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Abstract
We give an account on what is known on the subject of permutation matchings,
which are bijections of a finite regular semigroup that map each element to one of
its inverses. This includes partial solutions to some open questions, including a related
novel combinatorial problem.
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1 Introduction and background

The author published three papers [3, 4], and [5] in Semigroup Forum relating to the
question of when a finite regular semigroup S has a bijection φ such that φ(a) ∈ V (a),
which is to say that φ maps elements to their inverses. Some simple observations will
occur to the reader: if S is an inverse semigroup, then there is a unique such permutation
φ, and if S is a union of groups, the mapping a �→ a−1, where a−1 denotes the group
inverse of a in S, defines a permutation matching, as these bijections are called (we
shall sometimes abbreviate the term tomatching). Indeed in both cases thesematchings
are involutions. Rectangular bands are exactly the semigroups where every bijection
of S is a matching, as they are characterised by the identity x = xyx , while the identity
mapping is a matching if and only if S satisfies the identity x = x3.

It does not take long however to locate examples of finite regular semigroups
that have no matching. A minimal example is given by the 7-element orthodox
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0-rectangular band B = {(i, j) : 1 ≤ i ≤ 2, 1 ≤ j ≤ 3} ∪ {0}, where
E(B) = {(1, 2), (1, 3), (2, 1)}∪ {0}. The pairs (2, 2) and (2, 3) have only one inverse
element between them, that being (1, 1), and so no permutation matching exists for
B. Proposition 1.5 of [3] gives an example of an orthodox 0-rectangular band, with an
involution matching, but which has B as a retract. It follows from this that the class
of semigroups that possess a permutation matching is not closed under the taking of
regular subsemigroups, nor the taking of homomorphic images. The class is closed
however under the taking of direct products.

The nature of the example represented by B suggests that the existence of permu-
tation matchings will correspond to the satisfaction of Hall’s condition in the bipartite
graph featuring two copies of S with edges joining mutually inverse pairs. Indeed we
see this as part (iii) of the following theorem.

Theorem 1.1 ([3, Theorem 1.6]) For a finite regular semigroup S the following are
equivalent:

(i) S has a permutation matching;
(ii) S is a transversal of {V (a)}a∈S;
(iii) |A| ≤ |V (A)| for all A ⊆ S;
(iv) S has a permutation matching (·′) that preserves the H -relation; (meaning that

aH b → a′ H b′);
(v) each principal factor Da ∪ {0} (a ∈ S) has a permutation matching;
(vi) each 0-rectangular band (Da ∪ {0})/H has a permutation matching.

This theorem was applied to show that the full transformation semigroup Tn has a
matching [3, Theorem 2.12]. The argument also extends to the partial transformation
semigroup, PTn .

The proof shows that each D-class D of Tn has a matching, and this was done by
partitioning D into so-called Q-classes, which are themselves unions of R-classes.
To eachR-class R ⊆ D, (remembering that αR β in Tn if and only if ker α = ker β),
we associate an increasing sequence of positive integers sR = (k1, k2, . . . , kt ) where
the ki run over the cardinalities of the kernel classes of the members of R, so that t
is the rank of the members of D. The Q-class defined by R is then the union of all
R-classes R′ such that sR′ = sR .

We then show the existence of a permutation matching for each Q-class Q of Tn .
To do this, we consider the bipartite graph G consisting of two copies, Q and Q′, of
Q, where ab′ is an edge in G if (and only if) a and b are mutual inverses in Tn . It
is then proved that G is a regular graph, which is to say each vertex is of a common
degreem ≥ 1, whence each member of Q has exactlym inverses in Q. It then follows
by a standard result from graph theory that G has a perfect matching, which is a set
of disjoint edges covering all vertices of G.

