone completes a drop, it can either

fly back to the depot for the next delivery or proceed to the next customer location

for a pick-up. The study extended the PDSTSP into the PDSTSP drop-pickup

(PDSTSP+DP), involving multiple trucks, multiple drones, and multiple depots.

The problem is modeled using a constraint programming formulation for the

PDSTSP+DP, and exact solutions were acquired for small instances.

The study conducted by [6] investigated a Drone Scheduling Problem (DSP)

wherein a single truck is equipped with multiple drones and customer shipments.

Due to the limited capacity of each drone, it can only carry a single customer

shipment. Once loaded, the drone takes off from the top of the truck, delivers

the shipment to the respective customer, and then returns to the truck. The truck
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follows a predetermined route with fixed stop points where the take-off and

landing of drones occur. In this setup, all customers are serviced by drones, and

the truck is solely used as a mobile depot for launching and collecting drones.

The authors presented two mixed-integer programming models for the problem,

aiming to minimize the total time of the delivery tour with all drones returned.

One of the models has proven successful in solving instances with up to one

hundred customers in just a few minutes of computational time. On a similar note,

[23] introduced the Travelling Salesman Problem with Drone (TSP-D), exploring

the concept of transporting drones and shipments along a given truck route while

considering the parallelization of different delivery tasks to reduce the total time

required to serve all customers. The TSP-D approach takes into account the

maximum flight distance of drones and the speed ratio between drones and trucks,

inherited by our Covering Salesman Problem with Nodes and Segments using

Drones (CSPNS-D) presented in Chapter 3. One distinction between TSP-D and

FSTSP is that the latter allows trucks and drones to travel either in tandem or

independently from the depot, while the former only permits trucks to travel in

tandem with the drones from the depot. The problem is formulated as an integer

programming model capable of solving instances with up to twelve customers

to optimality. Additionally, heuristic approaches involving greedy and exact

partitioning algorithms, along with local searches, are proposed. The numerical

results provide insights into the maximum savings that can be achieved by TSP-D

compared to traditional truck-only delivery.

To tackle problems with larger instances, [24] employed a dynamic program-

ming approach for the TSP-D. They divided the problem into three sub-problems
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and prevented sub-problems from growing by restricting the number of valid

operations, thereby optimizing overall running time. In a different approach, [25]

applied a branch-and-bound approach to the TSP-D and introduced boost heuris-

tics. Furthermore, [26] proposed various Mixed-Integer Linear Programming

(MILP) formulations for special cases of the TSP-D. Additionally, they employed

an exact branch-and-price algorithm based on a set partitioning formulation,

achieving the optimal solution for problems with up to 39 customers.

In the study conducted by [27], a multi-truck, multi-drone vehicle routing

problem with drones (VRPD) is explored. In this scenario, a drone is dispatched

from the top of a truck to transport a package to a single customer and then returns

to the top of the truck. The truck is also permitted to make deliveries to customers.

The primary objective is to minimize the total time required to complete the tour,

ensuring that all vehicles are returned to the central depot. The study derived

several worst-case results, which depend on the number of drones per truck and

the speed of the drones relative to the speed of the truck. An extension of this work

is presented by the same authors in [28]. In this subsequent work, the authors

build upon the earlier paper’s worst-case results and establish connections with

the vehicle routing problem (VRP) and Amdahl’s Law. They conclude that the

VRPD model offers more significant practical advantages compared to traditional

VRP approaches.

In the study by [29] and [30], a two-echelon vehicle routing problem with

drones (2EVRPD) is investigated, where the truck operates at the first level and

the drone at the second level. In the former, the problem involves multiple trucks,

each having limited space to carry a certain number of drones. The drones can
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make deliveries to multiple customers in one flight before returning to the truck.

The authors assumed that multiple drones are not allowed to be launched or

retrieved at the same customer node at any given time. The problem is modeled as

a mixed-integer programming formulation that minimizes the total truck arrival

time of all trucks at the depot. Exact optimal solutions for the model were obtained

for fewer than 10 nodes with the CPLEX solver, while solving larger problems

could require too much time to obtain the exact solution. In contrast, the latter

considers a problem with a single truck carrying only one drone, but the drone

can also make multiple deliveries in one flight before returning to the truck. The

truck serves a dual role as both a delivery resource and a mobile depot for the

drone. The authors proposed a two-stage route-based modeling approach that

optimizes both the main route of the truck and the drone flying routes to complete

the delivery of all parcels, considering the effect of varying payload on energy

consumption. They presented an algorithm based on Simulated Annealing (SA),

which proves to be efficient for different scales. Experimental results of sensitivity

analysis tests indicate that the employment of drones can save more costs when

there are more light parcels for delivery.

While majority of studies on drone-assisted deliveries focused on drones being

launched from a vehicle, servicing a customer and returning to the vehicle only

when the truck stops at customer locations or depots, there are few studies that

allow drones to perform en-route operations. Drone operations might start and

end along the links travelled by a truck. in a study by [31], they proposed an

extension to the VRP known as the Vehicle Routing Problem with Drones and En-

route Operations (VRPDERO). This model involves multiple trucks and multiple
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drones. Unlike traditional models where drones take off and land only at customer

locations, in VRPDERO, drones can also take off and land along the route traveled

by the truck. In cases where the drone is significantly faster than the truck, it can

perform multiple operations and return to the truck as it travels along its route

from one location to another. While each drone operation is limited to serving only

one customer, multiple operations can be executed considering the faster speeds

of drones compared to trucks. The approach for en-route operations begins with

the optimal Traveling Salesman Problem (TSP), building the routes by inserting

drone-service orders using a greedy approach. However, it’s worth noting that

adjusting the drone launching and landing nodes on the link is deemed expensive

in their proposed method.

Another work closely related to our work is the work presented in [32] which

introduces the enroute truck-drone operations that allow drones taking-off on the

truck links as well as at customer locations. This work deploys the TSP-D model

proposed by [23], and considers the application scenario with a single truck and a

single drone. The approach starts by finding the TSP solution using Lin-Kernighan

heuristic proposed by [33], then constructs the TSP-D solution considering only

nodes as possible taking-off or landing points. To further improve this solution,

taking-off and landing points are re-located to the TSP links by drawing circles

from the drone covered nodes, considering the maximum flying capability of the

drone. In summary, the enroute solution of [32] is constructed by performing

a sequence of local improvements on the optimal (or sub-optimal) TSP, while

our approach does not rely on solving the TSP, but rather constructs the optimal

truck-drone solution directly from scratch. In addition, as the taking-off and
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landing points on the links are found by drawing circles, the drone flying route

proposed by [32] has to form isosceles triangles with the truck link. Our models,

on the other hand, considers less restrictive drone operations where the lengths of

the outbound and inbound drone routes can be nonidentical. Our synchronization

requirement is also higher as [32] allows truck waiting for the drone but we do not

in all models except one.

Our approach differs from the ones mentioned above as they primarily depend

on optimizing the Traveling Salesman Problem (TSP), seeking optimal routes. In

contrast, we focus on determining the maximum coverage area of nodes and links

that a drone can service when the corresponding node or link is traversed by

the truck. This approach eliminates the need to explicitly consider where drones

should take off or land, streamlining the analysis process.

2.2.2 Covering Salesman Problem

The Covering Salesman Problem (CSP) was initially introduced by [34] as a

generalized traveling salesman problem. The objective of the CSP is to identify the

minimum-cost tour that visits a selected subset of given nodes, with the additional

constraint that every node not included in the tour must fall within a specified

covering radius of the selected tour nodes. The authors presented a mathematical

formulation for the CSP and introduced a heuristic approach inspired by both the

set covering problem and the Traveling Salesman Problem (TSP). A specific case

of the CSP is the Covering Tour Problem (CTP), as outlined in [35]. In the CTP,

the node set is divided into two distinct subsets: one set represents the nodes that

must be visited by the tour, and the other denotes the nodes that are to be covered.
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Expanding on the concept, the Generalized Covering Salesman Problem (GCSP),

introduced by [36], assumes that each node must be covered at least k times. The

GCSP defines three variations by imposing constraints on the number of times the

tour should visit each node [36]

A particularly relevant variant of the CSP for our problem is the Covering

Salesman Problem with Nodes and Segments (CSPNS), as proposed by [37]. In

this variation, the authors extended the covering concept to include areas within

the radius of both traveled nodes and edges. They formulated a mathematical

model for CSPNS and were able to find exact solutions for problems involving up

to 100 nodes. Additionally, they proposed a local search heuristic that begins with

the solution obtained from the Traveling Salesman Problem (TSP).

Another variant of the Covering Salesman Problem (CSP) that is conceptually

connected to the Covering Salesman Problem with Nodes and Segments using

Drones (CSPNS-D) is the Time Constrained Maximal Covering Salesman Problem

(TCMCSP), established by [38]. In TCMCSP, the node set is categorized into depots,

customers, and facilities. Facilities have demands from customers within their

cover distance. The primary objective of TCMCSP is to maximize the number of

covered customers within a specified time limit. The authors present mathematical

formulations and a heuristic algorithm to address TCMCSP. Furthermore, [39]

specifically focus on a special case of TCMCSP, where each facility has differently

weighted elements in the Time Constrained Maximal Covering Salesman Problem

with Weighted Demands and Partial Coverage. This particular problem aims to

find a tour that maximizes the total demands of a subset of customers within a

restricted time frame
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Our study extends the concept of CSPNS to introduce the CSPNS-D problem,

as presented in Chapter 3. It specifically examines the maximum covering

areas of various drone operations. To address this, three Mixed-Integer Linear

Programming (MILP) models are developed, each tailored to cover different

choices of drone operations.

2.3 The Robot Delivery

Similar to drones, autonomous robots have the potential to revolutionize last-

mile delivery, improving efficiency and reducing operational costs, especially in

the retail sector [40]. Despite the rapid growth in studies on last-mile delivery

involving autonomous robots, there is a limited number of articles that model and

optimize the operations of robot-based last-mile deliveries compared to drones.

The introduction of a scheduling procedure involving truck-based robot-

assisted delivery can be attributed to [8], who proposed a framework for launching

autonomous robots from a single truck to serve deliveries with time windows.

The process involves loading customer shipments and robots onto a truck from

a central store or depot and transporting them to a drop-off point in the city

center. At the drop-off point, one or more robots are loaded with shipments and

released to perform last-mile deliveries. After completing the deliveries, each

robot autonomously returns to the drop-off point. Simultaneously, the truck

proceeds to the next drop-off point to release more robots. If all the robots have

been deployed, but the truck still carries more shipments, it heads to the nearest

decentralized robot depot to pick up additional robots and launch them for the
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next set of deliveries. It is worth noting that the single truck serves solely as a

mobile distribution center for the robots and does not handle customer orders. The

authors made an assumption of a network with an unlimited number of robots

at every robot depot, which may not align with practicality since, in reality, it’s

economically unfeasible for companies to invest in a vast fleet of robots that remain

largely unused most of the time.

In their study, [41] conducted simulations to evaluate the performance of parcel

delivery models for two different scenarios. The first scenario does not involve the

use of delivery robots; instead, parcels are delivered by trucks originating from a

central hub. The delivery region is divided into patches, with each patch containing

one or more micro-depots. Customers are assigned to these micro-depots, enabling

the rerouting of parcels to the nearest micro-depot in case of delivery failures. The

second scenario explores a combination of conventional trucks and delivery robots.

This model assumes that only a small percentage of parcels (0-3%) are designated

for delivery by robots. When such packages are identified, a separate truck is

responsible for transporting them from hubs to the designated micro-depots,

where the robots take over the final delivery to customers. Each micro-depot is

serviced by a single robot. Simulation results indicate that the use of delivery

robots for time window-based deliveries does not significantly impact the total

tour length or total fuel consumption, reflecting operational costs. However, this

approach raises concerns about its economic feasibility, as dedicating an entire

truck to transport a small percentage of parcels may not be cost-effective.

Another study that adopts a similar approach of transporting robots on a

conventional truck and deploying them from the truck is presented in [42]. In
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contrast to [8], where each robot is assigned a single delivery capacity, this study

assumes that a robot can serve up to six customers. To evaluate the efficiency

of these robots in terms of total delivery time, the authors employed continuous

approximation methods. A comparative analysis was conducted, pitting this

approach against the use of a standard delivery truck. The comparison was made

with the assumption that a truck has the capacity to carry a maximum of eight

robots, and each robot can travel up to four miles to complete deliveries. The

study’s findings suggest that autonomous robots may outperform traditional

delivery vans, especially when the average delivery time per customer is high or

when customer densities increase.

In their research, [43] conducted a study that explores the location-routing

problem employing multi-compartment robots with a consideration for customer

time windows. In this scenario, the robots start and terminate their tours at

a designated robot hub and have the capability to make deliveries to multiple

customers before returning to the hub. To enhance efficiency in terms of electricity

consumption, the study assumes that the robots have the ability to swap their

batteries to mitigate delays associated with charging times. The authors formulate

the problem as a mixed-integer programming problem, which simultaneously

addresses various aspects. It determines the optimal locations of robot hubs,

defines the set of tours, and calculates the required number of robots to minimize

the total costs for one working day. These costs encompass the rental cost of the

utilized robots, the personnel cost associated with configuring the robots, and the

delivery cost for all tours.
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A novel approach, the Two-Echelon Van-Based Robot Hybrid Pickup and

Deliveries (2E-VRHPD), was introduced by [44]. In this system, vans equipped

with small robots travel along tier-1 routes, making stops at designated parking

nodes to drop off and/or pick up robots. Vans also use these stops to replenish their

robot supply and swap robot batteries. Some customers reside in areas where vans

face restrictions or are practically unable to access due to geographical constraints.

These customers are referred to as ’robot customers’ and are exclusively served

by robots. In contrast, another group of customers, known as ’van customers,’

can be served either by vans or robots. Robots navigate tier-2 routes, which are

inaccessible to vans, to cater to the needs of robot customers. This means that

robots have the ability to serve all customers, whereas vans can only serve a

subset of them due to the geographical locations of some customers. The authors

explore hybrid pickup and delivery operations, where both vans and robots load

customer goods from a depot and deliver them to the customer. Alternatively,

they can pick up goods from a customer or supplier and deliver them to another

customer or depot. The proposed problem is modeled as a mixed-integer program

that takes into account factors such as time, freight, and energy. To address

larger instances, an adaptive search algorithm is proposed as a solution. It is

important to note that 2E-VRHPD differs from our proposed Robot-Assisted

Delivery Problems (RADP) in a crucial aspect. In 2E-VRHPD, some customers (the

robot customers) are exclusively served by robots, while in RADP, there are no

customer restrictions that require exclusive robot service. Instead, local depots

with positive demand are visited by trucks, which supply goods for onward

delivery to customers by robots stored in the depot. One of the most recent
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research studies involving the integration of autonomous robots with conventional

trucks was conducted by [45]. In this study, the authors embraced the concept of

a two-tier urban delivery network, a concept initially discussed in [46]. In this

network, conventional delivery trucks operate at the first tier, while autonomous

delivery robots function at the second tier. The operational assumption is that

the trucks are responsible for transporting shipments from a central depot to

every customer hub, typically during late-night or early-morning hours, with the

intention of facilitating deliveries to customers by the robots. The study focused

on determining the optimal number of robot hubs and the necessary quantity

of robots required to effectively serve all customers. These findings were then

compared with the results obtained from truck-based deliveries. The results from

the study revealed that robot-based deliveries are not only more economical but

can also lead to substantial cost savings, potentially reducing operational costs by

up to 70%. In scenarios involving customer time windows, these savings can be

even more significant, potentially reaching up to 90%. However, it’s essential to

acknowledge that due to the trucks exclusively operating at the first tier and not

directly delivering to customers, a substantial fleet of robots is necessary in all the

robot hubs. While this approach can be cost-effective, it also raises concerns about

the initial investment required for acquiring and maintaining the robot fleet.

Existing studies involving robot-assisted delivery in the literature are basically

of two setups: The first setup is where the truck loads customer shipments from

the distribution center and transports them to local depots for onward delivery to

customers by the localized robots. In the second setup, both the robots and the

customer shipments are carried onboard the truck from the distribution center
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to customer areas. The robots are then loaded with the shipments and launched

for last-mile delivery. After delivery, the robots are picked up by the truck and

return to the central depot. Both of these setups have their advantages. For

example, using local depots could save truck capacity, be easier to manage, and

less time-consuming for the truck driver than transporting packages as well as

delivery robots. Also, transporting packages and robots using a truck allows

simultaneous servicing of customer orders by the two vehicles, which in turn

reduces the total delivery time. Considering the advantages of each of the two

setups, the best option is to merge them together in the same problem. To the

best of our knowledge, no study in the literature has merged the two scenarios

together.



Chapter 3

Covering Salesman Problem With

Nodes and Segments with Drones

(CSPNS-D)

3.1 Introduction

E-retailing is one of the fastest growing sector in recent decades. It has started

to play a vital role in more people’s daily life especially under the COVID-19

pandemic. More efficient resolution for last mile delivery, i.e. the last stretch of the

supply chain from the distribution center to the recipients preferred destination

point [47] is therefore urged by sustainable development needs. As one of the most

expensive, inefficient, and polluting parts of the supply chain, last mile accounts

for 13.75% of total supply chain cost [48]. To cope with the ever growing pressure

on last mile delivery, efforts have been put into two main directions, i.e. improving

routing efficiency through optimization and developing more sustainable home

22



3.1 Introduction 23

delivery techniques, such as using delivery/reception boxes or collection points

[49–52], or involving unmanned delivery tools such as drones or robots in the

delivery system [5, 7, 8, 23].

Unmanned drone, as a fast-moving and traffic-free delivery tool, attracts

increasing attention in the last decade as a means for home delivery after been

successfully used in military, communications and nature explorations [53–55].

Amazon prime air is one of the successful business cases. However, drones are

restricted by their coverage distance and capacity. Therefore, in past literature

they are mainly considered as supplement delivery tools that work jointly with

trucks. This is normally referred to as drone-assisted delivery [5, 21–24, 26, 56].

Majority of research on drone-assisted delivery have assumed and restricted

that drone should take off and land on customer locations while truck stops

[5, 7, 23, 56]. However, technological advancement show that drone can be

launched and land on a moving vehicle [57] [58]. These innovative contributions

evoke the need for a new operational model. This study proposes a revised

drone-assisted truck delivery system where drones can take-off and land on the

truck while it is moving, without human interactions. An optimization model

is designed to find the best truck and drone routes under this new operations

scenario.

When drones are allowed to take-off and land on moving vehicles, amendments

on traditional Traveling Salesman Problem (TSP) becomes essential. One potential

way is to add dummy nodes on the TSP links to model the taking-off and landing

points of drones, which is obviously expensive and troublesome. In this study,

instead, we derive the maximum covering area of nodes and links that can be
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serviced by a drone if the corresponding node/link is travelled by the truck so as to

avoid examining where the drones should take-off or land in details. This would

convert the whole problem into a so-called Covering Salesman Problem (CSP).

