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Abstract—Reconfigurable intelligent surface (RIS) is a promis-
ing technology to improve the spectral and energy efficiency of
Internet of Things (IoT) systems. In this paper, we investigate
an RIS-assisted simultaneous wireless information and power
transmission (SWIPT) system by utilizing stochastic geometry.
Moreover, we consider not only the case of random phase shift,
but also the case where the phase shift of the RIS are aligned to
the k-th IoT device. We first derive the closed-form expressions
of the uplink outage probability and the average uplink data size
for the k-th IoT device under the Rayleigh channel. Then, we
extend the performance analysis to the Rician fading channel
and multi-antenna scenarios. Finally, extensive numerical results
have been carried out to verify the effectiveness of our derived
results.

Index Terms—Reconfigurable intelligent surface, simultaneous
wireless information and power transfer, outage probability,
stochastic geometry.

I. INTRODUCTION

IN the future communication networks, comprehensive
monitoring and sensing of the real world will be achieved

through various sensors [1]. The deployment and maintenance
of a large number of wireless sensors will be required across
diverse scenarios. Nevertheless, how to provide continuous and
stable energy for these wireless sensors to maintain reliable
information transmission has become an urgent issue to be re-
solved. Therefore, the research on simultaneous wireless infor-
mation and power transfer (SWIPT) has attracted widespread
attention, especially for energy constrained systems and var-
ious Internet of Things (IoT) applications. Specifically, in
the SWIPT system, using a practical scheme such as time-
switching or power-splitting (PS), information decoding (ID)
and energy harvesting (EH) can be performed simultaneously
at receivers exploiting the power of the electromagnetic waves
[2]. Wireless receivers can utilize the energy harvested from
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radio frequency (RF) signals to enhance their stability and
reliability of operation [3]. In [4], the authors investigated the
fundamental limits of SWIPT systems over a Rayleigh fading
channel, and found that high-power amplifier significantly
reduces the information-energy capacity region. The authors
in [5] provided a SWIPT scheme for the IoT. To reduce
the interference and improve the power amplifier efficiency,
this scheme sends information via utilizing a small modulated
signal and transmits the wireless power by the unmodulated
high-power continuous wave. The authors in [6] considered a
receive spatial modulation assisted SWIPT system with finite
alphabets, and theoretically analyzed the performance of three
different transmission schemes. In [7], the authors analyzed the
performance of SWIPT in systems employing cooperative non-
orthogonal multiple access (NOMA) with imperfect channel
state information (CSI). The authors in [8] studied the rate-
energy trade-off and decoding error probability-energy trade-
off for SWIPT in finite codelength. This is different from any
work that assumes infinite codelength. Nevertheless, in some
complex scenarios, such as automated factory, wireless signals
are more likely to be blocked due to the densely deployed
equipment and thick walls/pillars, which leads to IoT devices
being unable to enjoy the benefits of SWIPT.

Recently, deploying reconfigurable intelligent surfaces
(RISs) in the existing wireless system is a promising solution
to address this problem. More specifically, the RIS is a low-
cost meta-surface consisting of a massive number of elements,
which can intelligently adjust the phase and/or amplitude
response with the help of a programmable controller to modify
the reflection behavior of the incident wave to improve the
spectral efficiency and coverage of wireless communication
systems [9], [10].

Inspired by its numerous potential advantages, RIS-assisted
wireless systems have been studied in different communication
scenarios [11]–[19]. The authors in [11] proposed a strategy
in which the elements of the RIS only require to introduce
random phase rotation in each coherence interval without any
CSI. For the finite blocklength regime, the authors in [12]
evaluated the performance of an RIS-assisted ultra-reliable and
low-latency communication by studying the average achiev-
able rate and error probability, while the authors in [13] further
investigated wireless energy transfer technology in the system.
In [14], a framework for RIS-aided unmanned aerial vehicle
enabled networks was studied. Within this framework, the
authors solved an optimization problem aimed to minimizing
energy consumption by jointly designing multiple variables.
For mobility scenarios, the authors in [15] investigated a



novel RIS-aided high-mobility wireless communication sys-
tem, which combines many refracting elements with a high-
speed vehicle to assisted the communication between a remote
base station (BS) and users. In [16], the authors studied an
RIS-assisted hybrid automatic repeat request system with in-
cremental redundancy. Specifically, the authors derived expres-
sions for the outage probability of the network under single-
input single-output and single-input multiple-output (SIMO)
scenarios by considering the Rician channel and multiple
RISs. In [17], the authors developed a hybrid multi-objective
evolutionary paradigm to reduce the training overhead of
millimeter wave channels in IRS-aided multi-input multi-
output (MIMO) systems. In [18], the authors analyzed the
performance of an RIS-assisted NOMA system in both the
best-case and worst-case by deriving the outage probability
and the ergodic rate of the user. The authors in [19] introduced
a universal framework aimed to improving the transmit power
efficiency in RIS-assisted multi-group NOMA networks. This
enhancement is achieved within the context of coordinated
multi-point reception, while considering the challenges posed
by imperfect successive interference cancellation. In addition,
some work studied the random distribution of IoT devices’
locations in the RIS-aided network [20]–[24]. In particular, in
our previous work [24], we analyzed the RIS-assisted wireless
communication system with energy harvesting. However, the
paper only studied the performance of energy harvesting in
IoT devices, without considering how to actively utilize the
harvested energy.

There has been many works on the RIS-assisted SWIPT
system [25]–[31]. The authors in [25] studied a multi-user
intelligent reflecting surface assisted SWIPT system. This
work aimed to maximize the weighted sum rate of the
information receiver by jointly optimizing the transmission
precoding matrix of the BS and the passive phase shifting
matrix of the RIS. In [26], the authors aimed to minimize
the transmit power at an multi-antenna access point by jointly
designing active and passive beamforming while meeting the
users’ quality-of-service. Furthermore, the authors in [27] and
[28] explored the joint hybrid beamforming with discrete
phase shift design in an RIS-aided SWIPT system. In [29],
the authors proposed an optimal resource allocation algorithm
for large intelligent reflecting surface aided SWIPT systems,
and developed a scalable optimization framework to facilitate
efficient system design. The authors in [30] improved the per-
formance of NOMA and the wireless power transfer efficiency
of SWIPT by deploying an intelligent reflecting surfaces. The
authors in [31] considered an intelligent reflecting surfaces-
assisted wireless powered mobile edge computing system and
proposed a computing offloading framework. Specifically, the
authors conducted a comprehensive analysis and comparison
of the computational offloading schemes under time-division
multiple access (TDMA) and NOMA. However, the current
work mainly focused on the optimization of the system and
ignores the in-depth performance analysis of the RIS-assisted
SWIPT system. Especially, none of the above work considered
that IoT devices are usually randomly distributed in practical
applications.