This perfect matching may then be used to generate a permutation matching of
Q as follows. Begin with any vertex a1 of Q and consider the sequence of vertices
a1, b′

1, b1 := a2, b′
2, b2 := a3, . . . , which will eventually yields a cycle a1, a2, . . . , ar

say, where ai and ai+1 are mutual inverses (and where we take r + 1 = 1). Since
the edges of G form a perfect matching, no vertex ai of Q can be followed in the
Q-sequence by a previous vertex of Q, other than a1, as that would result in the
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contradiction of two edges of the perfect matching having a common vertex in Q′. We
then repeat the process for a new vertex not contained in any of the previous cycles of
inverses, culminating in a permutation matching of Q.

However the following question remains open.

Question 1 Does the semigroup On of all order-preserving mappings on a finite n-
chain have a permutation matching?1

2 Involutionmatchings

We have already noted that the two classes of Inverse semigroups and Completely
regular semigroups possess involution matchings. The classOPn of all semigroups of
orientation-preserving mappings is another collection whose members have a natural
involution matching (Example 2.6 of [3]), and the technique found there extends to
the class Pn of all semigroups of orientation-preserving and orientation-reversing
mappings (Sect. 3.2 of [3]). For background on these classes of semigroups see [2, 6,
7]. A natural question is then:

Question 2 Does Tn have an involution matching?

By a result of Schein [9], Tn is covered by its inverse subsemigroups. If Tn possessed
an inverse cover with the additional property that the non-empty intersection of any
pair of subsemigroups in the cover were regular (and hence inverse), it would be
possible to use that cover to construct an involution matching. However, it was shown
in [5, Theorem 4.2.3] that for n ≥ 4, no such cover exists. Moreover for n ≥ 8, Tn
does not have a permutation matching in which each element is mapped to a strong
inverse a′, which is an inverse with the property that the subsemigroup 〈a, a′〉 is an
inverse subsemigroup of Tn .

The case of Tn is however only a particular instance of the general question, which
has not been resolved.

Question 3 Does every finite regular semigroup with a permutation matching possess
an involution matching?

In [5, Theorems 3.7 and 3.1] it was proved that any (finite) orthodox semigroupwith
a permutation matching has an involution matching. Moreover an orthodox semigroup
possesses a permutation matching if and only if each 0-rectangular band B = (Da ∪
{0})/H (a ∈ S) has the property that the maximal rectangular subbands of B are
pairwise similar, meaning that the ratio of their number of L - to R-classes is a
constant throughout Da .

Abroader class of regular semigroups is definedby the condition on the arrangement
of idempotents within D-classes: for all idempotents e, f , g ∈ E(S),

eL f Rg ⇒ ∃h ∈ E(S) such that eR hL g,

1 Using GAP, the referee reports that On has a permutation matching for all n ≤ 4.
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giving an egg-box picture where the four idempotents in question form a ‘solid’ rect-
angle within their D-class, which lead to the name E-solid semigroups. Equivalently,
a regular semigroup S is E-solid if and only if the idempotent generated subsemi-
group 〈E(S)〉 of S is a union of groups. Using the fact that each 0-rectangular band
B = (Da ∪{0})/H (a ∈ S) of a finite E-solid semigroup is orthodox, we may extend
the previous results from orthodox to E-solid semigroups [5, Theorem 1.3.5].

We can attempt to build an involution matching from a given permutation matching
as follows. Consider the graph G(S) with vertices corresponding to the members of
S and edges joining each pair of mutual inverses. Next suppose that S possesses a
permutation matching and consider the subgraph of G(S) consisting of the vertices
and edges of some permutation matching, which is a set of disjoint cycles. Any even
cycle may then be split into mutually inverse pairs. On the other hand if an odd cycle
contains an idempotent, e, wemay pair ewith itself and pair the remainingmembers of
this odd cycle inmutually inverse pairs. It follows that if S has a permutationmatching,
but no involution matching, then every permutation matching of S must contain an
odd cycle that is idempotent-free.

