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ABSTRACT While deep learning and backpropagation continue to dominate the field of machine learning
in terms of benchmarks and versatility, recent neuroscientific advances shed light on more biologically
plausible approaches. Spiking neural networks (SNNs), modelled after action potential dynamics, offer
inherent time sensitivity and more efficiency in terms of performance to complexity. While investigating
paradigms to support such alternatives, we attempt to answer whether reservoir computing can benefit from a
spiking network based implementationwith elements of biologically realisticmodels. This is done by varying
both hyper-parameters and reservoir generation approaches and comparing implementations to spot potential
improvements. We demonstrate how customized training of SNNs can result in competitive performance
levels at lower operational complexity and be readily applied to other paradigms, such as the development
of reservoir dynamics.

INDEX TERMS Reservoir computing, spiking neural networks, bio-plausible algorithms, leaky integrate-
and-fire, LIF.

I. INTRODUCTION
Among the various forms of computing architecture that
support artificial intelligence solutions, reservoir computing
(RC) has been demonstrated to offer simple, effective,
and flexible models with lower training loads [1], [2].
RC functions as a method of non-linear transformation
through a black box reservoir, enabling high performance
with a shallow architecture. Its less resource intensive
training method for recurrent neural networks is based
on output layer configuration as well as non-stationary
behaviour [3]. Moreover, it provides suitable intelligent
models for energy-deficient devices with minimal resource
management, which is exciting for areas of miniaturised
and battery-free devices as well [4]. More recently, reservoir
computing has enable biological computing system to
upscale in terms of computational power [5].
RC models are based on conventional artificial neuron

models, such as integrate-and-fire (IF), which are known to
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be oversimplified from a biological perspective. Considering
that the efficiency of reservoir computing is attributed to its
non-stationary behaviour, maintaining simple models for its
artificial neurons is a constraint on the system’s true effi-
ciency. Moreover, despite being outperformed in mainstream
deep learning by models such as Long Short-Term Memory
(LSTM), its minimal complexity promises compatibility with
popular models of computational neuroscience in the pursuit
of bio-realistic learning. We consider bio-realistic learning
to be the mechanism for adequately characterising learning
losses from natural biological phenomena. Either for the
dynamical behaviour of neurons or networks, plausible bio-
logical phenomena can be investigated to improve reservoir
computing models and pave the way for bridging the gap
between neuroscience discovery and artificial intelligence.
RC can be the interface that utilises new knowledge of
learning and its physiological details and efficiently verifies
with RC models if these mechanisms are interesting or not to
the artificial intelligence community.

Conventional artificial neural networks (ANNs) derive
from Hebbian learning and the backpropagation
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algorithm [6], [7]. While Hebbian learning still is the most
plausible mechanism to explain neuronal plasticity as the
fundamental concept underlying learning (‘‘Cells that fire
together wire together’’), it is very limited in biophysic
terms [8]. Since basic back-propagation inherently violates
factors that would make it a viable candidate for bio-realistic
learning [9], the spotlight falls on alternatives and proposals
for models that use known physiological principles of our
Brains. Spiking neural networks [10] for instance, build
on the concept of action potentials [11] for information
propagation, only registering a signal once a certain
threshold, the membrane potential, is crossed by a function
modelling its state. Each neuron uses only its own internal
states and information passed from its presynaptic neighbour,
which is more consistent with biological networks. It also
incorporates inherent time-sensitivity, producing a ‘spike
train’ output that can be converted to a continuous or
categorical result as desired. SNNs started as a more
biologically plausible alternative to compressing the number
of neurons [12] required in fully-connected models, such
as the Multi-Layer-Perceptron (MLP) [13]. They have
since achieved best-in-class benchmarks when run on
neuromorphic hardware [4] due to their energy efficiency,
proving that striving for biological feasibility is a rewarding
endeavour. One significant flaw of spiking nets is the
current lack of optimized training possibilities. Applying
backpropagation would require extensive changes as spike
resets are non-differentiable. Successful applications of SNN
backpropagation, for instance via surrogate gradient, have
been accomplished [14], but their optimised compressing is
none the better in terms of biological plausibility.

