

University of Essex

Research Repository

Enhancing Security in E-Business Processes: Utilizing

Dynamic Slicing of Colored Petri Nets for Logical Vulnerability

Detection

Accepted for publication in Future Generation Computer Systems.

Research Repository link: https://repository.essex.ac.uk/38272/

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers
may not be reflected in this version. For the definitive version of this publication, please refer to the
published source. You are advised to consult the publisher’s version if you wish to cite this paper.

www.essex.ac.uk

https://repository.essex.ac.uk/38272/
https://doi.org/10.1016/j.future.2024.04.035
http://www.essex.ac.uk/

Enhancing Security in E-Business Processes: Utilizing Dynamic Slicing of Colored
Petri Nets for Logical Vulnerability Detection

Wangyang Yua,b, Jie Fenga,∗, Lu Liuc,∗, Xiaojun Zhaid, Yumeng Chenga

aSchool of Computer Science, Shaanxi Normal University, No. 620, West Chang’an Street, Chang’an District, Xi’an, 710119, China
bAnhui Province Engineering Laboratory for Big Data Analysis and Early Warning Technology of Coal Mine Safety, Anhui University of Science and Technology,

An’hui, 232001, China
cSchool of Informatics,University of Leicester, LE1 7RH Leicester, UK

dSchool of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK

Abstract

The field of e-business covers multiple aspects and has undergone rapid development, profoundly changing our transaction methods
and shopping experiences. However, with the increasing complexity of its business processes, logical vulnerabilities have become
an inevitable issue. These logical vulnerabilities can lead to a range of security problems, seriously threatening business stability
and consumer trust. To address the challenge of logical vulnerabilities in e-business, we developed a model based on Colored Petri
Nets (CPN), the Interactive Business Process Fusion (IBPF) net, which is adept at identifying such vulnerabilities during the design
phase. However, the analysis methods for IBPF net still urgently need innovation. In addressing this issue, we use dynamic slicing
techniques to analyze IBPF net, serving as a method for revealing logical vulnerabilities. We obtain backward slice, partial forward
slice, and bidirectional slice through the slicing algorithms. Eventually, these three types of slices are merged to form the final
dynamic slice. This technique, which involves a more targeted analysis than examining the entire IBPF net, simplifies analysis
process and prevents state space explosion, thereby providing a distinct advantage. The results of this research are of great value in
enhancing system reliability, reducing maintenance costs, and providing analysis techniques in the field of e-business security.

Keywords:

1. Introduction

To clearly describe e-business processes and detect logical
vulnerabilities at the design stage, it is essential to model and an-
alyze these processes using formal methods. In previous studies,
we proposed the Interactive Business Process Fusion (IBPF) net –
a business interaction process model based on Colored Petri Nets
(CPN) [1]. It integrates the data flow and control flow features of
Colored Petri Nets, meeting the demands for logical complexity
and data diversity in business processes. This model correctly
reflects the interactions among multiple business entities and
the flow of business data, depicting not only the sequence and
conditions of business activities but also effectively handling
concurrency and dependencies in data flows. Furthermore, IBPF
net provides rigorous definition and verification mechanisms
for e-business processes, ensuring the accuracy and integrity
of transaction processing. By analyzing IBPF net, potential
logical vulnerabilities in business processes can be identified,
assisting developers in timely detection and correction of these
vulnerabilities.

IBPF offers an effective method for enhancing the integrity
and reliability of e-business processes. However, analyzing the

∗Corresponding author
Email addresses: fjie@snnu.edu.cn (Jie Feng),

l.liu@leicester.ac.uk (Lu Liu)

entire IBPF net directly presents challenges in today’s complex e-
business process environments with large system scales, mainly
due to lengthy processing times and the state space explosion
problem. To overcome these challenges and enrich the anal-
ysis methods of IBPF net, this paper introduces the dynamic
slicing techniques. Through this approach, smaller subnets can
be defined and extracted from complex IBPF net for detailed
analysis. This method not only reduces the overall size of the
model and the generated state space but also ensures the integrity
and accuracy of subnets in functional and security analysis.

The structure of this paper is as follows: Section 2 intro-
duces related work. Section 3 presents the definitions related to
dynamic slicing techniques, and Section 4 introduces the princi-
ples of the algorithms for dynamic slicing techniques. Section 5
demonstrates the application process of this technique through a
case study. Section 6 summarizes the content of the research.

2. Related work

E-business maximizes value through innovative approaches,
profoundly transforming our transaction modes and shopping ex-
periences [2, 3]. With continuous technological advancements
and evolving consumer habits, the e-business sector is poised to
play an increasingly significant role in the global economy [4].

The composition of e-business has become more diversified
and complex, offering numerous conveniences. However, this

April 27, 2024

E-business security, Logic vulnerability, Colored Petri Nets, Dynamic slicing

MerchMerch

1`b1++1`b2

ShopperUser

1`a1
++1`a2

UContr1 User

UChan1

Parameter

MerChan2

Parameter

UChan2

Parameter

TppTpp

1`c1

TpContr1

Tpp

MerChan1

Parameter

TppChan1 Parameter

TpContr2

Tpp UContr2

User

TppChan2

Parameter

MData4Parameter

MContr6 Merch

UContr7

User

UEnd

User

TpContr3

Tpp

MerChan3

Parameter

TppChan3

Parameter

MerChan4

Parameter

MEnd

Merch

UChan4

Parameter

MerChan5

Parameter

UChan3

Parameter

UContr6

User

MData3

Parameter

MData1 Parameter

MContr1

Merch

TpContr4

Tpp

TpContr6
Tpp

TpEnd

Tpp

TpStore

Parameter

MStoreParameter

MContr5

Merch

TpContr5 Tpp

UContr3

User

MData2

Parameter

UContr4

User

UContr5

User

MContr2

Merch

UStore

Parameter

MContr4

Merch

MContr3

Merch

RecOrder Order

SendPay

RecNote

Payment

FinishOrd
[resultBOOL=true
andalso m=m1]

UUpdate

Confirm

SetInfo

MUpdate

[orderIDBOOL=true]

SdGross

[grossBOOL=true]

SdPayID

SdIdenty

RecToken

FinishPay2 FinishPay1

[tokenBOOL=true
andalso
identityBOOL=true]