Suppose then that S is an example of a semigroup of minimum cardinality that
has a matching but no involution matching. Then every principal factor Da ∪ {0}
of S (or simply Da , if Da is the minimum ideal of S) has a permutation matching,
mapping Da onto itself. If each of these principal factors had an involution matching,
then the union of these involution matchings on the D-classes Da would define an
involution matching of S. Since we are assuming that no such involution matching
exists, it follows that some principal factor has a permutation matching but no invo-
lution matching. Therefore by minimality of the cardinal of S, it follows that S is a
completely 0-simple semigroup. (Every completely simple semigroup, being a union
of groups, has an involution matching.)

By Theorem 1.1(vi), we have that B = S/H also has a permutation matching. If S
contained proper subgroups, it would follow by theminimality of the cardinal of S that
B possessed an involution matching, φ. However this would allow the construction of
an involution matching φ on S as follows.

We identify the non-zeromembers of B with theH -classes Ha of S.We then define
aφ = a′, where a′ is the unique inverse of a in Haφ. Then a′φ is the unique inverse
of a′ in Ha′φ, and since Ha′φ = Ha , we infer that φ would indeed be an involution
matching on S. Since this is a contradiction, we reach the conclusion that any minimal
example S is a 0-rectangular band, thereby establishing the following fact.

Proposition 2.1 Suppose that S is a finite regular semigroup of minimum cardinality
with the property that S possesses a permutation matching but no involution matching.
Then S is a 0-rectangular band.

In this way we are led to consider 0-rectangular bands S. Let the non-zero D-class
D of S have m rows and n columns. Without loss we may take 3 ≤ m ≤ n, as if
m ≤ 2, then any odd cycle of any permutation matching must contain an idempotent.
We therefore arrive at the question:

Question 4 Does there exist a 0-rectangular band S that has a permutation matching
but no involution matching?
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We may prove that if this is the case then m cannot be a divisor of n, and so in
particular our major D-class D of S cannot be square. In what follows we let R and
C respectively stand for the set of m rows and n columns of D. Let us write n = am
for some positive integer a.

Lemma 2.2 Suppose that S has a permutation matching φ. Then for any collection T
of t rows of D (1 ≤ t ≤ m)

|{c ∈ C : c ∩ E(T ) �= ∅}| ≥ ta. (1)

And for any collection T of t columns of D (1 ≤ t ≤ n)

|{r ∈ R : r ∩ E(T )}| ≥ t

a
. (2)

Proof The t rows contain nt members. These are mapped by φ into s columns say,
which collectively contain ms members. Hence nt ≤ ms and so

s ≥ t · n

m
= t · am

m
= ta.

Since the set on the left hand side of (1) contains the set of s columns, the inequality
(1) now follows.

Similarly, any set of t columns (1 ≤ t ≤ n) is mapped by φ into s rows of D and
the t columns collectively contain mt members. Hence mt ≤ ns and so

s ≥ t · m
n

= t · m

am
= t

a
,

and then (2) follows. ��
Proposition 2.3 Let S be a 0-rectangular band with m rows and n = am (a ≥ 1)
columns in its non-zero D-class D. If S has a permutation matching φ, then S has an
involution matching.

Proof Consider the bipartite graph G with vertex set R ∪̇C , the disjoint union of the
respective sets of rows and columns of D, with an edge connecting a row and a column
if that row and column intersect in an idempotent. Note in particular that if aφ = b,
then an edge connects Ra to Lb (and Rb to La).

From (1) and (2) we see that any set of t rows of R is collectively adjacent to at
least at columns of C in D, and any set of t columns is collectively adjacent to at least
t
a rows of D. By Hall’s Harem theorem, (see Sect. III.3 of [1]) there exist a injective
functions, π0, π1, . . . , πa−1 from R intoC with pairwise disjoint ranges, whose union
is C . We label the m columns in the range of πt as tm, tm + 1, . . . , (t + 1)m − 1.

