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Abstract—In the rapidly evolving landscape of 5G and beyond,
cloud-native Open Radio Access Networks (O-RAN) present
a paradigm shift towards intelligent, flexible, and sustainable
network operations. This study addresses the intricate challenge
of energy efficient (EE) resource allocation that services both
enhanced Mobile Broadband (eMBB) and ultra-reliable low-
latency communications (URLLC) users. We propose a novel
distributed learning framework leveraging on-policy and off-
policy transfer learning strategies within a deep reinforcement
learning (DRL)–based model to facilitate online resource alloca-
tion decisions under different channel conditions. The simulation
results explain the efficacy of the proposed method, which rapidly
adapts to dynamic network states, thereby achieving a green
resource allocation.

Index Terms—eMBB, DRL, URLLC, Resource Allocation, O-
RAN, Energy Efficiency.

I. INTRODUCTION

Open Radio Access Network (O-RAN) signifies a trans-
formative approach to designing and implementing next-
generation mobile networks. It seeks to break down the con-
ventional barriers of proprietary network elements, advocating
for a system where hardware and software components from
various vendors work together seamlessly. Unlike traditional
RAN setups where a single vendor might provide a closely
knit hardware-software package, O-RAN advocates a modu-
lar and flexible framework [1], [2]. This framework divides
radio network functions into standardised, interoperable units,
empowering network operators with the ability to combine
network elements from different suppliers. This ability not
only encourages competition but also diminishes reliance on
singular suppliers, with the added benefit of possibly reducing
overall costs.

Central to O-RAN’s architecture are the Radio Unit (RU),
the Distributed Unit (DU), the Centralized Unit (CU), and
the RAN Intelligent Controller (RIC), each playing a pivotal
role in ensuring the network’s functionality and efficiency.
The RU focuses on radio frequency processing, the DU on
baseband processing, and the CU on managing higher-layer
functions, all working in concert through open interfaces
and standardised protocols [1]. This architecture ensures high
flexibility, allowing network operators to tailor their infrastruc-
ture according to specific needs and preferences. Moreover,
introducing the RIC as a key component of O-RAN underlines
the network’s forward-thinking design. The RIC, with its near

real-time and non-real-time variants, brings programmability
and embedded AI capabilities into the network’s core, enabling
dynamic adaptation of network operations such as admission
control, radio resource allocation, and power management
[3], [4]. This adaptability is especially crucial in catering
to the diverse and evolving demands of Beyond 5G (B5G)
networks, which aim to significantly improve the network
energy efficiency and serve a wide array of vertical industries
with varying requirements for enhanced Mobile Broadband
(eMBB) and Ultra-Reliable Low Latency Communications
(URLLC) [5].

Since most of the energy usage in mobile networks is
attributed to the radio access segment [6], efficient resource
management schemes that ensure the network’s energy effi-
ciency (EE) and guarantee quality-of-service (QoS) for eMBB
and URLLC users are essential [7], [8]. More specifically,
integrating EE considerations into the dynamic and complex
resource management landscape of B5G O-RAN-based small
cell networks is vital, particularly in the presence of URLLC
and ENBB users. The study in [5] proposes a method to
enhance EE and ensure QoS in O-RAN by jointly optimising
radio resource allocation and DU selection. The proposed
method uses a linearised model solved by a Mixed Integer
Linear Programming (MILP) solver, which outperforms tra-
ditional disjoint approaches by reducing the network energy
consumption. In [9], the authors first introduce two machine
learning-based closed-loop controls (CLCs) aimed at network
traffic prediction and network slicing within the Non-RT and
Near-RT RIC domains of O-RAN architecture. Following this,
they propose an energy-efficient AI/ML pipeline tailored for
deploying these CLCs. Their numerical results demonstrate
the effectiveness of the proposed approach compared to fixed
centralised and distributed deployments. In [10], the authors
introduce an optimisation model for enhancing routing and
energy efficiency in IAB networks. Using O-RAN’s CLC
framework, their model aims to reduce the number of active
IAB nodes, ensuring minimal capacity for each user. They
transform and solve a complex binary nonlinear problem
into a linear one. Tested on Milan’s network data, their
method cuts RAN energy use by 47% while ensuring user
threshold capacity. A distributed learning framework for re-
source allocation in multi-cell wireless systems catering to
eMBB and URLLC users is presented in [11]. Leveraging



Fig. 1: Considered Cloud Native O-RAN based Small Cell Network and Considered Resource Grid.

a Thompson sampling-based Deep Reinforcement Learning
(DRL) algorithm within the O-RAN architecture, this approach
enables real-time decision-making at the network edge by de-
ploying execution agents at Near-RT RICs. Simulation results
demonstrate that the algorithm is effective in meeting QoS
requirements for diverse user groups and optimising resource
utilisation in dynamic environments.