PayDone

UpdateInfo

ConOrd1 ConOrd2

ConOrd3

m u

u

1`ShopperOrder((u, true))1`ShopperOrder((u, ShopperOrderBOOL))

u1

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

t

t

1`identity((m, true))1`identity((m, identityBOOL))

1`token((t, true))

t1

1`token((t, tokenBOOL))++1`gross((u, m, grossBOOL))
t1

u1

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))++
1`payerID((u, true))

1`payerID((u, payerIDBOOL))

m1

u1

u1

u1

t1

t1

1`result((t1, resultBOOL))

1`orderID((u, m, orderIDBOOL))

m1

m1

1`orderID((u, m, orderIDBOOL))

1`orderID((u, m, orderIDBOOL))

1`orderFinished((m, true))

1`orderFinished((m, orderFinishedBOOL))

1`gross((u, m, true))

1`gross((u, m, grossBOOL))

m

m1

1`gross((u, m, grossBOOL))

1`identity((m, identityBOOL))++
1`token((t, tokenBOOL))

1`gross((u, m, grossBOOL))

u1

t1

t1

t1

1`identity((m, identityBOOL))++
1`token((t, tokenBOOL))

t1

t1

1`result((t1, true))

t1

1`token((t, tokenBOOL))++
1`identity((m, identityBOOL))

1`orderID((u, m, orderIDBOOL))

1`gross((u, m, grossBOOL))

m1

m1

1`orderID((u, m, orderIDBOOL))

1`orderID((u, m,
orderIDBOOL))

1`token((t, tokenBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))

1`payerID((u, payerIDBOOL))

1`gross((u, m, grossBOOL))

1`payerID((u, payerIDBOOL))

t1

t1

u1

1`token((t, tokenBOOL))++1`gross((u, m, grossBOOL))

1`payerID((u, payerIDBOOL))

u1

u1

1`payerID((u, payerIDBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`identity((m, true))

1`identity((m, identityBOOL))

u1

u1

u1

u1

u1

m

m1

1`orderID((u, m,
true))

1`orderFinished((m, orderFinishedBOOL))

m1

m1

m

m

1`payerID((u, payerIDBOOL))++
1`result((t1, resultBOOL))

Figure 1: An IBPF net of an e-commerce process

complexity can lead to logical vulnerabilities in the design of
e-business systems [5–8]. For instance, the lack of compre-
hensive data integrity checks during transactions can expose
sensitive user data to unauthorized access and misuse [9, 10].
Additionally, malicious entities might forge or alter data to gain
undue advantages [6, 11]. These logical vulnerabilities not only
degrade the consumer shopping experience but also pose severe
threats to corporate reputation and financial security, making it
imperative to devise effective solutions [12].

To address the aforementioned issues, we proposed the IBPF
net. It is a novel model based on CPN for describing business
interaction processes that involve distributed multi-participants
and multi-sessions. It effectively captures key attributes of busi-

ness interactions, including the logical structure of business
flows, data definitions, interaction behaviors, and fundamental
properties. It also enables the analysis of logical vulnerabilities
in business interaction processes during the design phase, ensur-
ing the security and consistency of e-business interactions [1].
Our previous research proposed an IBPF net that describes an
e-commerce interaction process involving users, merchants, and
third-party payment platform, as shown in Fig. 1 [1].

However, there are currently no adequate analysis methods of
IBPF net. Therefore, this search focuses on the analysis methods
of IBPF net. Definitions 1–3 related to IBPF net are derived
from [1], where detailed illustrations can be found.

2

Definition 1 (LBP). A logic business process (LBP) is a CPN
LBP = (P,T, A,Σ,V,C,G, E, I), where:

(1) LBP has three special places α, β and γ, where α ∈ P is
the initial place, β ∈ P is the terminal place, γ ∈ P is the
memory place, and •α = β •=γ• = ∅.

(2) Let LBPE = (P, T ∪ {τ}, A ∪ {(τ, α), (β, τ), (γ, τ)}, Σ,
V,C,G′, E′, I) be the trivial extension of LBP, in which
E′ : {(τ, α), (β, τ), (γ, τ)} → EXPRV , and a ∈ A→ E′(a) =
E(a); t ∈ T → G′(t) = G(t), and τ has no guard. Then,
LBPE is strongly connected.

Logical Business Process (LBP) is used to describe the inter-
nal business processes of each participant to clearly understand
the role and behavior of each entity in the transaction process [1].
Fig. 1 illustrates an e-commerce process model, focusing on the
user’s journey from placing an order to its completion, the pro-
cess by which merchants receive and fulfill orders, and the work-
flow of third-party payment services in managing the payment
process.
Definition 2 (LBPC). Let LBP = (P,T, A,Σ,V,C,G, E, I) be a
LBP. Then, a LBP with channels (LBPC) is LBPC = (P∪ PIN ∪

PO,T, A ∪ AIN ∪ AO,Σ,V,C′,G, E′, I′) such that the following
holds:

(1) PIN is a set of input channel places, PO is a set of output
channel places, PIN , ∅, PO , ∅, •PIN = PO

•=∅, PIN ∩

PO ∩ P = ∅.

(2) {α, β, γ} 1 (PIN ∪ PO).

(3) AIN ⊆ PIN × T , AO ⊆ T × PO, AIN ∩ AO ∩ A = ∅.

(4) C′ : (PIN ∪ PO)→ Σ, and p ∈ P→ C′(p) = C(p).

(5) E′ : (AIN ∪ AO)→ EXPRV , and a ∈ A→ E′(a) = E(a).

(6) I′ : (PIN ∪ PO)→ EXPR∅, and p ∈ P→ I′(p) = I(p).

Logical Business Process with Channels (LBPC) expands on
LBP by integrating communication channels, adding input and
output channels to map out transactional interactions among
different parties [1]. This approach enables data flow interac-
tion within complex, multi-participant systems. In Fig. 1, the
information of merchants, users, and third-party payment plat-
form is transmitted through related input channels and output
channels [1].
Definition 3 (IBPF). Let LBPCn = (P∪ PINn ∪ PONn ,Tn,An,Σn,
Vn,Cn,Gn,En, In), n,m ∈ N+, n ≤ m, m ≥ 2, be m
LBPCs satisfying Definition 2, and

⋃m
n=1 PINn =

⋃m
n=1 PONn .