There is a lack of studies that address the problem of
the benefits of biological phenomenon models for reservoir
computing, however recognised their value may be. This is
important to help us understand what types of RC models
are appropriate for certain AI-driven problems and how to
optimise them as well. We need to solve the challenge of
comparing biologically-plausible and biologically-inspired
methods that allow us to characterise the relationship between
model biological complexity and its average performance.
Biologically plausible models can be defined by neurological
phenomena describing neuronal activity linking biochemical
molecular processes in the neuron membrane [15]. In this
way, instead of oversimplifying binary firing behaviour,
models can describe action potentials through a series
of phases based on how molecules transpose neuronal
membranes [16]. The true computing power of neurons lies
within their biochemical molecular processes, and we should
seek to investigate how this true power can be translated to
their digital artificial intelligence counterpart [17], [18].
In this paper, we attempt to characterise the benefits

of biologically plausible RC models by developing a
comparison method between them and artificial neuronal
models. Both conversion and custom learning approaches
were used to train spike models, revealing a tunable
trade-off between performance and complexity reduction.

Said implementations are then utilised for SNN based
training and nodes in RC reservoir generation. We explore
the impact the choice of neuron implementation has and
whether attempts to introduce biologically accurate topology,
as shown in [3], are worthwhile. Our models incorporate
the concept of neuronal types, including both excitatory and
inhibitory neuron function. Ultimately, this work attempts to
establish alternative, biologically plausible paradigms as a
powerful substitute for existing computing frameworks.

Our contributions are as follows:

• Evaluation of reservoir computing with spiking nets
for reservoir generation Using spiking representations
of poisson transformed image data for non-linear
transformation followed by a linear readout, RC is
shown to achieve consistent 80 + % accuracy on
a 1-pass evaluation of the MNIST hand drawn digit
set. This is remarkable for a relatively shallow setup,
primarily in regard to its balanced trade-off between
performance and model complexity.

• Investigation of possible enhancements to RC when
using biologically sourced data for network dynamics
and parameters It is reasoned that contemporary
attempts to connect reservoir dynamics according
to topographically accurate connectome models and
empirical biological values are unlikely to yield a further
increase in performance. However, certain characteris-
tics, such as voltage decay over time and a refractory
period, support convergence to the proper output neu-
rons matching MNIST classes in identification.

• Comparison of modern SNN frameworks Various
spiking net implementations are used to train networks
in various ways, comparing not only their benchmarks
but also their unique strengths in regards to time
sensitivity and complexity reduction. This includes the
conversion of a regular convolutional network trained on
MNIST to spiking activations with only a 3% drop in
accuracy and a reduction in logged operations greater
than factor 3.

The primary sections this paper is comprised of are: Litera-
ture Review in Section II,Methodology in Section III, Results
in Section IV, Discussion in Section V and Conclusion in
Section VI.

II. LITERATURE REVIEW
At the root of the conventional machine learning model lies
the universal approximation theorem [19], stating that even a
shallow (one layer) feed-forward network can approximate
any function given an unbounded number of hidden units.
Real world implementations, of course, face conditions and
restrictions on their performance. Nonetheless, the advent
of deep learning has made scaling to a large number of
neurons distributed over layers more feasible and continues
to act as the model of choice for competitive performance.
A large number of non-recurrent deep networks rely on back-
propagation [7], which aims to minimise a loss function for
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FIGURE 1. Setup for classification tasks using spiking neurons for reservoir generation.

parameters using gradient descent on differentiable functions
in order to converge on ideal weights. Back-propagation,
however, makes use of weights aggregated and passed back
over multiple previous layers, making it incompatible with
current assumptions of biological learning, as the latter is said
to rely primarily on local neural plasticity.

State-of-the art models on complex or large-scale datasets
often require dedicated hardware not available to the average
end-user in order to train in a reasonable time. GPT-3, an auto-
regressive language model developed by OpenAI, boasts
175 billion parameters [20], taking up hundreds of Gigabytes
in storage. For their impressive performance benchmarks,
models of this extent can not be considered for use in
neuromorphic hardware or any system with severe hardware
constraints, such as wearable devices.

Advances towards more plausible learning algorithms
are therefore motivated in two ways. In computer science,
overcoming these obstacles is critical to increased availabil-
ity and a reduction of training expenses. Simultaneously,
there is a vast research interest in creating biologically
sensible machine learning models, promising both insights
of neuroscientific value and optimisation through cell
properties.