The main contributions of this chapter are:

1. Unlike existing approaches for en-route operations that start from the optimal

TSP, building the routes by inserting drone-service orders using a greedy

approach and then adjust their taking-off and landing nodes on the link, this

study proposes a novel approach right from the beginning that does not rely

on the optimal TSP, by exploring the maximum cover range of every link,

every link-node and two-links combination.

2. Three MILP models are developed out of the Covering Salesman Problem

(CSP). Considering different sets of drone operations, these three models are

compared in different application scenarios where managerial insights are

drawn. With these models, optimal solutions for problems with up to 35

orders are achievable in 2 hours.

3. A Link(Node)-removal heuristic is developed to accelerate the solution

process for larger instances, which are justified effective through numerical

experiments.

3.2 Drone Operations

In this study, we consider a combined last-mile delivery problem with a standard

delivery truck carrying a number of drones. Drones can take-off and land while

the truck is moving, which means that the drone route can start and finish on edges
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as well as nodes of the map. Let V = {1,2, ...,n} be the set of nodes, where 1 ∈ V

denotes the depot and the rest the customer locations. Our aim is to minimize the

total operational time to serve all customers, some of whom are visited by truck

and the others by drones. We assume that drone has a higher speed than truck

with a fixed ratio α (α > 1).

Considering the fact that the drone can take-off and land on edges, any points

on the truck route can be the starting and ending point of a drone operation. This

adds extra difficulty to the formulation. In this study, however, we deploy the

idea of Covering Salesman Problem (CSP) to introduce the covering range of each

node and link of the truck route, which is defined as the area that can be serviced

by drone without extra truck waiting time. Suppose all the drones are pre-settled

with the information of the customer it is meant to service before loading to the

truck, the drone can automatically take-off and land on the truck while the truck

is executing its own route without interruption. This enables the truck to move

without worrying about the drone throughout the service horizon. Therefore, our

aim converts to finding a least-time truck route, where all customer nodes are

inside the covering range of the nodes and links of the truck route.

Formulating covering areas is a key step in designing valid drone operations.

Drone operations are constructed based on two parameters, i.e., the maximum

flight distance of drone dmax and the average speed ratio of drone compared to

truck α. Since drones are battery powered, the maximum flight distance dmax is

defined as the farthest range that drone can reach without charging its battery.

Figure 3.1 shows a graphical example of a solution of CSPNS-D. The truck tour

(A,B,C,D,A) is represented as red nodes with arrow, while drone-served customers
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Figure 3.1. Illustration of solution and combined covering area of CSPNS-D

and their operations, (1), (2), (3) and (4), are depicted as black. Shaded areas; grey

and blue, indicate two types of drone covering areas. The grey shadow areas

represent combined drone coverages for the Link / Link-Node / Link-Node-Link

operations which can be performed during truck driving. As the three drone

operations do not require extra time for deliveries, the covering areas are generated

followed by within certain distances from the truck route. On the other hand, the

Node operation designed to cover further located customers requires waiting time

for the truck, which can be performed not on the entire truck route, but only on

the truck visited nodes. Drone coverage can be extended at the truck visited node

by the Node operation. see the blue shaded area in the figure.

In the following sub-sections we present the four operations together with

their covering areas in details. Then, in Section 3.3, three MILPs are formulated by

combining Link-Node-Link Operation and Node Operation with the other two

considered as basic operations (CSPNS-D-3), or combining the Link-Node-Link
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Figure 3.2. Link Operation and its covering area

Operation with the basic Operations (CSPNS-D-2) or only the basic Operations

(CSPNS-D-1).

3.2.1 Link Operation

Link Operation is defined as the drone operation which has both its taking-off

and landing nodes on an edge of the truck route. While the truck drives from one

customer to another, multiple drones can individually perform deliveries within

the hexagonal area represented in Figure 3.2.

In order to ensure synchronisation with the truck, at most half of the battery

can be consumed to reach a customer, while the other half should be kept to come

back to the truck. Therefore the drone routes in Link Operation form isosceles

triangles together with the truck route. Figure 3.2 shows the formula for the

maximum perpendicular distance r that a drone can cover from the truck driving

route, calculated from dmax and α. Customer locations closer than dmax
2α

√

α2−1 from
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the truck route, excluding the first and the last dmax
2α length towards the ends, can

be served by Link Operation without incurring extra waiting time of the truck.

3.2.2 Link-Node Operation

The Link-Node Operation is designed to fill in the gap areas which are hardly

covered by Link Operations near the truck visited nodes. This operation works in

node and link pairs, where a drone takes-off at a node (link) and lands on a link

(node). Remember that the maximum flying distance of a drone is defined as dmax.

In this operation we need to choose the departure/landing point on the link to

ensure that the total flying distance of a drone service is not violating this limit.

Figure 3.3. Link-Node Operation and its covering area

As shown in Figure 3.3, we consider truck route (A,B). Let P be a customer node

on the boundary of the covering range of the Link-Node Operation around node

B. Let D be the drone taking-off point on link (A,B), we must have DP+PB ≤ dmax.

Suppose we consider points D and B as two foci, it is not hard to see that the

boundary point P form an ellipse (the shaded area in Figure 3.3). Any points

within this area can be serviced at no extra waiting time by Link-Node Operation,
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with a taking-off (landing) point on the link that is (DP+PB)/α away from the end

nodes of the link.

Proposition 1: The largest coverage area of the Link-Node Operation around

node B is achieved by an ellipse with foci at B and D where BD = dmax/α.

Proof: To begin, any foci D that satisfies BD > dmax/α violates the drone’s

maximum flying distance. Secondly, for foci D closer to B, the drone’s flying

distance is reduced toαBD< dmax for synchronization with the truck. This reduction

also diminishes the coverage of the ellipse. For a more detailed proof of the second

point, please refer to Appendix A.

Like the Link Operation, the services inside the Link-Node Operation covering

area do not require any extra time in addition to truck driving time. It follows that

our objective is to minimize the driving times of truck. However, the extended area

of the Link-Node Operation is relatively small and is highly depending on the value

of α. To enlarge the covering area further, we also propose the Link-Node-Link

Operation in next sub-section.

3.2.3 Link-Node-Link Operation

In addition to the single-link operations, drones can also launch and land on

different truck edges. In this subsection, we consider drone operations ranging

through two edges that are connected to the same node. In this case the angle

between the two edges matters.

Let us consider the example shown in Figure 3.4. Let AB,BC be the two links

under consideration which connect at customer node B, and θ (0 ≤ θ ≤ π) be the

(non-reflex) angle between them. Our aim here is to identify the maximum cover
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range of all feasible drone operations that have one of the launch and land point

on link AB and the other on link BC or vice versa. Let P be a customer node on the

boundary of the drone cover range, D and E be the taking-off and landing points

on each link, we must have DP+PE = dmax and DB+BE = 1
α(DP+PE) = dmax

α . To

obtain the maximum cover range we must have DB = BE, as otherwise the cover

range will lean to one side of the link and overlap with the cover range of (single)

Link Operation.

As discussed before, D and E can be seen as the foci of the ellipse that defines

the cover range, with the length of the semi-major axis equal to dmax/2, distance

between two foci equal to dmax
α sin(θ2 ). The cover range is then defined as the shaded

area in Figure 3.4

A

D E

B

P'

C

P

Drone visited customer

Truck visited customer

Truck route

Drone route

Coverage area

Figure 3.4. Link-Node-Link Operation and its covering area

Proposition 2: The Link-Node-Link Operation extends the coverage area of

Link-Node Operation for all α > 1. For formal proof please refer to Appendix B.
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3.2.4 Node Operation

In this section we propose the Node Operation, which allows the truck to wait at

the customer node while the drone set off to perform its own task. Unlike all the

other operations proposed in this work, the Node Operation does incur waiting

time of the truck. The reason we suggest the Node Operation at extra cost (waiting

time) lies in the fact that, this operation enlarges the drone covering area and

larger covering area at each node can potentially reduce the number of nodes the

truck need to visit, which may ultimately reduce total operational time. This is

justified by the superiority of CSPNS-D-3 (which allows Node Operation) over the

other two models (which don’t). Please refer to Section 3.4 for detailed numerical

experiments and results.

Figure 3.5. Node Operation and its covering area

The covering area of the Node Operation forms a circle with radius dmax
2 to

guarantee returning of drones. Note that the waiting time should only incur when
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a customer node falls into the grey area of Figure 3.5, as otherwise the node can be

covered by other means without extra cost.

3.3 Mathematical Formulation of CSPNS-D Models

In this section, we formulate three mixed integer linear programming models for the

CSPNS-D by allowing and disabling the Link-Node-Link and Node Operations at

extra costs (waiting time) as discussed in Section 3.2.4. The CSPNS-D-1 minimizes

the truck travelling time of servicing all customers with Link Operation and Link-

Node Operation; CSPNS-D-2 does it with Link Operation, Link-Node Operation

and Link-Node-Link Operation; CSPNS-D-3, on the other hand, minimize the

on-duty time of the truck (including both driving and waiting time) of servicing all

customers with Link Operation, Link-Node Operation, Link-Node-Link Operation

and Node Operation.

3.3.1 Assumptions

• Multiple drones are carried by the truck and they can take-off and land on

the moving truck independently, automatically and instantly.

• The velocities of drones and truck are constant. i.e., the truck is travelling on

traffic-free roads and drones’ flying speed are not influenced by the weight

of parcel they are carrying or other factors such as wind speed.

• Roads can be well approximated by straight line.

• Drone starts with fully charged battery, i.e., dmax is a given constant.
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• All parcels can be delivered by drones. Multiple demands of parcels for one

customer can be serviced by several drones.

• The service times for the hand-over of parcels are negligible as assumed by

[31].

• There’s no limit on the number of drones that can be carried by the truck.

3.3.2 Notations

Sets and indices

V = {1,2, ...,n} Set of nodes, 1 denotes the depot and the rest the customer nodes.
i, j,h,k, l ∈ V \ {1} Index of customer nodes.

Parameters

di j, i, j ∈ V Euclidean distance between i and j.

ai jk, i, j,k ∈ V Binary parameter; equals to one if and only if customer i can be covered

by Link Operation or Link-Node Operation of link ( j,k).

bik jl, i,k, j, l ∈ V Binary parameter; equals to one if and only if customer i can be covered

by Link-Node-Link Operation of links (k, j) and ( j, l).

ci j, i, j ∈ V Binary parameter; equals to one if and only if di j ≤
dmax

2 , i.e., customer i

can be covered by Node Operation from j.
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Decision variables

xi j, i , j ∈ V Binary variable; equals to one if and only if link (i, j) is travelled by
truck.

yi, i ∈ V Binary variable; equals to one if and only if customer i is serviced by
truck.

ui j, i , j ∈ V Non-negative continuous variable; single commodity flow variable for
sub-tour elimination constraints.

δkjl, j , k , l ∈ V Binary variable (CSPNS-D-2 and CSPNS-D-3 only); equal to one, if and
only if both links (k, j) and ( j, l) are travelled by truck.

ηih, i , h ∈ V Binary variable (CSPNS-D-3 only); equal to one, if and only if customer
i is covered by the Node Operation from node h.

vh,h ∈ V Non-negative continuous variable (CSPNS-D-3 only); the longest wait-
ing time at node h if any Node Operations are initiated at this node.

3.3.3 The CSPNS-D Models

Three models are developed in this work to capture different operations settings.

CSPNS-D-1 Only Link Operation and Link-Node Operation are considered. This

is a standard Covering Salesman Problem with Node and Segments (CSPNS) on

drone assisted delivery application.

CSPNS-D-2 Link-Node-Link Operation is considered together with Link Opera-

tion and Link-Node Operation. This is an extension of the CSPNS by adding cover

range of combined links.

CSPNS-D-3 Node Operation (at extra waiting time) is considered together with

Link Operation, Link-Node Operation and Link-Node-Link Operation. This is an

extension of the CSPNS by adding cover range of combined links and allowing

enlarged cover range at extra costs.
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3.3.3.1 CSPNS-D-1

When we allow the Link Operation and the Link-Node Operation as defined in

Section 3.2.1 and 3.2.2 respectively. This is a standard Covering Salesman Problem

with Nodes and Segment.

min
∑
i∈V

∑
j∈V\{i}

di jxi j (3.1)

Subject to :

y1 = 1, (3.2)∑
h∈V\{i}

xhi = yi, ∀i ∈ V (3.3)

∑
j∈V\{i}

xi j = yi, ∀i ∈ V (3.4)

∑
j∈V

∑
k∈V\{ j}

ai jkx jk ≥ 1, ∀i ∈ V (3.5)

∑
j∈V\{i}

ui j−
∑

h∈V\{i}

uhi = yi, ∀i ∈ V \ {1} (3.6)

ui j ≤ (n−1)xi j, ∀i ∈ V,∀ j ∈ V \ {i} (3.7)∑
j∈V\{1}

u1 j = 0, (3.8)

∑
h∈V\{1}

uh1 =
∑
k∈V

yk−1, (3.9)

ui j ≥ 0, ∀i ∈ V,∀ j ∈ V \ {i} (3.10)

yi ∈ {0,1}, ∀i ∈ V (3.11)

xi j ∈ {0,1}, ∀i ∈ V,∀ j ∈ V \ {i} (3.12)
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Equation (3.1) is the objective function which minimizes the total truck driving

time, as the the Link Operation and Link-Node Operation do not interrupt truck

driving. Constraint (3.2) ensures that the truck route starts from the depot. Con-

straints (3.3) and (3.4) are the network flow constraints, where if node i is visited

by the truck there must be exactly two links connected to it. Constraint (3.5)

ensures that every node i is covered by the truck route with either Link Operation

or Link-Node Operation. Constraints (3.6, 3.7, 3.8, 3.9 and 3.10) are sub-tour

elimination constraints revised from Gavish and Graves [59] (single commodity

flow formulation). Finally, constraints (3.11) and (3.12) define the variables as

binary value. Continuous variable ui j represents the amount of flow from node i

to node j.

3.3.3.2 CSPNS-D-2

When we allow the Link-Node-Link Operation as defined in Section 3.2.3, cus-

tomers located in the ellipse around a truck visited node can be serviced without

additional waiting time. To enable this operation, additional decision variables.

i.e., δkjl, j , k , l ∈ V, are introduced to indicate the availability of Link-Node-Link

Operation.



3.3 Mathematical Formulation of CSPNS-D Models 37

min
∑
i∈V

∑
j∈V\{i}

di jxi j (3.13)

Subject to :

(3.2)− (3.4) and (3.6)− (3.12), (3.14)∑
j∈V

∑
k∈V\{ j}

ai jkx jk+
∑
j∈V

∑
k∈V\{ j}

∑
l∈V\{ j,k}

bik jlδkjl ≥ 1, ∀i ∈ V (3.15)

δkjl ≤ xkj, ∀ j , k , l ∈ V (3.16)

δkjl ≤ x jl, ∀ j , k , l ∈ V (3.17)

δkjl ∈ {0,1}, ∀ j , k , l ∈ V (3.18)

CSPNS-D-2 holds most constraints of CSPNS-D-1 except constraint (3.5),

which is replaced by constraint (3.15) as here we allow Link-Node-Link Operation

as well as others to service each node. Constraints (3.16) and (3.17) ensure that a

Link-Node-Link Operation can be performed only when both links involved in

the operation are travelled by the truck. Constraints (3.18) set the domain for the

new decision variable.

3.3.3.3 CSPNS-D-3

When we allow the Node Operation as defined in Section 3.2.4, customers located in

the circle around a truck visited node can be serviced with additional truck waiting

time. To enable this operation, additional decision variables. i.e., ηih, i , h ∈ V and
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vh,h ∈ V are introduced to indicate the Node Operation and to calculate the extra

waiting time of the truck.

min
∑
i∈V

∑
j∈V\{i}

di jxi j +
∑
h∈V

vh (3.19)

Subject to:

(3.2)− (3.4) and (3.6)− (3.12) and (3.16)− (3.18) (3.20)∑
j∈V

∑
k∈V\{ j}

ai jkx jk+
∑
j∈V

∑
k∈V\{ j}

∑
l∈V\{ j,k}

bik jlδkjl+
∑
h∈V

ηih ≥ 1, ∀i ∈ V (3.21)

ηih ≤ cihyh, ∀i,h ∈ V (3.22)

vh ≥
2dih

α
ηih, ∀i,h ∈ V \ {1} (3.23)

vh ≥ 0, ∀h ∈ V (3.24)

ηih ∈ {0,1}, ∀i ∈ V,∀h ∈ V \ {i} (3.25)

CSPNS-D-3 holds most constraints of CSPNS-D-2 except constraint (3.15),

which is replaced by constraint (3.21) as here we allow Node Operation as well

as others to service each node. Constraint (3.22) ensures that node i can only be

covered by node h if it is in the cover range of node h and node h is visited by truck.

Constraint (3.23) calculates the maximum waiting time at node h suppose some

Node Operations from node h are performed. Constraints (3.24) and (3.25) set the

domain for the new decision variables.
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3.4 Numerical Results

This section presents the numerical results of the CSPNS-D and their corresponding

TSP solutions. The models are coded in MATLAB R2020a and solved by CPLEX

12.10.0 on a CPU with an Intel(R)Core(TM)i5-7300U processor.

3.4.1 TSP and CSPNS-D Results on Random Instances

We conducted numerical experiments on a set of 10 randomly generated instances

of varying sizes, up to a maximum of 40 orders. The drone covering distance

was consistently set to 30 km across all instances, aligning with the current flying

capability of drones in use [60]. The drone speed was selected as 60 km/h, while

the truck speed was set at 40 km/h. For each instance, we determined the optimal

solution of CSPNS-D models and compared them with the optimal TSP routes.

The results are summarized in Table 3.1

It can be seen that CSPNS-D models significantly improve delivery efficiency

in all test examples. Operated jointly with drones, truck travelling times reduces

by 17%, 20.11% and 20.24% (experiment 40 not included because of large gaps

for CSPNS-D-2 and CSPNS-D-3) with CSPNS-D-1, CSPNS-D-2 and CSPNS-D-

3 respectively. Except for 40 orders, CSPNSD-3 always performs better than

CSPNSD-2, which is better or the same as CSPNSD-1. This is in line with our

expectation as we consider more and more operation types in the model design.

Due to larger search space of CSPNSD-3 and CSPNSD-2 on 40 orders, worse

solutions are found with these models compared to CSPND-1 within the limited

computational time allowed (7200 seconds).
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Optimality gaps are reported in the last three columns for all CSPNS-D models.

CPLEX, like many other solvers, calculates these gaps to assess the quality of the

solutions it produces. The gaps measure how far the current best solution is from

the optimal solution and are defined as:

| f̂ − f |

| f |+10−10
(3.26)

Where:

• f̂ is the objective value of the incumbent (best known feasible solution).

