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Abstract— This paper presents a hierarchical LiDAR sim-
ulation framework to address the challenges of accurately
simulating LiDAR data in autonomous driving scenarios. The
framework utilizes a homology mapping approach to integrate
LiDAR responses hierarchically at three levels: the instanta-
neous power response, environmental optical channel response,
and target reflection response of LiDAR. This allows for the
dynamic coupling of LiDAR geometric and physical models with
varying environmental parameters. By integrating an array of
interactions intrinsic to the LiDAR system and its external envi-
ronment, the proposed model can provide high-fidelity LiDAR
point cloud simulations. The effectiveness of the simulated point
clouds has been validated through extensive experiments using
actual LiDAR data and detection algorithms trained on existing
datasets. The experimental results show that the proposed method
has the potential to improve the realism of LiDAR simulations
and the accumulation of challenging perception data.

Index Terms— LiDAR, physical attenuation response, simu-
lated point cloud, simulation test, autonomous vehicles.

I. INTRODUCTION

THE effective implementation of autonomous driving tech-
nology requires a significant amount of data collection

to enhance the performance and robustness of perception
algorithms [1], [2], [3]. However, data acquisition through
real-world driving is constrained by public safety concerns,
which limits the ability to test challenging driving scenarios
over extended periods [4], [5]. In contrast, computer-based
simulations of autonomous driving offer a safer and more
efficient alternative [6]. By orchestrating various driving situ-
ations in controlled virtual environments and emulating sensor

Manuscript received 13 July 2023; revised 31 October 2023;
accepted 27 November 2023. This work was supported in part by the
National Key Research and Development Program of China under Grant
2022YFB3206605, in part by the National Natural Science Foundation of
China under Grant 52075461, and in part by the Fujian Province University
Industry-Academic Cooperation Project of China under Grant 2021H6019.
The Associate Editor for this article was Y. Wiseman. (Corresponding
author: Qingyuan Zhu.)

Tengchao Huang, Shuang Song, Yunlong Gao, Guifang Shao, and
Qingyuan Zhu are with the Pen-Tung Sah Institute of Micro-Nano Sci-
ence and Technology, Xiamen University, Xiamen 361000, China (e-mail:
huangtengchao@stu.xmu.edu.cn; songs@stu.xmu.edu.cn; gaoyl@xmu.edu.cn;
gfshao@xmu.edu.cn; zhuqy@xmu.edu.cn).

Huosheng Hu is with the School of Computer and Electronics Engineering,
University of Essex, CO4 3SQ Colchester, U.K. (e-mail: hhu@essex.ac.uk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TITS.2023.3340676, provided by the authors.

data capture, these simulations can bridge the gap in obtaining
nuanced perception data that real-world drives might not
always afford [7]. Consequently, vehicle sensor simulation
has become an essential component of the test and validation
processes for autonomous vehicle perception algorithms.

LiDAR is one of the essential components of vehicular per-
ception systems [8]. With the superior 3D panoramic scanning
capabilities, LiDAR provides vehicles with an omnidirectional
perspective to perceive environmental dynamics [9]. The con-
struction of its high-fidelity models in virtual environments has
the potential to broaden avenues for data acquisition in vehic-
ular perception [10]. Currently, advanced autonomous driving
simulators, such as Carla [11] and AirSim [12], can formulate
simplified LiDAR models based on the geometric relation-
ship between sensors and their environment, subsequently
producing 3D point clouds. Empirical endeavors validate that
these simulators can markedly enhance the accumulation of
point cloud data across diverse traffic scenarios [13]. How-
ever, in pursuit of computational efficiency, these simulation
approaches often overlook the inherent physical responses of
LiDAR laser signals under real-world conditions. Such neglect
can result in point cloud data that is far from reality.

In real traffic environments, the power of active pulse laser
signals is prone to attenuate in aerosol-rich environments
(e.g., rain, fog, and haze) and on surfaces that exhibit
incomplete reflection [14]. The attenuation of signal power
can lead to inconsistencies in the measurement distances
across different laser beams, consequently giving rise to point
clouds with diverse density distributions [15]. To elucidate
this physical attenuation, various modeling techniques have
been devised to capture the diverse response processes of
LiDAR [16], [17]. For instance, within the domain of sensor
design, researchers have formulated a power model for both
emission and reception of signals, based on the inherent
power consumption of LiDAR systems [18]. Similarly,
in the arenas of environmental monitoring and laser imaging,
physical models have been built to address laser scattering and
reflection mechanisms [19]. While these models accurately
describe the physical attenuation effects of LiDAR within
their individual applications, their focused scopes render the
interrelations among them remain divided.

