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Abstract—Event-related potentials (ERPs) reflect 

neurophysiological changes of the brain in response to external 

events and their associated underlying complex spatiotemporal 

feature information is governed by ongoing oscillatory activity 

within the brain. Deep learning methods have been increasingly 

adopted for ERP-based Brain-Computer Interfaces (BCIs) due to 

their excellent feature representation abilities, which allow for 

deep analysis of oscillatory activity within the brain. Features with 

higher spatiotemporal frequencies usually represent detailed and 

localized information, while features with lower spatiotemporal 

frequencies usually represent global structures. Mining EEG 

features from multiple spatiotemporal frequencies is conducive to 

obtaining more discriminative information. A multi-scale feature 

fusion octave convolution neural network (MOCNN) is proposed 

in this paper. MOCNN divides the ERP signals into high-, 

medium- and low-frequency components corresponding to 

different resolutions and processes them in different branches. By 

adding mid- and low-frequency components, the feature 

information used by MOCNN can be enriched, and the required 

amount of calculations can be reduced. After successive feature 

mapping using temporal and spatial convolutions, MOCNN 

realizes interactive learning among different components through 

the exchange of feature information among branches. 

Classification is accomplished by feeding the fused deep 

spatiotemporal features from various components into a fully 

connected layer. The results, obtained on two public datasets and 

a self-collected ERP dataset, show that MOCNN can achieve state-

of-the-art ERP classification performance. In this study, the 

generalized concept of octave convolution is introduced into the 

field of ERP-BCI research, which allows effective spatiotemporal 

features to be extracted from multi-scale networks through branch 

width optimization and information interaction at various scales.  

 
Index Terms—Brain-computer interfaces, event-related potentials, 

deep learning, multi-scale, octave convolution neural network. 
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I. INTRODUCTION 

RAIN-COMPUTER Interface (BCI) systems allow 

individuals to directly communicate with the external 

environment or control external devices through brain 

signals [1], [2]. Common electroencephalogram (EEG) signal 

components that are used to control BCIs include event-

related potentials (ERPs) [3], [4], steady-state visual evoked 

potentials (SSVEPs) [5], [6], slow cortical potentials (SCPs) 

[7], and the sensorimotor rhythm [8]-[12]. ERPs refer to 

voltage changes that are time-locked to sensory, motor, or 

cognitive events during ongoing EEG activity [13]. ERP-BCI 

systems have become one of the most significant BCI systems 

because of their advantages, such as relatively fast speed, 

applicability to most people, and ease of operation [14]. ERP-

BCI systems are being applied to decode the intentions of 

patients with mobility difficulties and have successfully 

assisted them in many applications such as completing typing 

tasks, controlling household appliances, and driving 

wheelchairs [15]-[18]. These systems can enhance their user’s 

independent living ability, which improves their quality of 

life. Therefore, it is of great practical significance to study 

ERP-BCIs. However, it is difficult to establish a stable 

mathematical model of the ERP due to the non-stationarity, 

low Signal to Noise Ratio (SNR), and inter-person variability 

of EEG signals [19]-[23]. This hinders the reliable 

identification of ERPs.  

Previous studies have proposed various traditional machine 

learning algorithms that can be applied to the classification of 

ERPs within ERP-based BCIs. For example, Rivet et al. 

adopted xDAWN to project raw EEG signals into an estimated 

signal subspace to optimize the SNR [24]. Blankertz et al. 

introduced the shrinkage linear discriminant analysis 
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(SKLDA) method to achieve accurate covariance matrix 

estimation in the high dimensional space of ERP signals [25]. 

Sajda et al. designed a hierarchical discriminant component 

analysis (HDCA) method, a two-stage method that combines 

first spatial and then temporal activities [26]. Mobaien et al. 

formed a regularized version of xDAWN (RxDAWN) by 

adding constraints to the original problem in order to enhance 

the ERP signal [27]. Traditional methods are mainly based on 

linear constraints, which allows them to be trained faster and 

results in relatively robust decoding models. However, their 

performance may be limited by the efficacy of the feature 

extraction stage [28]. 

Deep learning, as a nonlinear approach [29], has shown 

great potential in ERP detection in recent years. Schirrmeister 

et al. studied deep convolutional networks with a range of 

different architectures, ultimately designing the 

DeepConvNet model with five convolutional blocks for end-

to-end decoding of the raw EEG signal [30]. Lawhern et al. 

proposed a compact convolutional neural network, EEGNet, 

constructed by deep convolution and separable convolution 

for EEG-based BCIs [31]. Santamaria-Vazquez et al. 

integrated inception modules in the convolutional neural 

network to form the EEG-Inception model [20]. Li et al. 

learned phase information to improve the EEG classification 

performance in a rapid serial visual presentation (RSVP) task 

with a phase preservation neural network (PPNN) [32]. Li et 

al. combined self-supervised learning with supervised 

learning through a multi-task collaborative network (MTCN) 

to extract more generalized ERP features [33]. The 

effectiveness of these deep learning models for ERP 

classification has been verified in experiments. 

EEG is considered to be a complex signal consisting of 

transient and oscillatory patterns across different time lengths 

that reflects brain activity [20], [34]. EEG is also a multi-scale 

signal, meaning sampling the signal with different 

granularities yields different levels of information about the 

signal. It is generally the case that smaller/denser sampling 

can reveal more details, while larger/sparser sampling can 

reveal the overall trend of a process [35]. The combination of 

details and trends makes multi-scale learning a potentially 

suitable tool for EEG decoding. Multi-scale CNN (MSCNN) 

models have been successfully applied to ERP detection [20], 

[36]-[38], and the experimental results show that more 

characteristic information can be extracted from ERP signals 

at multiple scales. However, research into ERP recognition 

based on MSCNN still faces some challenges.  