Then, IBPF = (P ∪ PIN ∪ PO,T, A,Σ,V,C,G, E, I) = LBPC1
ΦLBPC2Φ . . .ΦLBPCm is called an IBPF net.

We construct the IBPF net by integrating LBPC with input
and output channels. IBPF net not only provides a clear and
intuitive description of the interaction processes among various
business entities but also allows for the identification of logical
vulnerabilities in the system during the design phase by alter-
ing the initial marking of the IBPF net [1]. This lays a solid
foundation for building secure and reliable e-business processes.

Program slicing techniques aim to streamline program code by
analyzing data and control flows within a program, retaining only
those parts relevant to specific functionalities or behaviors [13].
This technique is widely applied in software engineering and
system analysis, facilitating the understanding, debugging, and
analysis of complex programs [14–17]. As a formal modeling
tool, Petri nets are extensively used to describe and analyze the
behaviors of concurrent and distributed systems [18]. Applying
slicing techniques to Petri nets enables the extraction of net ele-
ments directly related to specific processes or events, effectively
simplifying the model and improving resource utilization and
analytical efficiency [19]. This has been reflected in several
papers such as [20–22].

In Petri nets slicing techniques, there are mainly two cat-
egories: static slicing and dynamic slicing [23]. Static algo-
rithms operate on static Petri nets, thus not considering the token
game [24]. Dynamic slicing, on the other hand, takes into ac-
count the runtime state and behavior of the system, analyzing
the system based on specific sequences of transition occurrences.
Compared to the former, for systems processing large-scale data,
dynamic slicing techniques exhibit superior analytical efficiency.

Static and dynamic slicing are further differentiated into for-
ward and backward slicing [25]. These methods, based on
specific slicing criteria and algorithms, commence from key
elements and trace either forward or backward to identify all
elements involved in particular sequences of changes or related
path flows.

Utilizing dynamic slicing techniques to analyze the IBPF net
enables us to concentrate on those aspects critical for detecting
systemic logical vulnerabilities or conducting performance anal-
ysis, thereby eliminating the need for a comprehensive examina-
tion of the entire model. Particularly in the context of complex,
large-scale e-business systems, this approach enhances analyt-
ical efficiency, circumvents the issue of state space explosion,
and elevates the accuracy of logical vulnerabilities identification.
Upon detecting relevant logical vulnerabilities, we can promptly
optimize and adjust the model to mitigate the complexity and
costs associated with future system maintenance, reduce long-
term maintenance expenses, and bolster the overall reliability
and security of e-business systems.

3. Related definitions of dynamic slicing techniques
To obtain the desired dynamic slice, it is first necessary to

establish a slicing criterion [26], which may include:

(1) A set of variables that we are interested in. These variables
are crucial to the stability and performance of the entire
system. If tampered with, they could introduce serious
logical vulnerabilities to the system.

(2) A set of places that we are interested in. They are able to
store the final state of key variables.

(3) Key transitions. Within IBPF net, key transitions are those
that allow for bidirectional tracing to places or transitions
where key variables pass through. By mapping out the
routes of these key transitions, we can realize the interac-
tions among various variables.

3

(4) It is also crucial to consider the initial state of the net system,
which can help us extract smaller slices.

For different types of slices, the slicing criterion we use vary.
First, we need to obtain a backward slice. The slicing criterion
for a backward slice is as follows:
Definition 4 (Slicing criterion for a backward slice). Given
IBPF = (P,T, A,Σ,V,C,G, E, I), we say ⟨Q1, W⟩ is a slicing
criterion of a backward slice if the following conditions hold:

(1) W is a set of variables that we are interested in, and W ⊂ V .

(2) Q1 is a set of places that we are interested in, the final
state of the key variables stored in the place inside Q1, and
Q1 ⊂ P.

Definition 5 (Backward slice). Given IBPF = (P,T, A,Σ,
V,C,G, E, I), let ⟨Q1, W⟩ be a slicing criterion. For IBPF1 =

(P1,T1, A1,Σ1, V1,C1,G1, E1, I1), we say that IBPF1 is a back-
ward slice of IBPF under the slicing criterion ⟨Q1,W⟩ if the
following conditions hold:

(1) IBPF1 is a subnet of IBPF.

(2) ⟨Q1,W⟩ conforms to Definition 4.

(3) In IBPF1, the set of variables associated with any arc inter-
sects with W, and the intersection is non-empty.

Upon obtaining the backward slice, we consider the model’s
initial marking, focusing on resource availability in the business
process, like active merchants or users and third-party services.
We then start from the transitions that are enabled in the initial
state and employ a dynamic forward tracing method to obtain a
partial forward slice. The slicing criterion for a partial forward
slice is as follows:
Definition 6 (Slicing criterion for a partial forward slice).
Given IBPF = (P,T, A,Σ,V,C,G, E, I), we say ⟨Q2, M0⟩ is a
slicing criterion of a partial forward slice if the following condi-
tions hold:

(1) Q2 is the set of places in IBPF where resources are not
empty under M0, i.e., for any p ∈ Q2, I(p) , ∅.

(2) M0 is the initial marking of IBPF.

Definition 7 (Partial forward slice). Given IBPF = (P,T,
A,Σ,V,C,G, E, I), IBPF1 = (P1,T1, A1,Σ1,V1,C1,G1, E1, I1),
let ⟨Q2,M0⟩ be a slicing criterion. For IBPF2 = (P2,T2, A2,Σ2,
V2,C2,G2, E2, I2), we say that IBPF2 is a partial forward slice
of IBPF with respect to IBPF1 under the slicing criterion ⟨Q2,
M0⟩ if the following conditions hold:

(1) IBPF1 is a backward slice of IBPF conforming to Defini-
tion 5.

(2) ⟨Q2, M0⟩ conforms to Definition 6.

(3) IBPF2 is a subnet of IBPF.

(4) IBPF2 must include all the places in Q2, and the new net
obtained by taking the union of IBPF1 and IBPF2 is a
subnet of IBPF.