• f is the best known bound for the objective function.

CPLEX converts it to a percentage in the node log. By monitoring the optimality

gap, users can understand how close the solver is to finding the optimal solution.

A small gap indicates that the current solution is likely close to optimal, while a

larger gap suggests that the solver may need more time to improve the solution

further. For optimum solutions, gaps of 0.00% are reported, indicating that the

incumbent solution and the best bound are the same. A gap of 2.48% for the

CSPNS-D-2 solution for 30 orders in Table 3.1 indicates that the best bound is 2.48%

smaller than the incumbent solution (247.64 sec). The gaps are high for the 40

orders example, i.e., 50.57% for CSPNS-D-2 and 59.27% for CSPNS-D-3, indicating

that CPLEX needs more time to further improve these solutions. For this reason,

heuristic acceleration approaches are presented in Chapter 5 to make larger size

instances more tractable.

In more details, two sets of sample solutions are presented graphically in

Figures 3.6 & 3.7. Figure 3.6 is for instance with 15 orders, where sub-figures (a),
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(b), (c) and (d) are for CSPNS-D-1, CSPNS-D-2,CSPNS-D-3 and TSP respectively.

In CSPNS-D-1, 5 out of 15 orders are serviced by the truck; in CSPNS-D-2 and

Truck Route
Drone Route by Link/Link-Node Operation
Drone Route by L-N-L Operation
Drone Route by Node Operation

(a) CSPNS-D-1 (b) CSPNS-D-2

(c) CSPNS-D-3 (d) TSP

Figure 3.6. CPLEX solution of CSPNS-Ds and TSP with 15 Random orders

CSPNS-D-3, this number increases to 7 and 6, respectively. The savings over TSP

are 12.52%, 15.16%, and 16.32% for CSPNS-D-1, CSPNS-D-2, and CSPNS-D-3,

as shown in Table 3.1. As depicted in Figure 3.6b, when considering the Link-

Node-Link operation alongside the Link Operation and Link-Node Operation,

node 10 can be covered by a Link-Node-Link Operation from links (1,2) and (2,15).
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Consequently, the truck route to node 3 and then to node 14 (although it appears

in Figure 3.6a as if node 3 is serviced by the truck with a return trip from node

14, the actual route is (2,3), (3,14), and (4,13))—the most inefficient segment of the

CSPNS-D-1 route can be reshaped, saving the total travel time by approximately

3%. Figure 3.6c illustrates the truck route of CSPNS-D-3, where node operations

are allowed with extra waiting time. Under this setting, node 3 can now be covered

by a node operation from node 7, saving the time it takes for the truck to travel

from node 7 to 3 and then to node 12. Although the truck’s waiting time at node 7

must be considered, it is shorter than the truck’s driving time, as the drone travels

at a higher speed. This further reduces the total service time by 1.16%.
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Truck Route
Drone Route by Link/Link-Node Operation
Drone Route by L-N-L Operation
Drone Route by Node Operation

(a) CSPNS-D-1 (b) CSPNS-D-2

(c) CSPNS-D-3 (d) TSP

Figure 3.7. CPLEX solution of CSPNS-Ds and TSP with 35 Random orders

In Figure 3.7, a similar example is presented, associated with the instance con-

taining 35 orders. Both CSPNS-D-2 and CSPNS-D-3 demonstrate more significant

improvements over the TSP solution (by 30%) compared to CSPNS-D-1 (by 23%).

It is worth noting that in this specific case, CSPNS-D-2 and CSPNS-D-3 yield

identical solutions. This occurs because all nodes that can potentially be covered

by Node Operation (e.g., node 7 from node 4 and node 18 from node 21) can also

be covered by Link-Node-Link Operation with the given route. Given that no
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extra waiting time is incurred by Link-Node-Link Operation, the model selects

it over Node Operation. Another noteworthy point is the visiting sequence of

nodes. For instance, in the CSPNS-D-1 route, if all routes displayed are traveled

anti-clockwise, node 29 is visited later in the route. In contrast, in CSPNS-D-2

and CSPNS-D-3 routes, it is visited right at the beginning. Traditionally, drone

delivery heuristics construct drone routes based on optimal TSP and follow the

initial visiting sequence of nodes suggested by the optimal TSP. However, this

observation highlights the possibility of missing better decisions using this type

of heuristic. Instead, our model does not rely on TSP solutions but employs

optimization models to find real optimal drone and truck routes simultaneously.

3.4.2 Numerical Results on Benchmark Instances

In this section, we test the performance our CSPNS-D models on benchmark

instances obtained from [61]. We consider two groups of test with 10 and 20

orders, each consisting of 30 instances. As stated in the benchmark data, customers

locations follow uniform, single center and double centre distributions. Following

the work of [32], maps for 10 and 20 customers are re-scaled by 15% and 30%,

respectively, to make it compatible for drone delivery tests. We consider the use of

multiple drones, with drone covering distance 30km, truck speed of 40kmh and

drone speed 60kmh throughout the experiment. Summary of results are presented

in Table 3.2. For detailed results for every instance please refer to Appendix C.

Table 3.2: Summary of Obtained Results for Benchmark instances

ST/SD, km/h No. of Orders Average savings (%) Standard Deviation
CSPNS-D-1 CSPNS-D-2 CSPNS-D-3 CSPNS-D-1 CSPNS-D-2 CSPNS-D-3

40/60 10 21.55 51.55 52.61 31.55 35.56 33.95
40/60 20 24.26 33.30 33.63 63.45 68.00 67.38
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For 10 orders, CSPNS-D-3 obtains better solutions in 5 out of 30 benchmark

instances than CSPNS-D-2 and CSPNS-D-1. In the remaining 25 instances, CSPNS-

D-3 gives the same solution as CSPNS-D-2, which are better than CSPNS-D-1.

Average savings over TSP for CSPNS-D-1, CSPNS-D-2 and CSPNS-D-3 are 21.55%,

51.55% and 52.61% respectively. For 20 orders, CSPNS-D-3 performs better than

both CSPNS-D-2 and CSPNS-D-1 on 3 out of 30 instances, while they are the

same with CSPNS-D-2 on the remaining 27 instances, same with CSPNS-D-1 on 1

instance, but better on 26 instances. Average savings over TSP are 24.26%, 33.30%

and 33.63% for CSPNS-D-1, CSPNS-D-2 and CSPNS-D-3 respectively. Comparing

with [32] who reported 10.5% and 10.6% savings on TSP with their Greedy and

Enroute heuristics respectively, our models’ savings is obviously higher. However,

we consider the usage of multiple drones while they used only one. On a related

note, their heuristic approach for en-route operations is not easily extendable to

cover multiple drone cases. The results presented here highlight the significance

of CSPNS-D-3 and CSPNS-D-2 in applications, particularly if they can be solved

more efficiently for larger instances. In the next section, we will explore potential

approaches to expedite the solution process for all CSPNS-D models.

3.4.3 Link Removal Heuristic for Larger Instances

In this section, we explore a potential approach to expedite CSPNS-D solutions,

aiming to solve larger instances within a reasonable time frame. The approach is

based on removing links that are highly unlikely to be chosen as part of the truck

route, thereby minimizing the number of possible choices for branching in the

MILP solution process. If successfully implemented, this link-removal strategy
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should effectively reduce computational time without significantly compromising

solution quality.

Examining numerous optimal solutions and their routing structures, the

following criteria have been identified for link removal:

1. Any link that is shorter than half the drone covering distance (dmax
2 ) is

removed as in most cases the relevant nodes can be covered by, at least, Node

Operation.

2. Any link that is longer than twice the average distance between orders is

removed provided that its removal does not affect the connectivity of the

network considering the aim of cost/time minimization.

3. Any link covering very few nodes, say less than or equal to 2, is removed as

to improve efficiency we should select links that covers as many nodes as

possible.

4. If a node is located in the middle of some other nodes, the node will not

be serviced by a Node Operation (CSPNS-D-3 only), so we remove the

associated variables like η and v for this node.

3.4.3.1 Performance of the Link Removal Heuristic

To assess the performance of the heuristic, we employed benchmark instances

comprising 20 orders, with results summarized in Table 3.3. The optimal (MILP)

solutions for CSPNS-D-1, CSPNS-D-2, and CSPNS-D-3 are presented in columns

2, 3, and 4 respectively, while their heuristic solutions are displayed in columns

5, 6, and 7 correspondingly. The gaps, which measure the disparity between the
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heuristic and MILP solutions, are depicted in columns 8, 9, and 10 for CSPNS-

D-1, CSPNS-D-2, and CSPNS-D-3 respectively. Unlike the sub-optimality gaps

presented in Table 3.1, which were obtained from the CPLEX solver, these gaps are

calculated manually using the formula:

(θLR−θOpt)

θOpt
∗100 (3.27)

Where:

• θOpt is the objective value of the optimum (MILP) solution.

• θLR is the objective value of the Link-Removal Heuristic.

Table 3.3: Link-Removal Heuristic Solution on Benchmark Instances of Small sizes

Instance
MILP Solution (sec.) Link-Removal Solution (sec.) Opt. Gap (%) Btw MILP and Heuristic

CSPND-1 CSPND-2 CSPND-3 CSPND-1 CSPND-2 CSPND-3 CSPND-1 CSPND-2 CSPND-3

1 66.06 44.74 44.74 66.06 66.06 63.57 0.00 47.65 42.09
2 76.48 57.12 57.12 76.48 73.25 73.25 0.00 28.24 28.24
3 69.93 64.36 64.36 69.93 69.93 69.93 0.00 8.65 8.65
4 71.22 60.24 60.24 96.85 66.17 66.17 35.99 9.84 9.84
5 81.54 62.11 62.11 81.54 81.54 70.29 0.00 31.28 13.17
6 69.23 69.23 69.23 89.96 89.96 89.96 29.94 29.94 29.94
7 79.6 68.97 68.97 81.14 77.24 77.24 1.93 11.99 11.99
8 82.54 59.4 59.4 82.82 82.54 82.54 0.34 38.96 38.96
9 68.76 51.47 51.47 68.76 68.76 60.96 0.00 33.59 18.44

10 83.58 65.79 65.79 86.82 83.58 83.58 3.88 27.04 27.04
11 132.13 124.73 124.73 135.64 130.71 132.13 2.66 4.79 5.93
12 129.27 98.4 98.4 129.83 129.27 114.3 0.43 31.37 16.16
13 167.71 164.31 164.31 199.26 180.65 177.68 18.81 9.94 8.14
14 152.17 150.11 150.11 190.68 152.17 152.17 25.31 1.37 1.37
15 152.95 136.51 130.36 189.32 153.01 149.49 23.78 12.09 9.51
16 108.65 92.38 92.38 128.23 109.57 109.57 18.02 18.61 18.61
17 135.51 118.5 118.5 145.22 136.46 135.73 7.17 15.16 14.54
18 144.17 126.24 126.24 150.32 145.96 143.28 4.27 15.62 13.50
19 177.83 177.57 177.57 247.47 182.31 177.83 39.16 2.67 0.15
20 115.4 91.19 91.19 148.32 115.4 107.35 28.53 26.55 17.72

The outcomes indicate that the heuristic is capable of achieving optimal or near-

optimal solutions, particularly for the CSPNS-D-1 model. However, near-optimal

or occasionally inferior solutions are obtained for CSPNS-D-2 and CSPNS-D-3,

especially in cases where the optimal solution involves drones being launched and

retrieved on two different links (Link-Node-Link).
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Table 3.4 provides CSPNS-D solutions on benchmark instances with 50 orders.

Recall that in Table 3.1 the optimal solutions of CSPNS-D-2 and CSPNS-D-3 cannot

be achieved for 40 orders within 2 hours. For 50 orders, CPLEX can not even

complete the pre-processing stage, so a feasible solution is not achievable at all

for CSPNS-D-2 and CSPNS-D-3 within 2 hrs time limit. This is why no values are

shown in Table 3.4 for these two models. CSPNS-D-1 can produce feasible solutions

in all cases. Performing the link-removal steps beforehand, as described above,

reduces the number of links (nodes) effectively which makes feasible solutions

achievable within the time limit, as shown by the XX_LRM in Table 3.4. The

symbol "*" in the table indicates that a feasible solution was not found within the

2-hour time limit. The optimality gaps are calculated by the CPLEX solver using

the formula in equation 3.26. A symbol "-" for optimality gaps of CSPNS-D-2 and

CSPNS-D-3 indicates that optimality gap could not be reported by the CPLEX

solver, as no feasible solution was obtained within the 2-hour time limit for these

two models.

Examining Table 3.4, it is evident that the link-removal steps significantly

reduce solution times without substantially affecting solution quality. In five

out of ten instances, CSPNS-D-3 with link removal produces better solutions

compared to CSPNS-D-1 without link removal. In instances where sub-optimality

gaps are observed with CSPNS-D-1 (e.g., instances D3 and D4), CSPNS-D-3

with link removal slightly improves the CSPNS-D-1 solution within the same

computational time. Upon closer inspection, CSPNS-D-1 with link removal

appears more promising in terms of computational efficiency. Although slightly

worse solutions (or comparable) are obtained by CSPNS-D-1 after link removal,
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computation time is dramatically reduced. Therefore, we recommend deploying

the CSPNS-D-1 with the link removal heuristic for large-scale implementations.

3.4.4 Drone Covering Range

The drone covering distance and the average distance between orders can sig-

nificantly influence drone usage in making deliveries. When the drone covering

distance is large, and the average distance between orders is relatively small,

more orders can be serviced by the drone, thereby reducing the total service

time. Currently, drones in use have a maximum flying distance of 36 km with

a fully charged battery [60]. However, due to technological advancements, we

can expect next-generation drones with higher flying capabilities. In this section,

we simulate scenarios with different order densities and drone covering ranges

to draw insights from the numerical results that can potentially guide the future

design and development of drones for home delivery.

In this section, we consider instances with 20 orders, varying the drone covering

distance from 10 km to 300 km, across three average order distance levels: 50

km, 100 km, and 150 km. Results are presented in Table 3.5 and Figure 3.8. It is

evident that delivery time is influenced by both the average distance between

orders and the drone covering distance. Figure 3.8 illustrates that as the drone

covering distance (dmax) increases, the delivery time by CSPNS-D-1, CSPNS-D-2,

and CSPNS-D-3 decreases until it reaches a threshold on the value of dmax. After

that point, the delivery time remains the same for higher dmax values. However, the

threshold value occurs earlier for CSPNS-D-1 than for CSPNS-D-2 and CSPNS-D-3,

indicating a higher impact of increased dmax on the Link-Node-Link Operation and
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the Node-Operation. Additionally, it can be observed that CSPNS-D-2 performs

as well as CSPNS-D-3 in nearly all instances, suggesting that excluding Node

Operation won’t lead to a cost increase in most cases.
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Figure 3.8. Relationship between delivery time and drone covering distance

In terms of suggestions on ideal drone covering range for home delivery

services, we can see from Figure 3.8 that the delivery time decreases with a sharper
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slope until drone covering distance is broadly the same as the average distance

between orders. After this point, increasing the drone covering distance will lead

to relatively marginal savings.

3.5 Summary

This chapter introduces the Covering Salesman Problem with Nodes and Segments

Using Drones (CSPNS-D), a problem integrating a single truck with multiple

drones to efficiently service customer orders. The approach involves determining

the maximum coverage area of nodes or links serviced by the drones as the

truck traverses the corresponding node or link. Three distinct Mixed Integer

Linear Programming (MILP) models—CSPNS-D-1, CSPNS-D-2, and CSPNS-D-

3—are proposed, each considering different drone operations. CSPNS-D-1 seeks

to minimize the truck’s travel time while servicing all customers, considering

Link and Link-Node operations. CSPNS-D-2 minimizes the truck’s travel time,

accounting for Link, Link-Node, and Link-Node-Link operations. Meanwhile,

CSPNS-D-3 aims to minimize the total on-duty time of the truck, encompassing

both driving and waiting time, while servicing all customers. Drone operations

considered in CSPNS-D-3 include Link, Link-Node, Link-Node-Link, and Node

operations. These models provide decision-making capabilities regarding which

orders can be serviced by the truck and drones, as well as the optimal sequence for

service. Experimental testing using both random and benchmark data sets from

[61] demonstrates the efficiency of the models, with all three capable of solving

problems with up to 20 orders efficiently to optimality using CPLEX. Results
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indicate that the average savings over the Traveling Salesman Problem (TSP)

for our models, particularly on benchmark instances of size 10 and 20, surpass

those achieved by [32]. However, our models consider the use of multiple drones,

while the reference utilizes only one drone. Further investigations reveal a sharp

decrease in delivery time as drone flying capabilities increase, emphasizing the

importance of determining the optimal covering distance for drones in areas with

varying order density.

To deal with problems with larger instances, a simple approach based on

removing links that are less likely to be chosen as part of the optimal solution

is proposed, so as to reduce the possible number of choices for branching in

the solution process. The approach works effectively in reducing computational

time without affecting the solution quality significantly. We tested the proposed

approach on ten benchmark instances with size 50. In all the cases, CSPNS-D-1

is solved efficiently exploring the entire B&B tree. The search process cannot be

completed for CSPNS-D-2 and CSPNS-D-3 within 2 hours, however, there is a

significant improvement when compared to solutions without removing links.

Better solutions can be achieved faster especially on larger instances.



Chapter 4

The Robot-Assisted Delivery

Problems (RADP)

4.1 Introduction

While Automated Delivery Robots (ADRs) are relatively new in academic research,

they have captured the attention of researchers and logistics companies due to their

promising practical applications. ADRs have become a focal point of discussion

in the realms of innovation and freight distribution [62]. The integration of

autonomous delivery robots for freight distribution is particularly noteworthy in

light of the challenges posed by traffic congestion in city centers, often resulting in

high delivery costs and delays. ADRs strategically navigate pedestrian routes to

bypass traffic issues, effectively minimizing delivery times. Forecasts for the ADR

market suggest significant growth, with expectations of reaching US$55 billion

by 2026 and a robust annual growth rate of 20.4% [40]. This underscores the

increasing importance and potential impact of ADRs in addressing contemporary

57
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challenges in the logistics and delivery sectors. Companies such as Starship

Technologies [63] and JD.Com [64], among others, have implemented the usage

of autonomous robots for small parcel delivery on campuses and in residential

areas in the United States and Beijing, respectively. Most robots operate on electric

power and encounter limitations in travel distance due to their constrained battery

capacity. Additionally, their travel speed is relatively slow, with a maximum of 4

mph, making them less efficient for addressing long-distance delivery challenges

[65] . In response to this limitation, researchers have introduced the concept of

the mother-ship model which is applied in our study. This innovative approach

involves transporting robots using trucks to suitable customer areas, optimizing

their usage, and overcoming the constraint of limited travel distance. Despite

robots having a slower travel speed than drones, they present a more practical

solution, especially in environments characterized by numerous stopping points

within relatively short distances. The storage configuration of robots allows for

multiple compartments, enabling a single trip to serve at least one customer at

a time. Furthermore, it is argued that one of the major challenges associated

with drone deliveries revolves around safety and security concerns. Government

regulations impose restrictions on the commercial use of drones, and adverse

weather conditions can impact drone operations [66]. In contrast, slow-moving

parcel delivery robots offer easier management and control, minimizing the risk of

devastating damage [67][68].