First most existing MSCNN models assign the same width, 

namely the same number of filters, to each scale, 

implementing their respective feature representations, but 

ignore the optimal width allocation between different scales 

under the same resource constraints, preventing further 

improvement of the overall performance. Second, before 

feature fusion, feature mapping is always carried out 

independently in each scale branch without the benefit of the 

enhancement effect of intermediate information exchange 

between the features of each scale. Finally, multi-scaling is 

usually achieved by convolution of different kernel sizes to 

the same input, which can lead to information redundancy  

[20], [36]-[38]. 

To address these challenges, we develop a multi-scale 

feature fusion octave convolution neural network model 

(MOCNN) specifically for ERP classification. Octave 

convolution (OctConv), proposed by Chen et al. in the 

computer vision field [39], is used to store and process low- 

and high-frequency features separately to extract richer 

feature maps with less computational cost and more 

robustness. We introduce OctConv and build a multi-branch 

network architecture with the goal of enhancing the accuracy 

and efficiency of ERP-BCI systems and making them more 

practical for real-world applications. The major contributions 

of this paper can be summarized as follows: 

 We propose a multi-branch convolutional neural network 

that captures ERP features at multi-scale resolution and 

optimizes the distribution of each branch width under the 

condition that the network width is kept constant. 

 We apply the generalized concept of OctConv to ERP 

detection. The high-, medium- and low-frequency 

components of ERP signals are processed separately and 

interactive learning among the branches is implemented, this 

allows the discriminative multi-scale information to be 

extracted and achieving mutual complement of information 

between branches. 

 Through extensive experimentation on two public 

datasets and a self-collected dataset, we obtain classification 

results that outperform the state-of-the-art ERP detection 

methods. Meanwhile, the computational cost of MOCNN is 

also significantly reduced compared with other deep learning 

methods. 

This paper is organized as follows. Section II introduces the 

datasets used and the data processing flow of MOCNN. 

Section III illustrates the experimental results. Sections IV 

and V provide the discussion and conclusions, respectively. 

 

II. MATERIALS AND METHODS 

A. Datasets Description 

The three datasets used in this work are taken from 

Brain/Neural Computer Interaction (BNCI) Horizon 2020 

database, Lausanne Federal Institute of Technology (EPFL) 

BCI group, and  our spelling experiment, named datasets I, II, 

and III, respectively. The details of these datasets are 

described as follows. 

1) Dataset I 

The dataset was from a BCI-speller based experiment using 

a rapid serial visual presentation (RSVP) paradigm, which 

was conducted by Acqualagna et al [40]. Twelve healthy 

participants took part in the experiment. The study was 

performed in accordance with the declaration of Helsinki and 

all participants gave written informed consent. In the RSVP 

paradigm, 30 symbols with different colors and different 

capitalizations were randomly presented, one after another, in 
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the center of the screen. The participants were required to 

concentrate on the target letter and count its number of 

occurrences silently. The EEG was recorded at 1000 Hz using 

BrainAmp amplifiers and an actiCap active electrode system 

with 63 channels (Fp1/2, AF3/4, Fz, F1-10, FCz, FC1-6, 

FT7/8, T7/8, Cz, C1-6, TP7/8, CPz, CP1-6, Pz, P1-10, POz, 

PO3/4/7-10, Oz and O1/2). Each participant completed both 

offline and online phases of the experiment. Each participant 

was given 24 characters in the offline phase and an average of 

41 characters in the online phase to spell. In this study, the 

EEG data from 11 participants were used because one 

participant’s data lacked two channels (P8 and O2). We 

randomly selected trials focused on 20 of the characters from 

the offline data for use as our training data, the trials for the 

remaining 4 characters were used as our validation data, and 

the online data was used as our testing data. For more 

information on Dataset I, please refer to http://bnci-horizon-

2020.eu/database/data-sets.  

2) Dataset II 

 The dataset was from an experimental evaluation of a 

P300-based BCI system for disabled participants developed 

by Hoffmann et al. [41]. EEG data was recorded from 4 

disabled and 4 healthy participants. In the P300 paradigm, six 

images were flashed in random sequences on a laptop screen, 

with each flash of an image lasting 100 ms and 400 ms 

interstimulus intervals. The participants were required to 

focus on specified target images. The EEG was recorded at a 

2048 Hz sampling rate using a Biosemi Active Two amplifier 

from 32 electrodes (Fp1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, 

CP5, P7, P3, Pz, PO3, O1, Oz, O2, PO4, P4, P8, CP6, CP2, 

C4, T8, FC6, FC2, F4, F8, AF4, Fp2, Fz, and Cz) placed at the 

standard positions of the international 10-20 system. A total 

of 24 runs over four recording sessions were completed by 

every participant, and each run is composed of an average of 

22.5 epochs of six flashes. In our study, we include the EEG 

data from all participants. We randomly selected 10 runs as 

the training data, 4 as the validation data, and the remaining 

10 as the testing data. For more information on Dataset II, 

please refer to www.epfl.ch/labs/mmspg/research/page-

58317-en-html/bci-2/bci_datasets/.  

3) Dataset III 

Participants: Eight participants (5 males and 3 females, 

aged 19-26 years) with normal or corrected-to-normal vision 

were recruited for this P300 spelling experiment. None of the 

participants reported a previous history of visual impairment, 

neurological disease, or injury. The experimental procedures 

(Document Number: ECUST-2022-054) were approved by 

the Local Institutional Review Board. 