Considering that backward slicing techniques typically only
trace the flow paths of specific related variables and fail to fully
capture the interaction information of variables related to par-
ticipants such as merchants, users, and third-party services, this
study proposes an innovative bidirectional slicing method. By
correlating these relatively independent execution paths, we are
able to construct a more comprehensive dynamic slice. The
slicing criterion for a bidirectional slice is as follows:

Definition 8 (Slicing criterion for a bidirectional slice). Given
IBPF = (P,T, A,Σ,V,C,G, E, I) and IBPF1 = (P1,T1, A1,Σ1,
V1,C1,G1, E1, I1), we say ⟨transition,W⟩ is a slicing criterion
for a bidirectional slice of IBPF with respect to IBPF1 if the
following conditions hold:

(1) IBPF1 is a backward slice of IBPF conforming to Defini-
tion 5.

(2) W is the set of variables that we are interested in, consistent
with the W in the slicing criterion of IBPF1.

(3) transition is a key transition that facilitates the interaction
of key variables with participants in business transactions,
such as merchants, users, and third-party services, within
the business process.

Definition 9 (Bidirectional slice). Given IBPF=(P,T, A, Σ,
V,C,G, E, I) and IBPF1 = (P1,T1, A1,Σ1,V1,C1,G1, E1, I1),
let ⟨transition,W⟩ be a slicing criterion. For IBPF3 = (P3,
T3, A3,Σ3,V3,C3,G3, E3, I3), we say that IBPF3 is a bidirec-
tional slice of IBPF with respect to IBPF1 under the slicing
criterion ⟨transition,W⟩ if the following conditions hold:

(1) IBPF1 is a backward slice of IBPF conforming to Defini-
tion 5.

(2) ⟨transition,W⟩ conforms to Definition 8.

(3) IBPF3 stores the shortest paths from transition connection
to IBPF1, and the new net obtained by taking the union of
IBPF1 and IBPF3 is a subnet of IBPF.

Following the incorporation of bidirectional slicing, the dy-
namic slice obtained no longer feature independent paths related
to key variables. Instead, the elements within the variables on
each path are mutually constrained, facilitating a synergistic
change in states and values. This ensures that the variables’
value and state changes during execution more closely align
with the original model’s operational effects. Consequently, the
dynamic slicing can capture and reflect the dynamic interac-
tions and comprehensive influences of the variables within the
model with greater precision. Thus, it enhances the accuracy
and reliability of analyzing the IBPF net using dynamic slicing.

By merging IBPF1, IBPF2 and IBPF3 from Definition 5,
Definition 7 and Definition 9, we can effectively isolate the parts
most relevant to system vulnerabilities detection, obtaining the
final dynamic slice. The dynamic slicing algorithms will be
discussed in detail in the next section.

4

4. Algorithms for dynamic slicing

In the previous section, we introduced several definitions of
slices relevant to this study. In this section, we will focus on
analyzing the algorithms associated with these slices.

The backward slicing of IBPF takes into account the depen-
dencies among places, transitions, and key variables. The algo-
rithm starts with the set of places Q1 and traces back the token
flow paths related to the variables in set W. The specific steps of
the analysis are as shown in Algorithm 1.

Algorithm 1: Backward slice of IBPF
Input: IBPF = (P,T, A,Σ,V,C,G, E, I), ⟨Q1,W⟩
Output: IBPF1 = (P1,T1, A1,Σ1,V1,C1,G1, E1, I1)

1 P1 = Q1,V1 = W,T1 = ∅, A1 = ∅,Σ1 = ∅,C1 = ∅,G1 =

∅, E1 = ∅, I1 = ∅.
2 while (Q1 , ∅) do
3 for each pi ∈ Q1 do
4 Add related attributes of pi to IBPF1
5 for each ti ∈ •pi do
6 if there exists vm ∈ W affected by E(ti, pi)

then
7 All attributes of ti and the elements

related to (ti, pi) are added to IBPF1
8 for each p j ∈

•ti do
9 if p j < Q1 and there exists vm ∈ W

affected by E(p j, ti) then
10 Q1 = Q1 ∪ {p j}

11 Add the elements related to (p j, ti)
to IBPF1

12 Q1 = Q1 \ {pi}

13 return IBPF1 = (P1,T1, A1,Σ1,V1,C1,G1, E1, I1)

Algorithm 1 iterates over each place pi in the set of places
Q1, tracing back the data flow paths related to key variables in
reverse. When it is determined that a key variable in the set W is
transmitted by the occurrence of a preceding transaction ti of pi,
both pi and ti, along with their arc relationship, are added to the
backward slice IBPF1. Besides, Q1 is expanded by adding the
input place p j of ti for further analysis. This ensures the accurate
capture of the flow paths of key variables. Once the set Q1 has
been fully traversed, the backward slicing algorithm for IBPF
concludes, at which point the algorithm returns the constructed
backward slice IBPF1.

We understand that a backward slice only represents the flow
paths of key variables during system runtime. However, we also
need to consider the system’s initial state, such as online users,
open shops, and other factors. We must trace forward from the
events that can occur in the system’s initial marking, all the way
until all influencing factors are included in a partial forward
slice and need to connect with the backward slice IBPF1. The
specific analysis steps are outlined in Algorithm 2.

In Algorithm 2, our slicing criterion is < M0,Q2 >. Here, M0
represents the initial marking of the system, and Q2 is the set of

Algorithm 2: Partial forward slice of IBPF
Input: IBPF = (P,T, A,Σ,V,C,G, E, I), IBPF1 =

(P1,T1, A1,Σ1,V1,C1,G1, E1, I1), < M0,Q2 >
Output: IBPF2 = (P2,T2, A2,Σ2,V2,C2,G2, E2, I2)

1 Q2 = {pm|M0(pm) , ∅}, IBPF2 = ∅.
2 Compute all enabled binding elements ⟨ti, p j⟩ in initial

marking M0, then get all enabled transitions ti in initial
marking M0.