Both trucks and robots come with their respective limitations and advantages,

as outlined in Table 1.1. However, leveraging these two entities in conjunction

can yield several advantages, thanks to their complementarity. The combination
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of trucks and robots allows for a more comprehensive and synergistic approach,

mitigating the individual shortcomings of each and enhancing overall operational

efficiency.

In this chapter, we introduce a framework called the "Robot-Assisted Delivery

Problem (RADP)." This problem encompasses the integration of a truck, an

autonomous robot (transported on the truck), and local depots into a unified

model. This integration implies that customer orders can be fulfilled either by the

truck directly, a robot deployed from the truck, or by a local depot. The operational

process involves the truck departing from the distribution center and travelling

to customer and/or depot locations to fulfill orders. The truck is equipped with

a specific quantity of robots, which can be launched at either customer locations

or local depot nodes to meet customer demands. To enable the simultaneous

fulfillment of orders by both vehicles, the robots are collected at a distinct location

from the drop-off point. Furthermore, the local depot is equipped with facilities

such as localized robots, responsible for serving customers within the depot’s

coverage area.

We have developed two distinct yet consistent models to address the Robot-

Assisted Delivery Problem (RADP): RADP-1 and RADP-2. In RADP-1, our

modeling approach involves the exclusive consideration of each node and arc

within the system. Conversely, RADP-2 adopts an operational concept, where each

operation is a combination of both arcs and nodes. This fundamental difference in

modeling approaches distinguishes the two variants. To provide a comprehensive

understanding of their effectiveness, we proceed to compare the performance of

RADP-1 and RADP-2. This comparative analysis will shed light on the strengths
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and limitations of each model, facilitating a nuanced evaluation of their respective

contributions to addressing the Robot-Assisted Delivery Problem.

4.1.1 Problem Description

Suppose we have a set of trucks K , a set of robots R, and a set of local depots

ND to serve a set of customers NC. A truck starts from the distribution center,

which is loaded with robots and customers orders, and returns to the distribution

center after completing its tour. Although there is only one physical distribution

center, we assign it two unique node numbers for notation purposes. Thus, the

truck departs from the distribution center at node 1 and returns to the distribution

center at node NC+ND+2, where NC and ND are the numbers of customers and

local depots, respectively. Therefore,N = {1, · · · ,NC+ND+2} represents the set of

all nodes in the network. In practice, the distribution center is located in rural

areas, far from customer-dense areas. Robots, however, are not designed for

long-distance travel considering their limited battery capacity and traveling speed.

So, in this study, similar to what has been considered in most existing works, we

use the truck to carry robots to suitable areas and launch/collect them from/to the

truck. Instead of using the truck solely as mobile depots for robot delivery, as

considered in some literature, they can also serve customers as standard delivery

vans. The storage of each robot is separated into compartments for multiple

shipments, and after delivery, the robot returns to a pickup point, which could

be a customer node or a local depot node. In addition to serving customers, the

truck can also serve multiple local depots, which are equipped with other types of

customer service facilities, such as lockers, convenience stores, and/or even local
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robots. A customer order can be served by either a truck, a robot launched from a

truck, or a local depot.

The aim of this study is to optimize the delivery schedules of all facilities

involved to minimize total work span of trucks. Specifically, we need to determine

the following:

• The route to be traveled by each truck.

• The route to be traveled by the robot launched from the truck to reach each

customer.

• The drop-off and collection points of the robot carried on the truck.

• The service mode and visiting time at each customer.

The important assumptions of the model are summarized below:

1. We assume that there are K trucks and R robots, starting and finishing at the

distribution centre. We also assume that there are ND local depots equipped

with certain capacity to service local customer orders.

2. There are NC customers to be served, each with known location, order size qi

and service time oTi.

3. The location of local depots, their coverage areas and service capacity pi are

known.

4. Robots carried by trucks are identical with their storage separated into

compartments, which allow multiple deliveries provided that their maximum

allowable travel distance and payload capacity is not violated.
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5. Each customer is served either by a truck, a localized robot from robot depot

or a robot carried on a truck.

6. The drop-off and pick-up locations of robots launched from trucks could be

different to allow the trucks and the robots serve customers simultaneously,

rather than one vehicle wait while the other one is servicing.

7. Multiple robots can be launched and retrieved at the same customer node.

8. The robots must be picked up by the truck from which it was dropped.

Figure 4.1 provides a simple illustration of the Robot-Assisted Delivery Problem

(RADP) involving 1 truck, 2 robots, 11 customers, and 1 local depot. Node 1

denotes the distribution center where the truck initiates and terminates its route.

Node 2 represents a local depot, while nodes 3 through 13 correspond to customer

nodes. The truck follows a route that includes nodes 3, 5, 7, 2, and 4. At node 3, two

robots are launched. The first robot serves customers 8 and 9, later being picked

up by the truck at node 4. Simultaneously, the second robot serves customers 13

and 12 and is picked up by the truck at local depot node 2. Nodes 6, 10, and 11

fall within the coverage range of local depot 2 and are consequently serviced by

the local depot. This configuration optimizes the delivery process by efficiently

utilizing both the truck and the robots.
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Figure 4.1. A simple illustration of RADP

4.2 Mathematical Formulation of RADP-1

This section outlines the mathematical formulation of the RADP-1 model. In this

formulation, each arc (i, j) and each node i are treated independently during the

modeling process.

4.2.1 Notations, Parameters and Variables of RADP-1

Sets

K := set of trucks.

R := set of robots.

NC := {2, · · · ,NC+1} - set of customer nodes

ND := {NC+2, · · ·NC+ND+1} - set of local depot nodes
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NDC := {1,NC+ND+2} - set of nodes representing distribution centre.

N := {1, · · · ,NC+ND+2} - set of all nodes.

Parameters

• NC : number of Customers

• ND : number of local depots

• qi : order size of customer node i ∈ NC

• oTi : service time of truck at node i ∈ NC∪ND

• oRi : service time of robot at node i ∈ NC

• di j : distance between node i and node j, ∀i , j ∈ N

• pi : maximum capacity that can be served by the local depot.

• s : capacity occupation of a robot

• Dmax : maximum travel distance of robot

• CR : capacity of robot

• CT : capacity of truck

• vR : speed of robot

• vT : speed of truck

• h : setup time of robot which include time to fill the robot with orders and

setup its traveling routes
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• λi j =


1, if node i is in the cover range of local depot j,

0, otherwise
i ∈ NC, j ∈ ND

Discrete Variables

• xi jk =


1, if truck k travels (i, j),

0, otherwise
i , j ∈ N ,k∈ K .

• yi jr =


1, if robot r travels (i, j),

0, otherwise
i , j ∈ ND∪NC,r ∈ R.

• δkr =


1, if robot r is placed on truck k,

0, otherwise
r ∈ R,k ∈ K .

• γikr =


1, if robot r is launched from truck k at node i,

0, otherwise
r∈R,k ∈K , i∈ND∪

NC.

• ηikr =


1, if robot r is collected by truck k at node i,

0, otherwise
r ∈ R,k ∈ K , i ∈ ND∪

NC.

• zi j =


1, if node i is served by local depot j,

0, otherwise
i ∈ NC, j ∈ ND.

Continous Variables

• tik = the visiting time at node i by truck k, ∀i ∈ N ,∀k ∈ K .

• τir = the visiting time at node i by robot r, ∀i ∈ NC∪ND,∀r ∈ R.
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Auxiliary Variables

• πk = the total amount of shipments to be served by robots carried on truck k,

∀k ∈ K .

• ϕk = the total amount of shipments to be served from local depots carried on

truck k, ∀k ∈ K .

4.2.2 RADP-1

A Mixed Integer Linear Programming (MILP) model (RADP-1) for the problem is

formulated to find the best route to travel by all trucks so as to minimize the total

working time of the trucks.

The RADP-1 Model

min
∑

k

(
t(NC+ND+2,k)− t1k

)
(4.1)

subject to:

∑
j∈N\{1}

x1 jk = 1, ∀k ∈ K . (4.2)

∑
i∈NC∪ND

xi,NC+ND+2,k = 1, ∀k ∈ K . (4.3)

∑
j∈N

xi jk =
∑
j∈N

x jik, ∀i ∈ NC∪ND,∀k ∈ K . (4.4)
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∑
j∈NC∪ND

yi jr+
∑
k∈K

ηikr =
∑

j∈NC∪ND

y jir+
∑
k∈K

γikr, ∀i ∈ NC∪ND,∀r ∈ R. (4.5)

2γikr ≤ δkr+
∑
j∈N

xi jk, ∀k ∈ K ,∀r ∈ R,∀i ∈ NC∪ND. (4.6)

2ηikr ≤ δkr+
∑
j∈N

xi jk, ∀k ∈ K ,∀r ∈ R,∀i ∈ NC∪ND. (4.7)

∑
k∈K

δkr ≤ 1, ∀r ∈ R, (4.8)

zi j ≤ λi j, ∀i ∈ NC, j ∈ ND. (4.9)∑
i∈N

∑
k∈K

xi jk ≥
1
M

∑
i∈NC

qizi j, ∀ j ∈ ND. (4.10)

∑
j∈N

∑
k∈K

xi jk+
∑

j∈NC∪ND

∑
r∈R

yi jr+
∑

j∈ND

zi j = 1+
∑
r∈R

∑
k∈K

γikr, ∀i ∈ NC (4.11)

∑
i∈NC

qizi j ≤ p j, ∀ j ∈ ND. (4.12)

∑
i∈NC∪ND

∑
j∈NC∪ND

di jyi jr ≤Dmax, ∀r ∈ R. (4.13)

∑
i∈NC

qi

 ∑
j∈NC∪ND

yi jr−
∑
k∈K

γikr

 ≤ CR, ∀r ∈ R. (4.14)

∑
i∈NC

∑
j∈N

qixi jk+πk+ϕk+
∑
r∈R

s.δkr ≤ CT, ∀k ∈ K . (4.15)

πk ≥
∑
i∈NC

qi

 ∑
j∈NC∪ND

yi jr−
∑

k

γikr

−M (1−δkr) , ∀k,∀r. (4.16)

ϕk ≥
∑
i∈NC

qizi j−M

1−
∑
i∈N

xi jk

 , ∀k,∀ j. (4.17)
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t jk ≥ tik+ oi+
di j

vT
+h

∑
r∈R

γikr−M(1−xi jk), i , j∀i ∈ N ,∀k ∈ K . (4.18)

τ jr ≥ τir+ oi(1−γikr)+
di j

vR
−M(1− yi jr), i , j∀i, j ∈ NC∪ND,∀k ∈ K . (4.19)

tik ≥ τir−M(1−ηikr), ∀i ∈ NC∪ND,∀k ∈ K ,∀r ∈ R. (4.20)

τir ≥ tik+h−M(1−γikr), ∀i ∈ NC∪ND,∀k ∈ K ,∀r ∈ R. (4.21)

xi jk ∈ {0,1}, i , j ∈ N ,k ∈ K . (4.22)

yi jr,δkr,γikr,ηikr ∈ {0,1}, i ∈ NC∪ND,k ∈ K ,r ∈ R. (4.23)

zi j ∈ {0,1}, i ∈ NC, j ∈ ND. (4.24)

πk,ϕk, tik,τir ≥ 0, i ∈ NC∪ND,k ∈ K ,r ∈ R. (4.25)

Equation (4.1) represents the objective function that minimizes the total working

time of all trucks. Constraints in Equations (4.2), (4.3), and (4.4) outline the standard

network flow constraints for trucks. Equation (4.5) specifies the network flow

constraint for robots. Constraints in Equations (4.6) and (4.7) ensure that a robot

can be launched from or collected at a node only if it is carried by a truck that

visits the node. Equation (4.8) guarantees that the same robot cannot be carried

by more than one truck. Equation (4.9) ensures that a customer node is covered

by a depot before it can be served by the depot. Constraint (4.10) ensures that

all local depots with positive customer demands are visited by a truck. Equation

(4.11) ensures that all customers are either served by a truck, a robot launched

from a truck, or by a local depot. Equation (4.12) ensures that the total order size

served by a local depot does not exceed its capacity. Equation (4.13) ensures that
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the total distance traveled by a robot to serve customer(s) does not exceed its

maximum travel capacity, while Equation (4.14) ensures that the total capacity of

shipments carried on a robot does not exceed its carrying capacity. Constraint

(4.15) ensures that the total capacity of shipments and the capacity occupation of

all robots carried on a truck do not violate the truck’s capacity. Constraint (4.16)

calculates the amount of shipment serviced by a robot, while Constraint (4.17)

calculates the amount of shipment serviced by a local depot. Equations (4.18) and

(4.19) calculate the visiting time at nodes by trucks and robots, respectively, while

Equations (4.20) and (4.21) establish their interconnections. Finally, Equations

(4.22), (4.23), (4.24), and (4.25) define the values of the decision variables.

4.3 Mathematical Formulation of RADP-2

In this section, the Robot-Assisted Delivery Problem is further elucidated through

a Mixed Integer Linear Programming (MILP) formulation, denoted as RADP-2.

This formulation is a modification of the Travelling Salesman Problem with Drones

(TSP-D) proposed by [23] and the Travelling Salesman Problem with Robots

(TSP-R) by [10]. In this context, the term "operation," represented by o ∈O, refers

to a series of nodes that can be serviced either by a truck with a robot on board

or by a truck and a robot that separate at the starting node, visiting other nodes

concurrently and reuniting at a pickup node. Local depot nodes are serviced by

truck only, but can be used for robot launch and pickup, while customer nodes can

be visited by either a truck or a robot, providing flexibility in the delivery process.
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Assumptions

The following assumptions are added to the list already discussed in 4.1.1.

1. We assume that robots are allowed to visit at most two nodes per launch.

2. Each operation o ∈O requires a completion time, to

4.3.1 Operations - Feasible Segments of Solutions

Each operation consists at least two nodes, i.e., the start and end nodes, which are

referred to as drop off and pick up nodes of robots when two delivery modes are

used in parallel. Depending on the size of the problem, the following operations

are considered:

1. Operations with Two Truck Nodes (Figure 4.2, Algorithm 1): In this

operation, the truck travels from node i to node j. The robot is not utilized;

both nodes are served by the truck. Figure 4.2 illustrates the operations, while

Algorithm 1 describes the preparation of the operation and its completion

time.

Figure 4.2. Operation with two truck nodes

2. Operations with Two Truck Nodes and One Robot Node (Figure 4.3,

Algorithm 2): In this type of operation, the truck travels from nodes i to j

while the robot is deployed at node i to service node k and is then retrieved

at node j by the truck. Figure 4.3 illustrates the operations, while Algorithm

2 describes the preparation of the operation and its completion time.
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Figure 4.3. Operation with two truck nodes and one robot node

3. Operations with Three Truck Nodes and One Robot Node (Figure 4.4,

Algorithm 3): In this operation, the truck travels from nodes i to j, then to k.

A robot is deployed at i to service l and is retrieved at k. Figure 4.4 illustrates

the operations, while Algorithm 3 describes the preparation of the operation

and its completion time.

Figure 4.4. Operation with three truck nodes and one robot node

4. Operations with Two Truck Nodes and Two Robot Nodes (Figure 4.5,

Algorithm 2): In this operation, the truck travels from i to j, while a robot is

deployed at i to service both k and l, and is subsequently collected at j. Figure

4.5 illustrates the operations, while Algorithm 2 describes the preparation of

the operation and its completion time.

Figure 4.5. Operation with two truck nodes and two robot node
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5. Operations with Three Truck Nodes and Two Robot Nodes (Figure 4.6,

Algorithm 3): In this type of operation, the truck travels from nodes i to j

and then to k, while a robot is deployed at node i to service nodes l and m,

and is subsequently collected at k. Figure 4.6 illustrates the operations, while

Algorithm 3 describes the preparation of the operation and its completion

time.

Figure 4.6. Operation with three truck nodes and two robot nodes

6. Operations with Four Truck Nodes and One Robot Node (Figure 4.7,

Algorithm 4): The truck travels from i to j, then from j to k, and finally from

k to l, while a robot is deployed at i to service m and is subsequently collected

at l. Figure 4.7 illustrates the operations, while Algorithm 4 describes the

preparation of the operation and its completion time.

Figure 4.7. Operation with four truck nodes and one robot node

7. Operations with Four Truck Nodes and Two Robot Nodes (Figure 4.8,

Algorithm 4): In these operations, the truck travels from i to j, then from j to

k, and finally from k to l, while a robot is launched at i to service m and n,
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and is subsequently collected at l. Figure 4.8 illustrates the operations, while

Algorithm 4 describes the preparation of the operation and its completion

time.

Figure 4.8. Operation with four truck nodes and two robot nodes

8. Operations with Five Truck Nodes and One Robot Node (Figure 4.9,

Algorithm 5): In these operations, the truck travels from i to j, then from j

to k, followed by k to l, and finally from l to m, while a robot is launched at

i to service n and is subsequently collected at m. Figure 4.9 illustrates the

operations, while Algorithm 5 describes the preparation of the operation and

its completion time.

Figure 4.9. Operation with five truck nodes and one robot node

Apart from the operations listed above, we have additionally joined any pair of

feasible operations with identical truck node sequences, but having distinct nodes

serviced by robots. These joined operations facilitate the concurrent service of

customers by two robots carried on the truck. The joined operations can be obtained

from combinations of the same type of operations or different combinations of

operations types having the same number of truck nodes. Figure 4.10 below is an
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example of one joined operation obtained from combination of two operations

both with three truck nodes i, j and k. Notably, one of the operations has robot

node l while the other has m and n, these robot nodes remains distinct (m , l and

n , l). For a clear outline of the process to prepare joined operations please refer to

Algorithm 6. List of all operations discussed in items 1-8 above together with the

joined operations forms the overall list of operations used in the RADP-2 model.