Motivated the above, we propose an RIS-assisted SWIPT

IoT system, where the location of IoT devices is modeled as a
homogeneous Poisson point process (PPP). In this system, the
BS usually needs to send control information or commands in
the form of multicast to IoT devices scattered on the ground
[32]. For instance, they may multicast control commands to
all IoT devices, instructing them to upload the information
they have collected. Then, the IoT devices transmit the envi-
ronmental information collected over a period of time to the
BS. Meanwhile, the vast majority of IoT devices are powered
by batteries. Once the batteries are depleted, they will be
unable to operate normally. However, they can harvest the
power of the downlink radio frequency signals sent by the
BS in multicast form. Therefore, we divide the whole period
into two transmission phases, as shown in Fig. 1(b). In the
downlink transmission phase, part of the received power is
used for ID, while the other part is utilized for EH. In the
uplink transmission phase, we use the TDMA protocol to
improve system compatibility, bandwidth efficiency, reliability,
and cost-effectiveness. This is especially beneficial in low-
power IoT systems operating in challenging environments.
Specifically, the main contributions are summarized as follows:
• We first derive the closed-form expressions of the uplink

outage probability for the k-th IoT device with random and
optimal phase shift models under the Rayleigh channel con-
dition. Moreover, by taking the Poisson distributed number of
IoT devices into consideration, we derived the exact expression
of the average uplink data size for the k-th IoT device under
the case of random phase shift. In particular, when the phase
shift of RIS are just aligned to the k-th IoT device, an upper
bound of average uplink data size is derived by exploiting the
Jensen’s inequality.
• We further extend the performance analysis of the system

to the Rician fading channel and multi-antenna scenarios.
Specifically, we characterize the statistical features of the
channel gain in these two scenarios. Based on the obtained
results, we derive the closed-form expressions for the uplink
outage probability and the average uplink data size of the k-th
IoT device in these two scenarios.
• Finally, extensive simulations are provided to demonstrate

the accuracy of the derived results. In addition, we provide
several insights by analyzing the impact of parameters on
the system performance. Specifically, increasing the transmit
power and the number of antennas of the BS or the number
of reflection elements can significantly improve the system
performance. However, with the increase of density of IoT
devices, the system performance deteriorates gradually.

The rest of this paper is organized as follows. In Section
II, the system model with RIS-assisted SWIPT system is
introduced. Section III and IV are devoted to performance
analysis for the downlink and uplink transmission, respec-
tively. The numerical results are presented in Section V to
validate the correctness of theoretical analysis results. Finally,
the conclusion is drawn in Section VI.

II. SYSTEM MODEL

In this work, we study an RIS-aided SWIPT system, as
shown in Fig. 1(a), which consists a BS, a group of IoT
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Fig. 1: The RIS-assisted SWIPT in the low-power IoT system.

devices and an RIS with N reflecting elements. In some
special scenarios, such as mountain areas, battlefields, or
forest plantations, IoT devices may be far away from the
BS. Specifically, the direct links between IoT devices on the
ground and the BS may be blocked by trees. Therefore, we
assume that the links between the BS and IoT devices can only
be established through the RIS. We also assume that the RIS is
located in close proximity of the IoT devices and exclusively
serves the IoT devices within a limited geographical area [33].

In general, due to the inherent properties of the RIS, it can
only reflect signals for IoT devices located in its front half-
space. Therefore, as depicted in Fig. 1(a), we assume that IoT
devices are deployed in a semicircular area centered on the
projection point of the RIS on the ground plane. The radius
of this semicircular area is denoted by L. The location of IoT
devices is modeled as a homogeneous PPP with density λ. The
number of IoT devices, denoted by K (K ≥ 1), is Poisson
distributed i.e., P{K = q} = µqe−µ

q! , where µ = πL2λ
2 is

the mean measure. As the k-th IoT device follows uniform
distribution in the area covered by the RIS, the cumulative
distribution function (CDF) of lk can be derived as

Flk(x) =

∫ π

0

∫ x

0

l
1
2πL

2
dldθ =

x2

L2
,∀x ∈ [0, L], (1)

where lk is the distance from the k-th IoT device to the
projection point of the RIS on the ground plane. Let H
represent the vertical height of the RIS, dSR represent the
distance from the BS to the RIS, and dk is the distance
from the RIS to the k-th IoT device. As a result, one has
dk =

√
H2 + l2k. Then, the CDF of dk can be derived as

Fdk(x) = Pr{
√
H2 + l2k < x} = Pr

{
lk <

√
x2 −H2

}
= Flk(

√
x2 −H2) =

x2 −H2

L2
,

(2)

where H = dmin ≤ x ≤ dmax =
√
H2 + L2.

Taking the first-order derivative of (2), the probability
density function (PDF) of dk can be given by

fdk(x) =
2x

L2
. (3)

Furthermore, an illustration of the transmission protocol is
depicted in Fig. 1(b). It is assumed that the total transmission
duration for downlink and uplink is τc. Let βτc and (1−β)τc
denote the downlink transmission time for the BS and the
uplink transmission time for each IoT device, respectively,
where β ∈ (0, 1) is the time allocation factor. For practical
applications, we consider that each IoT device is equipped with
a battery, which can storage the energy harvested. We employ
the “harvest-then-transmit” protocol in the RIS-assisted sys-
tem, which means that IoT devices can harvest energy during
the downlink transmission period and then send their data to
the BS with the help of RIS during the uplink transmission
period. In the uplink transmission phase, the TDMA protocol
is employed. Therefore, each IoT device transmits its own
data to the BS within the time interval of [(1− β)τc/K].
We assume that the receiver of each IoT device has a power-
splitting architecture with a PS ratio ρ ∈ (0, 1). In other words,
the ρ portion of the received power is utilized for EH, while
(1− ρ) portion of the power is utilized for ID.