Paradigm: The visual stimulation interface was a 6×6 

checkerboard layout (including the letters A-Z, numbers 1-9, 

and underscores) as shown in Fig. 1 (a), with a text box above 

displaying the characters to be spelled. In the paradigm, the 

stimuli were presented in random order via a set of binomial 

flashes [42], [43], and the flashing characters were overlaid 

with pictures of faces (faces generated by code, not real 

people) [44]. Each participant participated in one 

experimental session. The timing of one session is shown in 

Fig. 1 (b). Participants were asked to complete random 

spellings of 32 characters during a session, spelling one 

character as a run. The character to be spelled was prompted 

for 1s at the start of each run. Each run consisted of 5 

sequences, and each sequence contained 12 flashes, with 

characters flashed in accordance with the binomial rule 

defined in this paradigm. The flashes were presented in such 

a way that faces appeared and disappeared for 75 ms each, 

thus a single flash event lasted for 150 ms. 

EEG recording: EEG signals were recorded at a sampling 

rate of 1000 Hz using wireless EEG equipment with 59 scalp 

electrodes (Fpz, Fp1/2, AF3/4/7/8, Fz, F1-8, FCz, FC1-6, 

FT7/8, Cz, C1-6, T7/8, CP1-6, TP7/8, Pz, P3-8, POz, PO3-8, 

Oz and O1/2) arranged in a standard 10-20 montage. 

In this study, 20 runs were randomly selected for use as the 

training data, 4 runs for use as the validation data, and the 

remaining 12 runs for use as the testing data for each 

participant. 

 

B. Data Preprocessing 

The same preprocessing is performed on all three datasets. 

The EEG data is filtered using a Butterworth bandpass filter 

with frequencies ranging from 0.5 to 30 Hz, then the sampling 

rate is reduced to 128 Hz to reduce the data volume. The trials 

used for classification are extracted within the time window 

of 0 to 1000 ms after the onset of the reinforcement period. 

Each trial was then normalized by z-score to ensure uniform 

measurements. 

 

C. MOCNN 

We introduce the concept of OctConv into ERP detection. 

Specifically, we integrate an OctConv module into our multi-

scale convolutional neural network model to construct our 

proposed MOCNN model. The framework of our MOCNN 

model is illustrated in Fig. 2. This MOCNN model consists of 

five major modules: FirstOctConv, SpatialConv, 

CoreOctConv, LastOctConv, and Classification. The detailed 

design of each module is as follows. 

1) Module FirstOctConv 

The main purpose of the Module FirstOctConv is to take 

input signals, divide them into distinct frequency components, 

 
   (a)                                                           (b) 

Fig. 1. Experimental paradigm. (a) The binomial face visual stimulation 

interface. (b) The timing of one session. 

 

http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets
http://www.epfl.ch/labs/mmspg/research/page-58317-en-html/bci-2/bci_datasets/
http://www.epfl.ch/labs/mmspg/research/page-58317-en-html/bci-2/bci_datasets/
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and then distribute these components across the branches to 

extract temporal features. Information generally contains 

components of different frequencies. The higher frequencies 

are usually encoded in fine detail, while the lower frequencies 

are usually encoded in the global structure [39]. In this paper, 

we adopt a signal decomposition approach that separates the 

input into high-, medium-, and low-frequency components by 

adjusting the time resolution. The three components are 

encoded and decoded separately by the three parallel branches 

of the model. The input feature map of the parallel branches 

can be expressed as: 

 

 
1 1 1

1 1 1 1 1

{ , , }

;   ( , );   ( , )

in h m l

h m m l l

X X X X

X X X p X X p X 

=

= = =
 (1) 

 

where subscript h  denotes high-frequency, m  medium-

frequency, and l  to low-frequency components. 
1hX  is equal 

to the preprocessed signal C TX R  , 
1mX  is obtained by 

performing an average pooling operation ( )p   with size 

1
(1,2)m =  on X , and 1lX  is obtained by ( )p   with size 

1
(1,4)l = . Temporal convolutions (N1, N2, and N3) are then 

applied to the three branches. In this module, the total number 

of filters remains constant, and the hyperparameter   

determines the allocation of filters for learning high-, 

medium-, and low-frequency components. Hence, the outputs 

of N1, N2, and N3 can be expressed as: 

 

 

1 1

1 1

1 1

1 1

1 1

2
1 1

( ; ; )

( ; (1 ) ; )

( ;(1 ) ; )

nh h

nm m

nl l

Y g X F

Y g X F

Y g X F

 

  

 

=

= −

= −

 (2) 

where ( ; ; )g X    denotes a convolution on X  with the 

number of filters defined by   and the kernel size  . A 

similar pattern of filter allocation also exists in the later 

modules. Then batch normalization (BN) is used after each 

convolution.  