Unlike the above-mentioned works, this paper tackles the
challenge of maximising network energy efficiency in a split-
6 O-RAN-based small cell network, accommodating both
eMBB and URLLC users. We formulate the energy effi-
ciency maximisation problem in terms of achievable sum-rate
and total consumed power. Our proposed approach, utilising
on-policy and off-policy transfer learning strategies within
a DRL-based clipped proximal policy optimization (PPO),
seeks to optimise this objective function through physical
resource blocks (PRB) allocation, radio resource puncturing
decisions, and transmit power adjustments while ensuring the
strict latency requirements of URLCC users. This method
allows for a dynamic and intelligent allocation of network
resources, aiming to enhance the overall energy efficiency of
the network while meeting the diverse requirements of eMBB
and URLLC services. Extensive simulation results show that
the proposed approach achieves green resource allocation by
rapidly converging to optimal resource distribution policies
that maintain high EE, even under varying and unpredictable
channel conditions.

II. SYSTEM MODEL

We consider a downlink O-RAN scenario where we have
N numbers of DUs, defined as N = {1, ..., N} are served
by a single CU. There are L numbers of RUs, defined as
L = {1, ..., L} served by each DU, where a RU l ∈ L supports
two different service users, a set of eMBB users We

l,n ={
1, ...,W e

l,n

}
, and URLLC users Wu

l,n =
{
1, ...,Wu

l,n

}
, as

shown in Fig. 1. Each of these DUs is linked to the Near-
RT-RIC, equipped with an intelligent scheduling xApp that
determines the allocation of PRBs to all users, i.e., W̄ =
{1, 2, · · ·,W}, where W = {W e

l,n +Wu
l,n} connected to their

respective RUs. We positioned edge cloud servers at the near-
RT-RIC, creating links to a regional cloud server at non-RT-
RIC. As per [12], the Non-RT RIC resides on the regional

cloud server, while the Near-RT RICs are deployed on the edge
cloud servers and every DU is connected to a solitary edge
server. The radio spectrum resources in 5G New Radio (5G-
NR) can be illustrated in both the frequency and time domains.
These domains are divided into smaller sections called RBs,
which comprise a total of K radio resources. Every time slot
is subdivided into M mini-slots. Each RB is identified by
a specific bandwidth represented as B. Typically, the eMBB
service spans across multiple TTIs aiming to enhance spectral
efficiency (SE). Nevertheless, the stringent latency demands
necessitate immediate processing of incoming URLLC traffic.
To meet the rigorous requirements for low latency and high
reliability in URLLC, the technique of puncturing eMBB slots
is utilized. By allocating specific resources to URLLC traffic
through puncturing eMBB slots, the prompt delivery of crucial
information can be ensured with timeliness and reliability.
The URLLC service is programmed to have a short TTI
of 0.5 ms, whereas a longer duration of 1 ms is assigned
for the eMBB service. The prompt execution of URLLC
transmission, involving the interruption of eMBB traffic, can
significantly impact the capacity and reliability of the system.
Consequently, this could lead to a reduction in the efficiency
of the eMBB service. Hence, a suitable structure is necessary
to meet the QoS criteria.

eMBB Rate: Scheduling URLLC transmission promptly
may compromise the throughput of the eMBB service. The
puncturing decision variable δl,wk,m(t) is a binary variable that
takes the value of 1 if the mth mini-slot is punctured by the
wth URLLC user, applicable for all w in the set W̄ and l in the
set L, at time t. It is set to 0 in all other instances. The signal-
to-noise-and-interference-ratio (SINR) of the eMBB user w
can be mentioned as follows

Ωe,w
l,k (t) =

pe,wl,k (t)ge,wl,k (t)∑
l′∈L
l′ ̸=l

pe,wl′,k(t)g
e,w
l′,k(t)︸ ︷︷ ︸

eMBB interference

+
∑
l′∈L
l′ ̸=l

pu,wl′,k (t)g
u,w
l′,k (t)︸ ︷︷ ︸

URLLC interference

+σ2
,

(1)
where pe,wl,k (t), and ge,wl,k (t) denotes the transmitted power and
channel gain, respectively, of eMBB user w of RU l over RB
k, and σ2 denotes the noise power. The achievable rate for an
eMBB user w in RU l, utilizing RB k during time slot t, can



be determined as follows

re,wl,k (t) = B

(
1−

∑M
m=1 δ

l,w
k,m(t)