Figure 4.10. Example of Joined Operations

Algorithm 1 Constructing Operations with two truck nodes

Input: di, j, vT, vR, OT, OR, h, Dmax, nC, nD
Output: Operations with two truck nodes and their completion times

1: count = 1
2: n = nC+nD+2
3: for i = 1 to n−1 do
4: for j = 2 to n do
5: if i , j then
6: if (i = 1 and j < n) OR (i > 1 and j ≥ 2) then
7: Add operation from i to j to Op2 list

8: Compute t2(count) =
di, j
vT
+OT

9: count = count + 1
10: end if
11: end if
12: end for
13: end for
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Algorithm 2 Constructing Operations with three nodes (2 Trucks and 1 robot) and
four nodes (2 trucks and 2 robots)
Input: Algorithm 1, nC nD, h, vR, Dmax, di, j, OR
Output: List of Operations with three nodes(2 trucks and 1 robot nodes) and four

nodes(2 trucks and 2 robot nodes) with their corresponding times.
1: set(x, y) = size(Op2)
2: count = 1
3: n = nC+nD+2 ▷ All nodes including start and end
4: for i = 1 to x do
5: if Op2(i,1) ≥ 2 and Op2(i,2) ≥ 2 and Op2(i,2) < n then
6: Compute Tt = t2(i)+h
7: for k = nD+2 to n−1 do ▷ k is robot node
8: if k ,Op2(i,1) and k ,Op2(i,2) then
9: Compute Rt =

d(Op2(i,1),k)+d(k,Op2(i,2)
vR

+OR
10: if d(Op2(i,1),k)+d(k,Op2(i,2) ≤Dmax then
11: Add Operation from Op2(i,1) to Op2(i,2) and from Op2(i,1)
12: to k, then from k to Op2(i,2) to Op3 list
13: Select t3(count) =max{Tt,Rt}

14: count = count + 1
15: end if
16: for l = nD+2 to n−1 do ▷ l is robot node
17: if l ,Op2(i,1) and l ,Op2(i,2) and l , k then
18: Compute Rt =

d(Op2(i,1),k)+d(k,l)+d(l,op2(i,2)
vR

+2 ∗OR
19: if d(Op2(i,1),k)+d(k, l)+d(l,op2(i,2) ≤Dmax then
20: Add Operation from Op2(i,1) to Op2(i,2) and from
21: Op2(i,1) to k, from k to l, then from l to Op2(i,2) to
22: Op4 list
23: Select t4(count) =max{Tt,Rt}

24: count = count + 1
25: end if
26: end if
27: end for
28: end if
29: end for
30: end if
31: end for
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Algorithm 3 Constructing Operations with four nodes (3 truck nodes and 1 robot
node) and five nodes (3 truck nodes and 2 robot nodes)
Input: h, Dmax, di, j, vT, vR, OT,OR, nC, nD
Output: List of Operations with four nodes (3 trucks and 1 robot node) and five

nodes (3 trucks and 2 robot nodes) with their corresponding times.
1: count = 1
2: n = nC+nD+2 ▷ All nodes including start and end
3: for i = 2 to n−1 do
4: for j = 2 to n−1 do
5: for k = 2 to n−1 do
6: if k , i and i , j and j , k then

7: Compute Tt =
(di, j+d j,k)

vT
+h+2 ∗OT

8: for l = nD+2 to n−1 do ▷ l is robot node
9: Compute Rt =

(di,l+dl,k)
vR

+OR
10: if (di,l+dl,k) ≤Dmax then
11: Add operation from i to j, then j to k and from i to l, then
12: l to k to Op4(2) list
13: Select t(2)

4 (count) =max{Tt,Rt}

14: count = count + 1
15: end if
16: end for
17: for m = nD+2 to n−1 do ▷ m is robot node
18: if m , i and m , j and m , k and m , l then
19: Compute Rt =

di,l+dl,m+dm,k
vR

+2 ∗OR
20: if di,l+dl,m+dm,k ≤Dmax then
21: Add operation from i to j, then j to k and from i to l,
22: l to m then m to k to Op5 list
23: Select t5(count) =max{Tt,Rt}

24: end if
25: end if
26: end for
27: end if
28: end for
29: end for
30: end for
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Algorithm 4 Constructing Operations with five nodes (4 trucks and 1 robot nodes)
and six nodes (4 trucks and 2 robot nodes)
Input: di, j, vT, vR, OT, OR, Dmax, h, nC, nD
Output: List of Operations with five nodes (4 trucks and 1 robot nodes) and six

nodes (4 trucks and 2 robot nodes) with their corresponding times.
1: count = 1
2: n = nC+nD+2 ▷ All nodes including start and end
3: for i = 2 to n−1 do
4: for j = 2 to n−1 do
5: for k = 2 to n−1 do
6: for l = 2 to n−1 do
7: if i , j and i , k and i , l and j , k and j , l and k , l then

8: Compute Tt =

(
di, j+d j,k+dk,l

)
vT

+h+3 ∗OT
9: for m = nD+2 to n−1 do ▷ m is robot node

10: if m , i and m , j and m , k and k , l then
11: Compute Rt =

(di,m+dm,l)
vR

+OR.
12: if di,m+dm,l ≤Dmax then
13: Add operation from i to j, j to k, then k to l and from
14: i to m then m to l to Op5(2) list.
15: Select t(2)

5 (count) = max{Tt,Rt}

16: count = count + 1
17: end if
18: for h = nD+2 to n−1 do ▷ h is robot node
19: if h , i and h , j and h , k and h , l and h ,m then
20: Compute Rt =

(di,m+dm,h+dh,l)
vR

+2 ∗OR
21: if di,m+dm,h+dh, l ≤Dmax then
22: Add operation from i to j, j to k, then k to l
23: and from i to m, m to h then h to l to Op6 list.
24: Select t6(count) = max{Tt,Rt}

25: count = count + 1
26: end if
27: end if
28: end for
29: end if
30: end for
31: end if
32: end for
33: end for
34: end for
35: end for
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Algorithm 5 Constructing Operations with six nodes (5 trucks and 1 robot node )

Input: di, j, vT, vR, OT, OR, h, Dmax, nC, nD
Output: List of Operations with six nodes (5 trucks and 1 robot nodes) with their

corresponding times.
1: count = 1
2: n = nC+nD+2 ▷ All nodes including start and ending nodes
3: for i = 2 to n−1 do
4: for j = 2 to n−1 do
5: for k = 2 to n−1 do
6: for l = 2 to n−1 do
7: for m = 2 to n−1 do
8: if i , j and i , k and i , l and i ,m and j , k and j , l and
9: j ,m and k , l and k ,m and l ,m then

10: Compute Tt =

(
di, j+d j,k+dk,l+dl,m

)
vT

+h+4 ∗OT
11: for h = nD+2 to n−1 do ▷ h is robot node
12: if h , i and h , j and h , k and h , l and h ,m then
13: Compute Rt =

(di,h+dh,m)
vR

+OR
14: if di,h+dh,m ≤Dmax then
15: Add operation from i to j, j to k,k to l then l
16: to m and from i to h then h to m to Op6(2) list.
17: Select t(2)

6 (count) = max{Tt,Rt}

18: count = count + 1
19: end if
20: end if
21: end for
22: end if
23: end for
24: end for
25: end for
26: end for
27: end for
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Algorithm 6 Merging list of all operations prepared in Algorithms 1, 2, 3, 4 and 5

Input: Algorithms 1,2, 3, 4 and 5
Output: List of all operations with their completion times

1: SetH =Op2∪Op3∪Op4∪Op4(2)
∪Op5∪Op5(2)

∪Op6∪Op6(2)

2: Set T = t2∪ t3∪ t4∪ t(2)
4 ∪ t5∪ t(2)

5 ∪ t6∪ t(2)
6

3: Set (m,n) = size(H)
4: SetKi = set of truck nodes in operation i,∀i ∈H
5: Set Ri = set of robot nodes in operation i,∀i ∈H
6: Set J = ∅ ▷ J is a list of joined operations with same truck nodes
7: uprow = 1
8: while uprow <m−1 do
9: for botrow = uprow+1 to m do

10: ifK (uprow) =K (botrow) and in same order then
11: if R(uprow) , R(botrow) then
12: Join operationsH(uprow) andH(botrow) together and add to J
13: Select T (2) =max{T (uprow),T (botrow)}
14: end if
15: end if
16: end for
17: uprow = uprow+1
18: end while
19: OperList =H∪J ▷ List of all operations
20: tOperList = T ∪T

(2)
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4.3.2 RADP - 2

Upon the preparation of all operations, the starting nodes, ending nodes, nodes

covered, and the duration required to complete all travel and services for the

relevant nodes can be calculated in advance and fed into the model as parameters.

• O−(i) ⊂ O : Set of operations with start node i ∈ N

• O+(i) ⊂ O : Set of operations with end node i ∈ N

• O(i) ⊂ O : Set of all operations that contain node i ∈ N

• to : Duration of operation o ∈ O

Decision Variables

• xo =


1, if operation o is chosen

0, otherwise
∀o ∈ O

• βi =


1, if depot i has positive demand

0, otherwise
∀i ∈ ND

• vi : visiting time at node i ∈ N
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The RADP-2 Model

minv(nC+nD+1) (4.26)

subject to:

∑
o∈O−(i)

xo =
∑

o∈O+(i)

xo, ∀i ∈ NC∪ND (4.27)

∑
o∈O(i)

xo+
∑

j∈ND

λi jβ j ≥ 1, ∀i ∈ NC (4.28)

∑
o∈O−(0)

xo = 1 (4.29)

∑
o∈O+(NC+ND+1)

xo = 1 (4.30)

∑
o∈O(i)

xo ≥ βi, ∀i ∈ ND (4.31)

v j ≥ vi+
∑

o∈(O−(i)∩O+( j))
toxo−M(1−xo), ∀i , j ∈ N (4.32)

xo ∈ {0,1}, ∀o ∈ O (4.33)

βi ∈ {0,1}, ∀i ∈ ND (4.34)

vi ≥ 0, ∀i ∈ N (4.35)

The objective function (4.26) minimizes the total time to complete the tour. Con-

straint (4.27) represents the standard network flow constraint, and Constraint (4.28)

ensures that all customer nodes are covered either by an operation or by a local

depot. Constraint (4.29) and (4.30) compel the route to start from and finish at the

distribution center. Additionally, Constraint (4.31) ensures that all local depots
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with positive demands are covered by an operation. Constraint (4.32) calculates

the visiting time at each node, serving as sub-tour elimination constraints. Finally,

Constraints (4.33), (4.34), and (4.35) set the domain for variables xo, βi, and vi.

4.4 RADP-1 Vs RADP-2

In this section, we present the computational results for both RADP-1 and RADP-2,

taking into account their computational complexity and performance. The MILP

solution approach for these models was implemented in MATLAB R2020a and

executed on a CPU equipped with an Intel(R) Core(TM) i5-7300U processor. The

MILP problems were solved using CPLEX Studio 12.10.0.

4.4.1 CPLEX MILP Solution of RADP-1 and RADP-2

Due to the complexity of the problem, our experiments involved scenarios with

six and seven customers, one local depot, one truck, and two robots. In all the

experiments, we set the average speed of the truck and robot at 18.64 mph and

6.21 mph, respectively, following the approach outlined in [69]. The local depot’s

covering range was defined as 500 meters. The service time for the truck was set

at 6 minutes, while the robot’s service time was 3 minutes. These times include

considerations for additional tasks such as parking, unloading, and any necessary

interactions with humans at the customer’s location. The setup time for a robot

was 1 minute, reflecting the time required to prepare and release the robot when

it is launched from the truck. The experiments were divided into three distinct

groups, with each group containing ten experiments involving six customers and
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five experiments with seven customers. The first group contains the results of

experiments with an average distance between orders in the range of 420m to

850m, which are displayed in Table 4.1. The second group involves experiments

with average distances in the range of 1100m to 2600m, displayed in Table 4.2.

The third group focuses on experiments with average distances in the range of

3000m to 4500m, as shown in Table 4.3. In each table, we present the solution,

computation time, service facility of customers, TSP solution, savings over TSP,

and the optimality gap calculated by the CPLEX solver using equation 3.26 for

each model. The results across all tables indicate that RADP-1 is easier to solve

than RADP-2 due to the larger number of feasible operations involved in RADP-2.

Both models were solved for seven nodes, including six customers and one local

depot, to optimality within two hours. Across all the tables, the TSP solutions for

each of the experiments are the same for both RADP-1 and RADP-2. Savings over

TSP (except experiment 5 of Table 4.3) and the optimality gap for experiments 1-10

are also the same for both models. An optimality gap of 0.00% for experiments

1-10 indicates that an optimal solution is achieved for both models. However, large

optimality gaps for RADP-2 in experiments 11-15 indicate that more computational

time is required by the solver to further improve the RADP-2 solutions due to

the increased number of nodes (by one), resulting in a large number of feasible

operations.

The highest Savings over TSP (42.25%) was achieved using RADP-1 in Exper-

iment 11 of Table 4.1, with an optimum solution found within 4514.89 seconds.

However, an optimum solution could not be found for RADP-2 within the com-

putational time limit due to the exponential increase in the number of feasible
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operations, resulting in an optimality gap of 84.88%. A graphical representation of

the experiment’s solution is displayed in Figure 4.11, with sub-figures (a), (b), and

(c) showing the TSP, RADP-1, and RADP-2 solutions, respectively. The optimum

solution is achieved using RADP-1, with the truck route following the sequence

1-5-6-4-1. The two robots carried by the truck are both launched at node 5 and

collected at node 4. One of the robots travels the path 5-3-7-4, while the other

takes the route 5-8-9-4. Notably, although the customer at node 7 falls within the

covering range of the local depot, the customer is best served by a robot rather

than receiving service from the local depot. Due to computational challenges

associated with RADP-2, a sub-optimal solution is found within a 2-hour time

limit. In the RADP-2 solution, the truck travels the sequence 1-2-9-4-5-1. The

robots are both launched at the local depot and collected at node 4. One of them is

then relaunched at the same node to serve customer 3 and collected at node 5. An

investigation of the solution reveals that as the truck travels the segment 2-9-4, one

of the robots travels 2-6-4. Considering the slower speed of the robot compared to

the truck, this arrangement could result in the truck waiting for the robot at node

4 for an extended period. Similarly, as the truck travels the sequence 4-5, the robot

traveling 4-3-5 may lead to longer waiting times for the truck at node 5.

The solutions in Experiment 1 of Table 4.1 show that all six customers are

equally served by the service facilities in both RADP-1 and RADP-2, resulting in

an average savings over TSP of approximately 27.32% for both models. RADP-1

can be solved within 2 minutes, whereas RADP-2 takes almost 2 hours to find the

optimal solution. A graphical representation of the solution is also available in

Figure 4.12, featuring sub-figures (a), (b), and (c) displaying the TSP, RADP-1, and
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RADP-2 solutions, respectively. Interestingly, both RADP-1 and RADP-2 yield the

exact same optimal solution, with identical truck and robot routes. In this solution,

the truck follows the sequence 1-8-4-2-1, while each robot takes routes 8-6-2 and

8-5-2. Customers at nodes 3 and 7 are served from the local depot.

Table 4.1: Solutions of RADP-1 Vs RADP-2, Av. Dist. =(420m - 850m)

Exp Model

No. CPLEX MILP Solutions TSP Savings Optimality

of Obj. Val Comp.time Service Facility Sol. Over TSP Gap

Cust. (h) (Sec.) Depot Robot Truck (h) (%) %

1
RADP-1

6
0.5154 129.14 2 2 2

0.7091 27.32 0.00RADP-2 0.5154 6820.17 2 2 2

2
RADP-1

6
0.5113 115.90 0 4 2

0.7051 27.49 0.00RADP-2 0.5113 6627.65 0 4 2

3
RADP-1

6
0.4825 105.09 2 3 1

0.6924 30.31 0.00RADP-2 0.4825 7120.29 2 3 1

4
RADP-1

6
0.4118 46.97 4 1 2

0.4683 12.06 0.00RADP-2 0.4118 6718.59 4 1 2

5
RADP-1

6
0.5054 92.69 0 3 3

0.8040 37.14 0.00RADP-2 0.5054 6900.26 0 3 3

6
RADP-1

6
0.4353 60.94 3 2 1

0.5879 25.96 0.00RADP-2 0.4353 5870.47 3 2 1

7
RADP-1

6
0.5061 294.00 0 3 3

0.7347 31.11 0.00RADP-2 0.5061 7123.89 0 3 3

8
RADP-1

6
0.5336 109.26 0 3 3

0.7224 26.14 0.00RADP-2 0.5336 6997.98 0 3 3

9
RADP-1

6
0.5160 100.29 2 2 2

0.7111 27.44 0.00RADP-2 0.5160 6782.15 2 2 2

10
RADP-1

6
0.5054 79.13 0 3 3

0.8156 38.03 0.00RADP-2 0.5054 6300.16 0 3 3

11
RADP-1

7
0.5540 4514.89 0 4 3

0.9641
42.54 0.00

RADP-2 0.7212 7200.00 1 3 3 25.19 84.88

12
RADP-1

7
0.5503 2231.26 2 3 2

0.8303
33.72 0.00

RADP-2 0.6352 7200.00 2 2 3 23.50 83.10

13
RADP-1

7
0.5277 3678.75 2 3 2

0.8054
34.48 0.00

RADP-2 0.5976 7200.00 2 2 2 25.80 82.52

14
RADP-1

7
0.4969 2442.14 2 3 2

0.7131
30.32 0.00

RADP-2 0.6137 7200.00 2 2 3 13.94 82.17

15
RADP-1

7
0.5142 2100.43 1 4 2

0.8131
36.76 0.00

RADP-2 0.6214 7200.00 2 2 3 23.58 83.18

Average Savings RADP-1 28.80
RADP-2 26.33
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(a) TSP (Optimum Solution = 0.9641)

(b) RADP-1 (Optimum Solution = 0.5540)

(c) RADP-2 (Sub-Optimal Solution = 0.7212)

Figure 4.11. Solution of Experiment 11 of
Table 4.1

(a) TSP ( Optimum Solution = 0.7091)

(b) RADP-1 (Optimum Solution = 0.5154)

(c) RADP-2 (Optimum Solution = 0.5154)

Figure 4.12. Solution of Experiment 1 in
Table 4.1

The solutions in Experiment 1 of Table 4.2 indicate that optimal solutions for

both RADP-1 and RADP-2 were found within the 2-hour time limit. The graphical

representations in Figures 4.13 (a) and 4.13 (b) reveal them as alternative optimal

solutions. In RADP-1, the truck route follows the sequence 1-5-6-7-3-1, and the

robots are launched at node 5 to fulfill orders for customers 4 and 8. They are then

both collected by the truck at node 3. However, in RADP-2, the truck follows the

sequence 1-5-7-4-3-1. The robots are both launched at node 5, similar to RADP-1,
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but one of the robots that serves customer 4 in RADP-1 serves customer 6 in

RADP-2. RADP-2 has a shorter truck route compared to RADP-1, but the truck has

to wait longer at node 3 for the robot that travels the link 5-8-3. In both solutions,

the robot travel time across the sequence 5-8-3 determines the duration of the truck

working time.