2) Module SpatialConv 

The SpatialConv module serves the primary purpose of 

extracting spatial features. It encompasses layers D1, D2, and 

D3, along with their corresponding BN layers, activation 

layers, and dropout layers. D1, D2, and D3 are depth wise 

convolution layers with a depth of 1, which compress the 

channel dimension from C  to 1, thus reducing the spatial data 

dimension. The outputs of D1, D2, and D3 can be expressed 

as: 

 

 

2 2

2 2

2 2

2 2 1

2 2 1

2 2
2 2 1

( ; ; ; )

( ; (1- ) ; ; (1- ) )

( ;(1- ) ; ;(1- ) )

dh h

dm m

dl l

Y d X F F

Y d X F F

Y d X F F

  

    

  

=

=

=

 (3) 

 

where ( , , , )d X     denotes a depth wise convolution on X  

with the number of filters denoted by  , kernel size   , and 

group size  , and 22 22 { ,  ,  }mh lX X X X=  denotes the input of the 

SpatialConv module. Depth wise convolution performs 

convolution independently on each filter dimension, which 

can effectively reduce the number of parameters [45]. Then, a 

BN layer, an ELU activation function, and a dropout layer are 

applied after each deep convolution layer to accelerate 

training and reduce the risk of overfitting. 

 
Fig. 2. The framework of MOCNN. MOCNN is divided into five modules: FirstOctConv, SpatialConv, CoreOctConv, LastOctConv, and Classification. The three 

types of convolution in this framework are Normal Convolution, denoted by N; Depthwise Convolution, denoted by D; and Separable Convolution, denoted by S. 
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3) Module CoreOctConv 

The goal of the CoreOctConv module is to effectively deal 

with high-, medium- and low-frequency features and achieve 

efficient inter-frequency communication. As seen in Fig. 3, 

the input and output of this module are defined as 

33 33 { ,  ,  }mh lX X X X= , 3 3 33 { ,  ,  }h m lY Y Y Y= , where 3
hin hF C T

hX R   , 

3

(1- ) in m mF C T
mX R    , 

2

3

(1- ) lin lF C T
lX R    , 3

/ 4out h hF
h

C TY R   , 

3

(1- ) /4out m mF C T
mY R    , 

2

3

(1- ) /4t l louF C T
lY R    , with inF  and outF  

representing the number of input and output feature maps, the 

hyperparameter   controls the ratio of filter number to learn 

high-, medium-, and low-frequency features. The terms 3hY , 

3mY  and 3lY  are given by: 

 

 3

3

3
  

  

  

h h h m h l h

h m m m l m

h l m l l l

m

l

Y Y Y Y

Y Y Y Y

Y Y Y Y

→ → →

→ → →

→ → →

= + +

= + +

= + +

 (4)                    

 

where a bY →  indicates the convolution update from feature a  

to b . Therefore, h hY → , m mY → , l lY →  represent intra-frequency 

updates, h mY → , h lY → , m hY → , m lY → , l hY → , l mY →  represent inter-

frequency updates. Specifically, 
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 (5) 

 

where ( )p   and ( )g   still represent pooling and convolution 

operations described earlier. As high-, medium-, and low-

frequency features differ in the filter and time dimensions and 

cannot be directly combined, pooling with varying sizes 

( (1,4)h h m m l l  → → →= = = ; (1,8)h m m l → →= = ; (1,16)h l → = ; 

(1,2)m h l m → →= = ) is employed to adapt the temporal 

dimension during inter-frequency updates, while convolution 

is used to adjust the filter dimension during intra-frequency 

updates. After the information exchange, the corresponding 

features of each component need to be transmitted into their 

respective BN layer, ELU layer, and dropout layer. 

4) Module LastOctConv 

The LastOctConv module serves as a fusion module with 

the primary responsibility of reintegrating the separately 

processed high-, middle-, and low-frequency components. 

The mode of concatenation in the filter dimension is chosen 

to fuse the three components. Before the cascade, convolution 

layers N4, N5, and N6 are adopted to further extract features. 

The outputs of N4, N5, and N6 can be expressed as: 

 

 

4 4

4 4

4 4

4 4

4 4

4 4

( ; ; )

( ; ; )

( ; ; )

nh h

nm m

nl l

Y g X F

Y g X F

Y g X F







=

=

=

 (6) 

 

which are then processed by the respective BN layers, ELU 

layers, and dropout layer. The time dimension of the high-

frequency component is average pooled with size (1,4), the 

medium-frequency component is average pooled with size 

(1,2), and the low-frequency component remains unchanged. 

This ensures the time dimension of all three components 

becomes consistent. Following this, the output of the three 

branches is concatenated together to produce the fused feature 

set. 

5) Module Classification 

The main function of the Classification module is to make 

 
Fig.3. Main design of the CoreOctConv module. Yellow rectangles indicate high-frequency features, green ones indicate medium-frequency features, and blue 

ones indicate low-frequency features. 
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use of the fused features to generate the classification output. 

In this module, a separable convolution S1 is used to further 

adjust the information within the fused features. A separable 

convolution consists of a depth wise convolution and a 

pointwise convolution [45]. Separable convolution has the 

same advantages as a depth wise convolution. In addition, 

pointwise convolution enables separable convolution to 

achieve feature fusion of different filters [31]. The high-, 

medium- and low-frequency features are combined in the 

filter dimension to form the fusion feature, and the 

combination of features at different time scales is optimized 

through S1. The output of S1 can be expressed as: 

 

 
5 5 5 5 5( ; ; ; )shY s X F F=  (7) 

 

where ( , , , )s X     denotes a separable convolution on X  

with the number of filters denoted by  , kernel size  , and 

group size  . The term 5X  is used to denote the fusion feature. 

Before the flattening operation, the BN, ELU activation, and 

dropout operations are applied. Binary classification is 

achieved using a fully connected network, and the softmax 

activation function is used to obtain the probability that the 

input sample belongs to the target or non-target class. The 

output is the label with the greater probability: 

 

 ( )
Target Non-target1,   

0,

if P P
MOCNN X

otherwise


= 


 (8) 

 

where X  is the input sample, TargetP  represents the probability 

that X  is the target sample, Non-targetP  represents the 

probability that X  is the non-target sample. 