M

)
log2 (1 + Ωe,w

l,k (t)), (2)

where the expression
∑M

m=1 δl,wk,m(t)

M signifies the decline in
eMBB rate due to puncturing. We presume that every RU
allocates an RB for an individual user. Here we define an RB
allocation decision variable αl,n

w,k(t) which is a binary variable
that takes the value of 1 if RB k of Radio Unit l in DU n
is assigned to the eMBB user w, for all l in the set L and n
in the set N . It is set to 0 in all other cases, indicating that
the RB is not allocated to that specific eMBB user. Therefore,
the total throughput achieved by the eMBB user w can be
calculated as

re,wl,n (t) =
∑
k∈K

αl,n
w,k(t)r

e,w
l,k (t). (3)

URLLC Rate:In order to minimise transmission latency,
it’s crucial to restrict the block length in URLLC. Shannon’s
capacity theorem becomes pertinent when handling an indefi-
nite block length [13]. The achievable throughput of URLLC
with finite blocklength can be determined as

ru,wl,k (t) =
∑
k∈K

Bk

(∑M
m=1 δ

l,w
k,m(t)

M

)[
log2 (1 + Ωu,w

l,k (t)) (4)

−

√
Du,w

l,k

Cu,w
l,k (t)

.Q−1(x)

]
,

where Cu,w
l,k (t) refers to the symbols in each mini-slot, and

Ωu,w
l,k (t) represents the SINR for the URLLC user, as defined

by

Ωu,w
l,k (t) =

pu,wl,k (t)gu,wl,k (t)∑
l′∈L
l′ ̸=l

pu,wl′,k (t)g
u,w
l′,k (t)︸ ︷︷ ︸

URLLC interference

+
∑
l′∈L
l′ ̸=l

pe,wl′,k(t)g
e,w
l′,k(t)︸ ︷︷ ︸

eMBB interference

+σ2
.

(5)
Here, Du,w

l,k = 1 − 1
(1+Ωu,w

l,k (t))2
represents the dispersion of

the channel.

III. PROBLEM FORMULATION

The coexistence of URLLC users alongside eMBB traf-
fic adds extra pressure on eMBB transmissions, potentially
leading to a violation of the minimum QoS requirements. It
is presumed that the URLLC traffic produces shorter packet
fragments. The arrival rate of packets in mini-slot m, where
m is within the set M = {1, ...,m, ...,M}, during TTI t,
conforms to a Poisson point process (PPP) distribution and
is denoted as βm(t). Furthermore, the aggregate count of
URLLC packets received within the TTI t can be computed
as

β(t) =
∑

m∈M
βm(t). (6)

In light of considering non-ideal FH, it is necessary to
incorporate the round-trip delay of HARQ retransmission

into the URLLC service’s outage probability. This adaptation
becomes essential to appropriately account for the extra delay
introduced by HARQ retransmissions, thereby incorporating
both the initial transmission and potential retransmissions into
the determination of the outage probability. Consequently,
the reliability equation, which encompasses non-ideal FH and
HARQ, can be formulated as follows

Pr
[
ru,wl,k (t+ λRTT ) ≤ ϱβ(t)

]
≤ σu, ∀l ∈ L, (7)

where λRTT and ϱ refer to the round-trip delay of HARQ
retransmission in TTI units and URLLC packet size, respec-
tively. This adjustment reflects the shift towards evaluating
the system’s reliability at time (t+ λRTT ) rather than solely
at time t, thereby accounting for the timing of reliability
assessment. To characterise the success probability for each
HARQ transmission, BER-based methodologies are utilised
[14], [15]. At time (t + λRTT ), the probability of successful
transmission is estimated by considering the cumulative distri-
bution function (CDF) of the bit error rate (BER). Following
this, a Bernoulli experiment is conducted to ascertain the
success or failure of the transport block (TB) transmitted to
each user based on these estimated success probabilities. Such
a modelling approach facilitates the assessment of delays’
influence on HARQ transmission outcomes and, consequently,
on the overall data rate for URLLC services. We characterise
the energy efficiency (EE) of the system by calculating the
ratio of the aggregate data rate to the overall power consump-
tion, specifically