In neuroscience, the most advanced biologically plausible
models of neurons can be summarised by the large cross-
national efforts, including, most notably, the Blue Brain
Project [21]. The project simulated the behaviour of indi-
vidual neurons and the interactions between them in order
to better understand how the brain processes information
and generates behaviour within a fully validated framework.
To achieve this, they used a combination of experimental data
and computational techniques to create a detailed 3D model
of the neocortical tissue. The model includes information
about the types and properties of individual neurons, as well
as the connections between them, which are based on
data obtained from electron microscopy and other imaging
techniques. Like the idea of this paper, it also takes into

account the electrical and chemical signals that are generated
and transmitted between them. This allows researchers to
study how the neocortex processes information and generates
behaviour under different conditions and in response to
different stimuli.

Since the level of biological plausibility can change
between different models, from the most detailed in all
the spatial-temporal details to the least detailed [22],
we decided that for the first step towards a valid comparison,
we should most likely decide which models to use based
on a specific level of richness. Therefore, in this paper,
we investigate models of neural networks that provide
richer details of their ionic channel processes and how they
describe membrane voltage activity. The model we use as
well as the comparison method are detailed in the next
sections.

Other ways of developing new artificially intelligent mod-
els include the usage of other types of brain cells, including
astrocytes [23], [24], and details about neurotransmitter
diffusion [25]. In [23], the authors investigated how the
synaptic processes of neurons and astrocytes can inspire
new Hebbian training rules and demonstrate benefits in
multimodal data classification. On the other hand, diffusion
AI uses generative models to generate data similar to the data
on which they are trained based on thermodynamical physical
phenomena [26]. One of the methods destroys training data
through the successive addition of Gaussian noise and then
learns to recover the data by reversing this process. We see
that investigating biologically plausible models is a new class
of machine learning that incorporates the methods mentioned
above to create a new set of models that particularly utilise
biological phenomena for improved AI. We recognise that
thermodynamics are a part of plausible biological models;
however, they are different from what has already been
proposed for diffusion AI. And hence, in this paper, we hope
to further highlight the benefits of biologically plausible
models.
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III. BIOLOGICAL PLAUSIBLE MODEL WITH SPIKING
NEURAL NETWORKS
The most prominent family of biologically realistic models
are spiking neural networks (SNN). The idea of spiking
activations is reminiscent of cellular mechanisms of brain
function, specifically the concept of action potentials for
inter-neuronal communication [11]. This process is often
modelled using the Hodgkin-Huxley (HH) model, given
through Eq. 1, showing the membrane potential Cm governed
by variables for the sodium, potassium, and leak channel con-
ductances, respectively. In the context of machine learning,
since a spike is only emitted when the membrane threshold is
reached, SNNs are event-based as opposed to the static count
of activations in a conventional ANN forward-pass. As spike
formation happens with respect to time, SNNs are inherently
time-sensitive, taking as input and outputting a series of
activations known as spike trains. They can then be converted
to a real-valued or classification result by examining their
relation to the input at the given time period [27].

Cm
∂V
∂t

= −gNam3h(V − ENa) − gKn4(V − EK )

− gL(V − EL) (1)

Neuroscience differentiates the types of neurons between
excitatory and inhibitory, which dictates their effect on
the firing of an action potential. While excitatory neurons
contribute to the opening of sodium channels and thus
the firing of a spike, their inhibitory counterparts promote
re-polarisation. In respect to machine learning, however,
a 1:1 implementation of the empirical biological model
proves difficult. Most learning algorithms rely on the easy
differentiability of the underlying function to minimise
computational cost and retain the interpretability of internal
dynamics. This, together with the sheer amount of parameters
involved in modelling HH dynamics in each artificial neuron,
makes it a possible but currently uncompetitive choice for
SNN implementations in regard to train time required.