 

D. Comparison Algorithms 

1) xDAWN [24], [46]: xDawn is an unsupervised method 

that enhances P300 evoked potentials by projecting an 

originally recorded EEG signal onto an estimated evoked 

subspace. Bayesian linear discriminant analysis (BLDA) is 

used for classification after xDawn spatial filtering. 

2) HDCA [26]: HDCA learns spatial weights via Fisher 

linear discriminants (FLD) and then temporal weights via 

logistic regression, enabling classification. It is easy to 

implement and computationally efficient. 

3) EEGNet [31]: EEGNet is a compact convolutional 

neural network designed for Brain-Computer Interfaces based 

on EEG, which demonstrates excellent performance across 

multiple paradigms. 

4) EEG-inception [20]: EEG-inception is the first model 

that integrates the Inception module for ERP detection. It 

integrates effectively with other structures in a lightweight 

architecture to improve the accuracy and calibration time of 

the auxiliary ERP-based Brain-Computer Interface. 

5) PPNN [32]: PPNN utilizes a stack of dilated temporal 

convolution layers to extract temporal features and preserve 

phase information. Then the channel correlation is obtained 

through a spatial convolution layer. Classification is achieved 

with a fully connected layer.  

 

E. Implementation Details 

Our proposed MOCNN model and the deep learning models 

which we compare it to are all constructed using PyTorch 

[47]. We employ the Adam [48] optimizer with an initial 

learning rate of 0.001 during the training process. The mini-

batch size is set to 512, and the models are trained for 500 

epochs. To avoid overfitting and reduce the training time, we 

employ early stopping [49] to stop training when the loss of 

the validation data does not improve for 20 consecutive 

epochs. The weighted cross-entropy loss function is applied 

to address data imbalance. All models in this work use the 

same training settings. For each dataset, we run all the 

methods 5 times and average the results to decrease the effect 

of randomness. 

In MOCNN, except for the one following S1, all dropout 

layers are implemented using spatial dropout [50] with a rate 

of 0.5. Spatial dropout randomly zeros out some regions rather 

than some elements to avoid the destruction of the spatial 

correlation between neurons [51]. The structural parameters 

are 1 16F = , 2 128F = , 3 32F = , 4 2F = , 5 6F =  and the 

convolution parameters are 1 (1,16) = , 2 ( ,1)C = , 3 (1,8) = ,

4 (1,4) = , 5 (1,4) = . The hyperparameter   is set as 0.75. 

Bias units are omitted in all convolution layers. 

The hardware information of the computer used in the 

experiment is as follows: 11th Gen Intel(R) Core(TM) i7-

11800H @ 2.30GHz, NVIDIA GeForce RTX 3060 Laptop 

GPU. 

 

III. RESULTS 

A. Performance Evaluation of ERP Detection 

ERP detection in BCI systems is an imbalanced data 

classification problem. Unweighted average recall (UAR) 

[35] is the average accuracy over all classes, which is a widely 

used metric for class imbalance problems. Therefore, we 

adopt UAR as one of the criteria to evaluate the classification 

performance for all methods in this study. We compare our 

proposed MOCNN model with several traditional algorithms 

(xDAWN and HDCA) and deep learning algorithms 

(EEGNet, EEG-inception, and PPNN). Additionally, we 

employ statistical performance measures based on paired t-

tests [52] to compare the significance of our proposed method 

with previously reported methods.  

Fig. 4 depicts the single trial UAR ERP detection results 

from Dataset I, II, and III. It can be observed that, overall, our 

proposed MOCNN model outperforms the other comparison 

methods on all three datasets. For Dataset I, MOCNN obtains 

the highest average UAR across the 11 participants, with UAR 

improvements of 11.9%, 3.0%, 2.6%, 1.9%, and 6.2% 

respectively. Our proposed method has an extremely 

significant (p < 0.001) improvement compared with xDAWN, 

HDCA, EEGNet, PPNN, and a significant (p < 0.01) 
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improvement compared with EEG-inception. For Dataset II, 

our MOCNN model obtains the highest average UAR across 

the 8 participants, with UAR improvements of 6.5%, 8.3%, 

5.1%, 2.4%, and 2.1% respectively. Significant differences 

exist between xDAWN, HDCA, EEGNet, PPNN, and 

MOCNN, and the difference in results obtained by MOCNN 

and EEG-inception are significant (p < 0.05). For Dataset III, 

our MOCNN model obtains the highest average UAR across 

the 8 participants, with UAR improvements of 13.2%, 7.0%, 

8.4%, 3.9%, and 2.8% separately. There are extremely 

significant differences between MOCNN, xDAWN, HDCA, 

EEGNet, and EEG-inception, and significant differences 

between MOCNN and PPNN.  
 

B. Performance Evaluation of Command Recognition 

Given that the ultimate goal of BCI systems is to enable 

users to communicate, command recognition accuracy is an 

important criterion to evaluate the performance of our 

proposed method. Tables I, II, and III summarize the average 

command recognition accuracies for different methods as the 

number of repetitions increases for Dataset I, II, and III. The 

bold numbers indicate the maximum values of the 

corresponding columns in the tables. The number of 

repetitions k  denotes that the classification probabilities of 

the EEG signals in the previous k  rounds are used to obtain 

the recognition result by superposition averaging. It can be 

seen that with the increase in the number of repetition times, 

the command recognition accuracy achieved with each 

method increases. Our MOCNN model achieves higher 

command recognition accuracy than the other methods over 

all repetitions, especially when only 1 repetitions is used. For 

Dataset I, the command recognition accuracy of the MOCNN 

method exceeds the suboptimal result by more than 5% using 

the first repetition of data. For Dataset II and III, the command 

recognition accuracy achieved with the MOCNN model using 

the first repetition of data is more than 60%.  