ζnEE(t) =

∑
l∈L
∑

w∈W̄{re,wl,n (t) + ru,wl,k (t)}∑
l∈L
∑

w∈W̄
∑

k∈K pwl,k(t) + L · PRU (t) + Pn
DU

,

(8)

where L · PRU (t), and Pn
DU refers to the amount of total

circuit power consumed by L RUs and nth DU at each TTI,
respectively. Consequently, we formulate an objective function
aimed at enhancing the EE of the network as follows

P : max
α,P,δ

{ζnEE(t)} (9a)

s.t.
∑

w∈We
l,n

αl,n
w,k(t) ≤ 1,∀k ∈ K, l ∈ L, n ∈ N (9b)

∑
w∈Wu

l,n

δl,wk,m(t) ≤ 1, ∀k ∈ K, l ∈ L, n ∈ N (9c)

∑
m∈M

δl,wk,m(t) ≤ M,∀k ∈ K, l ∈ L (9d)

Pr
[
ru,wl,k (t+ λRTT ) ≤ ϱβ(t)

]
≤ σu, ∀l ∈ L (9e)∑

w∈We
l,n

re,wl,n (t) ≤ r̄e (9f)

∑
w∈We

l,n

∑
k∈K

pe,wl,k (t) ≤ Pmax,∀l ∈ L (9g)

pe,wl,k (t) ≥ 0, ∀w ∈ We, k ∈ K (9h)

αl,n
w,k(t) ∈ {0, 1}, ∀w ∈ We, k ∈ K (9i)

δl,wk,m(t) ∈ {0, 1}, ∀w ∈ Wu, k ∈ K (9j)

where (9a) denotes the objective where we look to maximise
the EE of the system. Constraint (9b) sets the limit on the



allocation of resources for eMBB, ensuring that each RB is
assigned to only one user. Whereas (9c) ensures that at any
given time slot, only one URLLC user is permitted to puncture
a specific mini-slot within an RB. Constraint (9d) states that
the number of punctured mini-slots must not exceed the total
count of mini-slots available. Constraint (9e) establishes the
reliability requirement for URLLC. Constraint (9f) refers to the
eMBB reliability. Constraints (9g) and (9h) outline the power
allocation restrictions for eMBB. Similarly, the constraints
(9i) and (9j) delineate the constraints concerning resource
allocation visibility limitations.

IV. PROPOSED DISTRIBUTED LEARNING APPROACH

The optimisation problem in (9) is categorised as NP-hard.
To address this, we conceptualise the problem as a Markov
decision process (MDP) involving N agents.

state space: We make the assumption that each edge
cloud server, functioning as an agent, receives only its own
distinct state, focusing particularly on the data pertaining
to users within the corresponding cell. The set of states
can be described as Sn = {S1,n, S2,n, ..., Sl,n, ..., SL,n}.
The state space includes the channel information of both
eMBB and URLLC users, as well as the traffic details
at time slot t, and it can be represented as sl,n(t) ={
gel,n(t), g

u
l,n(t), ϱl,n(t),W

e
l,n,W

u
l,n

}
.

Action: The set of action space can be described as A =
{A1, A2, ..., An, ..., AN}. Each agent makes decisions regard-
ing the selection of eMBB RB denoted by α, the allocation of
eMBB power represented by P , and the scheduling of URLLC
denoted by δ.

Reward: We formulate the global reward function, taking
into account the specifications of URLLC users. The reward
function can be expressed as follows

r(t) =

I︷ ︸︸ ︷
ζnEE(t)−Ψ(t)

( II︷ ︸︸ ︷
ru,wl,k (t+ λRTT )− ϱβ(t)

)
− re,wl,n (t)

(10)

where we incorporate the time-dependent weighting coeffi-
cient, denoted as Ψ(t), to guarantee the reliability constraint
of URLLC. It can be updated as follows

Ψ(t+ 1) = max {Ψ(t) + Φ(t)− σu, 0} , (11)

where Φ(t) represents the transmission error probability. In the
first part, we aim to maximise the EE of the network, while
the second part represents the constraint for URLLC.