3 while ti , ∅ do
4 for each p j ∈

•ti do
5 Add p j and arc-related elements of (p j, ti) to

IBPF2

6 if ti doesn’t exist in IBPF1 then
7 for each p j ∈ ti• do
8 Add ti, p j, and arc-related elements of (ti, p j)

to IBPF2

9 else
10 if Q2 ⊂ P2 then
11 break
12 for each p j ∈ ti• do
13 Add p j and arc-related elements of (ti, p j) to

IBPF2

14 Get the new marking M, recalculate enabled binding
elements ⟨ti, p j⟩ under the marking.

15 return IBPF2 = (P2,T2, A2,Σ2,V2,C2,G2, E2, I2)

non-empty places under M0. We start by tracing forward from
the initial marking M0 and examining all enabled transitions. If a
certain enabled transition ti does not belong to the backward slice
IBPF1, we incorporate the transition ti and its associated output
places p j, along with their attributes and the elements related
to arcs between them, into IBPF2. If the transition ti is already
present in IBPF1 and all elements of Q2 are included in P2, the
loop terminates and Algorithm 2 concludes. Otherwise, we add
the associated attributes of the output places p j of transition
ti, along with the elements related to arcs between ti and these
places, into IBPF2. After the occurrence of this transition, the
system reaches a reachable marking M. We then repeat the
above operation under the marking M until all elements from Q2
have been added to IBPF2. Finally, Algorithm 2 returns IBPF2.

The objective of employing dynamic slicing techniques is
to extract key components that reflect the system’s behavior
and logical characteristics. However, when performing back-
ward slice on Petri nets to retrieve parts associated with specific
critical variables and places, we may encounter several paths.
Although these paths structurally preserve the activity trajec-
tory of critical elements, they overlook the potential interactions
between variables.

In Colored Petri Nets, the interactions among variables are
not merely reflected in single places or transitions but are mani-
fested through a series of transitions and places interacting with
each other, collectively forming the dynamic characteristics of
the entire system. To overcome the limitations presented by

5

Algorithm 3: Bidirectional slice of IBPF
Input: IBPF = (P,T, A,Σ,V,C,G, E, I), IBPF1 = (P1,T1, A1,Σ1,V1,C1,G1, E1, I1), ⟨transition,W⟩
Output: IBPF3 = (P3,T3, A3,Σ3,V3,C3,G3, E3, I3)

1 Q3 = ∅, P3 = ∅,T3 = {transition}, A3 = ∅,Σ3 = ∅,V3 = ∅,C3 = ∅,G3 = {G(transition)}, E3 = ∅, I3 = ∅

2 Function traceFromTransition()

3 depth = 1
4 while W , ∅ do
5 Set IBPF3 to the initial value
6 if ForwardCPN = depthLimitedSearch(IBPF, IBPF1, transition,W, forward, depth) then
7 Merge ForwardCPN into IBPF3

8 if BackwardCPN = depthLimitedSearch(IBPF, IBPF1, transition,W, backward, depth) then
9 Merge BackwardCPN into IBPF3

10 depth = depth + 1

11 return IBPF3

12 Function depthLimitedSearch(IBPF, IBPF1, transition,W, direction, depth)
13 if transition = ∅ then
14 return ∅
15 if depth = 0 then
16 return ∅
17 if direction = f orward then
18 for each pi in transition• do
19 Add pi and arc-related attributes of (transition, pi) to path
20 if pi exists in IBPF1 then
21 Merge path into resultCPN and delete the variables in W that flow through pi

22 continue

23 for each ti in pi
• do

24 Add ti and arc-related attributes of (pi, ti) to path
25 if ti in IBPF1 then
26 Merge path into resultCPN and delete the variables in W that flow through ti
27 continue

28 path1 = depthLimitedSearch(IBPF, IBPF1, ti,W, f orward, depth − 1)
29 if path1 , ∅ then
30 Merge path1 and path into resultCPN

31 return resultCPN

32 if direction = backward then
33 for each pi in •transition do
34 Add pi and arc-related attributes of (pi, transition) to path
35 if pi exists in IBPF1 then
36 Merge path into resultCPN and delete the variables in W that flow through pi

37 continue

38 for each ti in •pi do
39 Add ti and arc-related attributes of (ti, pi) to path
40 if ti in IBPF1 then
41 Merge path into resultCPN and delete the variables in W that flow through ti
42 continue

43 path1 = depthLimitedSearch(IBPF, IBPF1, ti,W, backward, depth − 1)
44 if path1 , ∅ then
45 Merge path1 and path into resultCPN

46 return resultCPN

6

independent paths, we introduce key transitions to interconnect
the variables within the slices. Key transitions refer to those
that can influence or control the interactions among multiple
critical variables. They typically involve key processes of trans-
actions, such as the real-time progress of orders and the integrity
of financial settlements.

In identifying key transitions, we adopted the following crite-
ria:

(1) These transitions can be successfully traced forward and
backward, linking to the key variables in the related back-
ward slice, thereby facilitating the interaction among vari-
ous relatively independent paths within the backward slice.

(2) Key transitions are capable of constraining the values of
certain elements within some variables, which prevent any
interference with the original model’s verification of order-
related information.

Through this approach, not only do we preserve the key be-
haviors of the system, but we also enhance the integrity and
expressive power of the slice. Based on this, we propose a
bidirectional slicing method, aimed at finding the shortest paths
from key transition to variables related to the backward slice.
The specific analysis steps are outlined in Algorithm 3.

In Algorithm 3, we utilize the Iterative Deepening Depth-
First Search (IDDFS) algorithm, which combines the benefits of
Depth-First Search (DFS) and Breadth-First Search (BFS), by
continuously increasing the search depth with space efficiency,
making it suitable for path finding and constraint satisfaction
challenges [27]. For our research, this algorithm is particularly
suitable as it assists us in finding the shortest paths from key
transition to the target transition or place, whether it is forward
or backward tracing.

In Algorithm 3, we take a complete IBPF net along with
a backward slice IBPF1 as input parameters. Additionally, a
slicing criterion composed of a key transition transition and a
set of variables W must be specified. Here, the definition of
W is the same as in Algorithm 1. The output of Algorithm 3
covers the shortest paths tracing forwards or backwards from
the specified transition to all variables in W.

In the first step of the Algorithm 3, we initialize the depth
to 1 and define a function named traceFromTransition. This
function employs an iterative approach using a depth-first search
function called depthLimitedS earch, which conducts both for-
ward and backward searches in each iteration, progressively
delving deeper. Whenever a path is found in either direction, the
algorithm merges this path into the resultant path, resultCPN,
until the search for elements at this depth is completed. The
search depth is then incremented by one to further expand the
scope of the search in the subsequent iteration, continuing until
the set W is empty.