 

C. Computation Complexity Analysis 

In this work, the concept of multiple-accumulated 

operations (MACs) is adopted to represent the computational 

 

TABLE I 

AVERAGE COMMAND RECOGNITION ACCURACY (%) OF DATASET I 

Repetition 

Method 
1 2 3 4 5 6 7 8 9 10 

xDAWN 36.1 51.1 59.1 67.0 71.5 75.8 76.4 79.3 81.5 82.6 

HDCA 39.4 62.0 72.9 80.5 85.3 87.7 89.4 91.2 92.5 92.7 

EEGNet 37.0 60.0 70.7 79.4 84.5 87.8 89.0 90.3 92.0 92.4 

EEG-inception 40.8 62.5 74.1 80.8 85.1 88.9 89.9 91.3 92.4 93.1 

PPNN 34.5 52.9 63.0 69.1 74.6 78.3 80.5 81.9 84.1 85.5 

MOCNN 46.4 65.6 77.1 84.0 87.4 89.0 90.3 91.9 93.1 93.3 

 
TABLE II 

AVERAGE COMMAND RECOGNITION ACCURACY (%) OF DATASET II 

Repetition 

Method 
1 2 3 4 5 6 7 8 9 10 

xDAWN 54.5 67.2 76.0 83.0 87.8 90.5 90.3 93.3 95.0 95.0 

HDCA 48.0 63.5 73.2 77.8 81.5 81.3 84.3 87.5 90.5 90.7 

EEGNet 52.3 71.5 82.5 86.5 89.2 89.5 91.8 93.5 96.5 96.7 

EEG-inception 56.8 74.8 83.5 87.3 89.7 90.5 92.8 93.5 97.0 96.5 

PPNN 58.8 77.0 85.8 89.0 90.5 93.0 93.7 96.5 97.5 97.5 

MOCNN 62.0 79.0 87.5 91.0 92.5 94.3 95.5 97.0 98.5 98.0 

 

 
                               (a) Dataset I          (b) Dataset II (c) Dataset III 

Fig. 4.  The ERP detection results for the three datasets. Error bars represent standard deviations. The single asterisk * denotes p<0.05; ** denotes p<0.01; and *** 

denotes p<0.001. 
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complexity [53] of deep learning models. One MAC consists 

of a multiplication operation and an addition operation. The 

dimensions of input data vary across our three datasets, 

resulting in a variation in the computational complexity of the 

models across the datasets. Table IV provides a comparison 

of the computational complexity between the three deep 

learning models and our proposed MOCNN model on the 

three datasets. The number of input samples during the 

computation is fixed, as is the mini-batch size. Comparing the 

MACs of the EEGNet, EEG-Inception, and PPNN models 

shows the reduction rates in MACs for MOCNN are 16.4%, 

56.3%, 53.9% on Dataset I, -3.6%, 48.0%, 42.6% on Dataset 

II, and 15.1%, 55.8%, 53.2% on Dataset III. These results 

demonstrate that the computational complexity of our 

MOCNN model is lower compared to the EEG-inception and 

PPNN models across all datasets, and compared to EEGNet 

across Dataset I and III. 

 

IV. DISCUSSION 

A. The Influence of Hyperparameter   on MOCNN 

To explore the influence of different   values on the 

MOCNN model, we change the   value and conduct 

experiments on Dataset I, II, and III. Fig. 5 shows the 

classification performance and computational complexity of 

the MOCNN model under different   values 

( {0,  0.25,  0.50,  0.75,  1}  ). In particular, when   is equal 

to 0 or 1, MOCNN is a single-branch network using only low- 

or high-frequency information. The five comparison models 

are denoted as 0 0.25 0.50 0.75 1}{ ,  ,  ,  ,  T T T T T T  , corresponding to 

the five   values.  

Consistent with the evaluation criteria used in the previous 

section, we use MACs to assess the computational complexity 

of the model, while we employ UAR and command 

recognition accuracy to evaluate the classification 

performance. The results show that MACs of T  gradually 

decrease with the decrease in   over the three datasets. 

Compared to the MACs of 1T  taken as the reference value, the 

MACs of 0.75 0.50 0.25,  ,  T T T , and 0T  decreased by approximately 

TABLE III 

AVERAGE COMMAND RECOGNITION ACCURACY (%) OF DATASET III  

Repetition 

Method 
1 2 3 4 5 

xDAWN 39.4 58.9 71.9 73.9 81.3 

HDCA 52.3 77.1 82.7 87.1 89.8 

EEGNet 43.9 68.1 78.8 82.9 87.5 

EEG-inception 58.3 79.8 85.4 88.3 92.1 

PPNN 56.1 77.7 88.7 91.9 94.4 

MOCNN 64.0 84.8 90.6 93.1 95.8 

 

TABLE IV 

COMPUTATION COMPLEXITY OF DEEP LEARNING MODELS FOR THE THREE 

DATASETS (G: GIGA-109) 

Dataset Model MACs Reduction Rate 

Dataset I 

EEGNet 2.19 G 16.4% 

EEG-inception 4.19 G 56.3% 

PPNN 3.97 G 53.9% 

MOCNN 1.83 G - 

Dataset II 

EEGNet 1.12 G -3.6% 

EEG-inception 2.23 G 48.0% 

PPNN 2.02 G 42.6% 

MOCNN 1.16 G - 

Dataset III 

EEGNet 2.05 G 15.1% 

EEG-inception 3.94 G 55.8% 

PPNN 3.72 G 53.2% 

MOCNN 1.74 G - 

 
 

 
                       (a) Dataset I   (b) Dataset II (c) Dataset III 

Fig. 5. Classification performance and computational complexity of MOCNN under different   values on the three datasets. In the first row of subfigures, the 

axis on the left corresponds to the bar chart, representing the MACs of the models, and the axis on the right corresponds to the line chart, representing the average 

UAR of the models. 
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14.1%, 31.5%, 51.6%, and 75.1%, respectively.  