A. Multi-agent DRL Framework with Transfer Learning

In this setup, DUs acting as edge servers are interconnected
with near-RT-RIC. The intelligent scheduling xApp, operat-
ing within the near-RT-RIC, is responsible for the dynamic
allocation of PRBs to users. Each edge server serves as an
autonomous agent in this decentralised framework, capable of
making localised decisions to optimise resource allocation and
network performance. Meanwhile, the core training module
resides within the regional cloud server. Offline training of a

fully connected neural network (NN) model is conducted at
the non-RT-RIC in the regional cloud, utilising data gathered
from all edge agents. This trained global model is then
communicated to the DRL agents situated at the near-RT-RIC
deployed at the edge servers. The objective of training the
global model is to maximise a designed global reward function
in (10), thus optimising the network’s overall performance and
efficiency. In DRL, NN is commonly employed to parame-
terise the function of the critic and actor. In this work, we
adopt the policy gradient-based approach to update the actor
part. We utilise the clipped PPO, where the objective of the
policy function is set to be the minimum value between the
standard surrogate objective and a clipped objective. It can be
formulated as follows

∇clip(θ) = E

[
min

(
µθ(st, at) · γ, clipϵ(µθ(st, at))

)
· γ
]
,

(12)

where the θ defines the policy π, while γ represents the
estimates of advantages. Additionally, µθ(., .) denotes the
likelihood ratio and can be expressed as

µθ(st, at) =
πθ(at|st)
πθ̄(at|st)

. (13)

Furthermore, the clip function limits the range of µθ(., .) to
a specific interval. We present the implementation of policy
updates by employing Clipped PPO and a solitary master
policy for knowledge transfer. In actor-critic RL, the update
process for the critic involves employing conventional super-
vised regression. This method mirrors the approach utilised
in Clipped PPO. However, two fundamental concepts are the
foundation for our actor update: on-policy transfer learning for
allocating RBs at near-RT-RIC and off-policy transfer learning
in non-RT-RIC. This approach allows for more immediate
feedback and adaptation to changing network conditions. On-
policy methods directly update the policy based on experiences
collected during interaction with the environment, The transfer
of on-policy utilises a technique known as policy distillation
[16]. In the off-policy transfer process, we fine-tune the
actor by defining an objective ∇off . This is achieved by
employing an advantage-based experience selection technique.
The suggested method for experience selection aims to choose
samples that exhibit a strong semantic connection to the target
task rather than solely focusing on similarity.

B. On-policy Transfer Learning at near-RT-RIC

To enhance the initial performance of DRL agents, we
employ a policy distillation method for on-policy transfer
learning [16]. It involves a two-step process: first, training a
master policy that performs well on a source task, and then
distilling this policy into a learner policy that can operate
in the target task environment. On-policy transfer learning
at near-RT-RIC involves adapting and optimizing the policy
based directly on the experiences gained during the interaction
with the environment in a near-real-time fashion. This method
continuously updates the policy based on the latest actions



and observed rewards, aiming to improve the decision-making
process for resource allocation. The core concept revolves
around utilising an additional loss function that incentivises
the learner policy to closely resemble the master policy along
the trajectories sampled by the learner. The learner learns by
imitating the master policy. This can be done by minimizing
the difference between the state-action value functions of the
master and the learner. Considering a master policy denoted as
πmaster, we introduce an additional loss function as follows

∇add(θ) = Z

(
πmaster(a|s)||πθ(a|s)

)
, (14)

where Z(.||.) refers to the cross-entrpoy. The policy distillation
process incorporates the loss mentioned in (12) into the clipped
PPO objective function as follows

∇j
on = ∇clip(θ)− ηj∇add(θ), (15)

where ηj denotes the weighting factor. It helps to improve the
initial performance of the DRL agents.

C. Off-policy Transfer Learning at non-RT-RIC

Off-policy transfer learning in a non-RT-RIC can be initiated
when a sufficient amount of data has been collected from
the edge servers and stored in the replay buffer. The first
step is to collect training data from various edge servers
or agents following the master policy πmaster. This data
typically includes observations of the environment, actions
taken by the agents, and corresponding rewards from the
target task. The collected data should be stored in a replay
buffer. Considering that the samples originate from a distinct
distribution, we refrain from utilising them to update the state
value (critic) network directly. However, to enhance sample
efficiency, during the policy (actor) network update, we adopt
a selective approach. We choose transitions based on their as-
sociated advantage values and exclusively incorporate samples
exhibiting advantages surpassing a predetermined threshold.
Additionally, considering that the master policy was employed
during data collection, we adjusted the objective function for
off-policy learning. This entails omitting the additional cross-
entropy loss and substituting πθ̄ with πmaster in (13), ensuring
a more effective transfer of knowledge from the teacher policy
to the learning process. It can be expressed as follows

∇off (θ) = E

[
min

(
νθ(st, at) · γ̄, clipϵ(νθ(st, at))

)
· γ̄
]
.