Assuming that all wireless links are experience indepen-
dent Rayleigh fading [22]. The complex channel coeffi-
cient vectors from the BS to the RIS, from the RIS to
the k-th IoT device, from the k-th IoT device to the RIS
and from the RIS to the BS are represented by gdl =
[gdl,1, ..., gdl,N ]

H, hdl,k = [hdl,k,1, ..., hdl,k,N ]
H, hup,k =

[hup,k,1, ..., hup,k,N ]
H and gup = [gup,1, ..., gup,N ]

H, respec-
tively, where gdl,n, hdl,k,n, hup,k,n and gup,n ∼ CN (0, 1).
Φup = diag(%up,1e

jφup,1 , ..., %up,Ne
jφup,N ) and Φdl =

diag(%dl,1e
jφdl,1 , ..., %dl,Ne

jφdl,N ) denote the diagonal reflec-
tion coefficient matrices for uplink and downlink transmission
phase, respectively, where φup,n ∈ [0, 2π) and φdl,n ∈ [0, 2π)
are the phase shift of the n-th reflecting element of the RIS,
and %up,n ∈ [0, 1] and %dl,n ∈ [0, 1] are the corresponding
amplitude. In Particular, we assume %dl,n = %up,n = 1 to
obtain the traceable results and maximize the signal reflection
[22]. Additionally, we consider the performance analysis of
RIS-assisted low-power IoT systems under two different phase
shift, namely the random phase shift model and the optimal
phase shift model. For random phase shift model, the phase
shift of elements is randomly selected. This is because in
some complex scenarios, it is difficult to obtain available CSI,
so that the phase shift matrix is assumed to be randomly
designed. For the optimal phase shift model, we assume that
the phase shifts of all elements are just aligned with the k-
th IoT device, i.e., φup,n = − arg (hup,k,n)− arg (gup,n) and
φdl,n = − arg (hdl,k,n)− arg (gdl,n).

In the downlink transmission phase, the BS multicasts
the same information to all IoT devices. There is no inter-
user interference in multicast communication systems due to
multiple IoT devices sharing the same information. Therefore,
the received signal at the k-th IoT device in the downlink



transmission phase can be written as

ydl,k =
√
PTd

−α
SR d

−α
k gH

dlΦdlhdl,kxdl + wdl,k, (4)

where PT is the transmit power of the BS, α denotes the
path-loss exponent, xdl is the information symbol with and
wdl,k ∼ CN (0, σ2

dl,k) is the additive white Gaussian noise
(AWGN) at the k-th IoT device.

According to the transmission protocol depicted in Fig.
1(b), each IoT device adopts the PS scheme to coordinate the
process of ID and EH for the received signal in the downlink
transmission period. The (1−ρ) portion of the received power
is utilized for ID. Therefore, the instantaneous signal-to-noise
ratio (SNR) at the k-th IoT device is given by

γdl,k =
(1− ρ)PT

∣∣gH
dlΦdlhdl,k

∣∣2
σ2

dl,kd
α
SRd

α
k

= ϕ0d
−α
k Λdl,k, (5)

where ϕ0 = (1−ρ)PT

dαSRσ
2
dl,k

and Λdl,k =
∣∣gH

dlΦdlhdl,k

∣∣2.
For the k-th IoT device, the ρ portion of the received

power is used for EH. Moreover, it can be considered that
the energy obtained from the noise is negligible. Accordingly,
the instantaneous harvested power of the k-th IoT device in
the downlink transmission can be given by

PEH,k = ηρPTd
−α
SR d

−α
k Λdl,k, (6)

where 0 < η < 1 is the energy conversion efficiency of IoT
devices.

In contrast to the traditional communication systems, the
cost of ID can not be ignored in low-power SWIPT IoT
systems. According to [34], the total power consumption of the
k-th IoT device can be modeled as PC,k = PD,k+PF,k, where
PD,k denotes the power consumption required for ID and
PF,k is the fixed circuit power consumption to maintain the
operation of the k-th IoT device. Specifically, the exponential
decoding power consumption of the k-the IoT device can be
given by

PD,k = $
(
2Rdl,k − 1

)
= $γdl,k, (7)

where Rdl,k = log2 (1 + γdl,k) is the downlink ID rate of
the k-th IoT device and $ is a constant coefficient [34].
In particular, the circuit power consumption is ignored in
the paper due to its relatively small constant relative to the
decoding power consumption.

Therefore, according to the TDMA protocol in the uplink
transmission phase, the average transmit power of the k-th IoT
device can be expressed as

PA,k =
βτcK

(1− β)τc
(PEH,k − PD,k)

=
βK

(1− β)

(
ηρPTΛdl,k

dαSRd
α
k

− $(1− ρ)PTΛdl,k

σ2
dl,kd

α
SRd

α
k

)
.

(8)

Hence, the signal of the k-th IoT device received by the BS
in the uplink transmission phase can be expressed as

yup,k =
√
PA,kd

−α
SR d

−α
k gH

upΦuphup,kxup,k + wup,k, (9)

where xup,k is the information symbol of the k-th IoT device
with E{||xup,k||2} = 1 and wup,k ∼ CN (0, σ2

up) is the
AWGN.

Then, based on (8), the SNR of the k-th IoT device in the
uplink transmission phase can be written as

γup,k =
PA,k

∣∣gH
upΦuphup,k

∣∣2
dαSRd

α
kσ

2
up

=
βKPT

(1− β)d2α
SRσ

2
up

(
ηρ− $(1− ρ)

σ2
dl,k

)
Λdl,kΛup,k

d2α
k

,

(10)
where Λup,k =

∣∣gH
upΦuphup,k

∣∣2.

III. PERFORMANCE ANALYSIS OF UPLINK TRANSMISSION

As shown in Fig. 1(b), by applying the PS scheme, one
part of the signal power in the downlink transmission phase
is allocated to decode information, while the other part is
allocated to EH. The ID performance of the downlink has
been extensively analyzed in numerous literature, and thus,
this paper does not focus on its analysis. Instead, we focus
on the performance of IoT devices in sending data to the
BS using the harvested energy during the uplink transmission
phase. Specifically, considering the Poisson distribution of the
number of IoT devices, we analyze the system performance
in terms of uplink outage probability and average uplink data
size for the k-th IoT device.