As   increases, the UAR trend on the three datasets is 

similar, with UAR first increasing to a vertex and then 

decreasing. The optimal point, where UAR is maximized, is 

found at 0.75 = . In terms of command recognition accuracy, 

0.75T  consistently achieves the best results when the number of 

repetitions is 1, 2, and 3 on all datasets. On Dataset I, 0.75T  

obtains optimal command recognition accuracies in the first 9 

repetitions. In the last iteration, the command recognition 

accuracy of 0.75T  is slightly inferior to that of 0.25T . On Dataset 

II, the gap between the command recognition accuracies of 

0.50T  and 0.75T is very small. 0.50T  is the more advantageous 

one in the last 7 repetitions, but 0.75T  also allows us to obtain 

acceptable results. On Dataset III, the command recognition 

accuracy of 0.75T  has an advantage in all repetitions.  

It can be seen that when 0.75 = , the MOCNN model 

performs better overall. At this point, 12/16 of the filters in 

the MOCNN model always learn the high-frequency 

component, 3/16 of the filters learn the middle-frequency 

component, and 1/16 of the filters learn the low-frequency 

component. The feature information of each component is 

fully learned and complementary when fused. We set   to 

0.75 in the previous section based on the above findings. 

 

B. The Influence of the Number of Branches 

To investigate the impact of the number of branches on our 

MOCNN model, we change the number of branches and 

conduct experiments on Dataset I, II, and III. As mentioned 

earlier the MOCNN model is a single-branch network when 

  is equal to 0 or 1. As shown in Fig. 5, the triple-branch 

MOCNN model significantly outperforms the single-branch 

MOCNN model.  

TABLE V 

AVERAGE COMMAND RECOGNITION ACCURACY (%) OF MOCNN UNDER DIFFERENT NUMBERS OF BRANCHES ON DATASET I 

Repetition 

Model 
1 2 3 4 5 6 7 8 9 10 

𝐷0.25 45.3 67.6 77.8 83.0 86.6 88.5 89.9 91.5 93.2 93.1 

T0.25 43.1 62.4 74.3 81.4 86.2 88.0 90.0 91.7 92.8 93.4 

𝐷0.50 44.0 64.0 75.6 82.4 84.9 87.7 89.2 90.6 92.7 92.7 

T0.50 44.9 64.1 75.1 81.9 86.1 88.4 89.6 91.4 93.0 92.7 

𝐷0.75 44.5 65.3 76.3 81.9 85.6 87.7 89.4 90.7 92.4 92.3 

T0.75 46.4 65.6 77.1 84.0 87.4 89.0 90.3 91.9 93.1 93.3 

 
TABLE VI 

AVERAGE COMMAND RECOGNITION ACCURACY (%) OF MOCNN UNDER DIFFERENT NUMBERS OF BRANCHES ON DATASET II 

Repetition 

Model 
1 2 3 4 5 6 7 8 9 10 

𝐷0.25 59.5 80.5 85.8 91.2 92.5 95.0 96.0 97.2 99.0 98.5 

T0.25 59.5 79.0 86.0 91.2 91.8 94.0 94.5 97.3 98.0 98.3 

𝐷0.50 62.3 78.7 86.7 90.8 92.5 94.2 95.5 98.0 98.3 98.3 

T0.50 61.3 78.8 87.0 91.2 93.0 95.2 95.3 97.8 98.5 98.3 

𝐷0.75 58.0 79.0 84.5 93.3 91.7 94.2 95.5 98.0 98.8 98.8 

T0.75 62.0 79.0 87.5 91.0 92.5 94.3 95.5 97.0 98.5 98.0 

 

TABLE VII 

AVERAGE COMMAND RECOGNITION ACCURACY (%) OF MOCNN UNDER 

DIFFERENT NUMBERS OF BRANCHES ON DATASET III 

Repetition 

Model 
1 2 3 4 5 

𝐷0.25 64.0 84.2 89.4 91.9 94.8 

T0.25 60.0 80.8 87.9 89.8 93.5 

𝐷0.50 64.8 85.4 91.7 93.6 96.0 

T0.50 62.1 82.1 89.8 92.3 94.6 

𝐷0.75 63.7 83.1 89.6 92.1 95.2 

T0.75 64.0 84.8 90.6 93.1 95.8 

 