We may then define an involution matching on D as follows. Let (i, j) ∈ D with
j = tm + r , where 0 ≤ r ≤ m − 1. We define

(i, j)π = ( jπ−1
t , iπt ). (3)
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Then

(i, j)π2 = ( jπ−1
t , iπt )π = (iπtπ

−1
t , jπ−1

t πt ) = (i, j),

so thatπ defines an involution on D (which extends to S by putting 0π = 0).Moreover,
by definition of adjacency in G we have that (i, iπt ) ∈ E(D), and also ( jπ−1

t , j) ∈
E(D) as jπ−1

t πt = j . It now follows from (3) that (i, j) and (i, j)π are mutual
inverses in D. Therefore π is indeed an involution matching of S. ��

There have been lively exchanges on a problem related to ours, some of which
have been recorded on Mathoverflow [8]. The conversation was initiated by Fedya
Petrov who explains that our question (matching implies involution matching), would
be settled in the affirmative if the samewere true of the following purely combinatorial
problem.

A set of m girls have mn balls so that each girl has n balls. There are m balls of
each of n colours. Two girls may exchange the balls (1 ball for 1 ball, so each girl
still has n balls), but no ball may participate in more than one exchange. The goal is
to achieve a situation where each girl has balls of all n colours (and so exactly one of
each colour). This question we shall call the m × n Colour distribution problem.

The participants in the discussion then claim proofs of results that subsume Propo-
sition 2.3 in that the problem may be solved if n ≡ 0,±1,±2 (mod m). However, at
the time of writing, the general question remains open.

Theorem 2.4 (F. Petrov, private communication) A positive solution of the Colour
distribution problem implies a positive solution of the involution matching problem.

Proof Suppose that the Colour distribution problem may always be solved. (The
exchanges may include vacuous exchanges where a girl exchanges a ball with itself:
in this way we may claim that in our solution every ball is exchanged exactly once.)
Let S be an m × n 0-rectangular band with a permutation matching φ. We identify the
set of n columns with the set of n colours, and the set of balls is identified with the set
of elements of D, the non-zero D-class of S. For the ball x = (i, j) we write x1 = i
and x2 = j .

Each of them girls is not identifiedwith a rowof D butwith the image of a rowunder
φ, in that these images constitute the starting position of an m × n Colour distribution
problem K , where girl a is assigned balls φ(a, α) (1 ≤ α ≤ n). This assigns n balls
to each girl. Moreover, since φ is bijective, one ball is assigned for each entry of D.
In particular the requirement that there are exactly m balls of each colour is satisfied.
We let T denote a fixed solution of this Colour distribution problem K .

In what follows mappings are written on the left. We construct our involution
matching Φ on D as follows. Suppose that (a, φ(a, α)2) and (b, φ(b, β)2) represents
an exchange in T . Then we put

Φ(a, φ(b, β)2) = (b, φ(a, α)2). (4)

This is a well-defined function action, for if not there would be an equality of the
form φ(b, β)2 = φ(b′, β ′)2, with an exchange in T of the form (a, φ(a, α′)2) and
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(b′, φ(b′, β ′)). But then, since φ(b, β)2 = φ(b′, β ′)2 represents equality of colours,
in T girl a would finish with two balls of this one colour, contradicting that T is a
solution to K . HenceΦ is a function.Moreover, by (4) it follows thatΦ(b, φ(a, α)2) =
(a, φ(b, β)2), so that Φ is an involution.

It remains to check that the domain of Φ is the complete array, D. For a given
(a, α) ∈ D, since φ is a bijection of D, there exists a unique (b, β) ∈ D such that
(a, α) = φ(b, β). Then (a, α) = (a, φ(b, β)2), and so from (4) it follows that (a, α)

belongs to the domain of Φ.
To conclude the proof, we need only note that the pairs on either side of (4) are

mutual inverses as both (a, φ(a, α)2) and (b, φ(b, β)2) are idempotents because (a, α)

and φ(a, α) are mutual inverses, as are (b, β) and φ(b, β). Therefore Φ ∪ {(0, 0)} is
an involution matching for our semigroup S. ��
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