In this paper, we study two phase shift models, namely the
random phase shift model and the optimal phase shift model.
We take the performance of these two models as the theoretical
lower and upper bounds for the k-th IoT device, respectively.
Specifically, in the random phase shift model, we consider that
the phase shifts randomly generated by the RIS are not aligned
with the k-th IoT device during both uplink and downlink
transmission phases, resulting in the worst performance. Under
the optimal phase shift model, we assume that the phase
shifts of the RIS are just aligned with the k-th IoT device,
resulting in the best performance. For further analysis, we first
determine the statistical features of channel gain under these
two phase shift models.

Based on [35], for the random phase shift, the PDF and CDF
of the downlink channel gain ΛR

dl,k are respectively given by

fΛR
dl,k

=
2x

N−1
2

Γ(N)
KN−1

(
2
√
x
)
,

FΛR
dl,k

= 1− 2

Γ(N)
x
N
2 KN

(
2
√
x
)
,

(11)

where Γ(·) denotes the gamma function and Kϑ(·) is the ϑ-th
order modified Bessel function of the second kind.

According to [36], for the optimal phase shift model, the
statistical characteristics of the downlink channel gain ΛO

dl,k

can be respectively given by

fΛO
dl,k

(x) =
1

Γ(ζ)θζ
xζ−1e−

x
θ ,

FΛO
dl,k

(x) =
1

Γ(ζ)
Υ
(
ζ,
x

θ

)
,

(12)

where ζ =
u2
X

vX−u2
X

, θ =
vX−u2

X

uX
and Υ(·, ·) represents the

lower incomplete Gamma function. Specifically, uX and vX
follow from [36, Eq. (A5)].
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Note that based on channel reciprocity, the channel gain
Λup,k in the uplink transmission phase has the same statistical
characteristics as Λdl,k in the downlink transmission phase.

A. The uplink outage probability of the k-th IoT device

Based on (10), the uplink outage probability of the k-th IoT
device is defined as

Pup,k = Pr {log2 (1 + γup,k) < Cup,th}

= Pr

{
ηρPtKβΛdl,kΛup,k

(1− β)σ2
upd

2α
SRd

2α
k

< Θup

}
,

(13)

where Θup = 2Cup,th − 1 and Cup,th denotes an uplink rate
threshold. It should be noted that Cup,th is a value in direct
proportion to the number of IoT devices. This is because more
IoT devices shorten the time for each IoT device to transmit
data information. Therefore, a higher data rate is required to
ensure successful transmission.

Lemma 1. Based on (11) and (13), the closed-form expres-
sion of uplink outage probability for the k-th IoT device in
the case of random phase shift can be written as

PR
up,k =

Ξ∑
K=1

µKe−µ

K!

{
1− Θ

N
2 +1

up

αL2 [Γ(N)]
2
ϕ
N
2 +1

1

×

∆

[
ξαN+2α+2, G4,1

1,5

(
Θup

ϕ1
ξ2α

∣∣∣ −N2 −
1
α

N
2 −1,−1−N2 ,

N
2 −1,−N2 ,ϕ2

)]}
,

(14)
where ϕ1 = ηρPtKβ

(1−β)σ2
upd

2α
SR

, ϕ2 = −
(
N
2 + 1

α + 1
)
, Ξ is a large

positive integer that determines the accuracy of the result and
Gp,qm,n

[
x|a1,...,apb1,...,bq

]
denotes the Meijer’s G-function,.

Proof: Please refer to Appendix A. �
Next, to obtain the uplink outage probability of the k-th IoT

device in the optimal phase shift mode, one has the following
lemma. Note that in the optimal phase shift mode, the phase
shifts of the RIS are aligned with the k-th IoT device, but may
not align with other IoT devices.

Lemma 2. Based on (12) and (13), if the phase shifts of
the RIS are just aligned to the k-th IoT device, the expression
of uplink outage probability can be given by

PO
up,k =

Ξ∑
K=1

µKe−µ

K!

Θζ+1
up

αL2[Γ(ζ)]2θ2ζ+2ϕζ+1
1

×

∆

[
ξ2(αζ+α+1), G2,2

2,4

(
Θupξ

2α

ϕ1θ2

∣∣∣ −ζ,−ζ− 1
α

−1,−1,−ζ−1,−ζ− 1
α−1

)]
.

(15)
Proof: Please refer to Appendix B. �
Note that a larger value of Pup,k indicates that a higher

transmit power of the BS or more elements of the RIS are
required. In addition, increasing the proportion coefficient ρ
of PS or decreasing the time allocation coefficient β can also
reduce the uplink outage probability of the whole system.
However, this would lead to diminished performance in the
downlink information transmission. As a result, there is a
trade-off between the uplink and downlink transmission.

B. The average uplink data size of the k-th IoT device

Based on (10) and considering the Poisson distribution of
the number of IoT devices, the average uplink data size of the
k-th IoT device is given by

Cup,k =
Ξ∑

K=1

µKe−µ(1− β)τc
K2(K − 1)!

E[log2 (1 + γup,k)]. (16)

where Ξ is a large positive integer that determines the accuracy
of the result. Subsequently, we can establish the following
lemma.

Lemma 3. The closed-form expression of average uplink
data size for the k-th IoT device in the random phase shift
model is given by

CR
up,k =

Ξ∑
K=1

µKe−µ(1− β)τc

K2(K − 1)!αL2 [Γ(N)]
2

ln 2
×

∆

[
ξ2, G5,2

2,6

(
ξ2α

ϕ1

∣∣∣ 1− 1
α ,0

N,0,N,1,0,− 1
α

)]
.

(17)

Proof: Please refer to Appendix C. �
Lemma 4. If the phase shifts of the RIS are just aligned to

the k-th IoT device, an upper bound of average uplink data
size for the k-th IoT device is derived as

CO
dl,k ≈

Ξ∑
K=1

µKe−µ(1− β)τc
K2(K − 1)!

×

log2

(
1 +

ϕ1ζ
2θ2
(
d2−2α

min − d2−2α
max

)
(α− 1)L2

)
.

(18)

Proof: Please refer to Appendix D. �

IV. EXTENSION TO RICIAN FADING CHANNEL AND
MULTI-ANTENNA SCENARIOS

A. Rician fading channel

In this subsection, the Rician fading channel model is
studied. Given the traditional high-altitude deployment of both
the RIS and BS, we assume that this is a line-of-sight (LoS)
path between the RIS and BS. Accordingly, the channels from
the RIS to the BS can be modeled by gdl = [gdl,1, ..., gdl,N ]

H,
where |gdl,n| = 1, n ∈ {1, ..., N} [16].