Table 4.2: Solutions of RADP-1 Vs RADP-2, Av. Dist. = (1100m - 2600m)

Exp Model

No. CPLEX MILP Solutions TSP Savings Optimality

of Obj. Val Comp.time Service Facility Sol. Over TSP Gap

Cust. (h) (Sec.) Depot Robot Truck (h) (%) %

1
RADP-1

6
0.8059 259.14 0 2 4

1.0369 22.28 0.00RADP-2 0.8059 6862.64 0 2 4

2
RADP-1

6
0.8561 36.34 2 2 2

1.039 17.60 0.00RADP-2 0.8561 1112.20 2 2 2

3
RADP-1

6
0.7205 91.30 0 3 3

0.9967 27.71 0.00RADP-2 0.7205 5602.57 0 3 3

4
RADP-1

6
0.7291 110.79 0 3 3

1.0281 29.08 0.00RADP-2 0.7291 5678.92 0 3 3

5
RADP-1

6
0.726 258.20 0 3 3

0.9346 22.32 0.00RADP-2 0.726 6105.87 0 3 3

6
RADP-1

6
0.8512 19.57 2 1 3

0.9449 9.92 0.00RADP-2 0.8512 431.59 2 1 3

7
RADP-1

6
0.7853 133.97 0 4 2

1.1003 28.63 0.00RADP-2 0.7853 4674.38 1 3 2

8
RADP-1

6
0.8649 354.60 0 3 3

1.1521 24.93 0.00RADP-2 0.8649 6820.85 0 3 3

9
RADP-1

6
0.8807 45.22 0 2 4

1.1166 21.13 0.00RADP-2 0.8807 5783.36 0 2 4

10
RADP-1

6
0.5893 406.19 0 3 3

0.8712 32.36 0.00RADP-2 0.5893 5823.78 0 3 3

11
RADP-1

7
0.8571 572.93 0 3 4

1.1687
26.66 0.00

RADP-2 0.9059 7200.00 1 2 4 22.49 86.76

12
RADP-1

7
0.8553 727.23 2 2 3

1.1107
22.99 0.00

RADP-2 0.8553 7200.00 2 2 3 22.99 81.63

13
RADP-1

7
0.7498 884.34 2 3 2

1.047
28.39 0.00

RADP-2 0.8552 7200.00 2 2 3 18.32 81.32

14
RADP-1

7
0.8187 219.80 0 3 4

1.2099
32.33 0.00

RADP-2 0.9371 7200.00 0 2 5 22.55 86.72

15
RADP-1

7
0.8259 266.40 2 2 3

1.0238
19.33 0.00

RADP-2 0.8259 7200.00 2 2 3 19.33 82.20

Average Savings RADP-1 24.38
RADP-2 22.78
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(a) TSP (Optimum Solution = 1.0369)

(b) RADP-1 (Optimum Solution = 0.8059)

(c) RADP-2 (Optimal Solution = 0.8059)

Figure 4.13. Solution of Experiment 1 of
Table 4.2

(a) TSP (Optimum Solution = 1.2738)

(b) RADP-1 (Optimum Solution = 1.1307)

(c) RADP-2 (Optimum Solution = 1.1332)

Figure 4.14. Solution of Experiment 5 in
Table 4.3

While the optimum solutions for both RADP-1 and RADP-2 in Experiment 5 of

Table 4.3 were found within the computational time limit, the solutions themselves

are quite distinct. RADP-1 outperforms RADP-2 in this case. The graphical

representation of the solution is displayed in Figure 4.14, with sub-figures (a), (b),

and (c) displaying the TSP, RADP-1, and RADP-2, respectively. In the RADP-1

solution, the truck route follows the sequence 1-8-4-6-3-1, and both robots are

launched at customer node 8 but collected at different nodes (one at node 6 and the
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Table 4.3: Solutions of RADP-1 Vs RADP-2, Av. Dist. = (3000m - 4500m)

Exp Model

No. CPLEX MILP Solutions TSP Savings Optimality

of Obj. Val Comp.time Service Facility Sol. Over TSP Gap

Cust. (h) (Sec.) Depot Robot Truck (h) (%) %

1
RADP-1

6
1.1128 35.76 0 3 3

1.3187 15.61 0.00RADP-2 1.1128 875.39 0 3 3

2
RADP-1

6
1.2832 25.13 1 2 3

1.4003 8.36 0.00RADP-2 1.2832 445.16 1 2 3

3
RADP-1

6
1.2226 22.78 1 2 3

1.3599 10.10 0.00RADP-2 1.2226 167.53 1 2 3

4
RADP-1

6
0.8477 49.18 1 2 3

1.0639 20.32 0.00RADP-2 0.8477 7200.00 1 2 3

5
RADP-1

6
1.1307 100.37 0 2 4

1.2738
11.23

0.00RADP-2 1.1332 5673.86 0 2 4 11.04

6
RADP-1

6
0.9304 81.22 0 3 3

1.2249 24.04 0.00RADP-2 0.9304 5934.62 0 3 3

7
RADP-1

6
1.1345 35.38 0 3 3

1.3162 13.80 0.00RADP-2 1.1345 5486.44 0 3 3

8
RADP-1

6
1.2038 33.65 1 3 2

1.4309 15.87 0.00RADP-2 1.2038 444.00 1 3 2

9
RADP-1

6
1.0372 32.56 1 2 3

1.1961 13.28 0.00RADP-2 1.0372 1563.97 1 2 3

10
RADP-1

6
1.1937 24.13 0 2 4

1.3711 12.94 0.00RADP-2 1.1937 451.59 0 2 4

11
RADP-1

7
1.3922 1289.47 0 2 5

1.5206
8.44 0.00

RADP-2 1.4707 7200.00 0 2 5 3.28 90.70

12
RADP-1

7
1.0572 606.48 0 3 4

1.3601
22.27 0.00

RADP-2 1.1505 7200.00 1 2 4 15.41 90.33

13
RADP-1

7
1.1436 227.86 1 2 4

1.34068
18.71 0.00

RADP-2 1.1436 7200.00 1 2 4 18.71 81.14

14
RADP-1

7
1.1153 432.47 0 4 3

1.4208
21.50 0.00

RADP-2 1.2197 7200.00 0 2 5 14.15 81.45

15
RADP-1

7
1.2415 208.52 0 3 4

1.4837
16.32 0.00

RADP-2 1.2826 7200.00 0 2 5 13.55 84.05

Average Savings RADP-1 15.52
RADP-2 14.03
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other at node 3). This highlights the flexibility of RADP-1 in selecting the launch

and collection nodes for robots. With RADP-1, robots can be launched at the same

node and collected at distinct nodes, or they can be launched at distinct nodes and

collected at the same node. In contrast, in the RADP-2 solution, the truck route

follows 1-3-6-7-4-1, and robots are both launched at node 3 and collected at node 4.

Also, note that the truck does not visit the local depot but has its route pass close

to the local depot. The operations in RADP-2 only allow robots to be launched and

collected at the same node, potentially excluding operations that could be part

of the optimal solution. Furthermore, considering these operations as part of the

feasible operations can make the model much more challenging to solve.

4.5 Summary

The Robot-Assisted Delivery problem (RADP) integrates traditional truck logistics

with the inclusion of robots and a local depot into a comprehensive model. Two

Mixed Integer Linear Programming Models (MILP), RADP-1 and RADP-2, were

introduced to optimize delivery schedules with the goal of minimizing the total

working span of the truck. Numerical results consistently demonstrate that

both models produce identical outcomes when they converge on an optimal

solution. However, RADP-1 provides a better solution in cases where the optimum

solution involves launching or collection of two robots at different nodes, a

scenario not allowed in RADP-2, which only permits such actions at the same

node. Additionally, RADP-1 generally proves more computationally tractable

than RADP-2, owing to the exponential growth of feasible operations in the latter.
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Optimal solutions for problems featuring up to 8 nodes are attainable with RADP-1

using CPLEX, whereas RADP-2 achieves optimal solutions for scenarios involving

only 7 nodes within a 2-hour computational time limit.

The operational efficiency of robots exhibits a higher performance in densely

populated areas compared to sparser regions due to their travel distance limitations

and slower speeds relative to trucks. Conversely, solving problems in dense areas

poses computational challenges due to the multitude of possible robot operations

that satisfy the distance constraints. As the problem size expands, the feasible

number of robot operations grows exponentially, rendering it impractical to solve

problems of practical size within reasonable computational time. Consequently,

heuristic approaches to expedite solutions for larger instances are proposed in the

following chapter.



Chapter 5

Heuristics Approaches To Expedite

RADP Solutions

5.1 Heuristics

In the previous chapter, we have discussed solutions for RADP-1 and RADP-2

for small instances. Exact Solutions for both models could not be obtained for

practical size problems with CPLEX. As RADP is a derivative of TSP, a problem

known to be NP-hard, RADP inherits the NP-hard complexity as well. To tackle

real-world instances, heuristics approaches come into play. In this chapter, we

introduce two heuristics methods aimed at expediting solutions for practical-scale

instances.

5.1.1 Greedy Heuristics By Prioritizing Operations (P-Heur)

To achieve the aim of improving overall efficiency, one consideration is to increase

the number of fulfilled orders per unit time. Inspired by this idea, a greedy

92
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heuristic is proposed in this section, centered around the concept of “node-time

ratio”, which entails dividing the number of nodes covered by an operation by

the duration of that operation. The ranking system gives preference to operations

with higher ratios. It is important to note that P-Heur is specifically designed for

the RADP-2 model.

Algorithm 7 outlines the steps of the greedy heuristic. Firstly, to reduce the

problem size (the number of feasible operations) we assume that every node that

is within the covering range of the local depot must be serviced by the local depot

(line 3-5 of Algorithm 7). Any operation containing the distribution centre has

only one node shared by another operation. Its ratio is determined by subtracting

0.5 from the number of its covered nodes and dividing the result by its completion

time. In contrast, operations not involving the warehouse have both their start

and end nodes shared by other operations. For these operations, the ratio is

determined by subtracting 1 from the number of their covered nodes and dividing

by their completion time (as described in line 8 of Algorithm 7). Then, we select

the most preferred operation, i.e., the one with the highest node-time ratio (line

12-13 of Algorithm 7); any operations containing nodes already covered by the

selected operation are removed from the list (line 14-20 of Algorithm 7). If the

resulting number of operations in the reduced list is below a specified threshold

value, we use CPLEX to solve the reduced RADP-2 with selected operations and

remaining ones in the OperList (line 22 of Algorithm 7). However, if the number

of operations exceed the threshold, we repeat the process to select the next most

preferred operation from the reduced list and remove any operations that cover

nodes already accounted for by the second selected operation to form the refreshed
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reduced list. This step continues until the number of operations in the reduced list

fall below the threshold, which, in our experiments in section 5.2.1, is set to 500 for

CPLEX to deliver efficient solutions. This value is independent of the size of the

problem. For larger problems with thousands of feasible operations, the algorithm

continuously selects the best feasible operation and reduces the number of feasible

operations by removing operations containing nodes that are already covered by

the selected operations until the number of remaining feasible operations is less

than a value (500) that can be solved by CPLEX. This value remains the same

irrespective of the size of the problem. The only difference is that larger problems

with a large number of feasible operations require more iterations of selecting the

best operations and reducing the number of operations until the list of operations

is fewer than 500, so that it can be solved by CPLEX. Note that, to ensure feasibility,

all operations containing only two truck nodes are kept in the reduced operations

list (second condition in line 15 of Algorithm 7).

5.1.2 K-Means Decomposition Heuristics (K-Heur)

K-Means is a widely employed clustering algorithm with the primary objective of

grouping similar elements or data points into clusters. It addresses the clustering

problem by minimizing the sum of squared errors (SSE) [70]. The purpose of

clustering orders is to decompose the problem into more manageable subgroups

that can be easily solved using commercial solvers. The choice of the number of

clusters depends on the scale of the main problem. Clustering is performed in such

a way that exact solutions to the sub-problems can be obtained within a reasonable

time frame. The K-Means clustering is implemented using PyCharm IDE and
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Algorithm 7 A Greedy Heuristic Based on Operations Prioritization

Input: All feasible operations generated by Algorithms 1-6 denoted by OperList,
with their duration denoted by tOperList

Output: A truck and robot tour covering all nodes and its completion time
1: Define S = set of nodes that can be covered by any local depot
2: for i = 1 to number of rows of OperList do
3: if OperList(i)∩S , ∅ then ▷ removes all operations from OperList

containing nodes that can be covered by local depot
4: Remove row i from OperList
5: Remove row i from tOperList
6: else ▷ determines the ratio for prioritizing operations
7: n(OperList(i)) = the number of nodes covered by operation OperList(i)

8: r(i) =


n((OperList(i))−0.5

tOperList(i)
, If OperList(i) contains the warehouse,

n((OperList(i))−1
tOperList(i)

, otherwise

9: end if
10: end for
11: while number of rows in OperList > 500 do
12: i∗ = index of the maximum value of r(i)
13: xo(i∗) = 1 ▷ operation i∗ is selected as a part of the optimal solution
14: for i = 1 to number of rows in OperList do
15: if OperList(i)∩OperList(i∗) , ∅ & length(OperList(i)) ≥ 3 then
16: Remove row i from OperList
17: Remove row i from tOperList
18: Remove row i from r
19: end if
20: end for
21: end while
22: Fix x values of selected operations to 1 in the RADP-2 model with reduced

OperList and solve using CPLEX
23: Return the final truck and robot tour and its completion time
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the Anaconda Python distribution with Python 3.8. As K-Heur necessitates exact

solutions for clusters, the more efficient RADP-1 is employed instead of RADP-2

to reduce computational times.

Algorithm 8 outlines the steps of the heuristic based on decomposition and

solution of sub-problems. We first begin by performing K-Means clustering on

our data points to decompose the problem into K clusters (line 1-3 of Algorithm 8).

Numerical experiments conducted in Section 4.4.1 revealed that exact solutions

for RADP-1 can be obtained for seven nodes within a short computational time.

Therefore, if a cluster contains more than seven nodes, we redistribute the excess

to the nearest cluster with fewer than seven elements (lines 5-10 of Algorithm 8).

The next step is to use CPLEX to solve the RADP-1 model for each cluster to find

the best combinations and sequences of servicing the nodes involved (line 12-17 of

Algorithm 8). Finally, set the x values corresponding to solutions of clusters to 1 in

the RADP-2 model and solve using CPLEX with operations containing only two

truck nodes obtained in Algorithm 1 (line 18 of Algorithm 8).

This final step will connect, in the best possible way, the solution segments

obtained for each cluster together and force the route to start and finish at the

central depot {0}.
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Algorithm 8 Heuristic Based on Decomposition (K-Heur) and re-connecting
solution segments

Input: nC,nD,nR,OT,OR,Dmax,VT,VR,h,λi j, Customer location sets X ⊆R2; all feasi-
ble operations generated by Algorithm 1 denoted by Op2, with their duration
denoted by t2.

Output: A truck and robot tour covering all nodes and its completion time
1: nmax←− 7 ▷maximum number of elements in every cluster = 7
2: Set K = ⌈ |nC+nD|

nmax
⌉ ▷ calculate the number of clusters needed

3: Perform K-Means clustering algorithm on X to decompose the problem into K
clusters, X1,X2, ...XK

4: Calculate n(Xi) = number of elements in cluster, i = 1, ...,K
5: for i = 1 to K do
6: while n(Xi) > nmax do ▷ Ensures that the number of data points in each

cluster does not exceed 7
7: Move a data point from cluster i that is nearest to the closest cluster

whose n(Xi) < nmax
8: Update n(X) of both clusters
9: end while

10: end for
11: for k = 1 to K do
12: for each xi in Xk do
13: Calculate Euclidean Distance, di, j = ∥x j−xi∥

2

14: end for
15: Call RADP-1 model to find the optimal solution of cluster, i
16: end for
17: Fix the corresponding x values of the solutions to 1 in the RADP-2 model with

two-nodes operations (Op2) prepared in Algorithm 1 and solve using CPLEX.
18: Return the final truck and robot tour and its completion time
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5.1.3 Demonstration of the Heuristic Approaches with an Example

In this section, we illustrate the solution approaches of P-Heur and K-Heur using

an example instance comprising a single local depot and 15 customers, with an

average distance of 996 meters between orders. The graphical representation of

the service area for the experiment is shown in Figure 5.1. Node 1 functions as

the distribution center, serving as both the starting and terminating point for the

truck’s route, while node 2 designates the local depot. All other nodes represent

customers.

Figure 5.1. Graphical Representation of the Service Area

5.1.3.1 Using Greedy Heuristic By Prioritizing Operations (P-Heur)

We begin the process by generating a list of all feasible operations, denoted as

OperList, following the steps outlined in Algorithms 1 - 6. To ensure that every node

within the covering range of the local depot is serviced by the depot, we remove

all operations containing nodes covered by the depot (lines 3-5 of Algorithm 7).

In the specific example presented, none of the customers fall within the local
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depot’s range. Next, we determine the node-time ratio as explained in line 8 of

Algorithm 7. Operations containing the warehouse have only one node shared with

their subsequent or preceding operation, and the total number of nodes for such

operations is determined by subtracting 0.5 from the count of their covered nodes.

In contrast, operations not involving the warehouse have both their start and end

nodes shared with their preceding and succeeding operations, respectively. For

these operations, the total number of nodes is determined by subtracting 1 from the

count of their covered nodes. Subsequently, we select the most preferred operation,

determined by the highest node-time ratio, from the list of operations (lines 12-13

of Algorithm 7). In this case, the most preferred operation encompasses truck

nodes 7, 11, and 15, along with robot nodes 3, 8, 9, and 17, as depicted in Figure

5.2 (highlighted in red). We then streamline the list of operations by removing any

operation containing nodes already covered by the selected operation (lines 14-20

of Algorithm 7). Given that the number of operations in the reduced list exceeds

500, we proceed to select the next most preferred operation from this reduced list

(lines 12-13 of Algorithm 7). The second selected operation encompasses truck

nodes 5, 6, 16, and 7, as well as robot nodes 4, 12, 13, and 14, illustrated in Figure 5.2

(highlighted in blue). Subsequently, we remove any operations from the list that

contain nodes already covered by the second selected operation. With the resulting

number of operations in the updated list falling below 500, we employ CPLEX to

solve the reduced RADP using the selected operations and the remaining ones in

OperList (line 22 of Algorithm 7). The resulting solutions are visually represented

in Figure 5.2. This approach allows us to determine the solution to the example in

less than 10 seconds.
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Figure 5.2. P-Heur Solution With Objective Value = 1.4353

5.1.3.2 Using The Clustering Approach (K-Heur)

Based on the computational experiments conducted in Section 4.4, optimal solutions

for instances with up to 8 nodes can be solved reasonably fast for RADP-1 using

CPLEX. Therefore, in our approach, we set the maximum number of nodes in

each cluster to 7 (Line 1 of Algorithm 8). We then calculate the number of clusters

required by dividing the total number of nodes by 7 and rounding up the result

to the nearest integer (Line 2 of Algorithm 8). Given that there are 15 customers

and 1 local depot in this particular scenario, the number of clusters is calculated as

3. We proceed by performing the K-Means clustering algorithm on the problem

to decompose it into 3 clusters (Line 3 of Algorithm 8). The composition of these

clusters is as follows: Cluster 1 = {4, 5, 10, 13, 14}, Cluster 2 = {6, 11, 12, 16} and

Cluster 3 = {2, 3, 7, 8, 9, 15, 17} as illustrated in Figure 5.3. The mark "x" in the

figure indicates the centroid (centre point) of each cluster. For each of the three
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clusters, we calculate the Euclidean distance between every pair of data points,

and subsequently, the RADP-1 model is utilized to find the optimal solutions

(Lines 12-17 of Algorithm 8). The solutions for each cluster are presented in Figure

5.4a. In the final step, we set the corresponding x-values of all cluster solutions

to 1 in the RADP-2 model and solve it with two-node operations as outlined in

Algorithm 3 (Line 15 of Algorithm 8). The complete solution is presented in Figure

5.4b. Although this approach necessitates exact solutions for three independent

clusters, the solution time is remarkably quick, taking only a few seconds due to

the utilization of RADP-1 in determining the optimal solutions of the clusters.
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Figure 5.4. K-Heur Solution With Objective Value = 1.4997

5.2 Results

In this section, we present a comprehensive overview of the results derived

from our numerical experiments. To evaluate the performance of the heuristic,

we conducted a series of experiments utilizing both the Mixed Integer Linear

Programming (MILP) model (RADP-2) and the heuristic approaches outlined in

the preceding section. Furthermore, we expand our analysis to encompass larger

instances, providing results for the heuristics and drawing comparisons between

the two approaches. The implementation of these heuristics is carried out in

MATLAB, and their solutions are obtained using CPLEX.