Recent research has popularised several alternatives to
modulate the trade-off between biological accuracy and
efficient training. We investigate two of these methods with
reservoir computing solutions, the integrate-and-fire (IF) and
the Leaky Integrate-and-fire (LIF). Almost all alternate mod-
els utilise variations of the integrate-and-fire (IF) model [28],
in which specific spike forms are disregarded. This allows
them to be encoded as a binary all-or-nothing event, where
information is conveyed by either the presence or absence of
a spike under certain hyper-parameters, such as the behaviour
for potential decay when no input is given. Furthermore,
a number of assumptions and approximations are made in
the majority of spiking net models. They tend to disregard
the difference in excitation type, either treating all neurons
as excitatory or assuming an even ratio. Latter is uncommon
in real biological systems, where the amount of excitatory
neurons far exceeds inhibitory [29].

For modelling neuron states, Leaky Integrate-and-Fire
(LIF) neurons are the most common implementation of the

IF mechanic. Leaky neurons introduce a leak current into
the membrane potential equation to steadily decay to resting
levels vR. This leak term is defined through Ohm’s law
as the difference in potential between the current voltage
v(t) and the resting level over the membrane resistance Rm.
This approximation is in line with biology, as a membrane
is not a perfect insulator due to the ionic exchange of
potassium and sodium. These ions also interfere with the
internal regulation mechanisms of the cell and metabolic
processes, including calcium intracellular signalling. In our
model, we prefer that all these biophysical mechanisms are
just dealt with with membrane resistance for a reasonable
comparison with conventional neuronal networks; however,
their characterization may lead to further performance
improvements if deeply explored. The basic membrane
potential formula is shown in 2.

Cm
∂V
∂t

= I (t) −
v(t) − vR
Rm

. (2)

Most implementations additionally make use of a refrac-
tory period between spikes in the low millisecond range,
during which no new action potential can be formed.
Unless data is directly recorded in a time-distributed manner,
input to a SNN is encoded to fulfil this requirement. This
pre-processing step is most commonly achieved by variations
of Poisson-encoding, a distribution method that describes the
probability of an independent event happening within a time
frame given the mean rate of occurrences. The formula is
shown in eq. 3, where λ is the mean rate.

P(x) =
λx

x!
e−λ. (3)

A. CONVOLUTIONAL NEURONAL NETWORKS
Convolutional Neural Networks (CNNs) are a type of deep
neural network that is commonly used for image recognition
and classification tasks. In order to draw more analysis from
an analytical perspective, we define CNN formally in its
conventional form.

Let X be the input image of dimensionHxWxC , whereH is
the height, W is the width, and C is the number of channels.
Let Y be the output vector of dimension K , where K is the
number of classes.

The network consists of several layers, including convo-
lutional layers, pooling layers, and fully connected layers.
The convolutional layers perform a convolution operation
between the input image and a set of filters, also known as
kernels or feature detectors.

The convolutional layer’s output is as follows:

H (i, j, k) = f (W (k) ∗ X (i, j) + b(k)) (4)

where H (i, j, k) is the output of the k-th filter at location (i, j)
in the output feature map, W (k) is the k-th filter, X (i, j) is
the input patch centred at (i, j), and b(k) is the bias term.
The function f is the activation function, such as the rectified
linear unit (ReLU) or sigmoid function.
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The pooling layers downsample the feature maps by taking
the maximum or average value of each local region. This
reduces the spatial dimensionality of the feature maps while
preserving the important features.

The pooling layer’s output is as follows:

M (i, j, k) = g(P(H (i, j, k))) (5)

where M (i, j, k) is the output of the k-th feature map at
location (i, j), P is the pooling function, such as max pooling
or average pooling, and g is an optional activation function.
The fully connected layers perform a linear transformation,

then an activation function, on the flattened output of the
previous pooling layer:

Z = f (WfM + bf ) (6)

where Z is the output vector of the fully connected layer,Wf is
the weight matrix, bf is the bias vector, and f is the activation
function.

Finally, the output layer uses the softmax function to
compute the probabilities of each class:

Y = softmax(Z ) (7)

where softmax is the normalised exponential function.
During training, the weights and biases of the network

are adjusted to minimise the cross-entropy loss between the
predicted output and the true labels using backpropagation
and stochastic gradient descent. The cross-entropy loss
measures the difference between the predicted probability
distribution and the true probability distribution of the classes.