Due to a large number of reflecting and scattering compo-
nents from trees and stones surrounding IoT devices, the link
between IoT devices and the RIS may experience both LoS
and non-LoS (NLoS) fading. Therefore, the channel hdl,k can
be given by

hdl,k =

√
κ

1 + κ
h̄dl,k +

√
1

1 + κ
h̃dl,k (19)

where κ ≥ 0 is the Rician factor, h̄dl,k denotes the LoS
component and h̃dl,k represents the NLoS component of
hdl,k. Specifically, one has

∣∣ [h̄dl,k

]
n

∣∣ = 1 and
[
h̃dl,k

]
n
∼

CN (0, 1), n ∈ {1, ..., N}. Now, for further derivation,
we first determine the statistical characteristics of Λdl,k =
|gH

dlΦdlhdl,k|2 under the Rician channel.
In the random phase shift model, the phase shift of each ele-

ment of the RIS is randomly selected, i.e., φdl,n ∼ U (−π, π).
Therefore, one has the following lemma.



Lemma 5. For the random phase shift model, the PDF and
CDF of ΛR

dl,k can be respectively derived as

fΛR
up,k

(x) =
1

N
e−

x
N and FΛR

up,k
(x) = 1− e− x

N .

(20)
Proof: Let fk = gH

dlΦdlhdl,k, one has

fk = gH
dlΦdlhdl,k

=

√
κ

1 + κ
gH

dlΦdlh̄dl,k +

√
1

1 + κ
gH

dlΦdlh̃dl,k

∼
√

κ

1 + κ

[
ej(ψ

g
1+ψh

1+φ1), ..., ej(ψ
g
N+ψh

N+φN)
]T

+

√
1

1 + κ
CN (0, IN ),

(21)
where ψg

n = arg (gup,n) and ψh
n = arg (hdl,k,n).

Then, ΛR
dl,k can be rewritten as

ΛR
dl,k = |gH

dlΦdlhdl,k|2 = |1T
N fk|2 = R

(
1T
N fk

)2
+ J

(
1T
N fk

)2
.

(22)
where 1N represents a column vector with all one. Specifi-
cally, one has

R
(
1T
N fk

)
=

N∑
n=1

R

{√
κ

1 + κ
ej(ψ

g
n+ψh

n+φn)

+

√
1

1 + κ
[CN (0, IN )]n

}
∼ CN

(
0,
N

2

)
.

(23)
Similarly, one has

J
(
1T
N fk

)
∼ CN

(
0,
N

2

)
. (24)

Note that R
(
1T
N fk

)
in (23) and J

(
1T
N fk

)
in (24) are indepen-

dent and identically distributed zero mean random variables
with the same variance, thus ΛR

dl,k should follow the chi-
square distribution with two degrees of freedom, i.e., ΛR

dl,k ∼
X 2(2, N2 ). As a special case, ΛR

dl,k can be represented as an
exponential distribution with parameter N . Therefore, (20) is
obtained. �

Corollary 1. For the optimal phase shift model, the PDF
and CDF of ΛO

dl,k can be respectively written as

fΛO
up,k

(x) =
1

2σ2
e−

s2+x

2σ2 I0

(
s
√
x

σ2

)
,

FΛO
up,k

(x) = 1−Q1

(
s

σ
,

√
x

σ

)
,

(25)

where s =
√

κ
1+κN , σ2 = N

2(1+κ) , I0(·) represents the
modified Bessel function of the first kind with order zero and
Q1(·, ·) denotes the first-order Marcum Q-function.

Proof: For this case, the phase shift of the RIS are just
aligned to the k-th IoT device, i.e., φup,n = − arg (hup,k,n)−
arg (gup,n). Therefore, fk in (21) can be rewritten as

fk = gH
dlΦdlhdl,k

∼
√

κ

1 + κ
[1, 1, ..., 1]

T
+

√
1

1 + κ
CN (0, IN ).

(26)

As a result, R
(
1T
N fk

)
and J

(
1T
N fk

)
in (22) are respectively

redefined as

R
(
1T
N fk

)
=

N∑
n=1

R

{√
κ

1 + κ
+

√
1

1 + κ
[CN (0, IN )]n

}

∼ CN
(√

κ

1 + κ
N,

N

2(κ+ 1)

)
(27)

and
J
(
1T
N fk

)
∼ CN

(
0,

N

2(κ+ 1)

)
. (28)

Since R
(
1T
N fk

)
in (27) and J

(
1T
N fk

)
in (28) have the

same variance but different mean values, ΛO
dl,k should follow

the non-central chi-square distribution with two degrees of
freedom, i.e., ΛO

dl,k ∼ X 2
(

2,
√

κ
1+κN,

N
2(κ+1)

)
. According

to the statistical characteristics of the non-central chi-square
distribution, (25) is obtained. �

Next, we analyze the system performance under the Rician
channel model.

Lemma 6. Based on (13) and (20), for the Rician fading
channel, the closed-form expression of uplink outage proba-
bility for the k-th IoT device in the random phase shift model
can be expressed as

PR
up,k =

Ξ∑
K=1

µKe−µ

K!

{
1−

√
Θup

αNL2√ϕ1
×

∆

[
ξα+2, G2,1

1,3

(
Θupξ

2α

N2ϕ1

∣∣∣ 1
2−

1
α

1
2 ,−

1
2 ,−

1
α−

1
2

)]}
.

(29)
Proof: Please refer to Appendix E. �
Lemma 7. Based on (13) and (25), if the phase shift of

the RIS are just aligned to the k-th IoT device, the exact
expression of uplink outage probability can be derived as

PO
up,k =

Ξ∑
K=1

µKe−µ

K!

{√
2σs−1 exp

(
− s2

4σ2

)
M− 1

2 ,0

(
s2

2σ2

)
− 1

L2σ2

∫ ∞
0

∫ dmax

dmin

ye−
s2+x

2σ2 I0

(
s
√
x

σ2

)
×

Q1

(
s√
σ2
,

√
Θupy

α√
ϕ1σ2x

)
dydx

}
,

(30)
where Ma,b (z) denotes the Whittaker function.