5.2.1 MILP and Greedy Heuristics Solutions of the RADP

In this subsection, we conduct experiments using the MILP model and the Greedy

heuristic approach to test the performance of the heuristic. Similar to section

4.4.1, the experiments are categorized into three groups: The first group contains

instances with an average distance between orders ranging from 420m to 850m, the

second group from 1100m to 2600m, and the third group from 3000m to 4500m. Our
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experiments consist of 6 customers and 1 local depot; other parameters remain the

same as discussed in Section 4.4.1. The results of these experiments are presented

in Tables 5.1, 5.2, and 5.3 for the first, second, and third groups, respectively.

Column 2 of these tables displays the solution for the Traveling Salesman

Problem (TSP), where robots are not used, but local depots are employed alongside

the truck. Columns 3 to 8 represent the solution, computation time, percentage

savings over TSP, the number of customers served by the local depot, by robots,

and by the truck, respectively, for the MILP model (RADP-2). Columns 9 to 14

provide the same information for the Operations Prioritization Heuristic (P-Heur),

as discussed in the previous section. The last column displays the optimality

gap between the Prioritization Heuristic and the MILP (RADP-2) model which

measures the performance of the heuristic. The gap is manually calculated using

the formula:

(θPHeur−θRADP−2)
θRADP−2

∗100 (5.1)

Where:

• θRADP−2 is optimum objective value of the RADP-2 model.

• θPHeur is the objective value of the P-Heur.

As previously discussed in Section 3.4.1, smaller optimality gap indicates that the

current solution is closer to being optimal. It is also noted from Section 4.4.1 that

the RADP-2 model effectively handles problems with up to 7 nodes, including the

local depot, within a two-hour computation time window. The solution time is

closely related to the average distance between customers. Specifically, instances

in the first group require longer computation times due to a higher number
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of feasible robot operations compared to the second and third groups, where

robot travel between customers is often infeasible, considering the limited travel

distance of robots. Savings are also more significant in the first and second groups,

as robots are employed more intensively. With the P-Heur heuristic approach,

solutions matching the optimum RADP-2 results were identified in 5 out of the 30

experiments (experiment 1, 4, and 6 of Table 5.1, experiment 6 of Table 5.2, and

experiment 2 of Table 5.3). Remarkably, these optimal solutions were found in less

than a second, while the RADP-2 took hours. However, notable sub-optimality

gaps were observed in some of these small-scale instances compared to the RADP-

2-optimal solutions. Nevertheless, it delivered significant savings compared to

the TSP in the majority of experiments, with the highest level of savings (35.26%)

achieved in experiment 5 of Table 5.1 and an optimality gap of (2.90%) compared

to the optimum RADP-2 solution.

Robots were extensively utilized in experiments 5 of Table 5.1, experiment 8 of

Table 5.2 and experiment 2 of Table 5.3, yielding solutions with small optimality

gaps compared to the optimum RADP-2 solutions. More customers are served

by trucks in the experiments presented in Table 5.3 than in Table 5.2 and Table

5.1. This could be attributed to a larger spacing between customers, leading to

numerous infeasible robot operations.

Figure 5.5 provides a graphical representation of Experiment 4 in Table 5.1,

with sub-figures (a), (b), and (c) displaying TSP, RADP-2, and P-Heur solutions,

respectively. In this specific example, the spacing between customers and the local

depot is close, resulting in several customers (3, 4, 5, and 8) being serviced from

the local depot. Only one customer is served by the robot using both RADP-2 and
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P-Heur, and the majority of customers are served from the local depot, leading to

low savings (12.06%). The heuristic solution initiates by selecting the truck route

segment 1-2 and eventually converges to a solution that matches the optimum

RADP-2 solution. Figure 5.6 provides a graphical representation of Experiment

5 in Table 5.1, with sub-figures (a), (b), and (c) displaying the TSP, RADP-2, and

P-Heur solutions, respectively. In the RADP-2 solution, the truck route follows

the sequence 1-8-5-6-1, and the robots are launched at customer node 8 to follow

the sequences 8-3-4-6 and 8-7-6. Despite the customer at node 7 being within the

covering range of the local depot (node 2), it is better served by the robot than by

the truck visiting the local depot. The heuristic solution initiates by selecting the

operation containing the truck route segment 2-5-6, along with robot operations

2-4-8-6 and 2-3-6 as part of its solution. Subsequently, the solver determines the

operations that best connect to the selected operation to complete the tour.
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(a) TSP (Optimum Solution = 0.4683)

(b) RADP-2 (Optimum Solution = 0.4118)

(c) P-Heur (Solution = 0.4118)

Figure 5.5. Solution of Experiment 4 of Ta-
ble 5.1

(a) TSP (Optimum Solution = 0.8040)

(b) RADP-2 (Optimum Solution = 0.5054)

(c) P-Heur (Solution = 0.5205)

Figure 5.6. Solution of Experiment 5 of Ta-
ble 5.1

The largest optimality gap (22.83%) is observed in Experiment 10 of Table

5.1. The graphical representation of the solution for this experiment is provided

in Figure 5.7, with sub-figures (a), (b), and (c) displaying the TSP, RADP-2, and

P-Heur solutions, respectively. In the RADP-2 solution, the truck route follows

the sequence 1-3-5-6-1, and the robots are launched at customer node 3 to follow

routes 3-8-6 and 3-7-4-6, after which they are collected at node 6. In contrast,

P-Heur begins by selecting the operation with the truck route 4-5 and robot routes
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4-6-5 and 4-7-5. Unlike RADP-2, which considers the best possible combination

of operations, P-Heur starts by choosing the least expensive operation without

considering the composition of potential operations that make up the tour.

Similarly, the least optimality gap (0.63%) is observed in Experiment 8 of

Table 5.2. Figure 5.8 provides the graphical representation of the solution, with

sub-figures (a), (b), and (c) displaying the TSP, RADP-2, and P-Heur solutions,

respectively. The RADP-2 and P-Heur solutions are highly comparable. The major

difference lies in the waiting time of the truck at node 3; the truck waits longer in

the P-Heur solution due to the robot traveling a greater distance along the sequence

2-7-6-3 compared to the RADP-2 solution where the same robot travels a shorter

distance along the sequence 4-7-6-3. Additionally, in P-Heur, any customer within

the local depot’s covering range must be served from the local depot without

considering the cost of the tour, whereas in the RADP-2, a depot is only used when

it provides the best solution.
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(a) TSP (Optimum Solution = 0.8156)

(b) RADP-2 (Optimum Solution = 0.5054)

(c) P-Heur (Solution = 0.6549)

Figure 5.7. Solution of Experiment 10 of
Table 5.1

(a) TSP (Optimum Solution = 1.1521)

(b) RADP-2 (Optimum Solution = 0.8649)

(c) P-Heur (Solution = 0.8704)

Figure 5.8. Solution of Experiment 8 of Ta-
ble 5.2

5.2.2 P-Heur and K-Heur Solutions for Larger Instances

In this subsection, we present the solutions for RADP-1 and RADP-2 models

in larger instances using the two heuristic approaches discussed in Section 5.1.

The experiments were conducted with 17 customers, 1 local depot, and 2 robots,

while maintaining other parameters as discussed in Section 4.4.1. The instances

are categorized into three groups, each comprising 10 instances. The first group
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includes instances with average distances between orders ranging from 800m to

1100m, the second group from 2400m to 3200m, and the third group from 3500m

to 5000m. The results of these experiments are detailed in Tables 5.4, 5.5, and

5.6 for the first, second, and third groups, respectively. For each instance, we

provide information on the total working time of the truck, computation time,

the number of nodes served by the depot, the number of nodes served by robots,

and the number of nodes served by the truck for both P-Heur and K-Heur. This

comprehensive analysis offers insights into the performance and efficiency of the

heuristic approaches across varied instances and distance scenarios.

Table 5.4: P-Heur and K-Heur Solutions, Av. Dist. = (800m - 1100m)

Exp
P-Heur Solution K-Heur Solution

Obj. Comp. Service Facility Obj. Comp. Service Facility

(hrs) Time(s) Dep. Rob. Tru. (hrs) Time(s) Dep. Rob. Tru.

1 1.0989 6.12 2 9 6 1.2059 53.23 0 9 8
2 1.0831 23.75 4 7 6 1.2091 67.12 3 9 5
3 1.1098 193.57 6 5 6 1.1675 336.01 4 7 6
4 0.9088 132.69 6 6 5 1.1649 209.95 4 6 7
5 1.0888 78.71 4 7 6 1.0922 71.29 4 7 6
6 0.9756 637.75 6 6 5 1.0100 24.38 6 6 5
7 0.9777 136.23 4 8 5 0.9841 53.82 4 8 5
8 1.1418 4.82 2 9 6 1.2147 51.94 2 9 6
9 1.0447 263.44 4 7 6 1.0791 67.33 4 7 6
10 0.9553 295.70 4 8 5 1.1199 36.03 4 8 5

P-Heur consistently demonstrates superior solutions across all experiments

conducted on instances belonging to the first group, as well as in four instances

from the second group (Exp 1, 4, 7, and 8). However, it exhibits less effectiveness

in seven instances within the third group. A noteworthy trend is observed: K-

Heur tends to perform less efficiently in scenarios with shorter average distances

between orders. In these situations, there is a higher likelihood of data points that
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Table 5.5: P-Heur and K-Heur Solutions, Av. Dist. = (2400m - 3200m)

Exp
P-Heur Solution K-Heur Solution

Obj. Comp. Service Facility Obj. Comp. Service Facility

(hrs) Time(s) Dep. Rob. Tru. (hrs) Time(s) Dep. Rob. Tru.

1 1.8590 9.40 2 8 7 1.8687 54.10 0 8 9
2 1.7839 54.77 2 6 9 1.7717 203.72 2 7 8
3 1.7049 507.14 3 6 8 1.6778 105.39 3 6 8
4 1.6598 273.68 3 7 7 1.8574 91.86 0 8 9
5 1.9211 53.23 2 7 8 1.8395 282.85 0 8 9
6 2.0285 23.49 2 6 9 1.9039 71.05 0 8 9
7 1.6975 13.30 2 8 7 1.8241 209.66 2 7 8
8 1.5025 419.28 3 8 6 1.7649 58.91 0 9 8
9 1.8965 67.52 3 6 8 1.8260 50.90 3 5 9

10 1.8891 51.84 2 7 8 1.8326 84.04 2 6 9

Table 5.6: P-Heur and K-Heur Solutions, Av. Dist. = (3500m - 5000m)

Exp
P-Heur Solution K-Heur Solution

Obj. Comp. Service Facility Obj. Comp. Service Facility

(hrs) Time(s) Dep. Rob. Tru. (hrs) Time(s) Dep. Rob. Tru.

1 2.3142 1.20 2 6 9 2.2572 69.66 2 6 9
2 2.4395 17.71 2 6 9 2.2670 54.77 2 6 9
3 2.6173 737.51 1 5 11 2.4598 114.24 1 7 9
4 2.3599 11.53 2 5 10 2.2888 64.87 1 8 8
5 2.2848 18.26 2 6 9 2.3193 54.25 0 8 9
6 2.2978 40.47 3 5 9 2.4190 61.58 0 7 10
7 2.6843 356.20 1 3 13 2.4974 36.82 0 7 10
8 2.2647 407.98 2 7 8 2.0941 48.98 2 6 9
9 2.2889 1430.11 3 6 8 2.3306 99.03 2 7 8

10 2.4943 828.20 2 6 9 2.3501 19.58 0 7 10
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could potentially yield improved solutions being part of different clusters. This

observation suggests that K-Heur is better suited for scenarios characterized by

higher average distances between orders. Despite differences in solutions, both

P-Heur and K-Heur demonstrate faster computational times, efficiently solving

problems for which solutions cannot be found for several hours using commercial

solvers. Occasionally, P-Heur may have higher computational times, possibly due

to the heuristic selecting operations covering only a few nodes, resulting in a large

number of operations in the end that may require longer time to solve. Conversely,

K-Heur is solved reasonably fast, owing to the efficiency of RADP-1.

The numerical solutions further reveal that K-Heur does not utilize local depots

in 10 out of the 30 experiments, even in instances where multiple nodes fall within

the coverage range of the local depot. This non utilization of local depots occurs

because K-Heur only considers feasible operations within a cluster containing the

local depot, and the optimal combination of operations within that cluster may

not necessarily involve a visit to the local depot.

In addition, robots are more extensively utilized in instances characterized by

smaller average distances between orders compared to those with larger spacing.

As the average distance between orders increases, the utilization of robots and

local depots tends to decrease. This decrease is attributed to the limited coverage

range of the local depot and the limited travel distance of the robots. In scenarios

with larger average distances between orders, the operational efficiency of robots

and local depots diminishes, highlighting the impact of spatial factors on their

effective utilization in logistics or operational contexts.
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(a) P-Heur Solution (Obj. Val. = 1.0989)

(b) K-Heur Solution (Obj. Val. = 1.2059)

Figure 5.9. K-Heur and P-Heur Solutions of Experiment 1 of Table 5.4

Figure 5.9 provides a graphical representation of experiment 1 from Table 5.4,

with sub-figures (a) and (b) displaying the solutions obtained using P-Heur and

K-Heur, respectively. In the P-Heur solution, the truck route follows the sequence

1-5-13-8-7-10-2-14-1, and links 8-7-10 constitute the truck route for the first selected
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operation involving robot nodes 6, 18, 11, and 19. The second selected operation

contains truck link 5-13-8, which is associated with robot nodes 3, 9, 12, and 17.

Notably, customers at nodes 15 and 16 fall within the coverage range of the local

depot (node 2) and are serviced by the depot. In contrast, for K-Heur, solutions are

determined for each cluster independently, without considering the problem as a

whole. Consequently, despite being within the coverage range of the local depot,

nodes 15 and 16 are served by a robot in cluster 1, considered the optimal solution

for that specific cluster. The two solutions in this scenario are entirely different,

with P-Heur providing a better solution within a few seconds.

Figure 5.10 illustrates another example, showcasing the solution of experiment

8 from Table 5.5. Sub-figures (a) and (b) display solutions for P-Heur and K-Heur,

respectively. In this specific instance, the average distance between customers is

larger than the instance discussed earlier (Exp 1 of Table 5.4). For P-Heur, the truck

route follows the sequence 1-2-18-3-16-9-19-11-1. Nodes 10, 12, and 14 receive

service from the local depot. The first selected operation involves the truck link

2-18-3-16 with robot nodes 5, 7, 8, and 17. The second selected operation contains

the truck link 16-9-19-11 with robot nodes 4, 13, 6, and 15. It is evident that the

truck link 9-19-11 is considered as an inferior segment of the solution. For K-Heur,

the truck route follows 1-11-4-17-6-15-7-2-19-12-1. Although nodes 10, 12, and 14

fall within the coverage range of the local depot, only 14 is served by the local

depot, while 10 and 12 are served by the robot and truck, respectively. Similarly,

P-Heur gives a better solution, but has higher computational time compared to

K-Heur.
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(a) P-Heur Solution (Obj. Val. = 1.5025)

(b) K-Heur Solution (Obj. Val. = 1.7469)

Figure 5.10. K-Heur and P-Heur Solutions of Experiment 8 of Table 5.5

Finally, Figure 5.11 presents the solution for experiment 6 from Table 5.6, with

sub-figures (a) and (b) depicting the solutions obtained by P-Heur and K-Heur,

respectively. In the P-Heur solution, the truck follows the route 1-2-18-9-8-11-13-

14-7-3-15-1. The first selected operation based on the heuristic involves the truck
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(a) P-Heur Solution (Obj. Val. = 2.2978)

(b) K-Heur Solution (Obj. Val. = 2.4190)

Figure 5.11. K-Heur and P-Heur Solutions of Experiment 6 of Table 5.6

sequence 8-11-13 with robot nodes 6, 12 and 17.The second selected operation

follows the truck sequence 13-14-7-3-15 with robot nodes 4 and 16. Customers

at nodes 5, 10, and 19 are served by the local depot. For K-Heur, the truck route

follows the sequence 1-5-9-19-6-8-17-3-11-16-7-1. The truck and the robots are used
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simultaneously in each of the three clusters. Unlike P-Heur, the local depot is not

used to service any customer. In this case, though with larger average distance

between orders, P-Heur provides a better solution than K-Heur.

5.3 Summary

Heuristic approaches, specifically P-Heur and K-Heur, have been proposed to

expedite the solution of practical-sized problems. P-Heur, a greedy heuristic,

prioritizes operations based on the ’time-nodes ratio,’ primarily working with

RADP-2. In contrast, K-Heur employs a decomposition-based strategy: it clusters

nodes using K-Means, determines optimal routes within each cluster via RADP-1,

and initializes a reduced TSP with RADP-2 to link the optimal route segments.

The performance of P-Heur is assessed by comparing its solutions with the

MILP solutions for instances of size 7 (including the local depot). In 5 out of the 30

experiments, P-Heur yields identical results to MILP, while in the remaining cases,

there are small to moderate optimality gaps.