  
  (a) Dataset I       (b) Dataset II (c) Dataset III 

Fig. 6. ERP detection performance and computational complexity of the MOCNN model under different numbers of branches. The axis on the left corresponds to 

the bar chart, representing the MACs of the models, and the axis on the right corresponds to the line chart, representing the UAR of the models. 
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We then compare the performance between the dual-branch 

and triple-branch MOCNN models. The dual-branch MOCNN 

is implemented by removing the branches that learn the low-

frequency components in the triple-branch MOCNN model, in 

which case the proportion of filters assigned to the high-

frequency component is   and the proportion of filters 

assigned to the medium-frequency component is 1- . The 

dual-branch and triple-branch models are further divided into 

three cases according to the different values of 

{0.25,  0.50,  0.75}  , separately. The six comparison models 

are referred to as 0.25 0.50 0.75}{ ,  ,  D D D D   and 

0.25 0.50 0.75}{ ,  ,  T T T T  . Fig. 6 illustrates the ERP detection 

performance and computational complexity of the MOCNN 

model under different numbers of branches. It can be observed 

that the MACs of T  is always less than D , and the closer 

  is to 0, the less T  is then D . From the trend of the 

variation of UAR of the two structures with  , it is difficult 

to summarize a common law between them. However, it can 

be determined that the UAR of T  is always optimal at 

0.75 = . Moreover, the UAR of 0.50D  is superior to 0.75T  on 

Dataset II and III. 

In Tables V-VII, the average command recognition 

accuracy of the MOCNN model under different numbers of 

branches on the three datasets is shown. On Dataset I, the 

command recognition accuracy of 0.75T  is optimal in most 

repetitions. On Dataset II, the advantages of each model are 

not obvious, and the relatively reliable models are 0.25D  and 

0.75 D . On Dataset III, 0.50D  achieved optimality in all 

repetitions.  

Overall, the performances of the dual-branch MOCNN and 

the triple-branch MOCNN models differ over the different 

datasets. 0.75T  and 0.50D  are the two models with the best 

comprehensive performance. As shown in Table IV, the 

computational complexity of 0.75T  is already relatively small 

compared to other deep learning models. Therefore, only the 

UAR and the command recognition accuracy are considered 

when further comparing 0.75T  and 0.50D . Considering that the 

average UAR of 0.75T  on the three datasets can always rank in 

the top two among the six models and the average command 

recognition of 0.75T  is generally superior to 0.50D  in most 

repetitions of Dataset I and II, we can conclude that model 

0.75T  is the most suitable decoding model for our datasets. 

 

C. Ablation Studies 

Two additional ablation experiments are conducted to 

analyze the importance of optimizing the distribution of 

branch width and the information interaction between 

branches. The results of the ablation studies on Datasets I, II, 

and III are shown in Table VIII. To compare the effect of 

branch width optimization on the performance of MOCNN, 

we constructed MOCNN-1 by evenly distributing branch 

widths under the condition of keeping the network width 

roughly equal to MOCNN. To compare the effect of inter-

branch information exchange on the performance of our 

MOCNN model, we construct a new model, MOCNN-2, by 

removing inter-frequency updates in the module 

CoreOctConv. Table VIII shows the average UAR and the 

average command recognition accuracy of each repetition of 

Dataset I, II, and III. The bold numbers indicate the maximum 

values of the corresponding columns of each dataset in the 

table. It can be seen that MOCNN is always significantly 

better than MOCNN-1 and is significantly better than 

MOCNN-2 on datasets I and II. In the first 4 repetitions on 

dataset III, the results of MOCNN and MOCNN-2 are close, 

but in the fifth repetition, MOCNN shows a significant 

improvement over MOCNN-2. The ablation studies indicate 

the necessity of optimizing the distribution of branch width 

and the information interaction between branches. 

 

V. CONCLUSION 

This study proposes a novel deep convolution neural 

network called Multi-scale Feature Fusion Octave 

Convolution Neural Network (MOCNN) for EEG 

classification in ERP-BCIs. MOCNN can effectively process 

the high-, medium-, and low-frequency components of the 

ERP signals separately, thus extracting more complementary 

feature information. Experimental evaluations conducted on 

two publicly available datasets and a self-collected ERP 

dataset demonstrate the exceptional performance of MOCNN, 

significantly outperforming previous xDAWN, HDCA, 

EEGNet, EEG-inception, and PPNN models. Moreover, we 

also discuss the important parameter and structure choices for 

MOCNN. The results show that setting 0.75 =  and utilizing 

three branches enable the complete learning of essential 

TABLE VIII 

ABLATION STUDIES OF MOCNN ON DATASET I, II AND III 

Dataset Model UAR 
Command Recognition Accuracy of Each Repetition 

1 2 3 4 5 6 7 8 9 10 

I 

MOCNN-1 0.795 44.8 63.3 74.1 81.4 84.8 87.2 88.1 90.3 91.6 91.9 

MOCNN-2 0.798 45.1 65.5 77.4 83.0 87.0 88.2 89.3 90.8 92.5 92.7 

MOCNN 0.801 46.4 65.6 77.1 84.0 87.4 89.0 90.3 91.9 93.1 93.3 

II 

MOCNN-1 0.777 57.2 79.5 85.5 90.2 91.7 94.3 94.3 96.7 97.8 97.8 

MOCNN-2 0.771 62.5 78.2 87.5 90.8 91.0 91.5 95.0 96.7 97.5 97.5 

MOCNN 0.777 62.0 79.0 87.5 91.0 92.5 94.3 95.5 97.0 98.5 98.0 

III 

MOCNN-1 0.880 63.8 82.9 90.4 92.5 94.4 - - - - - 

MOCNN-2 0.891 63.9 85.0 91.5 93.1 95.0 - - - - - 

MOCNN 0.890 64.0 84.8 90.6 93.1 95.8 - - - - - 
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components, leading to improved use of complementary 

features. Meanwhile, the ablation studies also indicate the 

suitability of our MOCNN design. This study introduces 

generalized octave convolutions in ERP classification tasks 

with satisfactory results. 
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