The depthLimitedS earch function is the core of the algo-
rithm. It conducts a search based on the current depth and the
direction of the search (forward or backward). The recursion
ends when the depth reaches zero. If the transition is not in the
backward slice IBPF1, it examines the input or output places
of the transition depending on the direction of recursion. For

forward tracing, iterate through each output place pi of the tran-
sition, if pi exists in IBPF1, then merge the current path into
resultCPN and remove variables flowing through pi from W. If
pi does not exist in IBPF1, iterate through the output transitions
ti of pi, if ti exists in IBPF1, also merge the path into resultCPN
and update W. If ti does not exist in IBPF1, recursively call
the depthLimitedS earch function on ti, decreasing the depth
by 1, if the path returned by the recursive call is not empty,
merge this path into resultCPN. The function ultimately returns
resultCPN. For backward tracing, the method is similar, just in
the opposite tracing direction.

Employing this bidirectional iterative deepening approach
markedly enhances the efficiency of slice generation. Particu-
larly when dealing with large-scale IBPF net, this method can
effectively minimize unnecessary search steps, thereby acceler-
ating the discovery of critical paths.

Upon successfully implementing Algorithms 1 – 3 and ob-
taining IBPF1, IBPF2, and IBPF3 respectively, we integrate
them to derive the final dynamic slice. By modifying the initial
marking of this dynamic slice and executing the run, we can
effectively detect the associated logical vulnerabilities.

Theorem 1. For an IBFP = (P,T, A,Σ,V,C,G, E, I), let a back-
ward slicing criterion be defined as < Q1,W >. Based on
Algorithm 1, the corresponding backward slice, denoted as
IBPF1 = (P1,T1, A1,Σ1,V1,C1,G1, E1, I1), can be obtained.
Similarly, by defining a partial forward slicing criterion as
< M0,Q2 > and applying Algorithm 2, a partial forward slice,
denoted as IBPF2 = (P2,T2, A2,Σ2,V2,C2,G2, E2, I2), is de-
rived. Furthermore, by setting a bidirectional slicing criterion
as < transition,W > and utilizing Algorithm 3, a bidirectional
slice, denoted as IBPF3 = (P3,T3, A3,Σ3,V3,C3,G3, E3, I3), is
produced. By merging IBPF1, IBPF2, and IBPF3, we are able
to construct IBPF4 = (P4,T4, A4,Σ4,V4,C4,G4, E4, I4), which
is assuredly the final dynamic slice of IBPF.

Proof. Algorithm 1 traverses the places in Q1 to trace back-
wards, ∀p ∈ Q1,∃t ∈ •p : E(t, p) ∩W , ∅ ⇒ t ∈ T1. After this,
the tracing continues backward from t, ∀p ∈ •t : E(p, t)∩W , ∅
and p < Q1 ⇒ p ∈ P1. This ensures that every path related to the
variables in W is added to IBPF1, and ∀a ∈ A1 ⇒ E(a)∩W , ∅.
Therefore, the backward slice obtained through Algorithm 1,
namely IBPF1, conforms to Definition 5.

Algorithm 2 obtains all enabled transitions ti and Q2 =

{pm|M0(pm) , ∅} under the initial marking M0. For each enabled
transition ti, if ti < IBPF1, then ti ∈ IBPF2, ∀p ∈ •ti, p ∈ P2
and ∀p ∈ ti•, p ∈ P2. Assume there is a sequence of bind-
ing elements (t1, b1)(t2, b2) . . . (tn, bn) such that M0[(t1, b1) >
M1[(t2, b2) > . . . > Mn−1[(tn, bn) > Mn, where n ∈ N+. If under
marking Mk implies ti ∈ IBPF1 and Q2 ⊂ P2, where k < n,
the obtained IBPF2 is a subnet of IBPF that takes the initial
state into account and successfully connects to the backward
slice IBPF1. Therefore, the net obtained by taking the union
of IBPF1 and IBPF2 is a subnet of IBPF. In summary, the
partial forward slice obtained through Algorithm 2, i.e., IBPF2,
conforms to Definition 7.

Algorithm 3 starts from the transition transition and traces
in both forward and backward directions, setting the tracing

7

MerchMerch

1`b1++1`b2

ShopperUser

1`a1
++1`a2

UContr1 User

UChan1

Parameter

MerChan2

Parameter

UChan2

Parameter

TppTpp

1`c1

TpContr1

Tpp

MerChan1

Parameter

TppChan1 Parameter

TppChan2

Parameter

MContr6 Merch

MerChan3

Parameter

MerChan4

Parameter

UChan4

Parameter

UChan3

Parameter

MData3

Parameter

MData1 Parameter

TpStore

Parameter

MStoreParameter

MContr5

Merch

MData2

Parameter

MContr4

Merch

RecOrder Order

SendPay

RecNote

Payment

FinishOrd
[resultBOOL=true
andalso m=m1]

UUpdate

MUpdate

[orderIDBOOL=true]

SdGross

[grossBOOL=true]

RecToken

FinishPay2

UpdateInfo

ConOrd2

m u

u

1`ShopperOrder((u, true))1`ShopperOrder((u, ShopperOrderBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

t

t

1`identity((m, true))1`identity((m, identityBOOL))

1`token((t, true))

t1

1`token((t, tokenBOOL))++1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))++
1`payerID((u, true))

m1

1`orderID((u, m, orderIDBOOL))

m1

1`orderID((u, m, orderIDBOOL))

1`orderID((u, m, orderIDBOOL))

1`gross((u, m, true))

1`gross((u, m, grossBOOL))

1`gross((u, m, grossBOOL))

1`gross((u, m, grossBOOL))

1`orderID((u, m, orderIDBOOL))
1`gross((u, m, grossBOOL))

m1

m1

1`orderID((u, m, orderIDBOOL))

1`orderID((u, m,
orderIDBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))++1`gross((u, m, grossBOOL))

1`token((t, tokenBOOL))++
1`gross((u, m, grossBOOL))

1`identity((m, true))

1`orderID((u, m,
true))

m1

m1

1`payerID((u, payerIDBOOL))++
1`result((t1, resultBOOL))

Figure 2: The final dynamic slice

depth depth = 1 at the beginning of the algorithm. For forward
tracing, ∀p ∈ transition• : there exists at least one variable v
flowing through p, where v ∈ W ⇒ p ∈ P3, a shortest path
has been found, and related variables are removed from W. If
p < IBPF1, ∀t ∈ p• : t ∈ IBPF1 ⇒ t ∈ T3, a shortest path
is found, and related variables are removed. If t < IBPF1 ⇒

depthLimitedS earch(IBPF, IBPF1, t,W, f orward, depth−1) is
called recursively. If W , ∅ under the condition depth = 1, it
indicates that a greater depth is required, it works similarly
for backward tracing, and the tracing continues as before until
W = ∅. In summary, the bidirectional slice obtained through
Algorithm 3, namely IBPF3, ensures that every shortest path to
the variables in W is found, conforming to Definition 9.