The evaluation of heuristic approaches on larger instances revealed that, in

general, P-Heur outperformed K-Heur, especially in scenarios with shorter average

distances between orders because K-Heur does not allow orders that are not far

away to be grouped together. On the contrary, K-Heur showed superiority in cases

characterized by larger average distances between orders. Importantly, P-Heur

achieves less computational time in scenarios where the operations selected by

the heuristic cover many nodes, leading to the removal of numerous operations

from the list of operations under consideration. On the other hand, in scenarios
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where the operations selected by P-Heur cover only a few nodes, it results in a

larger pool of operations from which the model needs to make selections. For

the K-Heur, the operational times are less because the solution of the clusters are

found using RADP-1 which is more efficient than RADP-2 used in P-Heur.
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Conclusion

The transformative impact of online shopping, accelerated by the global COVID-19

pandemic, has reshaped the landscape of retail industries, particularly in developed

countries. This shift, from traditional in-store shopping to the virtual realm, has

not only boosted sales for retail companies but has also necessitated innovative

solutions for last-mile deliveries. In this thesis, we explored two significant

dimensions of this evolving paradigm: the integration of drones and robots into

truck delivery systems and the optimization of delivery schedules involving them.

Delivery drones and robots serve as assisted delivery vehicles, complementing

trucks due to their limited payload capacity and travel distance. In the majority

of studies available in the literature, drones depart from and return to the truck

at customer locations or depots after servicing customers. However, there are

few studies that consider drones departing from or joining a truck while the

truck is in transit along its route. Unlike existing approaches that rely on the

optimal (sub-optimal) Traveling Salesman Problem (TSP) to design en-route

operations, our novel approach explores the maximum cover range of nodes and

121
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links serviced by drones as trucks traverse their routes. Three Mixed-Integer Linear

Programming (MILP) models, derived from the Covering Salesman Problem (CSP),

were introduced, each catering to different sets of drone operations.

The contributions of our study on drone-assisted deliveries beyond existing

methodologies are:

• Innovative Approach: Unlike prior en-route operation models, which

build upon the optimal TSP, our method starts by exploring the maximum

cover range of nodes and links that can be serviced by a drone when the

corresponding node or link is travelled by a truck, offering a fresh perspective.

• Model Development: Three MILP models, CSPNS-D-1, CSPNS-D-2, and

CSPNS-D-3 addressing various drone operation scenarios, were developed

and compared, providing managerial insights.

• Heuristic Enhancement: To tackle larger instances efficiently, a Link-removal

heuristic was proposed, by strategically removing links unlikely to be chosen

as part of the truck route, this heuristic significantly reduces solution times

without compromising quality. Results demonstrate its effectiveness in

obtaining better solutions for larger instances.

Numerical experiments conducted on both randomly generated and benchmark

instances demonstrated the effectiveness of our approach, showing substantial

improvements in delivery efficiency. For the random instances, we conducted 10

experiments of varying sizes up to a maximum of 40 orders, except for the 40-order

scenario where optimum solutions for CSPNSD-3 and CSPNS-D-2 were not found.

CSPNSD-3 consistently outperformed CSPNSD-2 and CSPNSD-1, aligning with
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our expectations as it considers a broader covering range in the model. In the

benchmark datasets, comprising 10 and 20 orders, each with 30 instances sourced

from [61], results indicated that CSPNS-D-3, although computationally expensive

compared to CSPNS-D-2 and CSPNS-D-1, consistently outperformed or at least

equaled solutions by the latter two. Average savings were more pronounced

in CSPNS-D-3 than in CSPNS-D-2 and CSPNS-D-1. Moreover, in the majority

of experiments, CSPNSD-3 and CSPNS-D-2 produced identical solutions since

all nodes that could potentially be covered by the node operation could also be

covered by the Link-Node-Link Operation without incurring extra waiting time.

The Covering Salesman Problem (CSP) is inherently NP-hard, and our extended

problem inherits this complexity. Solutions for larger instances necessitate heuristic

approaches. Therefore, we propose the link removal heuristic, which involves

eliminating links unlikely to be part of the truck route, thereby reducing the

potential number of branches in the MILP solution process. This heuristic was

applied to benchmark instances with 50 orders. Before its application, obtaining

feasible solutions for 50 orders with CSPNS-D-2 and CSPNS-D-3 within 2 hours

was challenging, with the CPLEX pre-processing stage unable to complete in

that time frame. However, after applying the heuristic, we successfully obtained

feasible solutions for CSPNSD-2 and CSPNS-D-3, which, in some cases, surpassed

the optimum solution with CSPNS-D-1.

Lastly, it is well-established that using a drone with a large covering distance

(dmax) in a dense service area allows for the efficient fulfillment of more orders,

ultimately reducing delivery time. Conversely, when employing a drone with

a small dmax in a sparse service area, only a few or no orders can be served by
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the drone, potentially leading to higher delivery times. We simulated scenarios

with different drone covering ranges (dmax) and order densities to extract insights

from the numerical results, offering valuable guidance for future designs and the

development of drones for home delivery.

In Robot-Assisted delivery systems, two existing frameworks are commonly

used in existing studies. One involves using a truck to transport customer

shipments to localized robot hubs for onward delivery to customers by localized

robots, while the other entails transporting both customer shipments and robots,

releasing the robots to serve customers, and then rejoining the truck. Each of these

setups has its advantages. In our Robot-Assisted Delivery Problem (RADP), we

propose a framework that combines the standard truck, robot (transported on

truck), and local depot into one model. This integrated framework allows for the

simultaneous service of customers by all facilities. The primary aim is to optimize

the delivery schedules of all facilities to minimize the total work span of trucks.

The contributions of the study on the Robot-Assisted Delivery Problem include:

• Innovative Framework: By merging the concepts of using local depots

and standard trucks carrying robots and shipments, RADP addresses a

significant gap in the literature, presenting a comprehensive model for

optimized delivery scheduling.

• Model Development: Two distinct but consistent MILP models, RADP-1

and RADP-2, are introduced.

• Heuristic Solutions: Two heuristic approaches, P-Heur and K-Heur, based

on operation prioritization and decomposition, respectively, are proposed.
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Numerical solutions revealed that RADP-1 can solve up to 8 nodes optimally,

whereas RADP-2 can only solve 7 nodes optimally. While the two models are

consistent, RADP-1 tends to give better results when the optimum solution

involves launching robots at the same node and collecting them at different nodes

or launching at different nodes and collecting them at the same node. This is due

to RADP-2 operations only considering both launching and collecting of robots at

the same node. Additionally, RADP-1 is consistently easier to solve than RADP-2

due to the large number of operations in RADP-2.

Due to the computational complexity of RADP models, heuristic approaches

(P-Heur & K-Heur) were proposed to accelerate solutions for larger instances.

Experiments on randomly generated data with a total of 7 nodes tested the

performance of the prioritization heuristic (P-Heur) on RADP-2. Results show that

the heuristic matches the MILP solutions in 5 out of the 30 experiments, with less

than a 10% optimality gap in 18 experiments and a greater than 10% optimality

gap in 7 experiments. These solutions were found in less than a second. Finally,

the two heuristic approaches were applied to larger instances, producing solutions

in a few seconds that would otherwise be impossible to find with commercial

solver like CPLEX.
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Appendix A

To proof Proposition 1, we need to proof that “Any point P that is on the boundary

of the ellipse defined by foci (E,B) is inside the ellipse defined by (D,B) where

DB = dmax/α, as shown in Figure 1.

D BE
X

Y

P

Figure 1. Ellipse defined by foci (E,B) enclosed by ellipse defined foci (D,B)

Proof

Let λ (0 < λ < 1) be the ratio between EB and DB, we have EB = λDB =

λdmax/α. EB is the distance between the foci of ellipse E1(E,B), so we have

c1 = EB/2 = λdmax/2α. Let P be a point on the boundary of E1(E,B). To allow

the drone to synchronise with the truck we must have EP+PB = λdmax, so the
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semimajor axis of E1(E,B) is given by a1 = λdmax/2, Therefore the semiminor axis

b1 =
√

a2
1− c2

1 =
λdmax

2α

√

α2−1. Placing the ellipse E1(E,B) into the coordinate system,

centred at the origin, a point P on its boundary must satisfy the equation:

x2

(λ
2d2

max
4 )
+

y2

(λ
2d2

max(α2−1)
4α2 )

= 1 (1)

On the other hand, the ellipse E2(D,B) has c2 = DB/2 = dmax/2α, a2 = dmax/2,

b2 =
√

a2
2− c2

2 =
dmax
2α

√

α2−1, and centred at ((λ−1)dmax/2α,0) in the same coordinate

system. Therefore our aim is to show that P satisfies the equation:

(x− (λ−1)dmax
2α ))2

(d2
max
4 )

+
y2

(d2
max(α2−1)

4α2 )
≤ 1 (2)

Replacing y2

(
d2
max(α2−1)

4α2 )
by that from equation (18),

(x− (λ−1)dmax
2α ))2

(d2
max
4 )

+
y2

(d2
max(α2−1)

4α2 )
(3)

=
(x− (λ−1)dmax

2α ))2

(d2
max
4 )

+λ2
−

x2

(d2
max
4 )

(4)

=
x2
−2x(λ−1)dmax

2α + (λ−1)2(dmax
2α )2+

λ2d2
max

4 −x2

(d2
max
4 )

(5)

=
−2x(λ−1)dmax

2α + (λ−1)2(dmax
2α )2+

λ2d2
max

4

(d2
max
4 )

(6)

As λ < 1, so the coefficient −2(λ− 1)dmax
2α > 0. Therefore the equation 6 is

increasing with x. P is a point on ellipse E1(E,B), so −λdmax/2 ≤ x ≤ λdmax/2. So

we have:
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≤
−2λdmax

2 (λ−1)dmax
2α + (λ−1)2(dmax

2α )2+
λ2d2

max
4

(d2
max
4 )

(7)

=
−λ(λ−1)d2

max
2α + (λ−1)2(dmax

2α )2+
λ2d2

max
4

(d2
max
4 )

(8)

=
((λ−1) 1

α −λ)2 d2
max
4

(d2
max
4 )

(9)

= ((λ−1)
1
α
−λ)2 (10)

= ((1−λ)
1
α
+λ)2 (11)

≤ ((1−λ)+λ)2 (12)

= 1 (13)

So we proved that P is inside the ellipse E2(D,B).



Appendix B

To proof proposition 2, let P be the "highest" point that can be covered by Link-Node

Operation from link AB. We aim to prove that P is inside the ellipse with foci DE

and semi-major axis , a = 1
2dmax, i.e the covering area of Link-Node-Link Operation

with links AB and BC.

F

D

O

E

C

G

B

P

A

Figure 2. Ellipse with foci (F,B)

Proof

Let θ denote the angle between links AB and BC, with 0≤ θ≤π. (The other case

is related to the discussion here). Let FP = r1 and PB = r2, as P is on ellipse, E with

foci (F,B) , then by defination we have r1+ r2 = dmax. PG = r2 sin
(
θ
2

)
, BG = r2 cos

(
θ
2

)
,
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FB = dmax
α .

So, for the right angle triangle PGF:

r2
1 = r2

2 sin2
(
θ
2

)
+

(
dmax

α
+ r2 cos

(
θ
2

))2

(1)
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(4)
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θ
2
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+2α2

= PB. (5)

So, if we set point O on DE as the origin, P is
(
0, dmax

2α cos
(
θ
2

)
+

(α2
−1)dmax

2αcos(θ2 )+2α2

)
. Now

we prove that P is inside ellipse centred at O. For the ellipse, a= dmax
2 , c= dmax

2α sin
(
θ
2

)
,

and b =
√

d2
max
4 −

d2
max

4α2 sin2
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θ
2
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=
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2
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So, the ellipse is:

x2

d2
max
4

+
y2

d2
max

4α2

(
α2− sin2

(
θ
2

)) = 1 (7)

Substituting P we have:
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Appendix C

Table 1: Statistical Comparison of CSPNS-D’s Results on Benchmark instances with 10
orders

Instance

TSP Deliv-
ery

Delivery Time (s) No. of drones Used Savings over TSP(%)

time (s) CSPNSD-1 CSPNSD-2 CSPNSD-3 CSPNSD-1 CSPNSD-2 CSPNSD-3 CSPNSD-1 CSPNSD-2 CSPNSD-3

Uniform_10_1 45.18 32.99 17.39 17.39 4 7 7 26.97 61.51 61.51

Uniform_10_2 45.58 34.96 13.96 13.96 5 6 6 23.31 69.37 69.37

Uniform_10_3 42.70 31.14 4.68 4.68 6 4 4 27.06 89.03 89.03

Uniform_10_4 46.66 31.20 15.36 15.36 6 6 6 33.13 67.08 67.08

Uniform_10_5 50.71 33.71 19.84 19.84 4 6 6 33.52 60.88 60.88

Uniform_10_6 48.40 29.52 13.49 13.49 7 5 5 39.00 72.12 72.12

Uniform_10_7 38.34 27.60 7.70 7.70 6 5 5 28.01 79.93 79.93

Uniform_10_8 45.33 38.93 15.35 15.35 5 5 5 14.12 66.14 66.14

Uniform_10_9 52.79 38.57 16.66 16.66 5 6 6 26.93 68.44 68.44

Uniform_10_10 42.04 33.23 16.09 16.09 6 5 5 20.94 61.73 61.73

Single_Center_10_1 65.86 48.87 28.18 28.18 7 5 5 25.79 57.21 57.21

Single_Center_10_2 58.42 37.87 34.39 34.39 4 5 5 35.19 41.14 41.14

Single_Center_10_3 76.57 62.41 27.09 27.09 4 4 4 18.49 64.62 64.62

Single_Center_10_4 54.75 48.62 13.49 13.49 2 5 5 11.20 75.36 75.36

Single_Center_10_5 80.50 48.11 9.45 9.45 4 5 5 40.23 88.26 88.26

Single_Center_10_6 62.46 42.19 29.17 29.17 5 4 4 32.46 53.30 53.30

Single_Center_10_7 79.83 59.50 37.16 37.16 4 5 5 25.46 53.45 53.45

Single_Center_10_8 79.82 67.39 44.00 44.00 4 5 5 15.58 44.88 44.88

Single_Center_10_9 57.56 39.96 16.53 16.53 3 5 5 30.57 71.28 71.28

Single_Center_10_10 54.75 48.62 13.49 13.49 2 6 6 11.20 75.36 75.36

Double_Center_10_1 92.70 74.34 64.21 56.47 3 4 3 19.80 30.73 39.08

Double_Center_10_2 71.12 45.80 45.69 45.69 6 7 7 35.61 35.76 35.76

Double_Center_10_3 119.69 105.83 100.98 87.96 3 4 5 11.58 15.64 26.51

Double_Center_10_4 89.52 75.07 59.48 59.48 3 4 4 16.14 33.55 33.55

Double_Center_10_5 136.70 134.47 126.39 126.39 3 2 2 1.63 7.54 7.54

Double_Center_10_6 100.72 93.16 87.25 87.25 4 4 4 7.51 13.37 13.37

Double_Center_10_7 113.09 108.23 84.21 80.61 5 5 3 4.30 25.54 28.73

Double_Center_10_8 116.49 110.18 101.05 96.48 4 4 4 5.42 13.26 17.18

Double_Center_10_9 126.33 117.82 99.52 92.66 3 2 2 6.74 21.22 26.65

Double_Center_10_10 131.23 106.87 93.41 93.41 3 2 2 18.56 28.82 28.82

Average Savings Over TSP 21.55 51.55 52.61
Min 1.63 7.54 7.54
Max 40.23 89.03 89.03
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Table 2: Statistical Comparison of CSPNS-D’s Results on Benchmark instances with 20
orders

Instance

TSP De-
livery

Delivery Time No. of drones Used Savings over TSP

time (s) CSPNSD-1 CSPNSD-2 CSPNSD-3 CSPNSD-1 CSPNSD-2 CSPNSD-3 CSPNSD-1 CSPNSD-2 CSPNSD-3

Uniform_20_1 106.87 66.06 44.74 44.74 8 7 7 38.19 58.14 58.14

Uniform_20_2 112.70 76.48 57.12 57.12 7 11 11 32.14 49.32 49.32

Uniform_20_3 118.35 69.93 64.36 64.36 8 7 7 40.91 45.62 45.62

Uniform_20_4 110.83 71.22 60.24 60.24 7 8 8 35.74 45.65 45.65

Uniform_20_5 119.65 81.54 62.11 62.11 8 7 7 31.85 48.10 48.10

Uniform_20_6 130.93 89.96 69.23 69.23 7 8 8 31.29 47.13 47.13

Uniform_20_7 117.48 79.60 68.97 68.97 5 7 7 32.25 41.29 41.29

Uniform_20_8 130.96 82.54 59.40 59.40 7 7 6 36.97 54.64 54.64

Uniform_20_9 114.13 68.76 51.47 51.47 8 10 10 39.75 54.91 54.91

Uniform_20_10 127.00 83.58 65.79 65.79 6 6 6 34.19 48.20 48.20

Single_Center_20_1 177.34 132.13 124.73 124.73 6 7 7 25.50 29.67 29.67

Single_Center_20_2 162.05 129.27 98.40 98.40 9 7 5 20.23 39.28 39.28

Single_Center_20_3 223.44 167.71 164.31 164.31 4 7 7 24.94 26.46 26.46

Single_Center_20_4 189.71 152.17 150.11 150.11 10 8 8 19.79 20.87 20.87

Single_Center_20_5 192.92 152.95 136.51 130.36 5 5 5 20.72 29.24 32.43

Single_Center_20_6 148.43 108.65 92.38 92.38 8 7 4 26.80 37.76 37.76

Single_Center_20_7 170.63 135.51 118.50 118.50 8 7 7 20.59 30.55 30.55

Single_Center_20_8 178.74 144.17 126.24 126.24 9 7 9 19.35 29.37 29.37

Single_Center_20_9 213.28 177.83 177.57 177.57 5 4 4 16.62 16.74 16.74

Single_Center_20_10 155.57 115.40 91.19 91.19 6 4 4 25.82 41.38 41.38

Double_Center_20_1 265.79 239.79 229.74 227.17 3 3 3 9.78 13.56 14.53

Double_Center_20_2 250.53 212.73 212.73 212.73 7 7 7 15.09 15.09 15.09

Double_Center_20_3 294.39 268.85 263.67 263.67 4 4 4 8.67 10.43 10.43

Double_Center_20_4 336.34 296.95 296.35 296.35 5 5 3 11.71 11.89 11.89

Double_Center_20_5 227.25 177.16 158.70 158.70 5 5 5 22.04 30.17 30.17

Double_Center_20_6 226.99 196.74 190.73 190.73 9 4 4 13.33 15.97 15.97

Double_Center_20_7 237.38 202.25 189.82 189.82 5 4 4 14.80 20.04 20.04

Double_Center_20_8 224.30 183.04 137.19 137.19 6 7 7 18.39 38.84 38.84

Double_Center_20_9 232.12 183.81 166.21 166.21 5 6 6 20.81 28.39 28.39

Double_Center_20_10 254.43 204.82 202.85 188.10 4 4 6 19.50 20.27 26.07

Average Savings Over TSP 24.26 33.30 33.63
Min 8.67 10.43 10.43
Max 40.91 58.14 58.14
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