Proof: Please refer to Appendix F. �
Unfortunately, in (30), we can not obtain the closed-form

of the integral due to its complexity. Similar to Lemma 2, we
approximate ΛO

dl,k as a Gamma random variable to obtain a
traceable result. Therefore, one has the following corollary.

Corollary 2. For the optimal phase shift model, we approx-
imate the uplink outage probability of the k-th IoT device as

PO
up,k ≈

Ξ∑
K=1

µKe−µ

K!

Θζ
′
+1

up

αL2[Γ(ζ ′)]2θ′
2ζ′+2

ϕζ
′+1

1

×

∆

[
ξ2(αζ

′
+α+1), G2,2

2,4

(
Θupξ

2α

ϕ1θ
′2

∣∣∣∣ −ζ
′
,−ζ
′
− 1
α

−1,−1,−ζ′−1,−ζ′− 1
α−1

)]
,

(31)
where ζ

′
= (2σ2+s2)2

4σ4+4σ2s2 and θ
′

= 4σ4+4σ2s2

2σ2+s2 .



Proof: According to (25), the mean and variance of ΛO
dl,k

can be expressed as E
[
ΛO

dl,k

]
= 2σ2 + s2 and V ar(ΛO

dl,k) =

4σ4 + 4σ2s2. The distribution of ΛO
dl,k can be approximately

matched to a Gamma random variable as ΛO
dl,k ∼ Γ

(
ζ
′
, θ
′
)

,

where ζ
′

=
(E[ΛO

dl,k])
2

V ar(ΛO
dl,k)

and θ
′

=
V ar(ΛO

dl,k)
E[ΛO

dl,k]
. �

Lemma 8. The closed-form expression of average uplink
data size for the k-th IoT device in the random phase shift
model can be expressed as

CR
up,k =

Ξ∑
K=1

µKe−µ(1− β)τc
K2(K − 1)!αL2 ln 2

×

∆

[
ξ2, G3,2

2,4

(
ξ2α

ϕ1N2

∣∣∣ 1− 1
α ,0

1,0,0,− 1
α

)]
.

(32)

Proof: The proof is similar to Appendix D, which is omitted
for simplicity. �

Furthermore, in the optimal phase shift, it is difficult to
derive an exact expression of average uplink data size for the
k-th IoT device. Therefore, similar to Lemma 4, an upper
bound of the average uplink data size is derived by exploit
the Jensen’s inequality. One has the following lemma.

Lemma 9. If the phase shift of the RIS are just aligned to
the k-th IoT device, an upper bound of average uplink data
size for the k-th IoT device can be approximated as

CO
dl,k ≈

Ξ∑
K=1

µKe−µ(1− β)τc
K2(K − 1)!

×

log2

(
1 +

ϕ1

(
N + κN2

)2 (
d2−2α

min − d2−2α
max

)
(1 + κ)2 (α− 1)L2

)
.

(33)

Proof: The proof is similar to Appendix D except that the
expectation of ΛO

up,k is given by E
[
ΛO

dl,k

]
= 2σ2 + s2 =

N+κN2

1+κ , where σ2 and s are defined in (25). To this end, the
proof is omitted for simplicity. �

B. Multi-antenna mounted at the BS

In this subsection, the case where the BS is equipped with
multiple antennas is discussed. Specifically, we assume that the
BS is equipped with M(M > 1) antennas arranged in the form
of uniform linear array (ULA) and the RIS is comprised with
N (N = Nx × Ny) reflecting elements arranged in the form
of uniform planar array (UPA) [37]. In this case, based on the
assumption of LoS and Rician fading channel in Section IV-
A, the downlink and uplink channel matrices between the BS
and the RIS are denoted as Gdl ∈ CN×M and Gup ∈ CM×N ,
respectively. Then, the received signal at the k-th IoT device
in (4) can be rewritten as

ydl,k =
√
d−αSR d

−α
k hH

dl,kΦdlGdlwxdl + wdl,k, (34)

where w is the precoding vector. Then, one can have
Ωdl,k =

∣∣hH
dl,kΦdlGdlw

∣∣2 =
∣∣∑N

j=1 Fj [hdl,k]j [Φdl]j,j
∣∣2,

where Fj = [Gdl]j,: w denotes the signal received by the
j-th RIS element and [Gdl]j,: denotes the j-th line of ma-
trix Gdl. Next, for analysis tractability and low-complexity
design, the maximum-ratio transmission (MRT) precoding is

TABLE I: Table of Simulation Parameters.

Intensity λ (IoT devices/m2) 0.1 [23]

Power splitting factor ρ 0.6

Downlink time factor β 0.6

Path-loss exponent α1 for the Rayleigh channel 2.8

Path-loss exponent α2 for the Rician channel 2.3

Vertical height of the RIS H (m) 5

The radius of the circular target area L (m) 5

The distance from the BS to the RIS dSR(m) 10

Decoding power consumption coefficient $ 10−10 [34]

Energy conversion efficiency of IoT device η 0.85

Noise power at the IoT device σ2
dl,k (dBm) -74

Noise power at the BS σ2
up (dBm) -74

Transmission duration τc (sec) 1

Uplink transmission rate threshold Cup,th (bits) 0.1

applied, i.e., wMRT =
√
PT

αG,t(zG)
‖αG,t(zG)‖ , where αG,t(zG) =

1√
M

[
1, eizG , · · ·, e(M−1)izG

]T
is the array response vector of

the antenna, zG , π sin γG and γG is the angle of departure
(AoD) from the BS to the RIS [37]. Thus, one has Ωdl,k =∣∣∑N

j=1 Fj [hdl,k]j [Φdl]j,j
∣∣2 = PTM |1T

NΦdlℵhdl,k|2 =

PTM |1T
N f§dl,k|2 = PTΛup,k, where 1N represents a column

vector with all one, ℵ = diag
(
eiℵ1 , · · ·, eiℵN

)
, ℵn denotes

the different phase incident on the j-th element and f§dl,k =
Φdlℵhdl,k. Based on the above analysis, one has the following
lemma.

Lemma 10. Similar to Lemma 5 and Corollary 1, Λdl,k

can be represented as an exponential distribution and a non-
central chi-square distribution with two degrees of freedom in
the random phase shift and the optimal phase shift models,
respectively. That is to say, ΛR

dl,k ∼ Exp(MN) and ΛO
dl,k ∼

X 2
(

2,
√

Mκ
1+κN,

MN
2(κ+1)

)
.