B. RESERVOIR MODELS
Reservoir computing is created by parsing the input through
a pre-defined reservoir, usually represented by sparsely and
randomly connected neurons, as shown in fig. 1.
Let X be the input vector of dimension n, and Y be the

output vector of dimension m. Let H be the reservoir of N
randomly connected neurons, and let Win, Wout , and W be
the input, output, and recurrent weight matrices, respectively.
Let f be the activation function of the neurons.

The following equation can describe the dynamics of the
reservoir:

H (t) = f (WinX (t) +WH (t − 1)) (8)

where H (t) is the state of the reservoir at time t , and H (t−1)
is its state at time t − 1. The input matrixWin maps the input
vector X (t) to the reservoir, and the recurrent matrixW maps
the previous state of the reservoir to the current state.

Providing the network’s output is:

Y (t) = WoutH (t) (9)

whereWout is the output weight matrix that maps the state of
the reservoir to the output vector Y (t).

During training, the output weights Wout are adjusted to
minimise the error between the predicted output and the target
output using a supervised learning algorithm, such as linear
regression or ridge regression.

IV. MODELS TRAINING METHODS
In the following, we propose a new comparison benchmark
for the evaluation of biologically plausible and artificial
neuronal approaches integrated in a reservoir computing
model. We divided the problem into two approaches that deal
with the problem of training biologically plausible models.
Since neuronal biophysics adds a new level of complexity,
training models also need to take into account rules for how
far things can go in biology. We describe the setup for all
experiments conducted, with their results discussed in the
next section.

A. DATASETS
Whenever applicable, the datasets chosen were MNIST [30]
and CIFAR10 [31]. The former is a collection of 70.000 hand-
written digits (0 − 9) and is considered relatively simple to
achieve high accuracy. It nonetheless serves as a powerful
benchmark for whether a network is successfully converging.
CIFAR, on the other hand contains 60.000 samples in
10 classes of more complex animals and objects.

We also use a multi-variate time series problem, depicting
weather data in Delhi spanning the years 2013-2017. It was
picked due to its periodicity in features and targets to evaluate
time-sensitive performance for SNNs. Shown in fig. 2 is a
plot of the full data provided in the climate set, where mean
temperature is the target variable and predictions for the next
day are based on the sliding past two weeks of data each.

B. CONVERSION TRAINING
Modern approaches have explored the idea of converting
pre-trained networks by matching neuron activations to SNN
spike firing rates [32]. Reference [32] extends existing work
by implementing conversion for layers that are inherently
complicated to port, such as pooling and softmax operations,
due to their non-trivial nature when working with spikes. The
result of this research was a library supporting the creation of
SNN conversions for classification tasks built on top of the
popular Python ML framework Keras. The compiled model
can then be run by a simulator, such as NEURON [33] or
the built-in version of INI. Latter was chosen for experiments
conducted due to its support of the most common layer types
used in a convolutional 2D model. Note that a different
approach to pre-processing is taken; instead of poisson-
encoding, analogue input is mapped to a constant current. The
CNN from Table 1 was first trained on the MNIST dataset
for image classification with n = 2 epochs and a batch
size of 300. Dense layers use ReLU activations, meaning
that the activation value is either 0 or x. It is then converted
using the mean rate matching approach described earlier.
For simulation of the converted model via INI, each input is
shown for 30ms at a time-step of 1t = 1.
Synaptic operations were logged in order to compare

them to the number of floating point operations (FLOPs)
in a conventional neural net. A reduction is expected
since SNNs only use one addition for weight updates,
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FIGURE 2. Mean temperature and auxiliary measurements of the Delhi climate dataset plotted over a 4 year period,
2013-2017.

TABLE 1. CNN deep-learning architecture for classification of MNIST.

whereas their regular counterpart requires a multiply-and-
accumulate (MAC) operation consisting of addition and
multiplication. Non-spiking networks furthermore produce
a fixed number of operations per training and simulation
step as the feed-forward pass activates each neuron. Spiking
nets have the advantage of being event-based; their sparse
activations on top of more lightweight updates promise a high
factor of compression.

To prove the compression effect, a baseline is taken from
the convolutional network (CNN) before it is converted to
be compared to synaptic operations after SNN simulation.

The conversion experiment is repeated on the CIFAR10 set
to observe potential performance losses on SNN conversion
for a complex dataset. For this purpose, an additional
combination of conv2d and pooling layers is included in the
original architecture.