For the dynamic slicing algorithm of IBPF, we define n =
|P| + |T | + |A| + |Σ|, where |P|, |T |, |A|, and |Σ| represent the
number of places, transitions, arcs, and elements in the color
set in IBPF net, respectively. The complexity of Algorithm 1
and Algorithm 2, in the worst case, is O(n). For Algorithm 3,
assuming the depth of traceability is d, the worst-case time
complexity is O(nd). Therefore, the total time complexity is:
O(2n + nd). This indicates that, even in the worst-case scenario,
the time complexity of the dynamic slicing algorithm is very
close to the scale of the original IBPF net.

8

Figure 3: Detection of system operation result that do not conform to transaction consistency

5. Detecting logic vulnerabilities

In the previous section, we discussed algorithms related to
dynamic slicing. This section will further introduce how to apply
the method we proposed to detect logical vulnerabilities in the
IBPF net of the e-commerce process illustrated in Fig. 1.

In e-commerce systems, the tampering of critical variables
such as user authentication, transaction, and payment data may
lead to vulnerabilities in related logic, threatening system sta-
bility [12]. Therefore, it is essential to rigorously protect and
monitor these variables to ensure security. Particularly notewor-
thy in this context are the two variables: orderID and gross.
They are involved in multiple logical processes and may trigger
a variety of potential security vulnerabilities. In light of this,
we designate these two variables as our focus variables, and
the places MS tore and T pS tore, which hold their final states,
as our focus places. That is, we set Q1 = {MS tore,T pS tore}
and W = {orderID, gross}. In the initial state M0, according to
Definition 7, we set Q2 = {T PP,Merch, S hopper}. Based on
Definition 9, we designate the key transition as FinishOrd.

We applied Algorithms 1 – 3 to the IBPF net shown in
Fig. 1, with the slicing criteria set as ⟨Q1,W⟩, ⟨M0,Q2⟩, and
⟨FinishOrd,W⟩ respectively. The resulting dynamic slice model
is presented in Fig. 2. We observed that the final dynamic slic-
ing model is significantly superior to the original IBPF net in
terms of size and state space. This has made us more efficient in
detecting logical vulnerabilities in our business processes.

Further analysis of the dynamic slice revealed a vulnerability,
as shown in Fig. 3. Despite the completion of the process, there
was a deviation in transaction logic consistency. Specifically,
the variables for the shopper and the merchant, u and m, ex-
hibited dual values, namely a1, a2, b1, and b2. This indicates
that although the shopper completed the payment for the or-
der orderID(a2, b1, true), they received the goods for the order
orderID(a1, b2, true), violating the consistency requirement of
transactions and pointing to a logical vulnerability in the system

that needs rectification.

6. Conclusion

IBPF is a formal method suited for the modeling and verifi-
cation of e-business processes involving multiple participants.
It detects logical vulnerabilities in business processes during
the system design phase. However, current analytical methods
for IBPF are not sufficiently comprehensive. Given the large
scale of e-business systems and the complexity of their business
processes, direct analysis of IBPF net is challenging. To address
this, we introduce dynamic slicing techniques to analyze IBPF
net. Compared to the original IBPF net, our dynamic slice has
a smaller state space, which reduces the need for processing
during analysis and enhances the operability and efficiency of
detecting vulnerabilities. This new strategy offers innovation
and effectiveness in the timely identification, prevention, and
correction of potential logical vulnerabilities in e-business pro-
cesses. Nevertheless, our method still requires optimization. In
future work, we intend to delve into how auxiliary means can
be employed to automatically identify key transitions within the
model. Furthermore, we aspire to extend this methodology to
other domains, thereby enriching the application scenarios of
the approach proposed in this study.

Acknowledgments

This work was in part supported by the Natural Science Foun-
dation of Shaanxi Province, China under Grant 2021JM-205,
the Fundamental Research Funds for the Central Universities,
China under Grant GK202205039, and the Open Research Fund
of Anhui Province Engineering Laboratory for Big Data Analy-
sis and Early Warning Technology of Coal Mine Safety, China
under Grant CSBD2022-ZD05.

9

References

[1] W. Yu, L. Liu, X. Wang, O. Bagdasar, J. Panneerselvam, Modeling and
analyzing logic vulnerabilities of e-commerce systems at the design phase,
IEEE Transactions on Systems, Man, and Cybernetics: Systems (2023).

[2] R. Amit, C. Zott, Value creation in e-business, Strategic management
journal 22 (6-7) (2001) 493–520.

[3] M. Asbari, et al., Scope of e-business & e-commerce to business and
modern life, Journal of Information Systems and Management (JISMA)
2 (1) (2023) 33–38.

[4] M. Sadeeq, A. I. Abdulla, A. S. Abdulraheem, Z. S. Ageed, Impact of
electronic commerce on enterprise business, Technol. Rep. Kansai Univ
62 (5) (2020) 2365–2378.

[5] H. Taherdoost, E-business security and control, in: E-business essentials:
Building a successful online enterprise, Springer, 2023, pp. 105–135.

[6] F. Nabi, J. Yong, X. Tao, M. S. Malhi, M. Farhan, U. Mahmood, Pro-
cess of security assurance technique for application functional logic in
e-commerce systems, Journal of Information Security 12 (3) (2021) 189–
211.

[7] F. Nabi, Secure business application logic for e-commerce systems, Com-
puters & Security 24 (3) (2005) 208–217.

[8] N. L. Bhatia, V. K. Shukla, R. Punhani, S. K. Dubey, Growing aspects
of cyber security in e-commerce, in: 2021 International Conference on
Communication information and Computing Technology (ICCICT), IEEE,
2021, pp. 1–6.