Proof: The proof is similar Lemma 5 and Corollary 1, which
is omitted for simplicity. �

Note that due to the channel reciprocity, Λup,k and Λdl,k

are independent and identically distributed. Therefore, based
on Lemma 10, the performance analysis results in the case of
multi-antenna can be obtained using methods similar to those
in Section III-A.

V. NUMERICAL RESULTS

In this section, we provided numerical results for the
performance evaluation of the RIS-aided SWIPT system.
Furthermore, we validated the effectiveness of the obtained
results using Monte-Carlo simulations. For convenience, we
summarize the main parameters adopted in Table I. Note that
we set the path-loss exponent for the Rayleigh channel model
to α = α1 = 2.8, while the path loss index for the Rice
channel model is set to α = α2 = 2.3. Especially, we run 106

times of Monte-Carlo simulations in this paper.



-20 -15 -10 -5 0 5 10 15

P
T

 (dBm)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

U
p

li
n

k
 o

u
ta

g
e 

p
ro

b
ab

il
it

y

N=20, 40, 60

N=20, 40, 60

+ +

        Simulation, Rayleigh channel

        Analysis, Rayleigh channel

        Simulation, Rician channel

        Analysis, Rician channel

(a) Random phase shift

-33 -32 -31 -30 -29 -28 -27 -26

P
T

 (dBm)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

U
p

li
n

k
 o

u
ta

g
e 

p
ro

b
ab

il
it

y

N=20, 25, 30

+ +
N=8, 10, 12

        Simulation, Rayleigh channel

        Analysis, Rayleigh channel

        Simulation, Rician channel

        Analysis, Rician channel

(b) Optimal phase shift

Fig. 2: The uplink outage probability versus PT for different values of N .
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Fig. 3: The average uplink data size versus PT for different values of N .
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Fig. 4: The uplink outage probability versus density λ for different values of N .

A. Rayleigh and Rician fading channels

Fig. 2 investigates the uplink outage probability versus PT

for different values of N under two phase shift and two fading
channel models. We set the Rician coefficient κ to 1.5 in this
figure. One can see that the uplink outage probability decrease
with the increase of PT, as expected. It is also observed that
for any given PT, lager values of N yields lower uplink outage
probability. This is because increasing the transmit power of
the BS or the number of N enables IoT devices to harvest more
power in the downlink transmission phase to support them
send more information in the uplink transmission phase. In

addition, one can see that the uplink outage probability is more
sensitive to the changes of N in the case of optimal phase shift
than in the case of random phase shift. Specifically, under the
optimal phase shift model, a smaller number of RIS elements
are required to achieve the same outage performance as in
the random phase shift model. Furthermore, compared to the
random phase shift model, the small changes in the elements
of the RIS under the optimal phase shift model lead to a
significant decrease in outage probability. This phenomenon
also appears in the simulation results of Fig. 4. This is because
compared to the random phase shift model, higher channel
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Fig. 5: The average uplink data size versus density λ for different values of N .
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Fig. 6: The uplink outage probability versus PT for different values of M .
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Fig. 7: The average uplink data size versus PT for different
values of M .

power gain can be obtained in the optimal phase shift model.
Therefore, how to achieve the optimal phase shift should be
the first priority in the actual deployment of the RIS.

In Fig. 3, we show the average uplink data size versus PT

with κ = 10 for N ∈ {30, 50, 70} under the two phase shift
and two fading channel models. It is easy to observe that
increasing PT or N always enhance the average uplink data
size, which illustrates the benefits of increasing the transmit
power of the BS or using more reflecting elements of the RIS.
For fixed PT and N , one can see that the average uplink data

size in the optimal phase shift model and Rician channel are
significantly better than those in the random phase shift model
and Rayleigh channel condition. Similar to Fig. 2, this is also
caused by the difference in channel gain generated by different
phase shift models and channel conditions.

Fig. 4 illustrates the uplink outage probability versus λ for
different values of N under two phase shift and two fading
channel models. Specifically, we set the transmit power of the
BS in Fig. 4(a) and 4(b) to 10 dBm and -30 dBm, respectively.
The Rician factor κ is set to 1.5. One can see that the uplink
outage probability increases with λ. This is because that there
are more IoT devices when λ increase, resulting in less uplink
transmission time for each IoT device. One can also observe
from Fig. 4 that for a fixed λ, the uplink outage probability
in both cases decreases with the increase of N due to the
increased passive beamforming gain. Moreover, it is again
observed that the uplink outage probability are more sensitive
to the changes of λ in the case of optimal phase shift than in
the case of random phase shift. In addition, similar to Fig. 2,
one can see that under both the random phase shift and optimal
phase shift models, the uplink outage probability under the
Rician channel condition is lower than that of the Rayleigh
channel.

In Fig. 5, we study the average uplink data size versus
density λ with PT = 0 dBm and κ = 10 for N ∈ {30, 50, 70}
under two phase shift and two fading channel models. One
can see that with the increase of λ, the average uplink data



size decreases. This observation can also be explained by the
reason provided in Fig. 4. One can also see that increasing
N yields higher average uplink data size. Particularly, it
can be seen that the performance degradation of the average
uplink data size occurs more rapidly in high-density regions
compared to low-density regions.

B. Multi-Antenna case

Fig. 6 shows the uplink outage probability versus the
transmit power of the BS for different values of M under
the case of random phase shift and optimal phase shift in the
Rician fading channel. Note that the the number of reflecting
elements N in Fig. 6(a) and Fig. 6(b) are set to 40 and 20,
respectively. We set the Rician factor κ to 1.5 in this case. It
is observed that for any given PT, lager values of M yields
lower uplink outage probability. This means that increasing
the quantity of antennas can substantially decrease the outage
probability of the system under consideration. Furthermore, for
the same case of phase shift, the gap between the curves in
Fig. 6 decreases with the increase of M , which indicates that
the extent of system performance improvement is gradually
reduced.

Fig. 7 shows the average uplink data size versus PT for
M ∈ {2, 4, 8}. We set the number of RIS’s elements to 30
and the Rician coefficient to 10 in this figure. It is easy to
observe that increasing M always enhance the average uplink
data size, which illustrates the benefits of using more antennas
of the BS. One can also observe from Fig. 6 and Fig. 7 that
the system performance in the optimal phase shift model is
superior to that in the random phase shift model.