Even though conversion of pre-trained networks is a fast
way to train SNNs that perform similarly well with a smaller
net size, it is limited in what it can do and how much
it can do. Due to a spiking net’s unique characteristics,
certain operations common in conventional ANNs can only
be translated suboptimally or not at all. Firing rates are
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inherently required to be positive, which causes issues with
non-ReLU activation functions for neurons, such as tanh,
which operates in a [−1, 1] range. As the conversion is done
by rate encoding, SNNs created this way will have their firing
rates fixed to approximate their analogue equivalent. They
thus lose out on the ability to pick up on spatio-temporal
characteristics through unique relationships in spike timing.

C. CUSTOM TRAINING
A more complete alternative when aiming for temporal
abilities is to train SNNs from scratch, using either a modified
version of back-propagation or local learning rules. The latter
revolves around an adaptation of the Hebbian principle [6],
working with spike-time dependent plasticity rules (STDP)
[34]. The idea is that the exact timing of spikes in relation
to each other determines the reinforcement or deterioration
of their synaptic connection. While this approach is far more
resource and time consuming for training, it allows for more
natural spike dynamics compared to rate-based attempts and
can be catered to the individual input data without requiring
a certain composition of pre-trained layers.

Over the past years, a multitude of experimental spiking
net libraries have surfaced, covering a wide array of use
cases and integrating with existing simulators. Among those
actively maintained at the time of writing are BindsNET [35]
and Norse [36]. They both interface with the PyTorch [37]
machine learning framework, a well-established software
suite for deep learning in Python. Unlike the previously used
conversion library, the focus of these projects is the creation
of SNNs from scratch. This allows for both shallow models
and combinations with conventional layers in deep learning
architecture while still maintaining flexibility in the training
approach.

For the first experiment in this category, BindsNET is
trained on MNIST for 5 epochs and a batch size of 32
according to [38], which describes a shallow net using
100 excitatory LIF neurons as input and an equal amount of
100 inhibitory counterparts to map output to classes. This is a
variation of STDP and is therefore unsupervised. Simulation
time is 100ms.

V. RESULTS
In this section, we present the results for the comparison of
spiking networks,

A. RESERVOIR GENERATION
Using the aforementioned techniques and frameworks for
simulation of spiking neurons, various models can be applied
for reservoir generation in RC, as described in III-B. In an
effort to analyse themerits of applyingmappings beyond pure
chance to reservoir generation as described in [3], a bare-
bones version of an IF neuron is constructed using BindsNet.
This is then compared to other results from other neuron
cultures, such as regular LIF nodes. For the basic model,
a spike is triggered once the cumulative voltage crosses
a set threshold, resetting it to a parameter value without

any form of decay or refractory period. The difference in
activation and a lack of decay can be seen in the voltage
graph in fig. 4. A layer of 100 such neurons is then used as
a reservoir following an input layer of 784 nodes, matching
the 28×28 resolution of the MNIST image set it is evaluated
on. The reservoir additionally has one recurrent connection,
feeding back processed images. Once generated, the readout
layer, consisting of a linear function with sigmoid activation,
is trained on the reservoir-parsed representation of 60, 000
MNIST samples for a 1 epoch. 10, 000 unseen images are
reserved for testing, on which all final metrics are based.
A batch size of 32 is used. The spike threshold is set to
the common value −52mV, with a reset value of −65mV.
Aswithmost SNNmodels, inputs are first poisson-converted,
as shown in fig. 3.

B. SPIKING NET COMPARISON
For the conversion approach, a validation accuracy of 96.67%
was achieved with the traditional convolutional neural
network pre-conversion. The transformed SNN subsequently
reached 94.67% and 91.67% for ‘reset by subtraction’ and
‘reset to zero’ respectively. Convergence to near conventional
ANN levels is achieved after a fraction of the 30ms simulation
time, as shown in fig. 5. The total decrease in mean accuracy,
therefore, is 2%.

Synaptic operations were logged compared to their regular
convolutional counterpart, achieving a reduction of above
factor 3 shown in fig. 6. When repeated with a slightly more
complex CNN setup as described in Section IV and on the
CIFAR10 set, converted accuracy is 59.67% compared to the
conventional CNN value of 68.33%. This constitutes a rise in
accuracy reduction, totaling 8.66%.