[9] A. Belghith, Investigation on e-commerce platforms for tackling e-business
security challenge., International Journal on Engineering Applications
10 (6) (2022).

[10] M. Zhou, R. Zhang, W. Xie, W. Qian, A. Zhou, Security and privacy in
cloud computing: A survey, in: 2010 Sixth International Conference on
Semantics, Knowledge and Grids, IEEE, 2010, pp. 105–112.

[11] R. Wang, S. Chen, X. Wang, S. Qadeer, How to shop for free online–
security analysis of cashier-as-a-service based web stores, in: 2011 IEEE
symposium on security and privacy, IEEE, 2011, pp. 465–480.

[12] F. Sun, L. Xu, Z. Su, Detecting logic vulnerabilities in e-commerce appli-
cations., in: NDSS, 2014, pp. 1–16.

[13] M. Weiser, Program slicing, IEEE Transactions on Software Engineering
SE-10 (4) (1984) 352–357.

[14] B. Xu, J. Qian, X. Zhang, Z. Wu, L. Chen, A brief survey of program
slicing, ACM SIGSOFT Software Engineering Notes 30 (2) (2005) 1–36.

[15] M. Harman, S. Danicic, Using program slicing to simplify testing, Soft-
ware Testing, Verification and Reliability 5 (3) (1995) 143–162.

[16] B. Korel, J. Laski, Dynamic program slicing, Information processing
letters 29 (3) (1988) 155–163.

[17] H. Agrawal, J. R. Horgan, Dynamic program slicing, ACM SIGPlan
Notices 25 (6) (1990) 246–256.

[18] J. Desel, W. Reisig, The concepts of petri nets, Software & Systems
Modeling 14 (2015) 669–683.

[19] A. Rakow, Slicing petri nets, in: Proceedings of the Workshop on
FABPWS, Vol. 7, 2007, pp. 56–70.

[20] W. Yu, Z. Ding, X. Fang, Dynamic slicing of petri nets based on structural
dependency graph and its application in system analysis, Asian Journal of
Control 17 (4) (2015) 1403–1414.

[21] W. Yu, J. Kong, Z. Ding, X. Zhai, Z. Li, Q. Guo, Modeling and analysis
of etc control system with colored petri net and dynamic slicing, ACM
Transactions on Embedded Computing Systems (2023).

[22] P. Chariyathitipong, W. Vatanawood, Dynamic slicing of time petri net
based on mtl property, IEEE Access 10 (2022) 45207–45218.

[23] Y. I. Khan, A. Konios, N. Guelfi, A survey of petri nets slicing, ACM
Computing Surveys (CSUR) 51 (5) (2018) 1–32.

[24] R. Davidrajuh, A. Roci, Performance of static slicing algorithms for petri
nets, Int. J. Simul. Syst. Sci. Technol 20 (2018) 15.1–15.7.

[25] Y. Wangyang, Y. Chungang, D. Zhijun, F. Xianwen, Extended and im-
proved slicing technologies for petri nets, High Technology Letters 19 (1)
(2013).

[26] M. Llorens, J. Oliver, J. Silva, S. Tamarit, G. Vidal, Dynamic slicing
techniques for petri nets, Electronic Notes in Theoretical Computer Science
223 (2008) 153–165.

[27] R. E. Korf, Depth-first iterative-deepening: An optimal admissible tree
search, Artificial intelligence 27 (1) (1985) 97–109.

Wangyang Yu received the M.S. degree in com-
puter software and theory from Shandong Univer-
sity of Science and Technology, Qingdao, China, in
2009, and the Ph.D. degree in computer software
and theory from Tongji University, Shanghai, China,
in 2014. He is currently an Associate Professor with
the College of Computer Science, Shaanxi Normal
University, Xi’an, China. He was also a Visiting
Scholar with the University of Derby, Derby, U.K.,
from 2016 to 2017. His research interests include
the theory of Petri nets, formal methods in software
engineering and trustworthy software.

Jie Feng obtained her Bachelor’s degree in Informa-
tion Security from Chengdu University of Informa-
tion Technology, China, in 2023. Currently, she is
pursuing a Master’s degree at the School of Com-
puter Science, Shaanxi Normal University, Xi’an,
China. Her research interests include the theory of
Petri nets and formal methods in software engineer-
ing. As she continues her academic journey, Jie
Feng is committed to enhancing her knowledge and
proficiency in these areas.

Lu Liu received his PhD degree from Surrey Space
Centre at the University of Surrey. Professor Liu had
worked as a Research Fellow at the WRG e-Science
Centre at the University of Leeds. He served as the
Head of the School of Computing and Mathematical
Sciences at the University of Leicester, UK, from
2019-2023. His research interests are in the areas
of data analytics, service computing, sustainable
computing and the Internet of Things. He has over
250 scientific publications in reputable journals, aca-
demic books and international conferences. He has

been the recipient of 7 Best Paper Awards from international conferences and
was invited to deliver 8 keynote speeches at international conferences. Professor
Liu is a Fellow of BCS (British Computer Society). He is currently serving as
an Associate Editor for Peer-to-Peer Networking and Application (PPNA) and
Big Data Mining and Analytics (BDMA).

Xiaojun Zhai received the PhD degree from Univer-
sity of Hertfordshire, UK, in 2013. He is currently
a senior lecturer in the School of Computer Science
and Electronic Engineering, University of Essex. He
has authored/co-authored over 100 scientific papers
in international journals and conference proceedings.
His research interests mainly include the design and
implementation of the digital image and signal pro-
cessing algorithms, custom computing using FP-
GAs, embedded systems, and hardware/software

co-design. He is a BCS, IEEE member, and HEA Fellow.

Yumeng Cheng obtained her Bachelor’s degree in
Computer Science and Technology from Beijing
University of Civil Engineering and Architecture,
China, in 2022. Currently, she is pursuing a Master’s
degree at the School of Computer Science, Shaanxi
Normal University, Xi’an, China. Her research in-
terests include the theory of Petri nets and formal
methods in intelligent industrial manufacturing. As
she continues her academic journey, Yumeng Cheng
is committed to enhancing her knowledge and pro-
ficiency in these areas.

10

	cover.pdf
	Research Repository

	IBPF-SLICE-4.27.pdf