Again, in all these tests above, it can be seen that ‘Analysis’
curves are consistent with the ‘Simulation’ curves, indicating
the usefulness and validity of our obtained results.

VI. CONCLUSION

In this paper, an RIS-assisted SWIPT system has been inves-
tigated by utilizing stochastic geometry tools. According to the
transmission protocol considered, we have derived the closed-
form expressions of the outage probability and the average data
size for the k-th IoT device in the uplink transmission phase.
Specifically, we considered not only the case of random phase
shift, but also the case where the phase shift of the RIS are
aligned to the k-th IoT device. Moreover, we also extended
the Rayleigh channel to the Rician fading channel and multi-
antenna scenarios. Finally, a large number of numerical results
were provided to validate the effectiveness of our obtained
results. For future work, we will discuss the performance of
RIS-assisted SWIPT systems under more complex scenarios,
e.g., the NOMA and compare them in detail with the existing
TDMA scheme.

APPENDIX A
PROOF OF LEMMA 1

Define Xk = ΛR
dl,kΛR

up,k. To derive the closed-form expres-
sion of (13), we first identify the statistical features of Xk.

Based on (11), the CDF of Xk can be expressed as
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(A.1)
where Gp,qm,n

[
x|a1,...,apb1,...,bq

]
denotes the Meijer’s G-function, (a)

follows from [38, Eq. (8.4.23.1), Eq. (8.4.23.2)] and (b) is
obtained by using [39, Eq. (9.31.5), Eq. (7.811.1)].

Then, (13) can be rewritten as
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(A.2)
where ϕ1 = ηρPtβ

(1−β)σ2
upd

2α
SR

, ϕ2 = −
(
N
2 + 1

α + 1
)

and (a)
follows from [38, Eq. (2.24.2.2)].

Finally, by taking the Poisson distributed number
of IoT devices into consideration and further using
∆
[
ξa1 , G·,··,·

(
bξa2

∣∣·,··,· )] , da1maxG
·,·
·,·
(
bda2max

∣∣·,··,· ) −
da1minG

·,·
·,·
(
bda2min

∣∣·,··,· ), (14) can be obtained.

APPENDIX B
PROOF OF LEMMA 2

Define Yk = ΛO
dl,kΛO

up,k. In order to obtain the closed-form
expression of (13) in the optimal phase shift model, we first



identify the statistical characteristics of Yk. Based on (12), the
CDF of Yk can be given by
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(B.1)
where (a) is obtained by using [38, Eq. (8.4.3.2), Eq.
(8.4.16.1)] and (b) follows from [39, Eq. (9.31.5), Eq.
(7.811.1)].

Then, one can have
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(B.2)
where (a) follows from [38, Eq. (2.24.2.3)].

Finally, by taking the Poisson distributed number
of IoT devices into consideration and defining
∆
[
ξa1 , G·,··,·

(
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∣∣·,··,· )] , da1maxG
·,·
·,·
(
bda2max

∣∣·,··,· ) −
da1minG

·,·
·,·
(
bda2min

∣∣·,··,· ), (15) can be obtained. The proof is
completed.

APPENDIX C
PROOF OF LEMMA 3

By exploiting the definition of average uplink data size, one
has
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(C.1)
To derive the closed-form expression of (C.1), we first

derive the CDF of γR
up,k. Similar to the derivation process

of Lemma 1, the CDF of γR
up,k can be obtained as
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Then, substituting (C.2) into (C.1), one can have
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Then, (17) is obtained by using ∆
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APPENDIX D

PROOF OF LEMMA 4

By exploiting the definition of average uplink data size, (16)
can be given by
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(D.1)
In order to obtain the closed-form expression of (D.1), we

first derive the CDF of γO
up,k. Similar to the derivation process

of Lemma 2, the CDF of γO
up,k can be obtained as
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Then, one has

CO
up,k =

Ξ∑
K=1

µKe−µ(1− β)τc
K2(K − 1)! ln 2

×

∫ ∞
0

1

1 + z

{
1− zζ+1

αL2[Γ(ζ)]2θ2ζ+2ϕζ+1
1

×[
d2(αζ+α+1)

max G2,2
2,4

(
zd2α

max

θ2ϕ1

∣∣∣ −ζ,−ζ− 1
α

−1,−1,−ζ−1,−ζ− 1
α−1

)
− d

2(αζ+α+1)
min G2,2

2,4

(
zd2α

min

θ2ϕ1

∣∣∣ −ζ,−ζ− 1
α

−1,−1,−ζ−1,−ζ− 1
α−1

)]}
dz.

(D.3)
Unfortunately, it is difficult to derive the exact expression

for (D.3). Therefore, by exploiting the Jensen’s inequality, an
upper bound of (D.1) can be given by
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Then, due to ΛO
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k are independent of each
other, E[γO
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Based on (3), E
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Finally, substituting (D.6) into (D.4), (18) is obtained. Here,
the proof is completed.

APPENDIX E
PROOF OF LEMMA 5

Define Uk = ΛR
dl,kΛR

up,k. To derive the closed-form expres-
sion of (13), we first determine the statistical features of Uk.
Based on (20), the CDF of Uk can be expressed as
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where (a) follows from [39, 3.471.9].

Then, one has
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(E.2)
where (a) is obtained by using [38, Eq. (8.4.23.2)] and (b)
follows from [38, Eq. (2.24.2.2)].

Finally, by taking the Poisson distributed number
of IoT devices into consideration and further using
∆
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ξa1 , G·,··,·

(
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·,·
·,·
(
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·,·
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∣∣·,··,· ), (29) can be obtained.

APPENDIX F
PROOF OF LEMMA 7

Define Vk =
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. In order to obtain the closed-form ex-

pression of (13), we first identify the statistical characteristics
of Vk. Based on (3) and (25), the CDF of Vk can be expressed
as
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Then, one can have
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By using [39, Eq. (6.614.3)], one can have
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)
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where Ma,b (z) denotes the Whittaker function.
Finally, by taking the Poisson distributed number of IoT

devices into consideration and substituting (F.3) into (F.1), (30)
can be obtained. The proof is completed.
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