(16)

Hence, as advantages are computed based on the reward
function specific to the target task, state-action transitions
exhibiting high values are considered favourable for transfer
learning. This approach helps to enhance the sample efficiency.

V. PERFORMANCE EVALUATION

We consider four DUs and eight RUs in our network model,
where each DU serves two RUs, and each RU offers coverage
to an area spanning 250 square meters and manages both
eMBB and URLLC users. The eMBB users continuously

TABLE I: Simulation Parameters

Parameter Value
Frame duration 10 ms
No. of mini-slots in each TTI 7
sub-carrier spacing 15 Khz
No. of OFDM symbols/TTI 14
OFDM symbols/mini-slot 2
Bandwidth 20 MHz
URLLC packets length 32 Bytes
RB Bandwidth 180 kHz
Transmit power 38 dBm
Pathloss Model 120.8 + 37.5 log10(d)
Actor learning rate 10−5

Critic learning rate 10−3

Fig. 2: Learning comparison

produce data with full-buffer traffic, whereas URLLC users
generate traffic characterised by a Poisson distribution, with
an arrival rate represented by β. The simulation parameters
are defined in Table I.

Fig. 2 illustrates the convergence of the on-policy and off-
policy transfer learning models in contrast to a baseline model
with random initialisation. Here, the source and target tasks
have different wireless conditions, implying that channel char-
acteristics such as path loss, shadowing, and fading patterns
vary significantly between the tasks. The on-policy transfer
learning approach demonstrated a robust convergence pattern,
as shown in the figure. The sustained high reward of the
on-policy method suggests that the model quickly identifies
and adheres to resource allocation strategies that are both
effective and EE. Conversely, the off-policy method portrayed
a more volatile convergence trajectory. The results indicate that
the on-policy transfer learning method implemented within
the near-RT-RIC is more suitable for environments requiring
quick and reliable convergence, such as achieving the EE
while balancing the dual demands of eMBB reliability and
URLLC constraints. The off-policy approach, while valuable
for its capacity to leverage diverse experiences, might ne-
cessitate further optimisation to achieve comparable levels of
efficiency within the same operational constraints. The random
initialisation serves as a baseline to contextualise the learning
efficiency of the transfer learning methods. The convergence
plot presents compelling evidence of achieving green resource
allocation where our proposed learning model ensures that EE



Fig. 3: URLLC impact on EE of the system

resource optimization are not compromised when the network
transitions from one set of channel conditions to another.

In Fig. (3), we present the EE performance of on-policy and
off-policy transfer learning methods, in addition to a baseline
random initialisation approach, under varying URLLC packet
arrival rates. The EE of all methods naturally declines as
the URLLC packet arrival rate increases, indicating higher
energy demands to handle the additional packet traffic. The
on-policy method exhibited superior energy efficiency across
all URLLC packet arrival rates. The on-policy method, in
particular, demonstrates robustness in maintaining higher en-
ergy efficiency, reflecting its potential for sustainable net-
work operations, especially in scenarios characterised by high
URLLC traffic under varying channel conditions. The off-
policy method, while less efficient than the on-policy, still
significantly outperforms the random initialisation baseline,
emphasising the value of structured learning algorithms in
energy-conscious network management.

VI. CONCLUSION

In this work, we have addressed the resource allocation
challenges with a keen focus on multiplexing of eMBB and
URLLC services. Through the formulation of an optimisation
problem and the development of a distributed learning frame-
work, particularly leveraging a transfer learning approach, we
have presented a solution capable of making online resource
allocation decisions under different channel conditions. Our
incorporation of transfer learning approaches, both on-policy
and off-policy, within the framework of O-RAN network ar-
chitectures has demonstrated a marked improvement in energy
efficiency metrics. The simulation result shows that the on-
policy transfer learning method, in particular, showcased its
prowess by not only converging rapidly but also by optimising
the EE across varying levels of URLLC packet arrival rates.
Our work contributes critical insights into the optimisation
of resource utilisation, embracing the dual imperatives of
dynamic wireless environment adaptability and sustainable
network management. Our findings advocate for the inte-

gration of intelligent transfer learning mechanisms that can
dynamically adapt to network conditions while significantly
reducing the carbon footprint of wireless communications.
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