For the custom training experiment, a shallow LIF neuron
net was trained using the [38] variation of STDP for 5 epochs,
with a batch count of 32. Simulation time was 100ms. Neuron
count was set to 100 for both excitatory and inhibitory
neurons. It achieves close to 80% accuracy in the first epoch
and gradually decays to a mean of 60% at full epoch count.

1) TIME-SERIES DATA COMPARISON
For the Delhi time series problem, data was split into a train-
test-validation set, each over a sliding window of 14 days to
predict the next mean temperature with a batch size of 16.
A baseline was then established by predicting the next day’s
mean temperature with the value of the previous one. This
achieves a Mean Average Error (MAE) of ‘2.08‘ degrees on
the test set. The convolutional model trained consists of two
Conv1D layers followed by a flatten instruction and one fully
connected layer.

CNN layers use 8 filters and a kernel size of 3. To analyse
whether converted SNNs can pick up on periodicity (Fig. 2)
a LSTM model, a conventional recurrent neural net, was
initialised with one LSTM layer of 32 units again followed
by a dense layer. The loss function used for both was
Mean Squared Error (MSE), with MAE logged to plot easily
interpretable convergence, shown in fig. 7.
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FIGURE 3. Poisson-transformed input spikes compared to reservoir output.

FIGURE 4. ‘‘Binarization’’ of reservoir layer voltage when no decay is given, as seen in the right IF image.

Target epochs were 10 for the CNN and 60 for the LSTM;
however, both ran with an early stopping criteria that halts
training when a monitored metric stagnates. The recurrent
net manages to beat the baseline, halting training at around
40 − 50 epochs with a test-set MAE of 1.37 degrees off the
real temperature. The convolutional net only manages a mean
error of 3.32 degrees and is therefore below the previous-day
dummy approach. Accuracy in modelling the temperature
timeline is illustrated in fig. 8.

C. SPIKING RESERVOIR APPLICATION
Applying the SNN frameworks used in the above comparison,
a spiking reservoir of basic IF neurons achieved 68.43%
accuracy. When instead using LIF nodes with a refractory
period of 5ms and steadily decaying voltage, an accuracy
increase of 81.07% is the result. Features of LIF neurons were
then selectively added to the simplified IF representation,
with the presence of voltage decay alone delivering similar
results in the 80% range.

VI. DISCUSSION
Over recent decades, biological computing has grown from a
novel concept to a research domain with a strong theoretical
foundation. Synthetically engineered cells and implants [39]
foreshadow alternative treatment and early diagnosis of
diseases affecting the brain. At the same time, reconstructions
and simulations have increased in amount of features por-
trayed as well as precision, with the capability of identifying
connectivity of even specific neurons at an axonal level [40].
The fields of synthetic biology also promise alleviation for
problems silicon-based computation struggles with, such as
massively concurrent or time-sensitive operations; both of
which are inherent properties of the living cell [41]. Given
this rapid development, it is worthwhile revisiting concepts in
computer science for possible integration of new paradigms
for inter-neuronal communication. Briding concenpts of
biologically plausible can also mean that newly synthetically
developed biology can also feedback into new forms of
artificial intelligence. However, we can already foresee that
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FIGURE 5. Convergence of error to near conventional ANN levels after a
fraction of simulation duration due to a simple source set.

FIGURE 6. Synaptic operations for standard (reset by subtraction) and
reset by zero approach, the latter incurring a loss in accuracy.

biological computing is a great resource for biocomputing,
as evidenced by [5], and needs now more development
towards the correct direction. In the following, we showcase
results with regard to possible performance improvements of
reservoir computing NNs over conventional NNs.

A. SNN TRAINING COMPARISON
Conversion approaches have been shown to be a convenient
method of model compression at a slight loss of performance,
which can be alleviated with proper choices in configuration.
One such trade-off parameter are reset mechanisms, which
determine how membrane potential is reset after a spike
event. In graph 6, ‘reset to zero’ shows the simplest case; it
does as the name implies and achieves the greatest compres-
sion in operations as no additional calculation is required.
As MNIST is a relatively simple dataset, the high accuracy
is not directly indicative of performance for more complex
classification tasks. A higher reduction in performance can

be observed on the CIFAR10 set, increasing 6% compared to
MNIST. The settings used take into account the conclusion
of rueckauer2017conversion, which recommends analogue
activations instead of poisson-converted input to reduce
noise. It can be concluded that while passable performance
is maintained, scaling the complexity and layers used in
the CNN targeted for conversion will lead to increased loss
nonetheless. The reduction in operations of roughly factor
3 is owed to SNNs requiring only one addition for state
updates whereas regular ANNs employ two through MAC
operations, on top of SNNs applying sparse and non-constant
activations depending on simulation time-frame. Note that
the number of CNN operations reported by the keras profiler
and the SNN-conversion logging vary slightly due to different
approaches to approximation, but do not alter the ratio
shown.

Networks trained from scratch allow for greater control in
terms of layer choices and optimisation, as well as inherent
time sensitivity. For the 1D time series forecasting on the
Delhi climate set, the convolutional network serving as the
basis for the converted SNN is limited in layer choices
due to the restrictions of the libraries used. This occurs
because some operations commonly included in 1D CNNs
are either difficult to translate to spiking activations or have
not yet been ported from their 2D workaround. The simple
approach described nonetheless serves well as a proof of
concept for time sensitivity. This is further reinforced when
looking at the training graph in fig. 8, showing that even a
basic CNN lends itself to overfitting while the recurrent net’s
train MAE does not exceed validation. The training MAE
of latter interestingly stagnates while validation error further
decreases; this could be explained by it picking up on time
trends successfully as the validation set split contains the
temperature measurements chronologically situated after the
train set. Since the spiking net is limited by the convolutional
network the conversion is based on, it can not match
performance of any conventional time-aware approach.

B. SNN RESERVOIR GENERATION
The total accuracy for the reservoir model is lower than the
previously recorded 90 + % on a converted SNN despite
a lower batch size and higher epoch count. However, since
the linear readout model is far less complex than any
convolutional network, the results are impressive in their
own right. It was further shown that certain elements of
bio-realistic models, such as passive voltage decay, do have
an impact on performance. It essentially removes features
from consideration that do not receive any constant input,
marking them as irrelevant, as can be seen in the LIF
plot of fig. 4. However, the very basic LIF node with
which top performance was achieved remains far from more
complex biological models. It is unlikely that managing the
exact topography of neuron connections would have any
positive effect, as Damicelli2021 also found randomness to
be key for maintaining performance despite attempts to the
contrary. The same goes for the threshold and reset values
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FIGURE 7. Convergence of MAE over training epochs on CNN (left) and LSTM (right), showing the baseline model MAE
as a horizontal line.

FIGURE 8. Comparison of predicted mean temperatures for the Delhi climate set, showing MAE values in legend.

used; −65mV is often cited as an empirical parameter for
resting potential in the Hodgkin-Huxley model, yet the exact
range matters little for the RC experiment conducted. The
same results can be achieved when using values as high as
several hundred mV, as long as the cumulative voltage can
realistically build up to them within simulation time and

the approximate difference between threshold and reset is
maintained.

It stands to reason that reservoir computing for transfor-
mation also has potential as part of a bigger deep learning
stack, as recent literature confirms [42]. In relation to spiking
neural nets, it offers compression due to its shallow layout and
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quicker training, but is less versatile than conversion solutions
without extensive task-specific setup. Neuron count and other
parameters varied in tests, but going above the documented
settings tends to cause overfitting and a drop in accuracy.

VII. CONCLUSION
We showed how bio-realistic reservoir computing alternatives
compare to conventional neural networks and conducted
experiments to showcase the advantages of individual imple-
mentations. Spiking neural networks are great at compressing
models because they are based on a few events. This is
made even better by the fact that they can be converted from
traditional models to save training time.When custom trained
they can reach competitive performance levels at lower
complexity and easily be utilized for other paradigms such
as the creation of reservoir dynamics. Reservoir computing
is shown to have synergies with certain characteristics of
bio-realistic models but does not stand to profit from over-
engineering. It rather remains an underutilised and versatile
tool for the evaluation of non-linear problems, no matter the
network type underlying reservoir generation.

APPENDIX
The experiments conducted, as well as the experimental
code, may be found at: https://github.com/otcathatsya/bio-
plausible-ml
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