Within the sphere of autonomous driving, a comprehensive
measurement cycle of LiDAR typically spans a gamut of
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both physical and geometric mechanisms, encompassing laser
signal power responses, dynamic environmental interactions,
and point cloud imaging paradigms. To achieve a high-fidelity
LiDAR representation, it becomes imperative to engage in
multi-model coupling. However, the inherent diversities within
these physical models can render the interrelations of their
intrinsic parameters less discernible. Furthermore, the absence
of an intuitive relationship between LiDAR’s physical and
geometric representations can lead to ambiguities and incon-
sistencies in model mapping, potentially complicating the
integration of multiple models.

To address this challenge, we propose a hierarchical LiDAR
simulation framework, tailored specifically for autonomous
driving applications. Specifically, at the physical level,
to ensure cohesive interplay among diverse physical parame-
ters, we have architected a comprehensive signal transmission
model that seamlessly links the instantaneous power response,
the environmental optical channel response, and the target
reflection response of the laser signals. Concurrently, at the
geometric imaging level, we employ a homology mapping
approach, hierarchically integrating these physical responses
throughout the LiDAR’s geometric measurement process,
achieving synchronous amalgamation of both physical and
geometric responses.

The proposed LiDAR simulation framework generates point
cloud distributions that can reflect dynamic physical environ-
ment changes, thereby enhancing the realism of the point cloud
data. The specific contributions of our work are outlined as
follows:

• To tackle the challenges of integrating multiple LiDAR
responses, we propose a hierarchical framework to
systematically categorize the LiDAR responses across
physical, geometric, and environmental levels.

• Addressing the parameter associations across various
physical models, we establish a unified physical model
to integrate instantaneous power response, optical chan-
nel response and target reflection response of LiDAR,
holistically representing the physical attributes of lasers.

• Addressing inter-model coupling, we propose a homol-
ogy mapping approach that streamlines the association
from LiDAR physical parameters to geometric variables,
ensuring efficient linkage of models across layers.

• Extensive experiments on actual LiDAR sensor tests
and mainstream detection algorithms have confirmed the
effectiveness of the simulated point clouds.

The rest of the paper is structured as follows. Section II
reviews related work in LiDAR simulation. Section III details
the physical modeling and integration methods of the proposed
LiDAR hierarchical framework. Section IV presents the imple-
mentation and deployment of the method. Section V offers a
comprehensive analysis of the applicability and effectiveness
of the proposed model. Finally, a brief conclusion and future
work are described in Section VI.

II. RELATED WORK

A. LiDAR Models for Autonomous Driving Simulator

The LiDAR geometric model is a common paradigm uti-
lized during measurements to deduce the distances between

LiDAR sensors and their environment. Modern autonomous
driving simulators employ this model to simulate LiDAR
behavior. Specifically, AirSim deploys a geometry-based map-
ping technique, extracting surface nodes of virtual objects into
point clouds through computer rendering [20]. However, this
purely geometric method often oversimplifies the dynamic
variations within point clouds. In contrast, Carla enriches
this model by leveraging ray-casting techniques rooted in
virtual physics-based engines. By computing intersections
of rays originating from sensor points with virtual objects,
Carla efficiently generates dynamic point clouds for traffic
scenarios [21]. Similarly, LGSVL introduces a more open
approach, boasting enhanced flexibility through customizable
LiDAR configurations, encompassing field of view, rotation,
channels, and Signal-to-Noise Rate (SNR) [22].

Such simulators benefit from the computational efficiency
of geometric models, enabling rapid generation of extensive
point cloud data. However, they overlook the complex physical
attributes of LiDAR signals, which is a significant shortcom-
ing. Heinzler et al. found that under varying environmental
conditions, lasers experience different levels of signal intensity
attenuation, potentially leading to unevenly sparse point cloud
data across diverse object surfaces [23]. Consequently, the
idealized point clouds generated by geometric models may
introduce potential inaccuracies during real-world perception
algorithm test.

B. Applications Status of LiDAR Physical Models

Compared to geometric models, the LiDAR physical model
offers an expanded description of the physical interactions of
lasers. Several mature modeling methods have been developed
to address specific application scenarios.

In sensor design, power models for laser signals, driven
by internal power consumption, are pivotal in guiding sensors
and optimizing signal responses. Rasshofer et al. improved
an energy transfer model, delving into the power spectrum
functions intrinsic to LiDAR signal transmission and recep-
tion, capturing the subtleties of laser signal feedback [24].
Wisemen elucidated the measurement mechanism of pulsed
waves, introducing an ultrasonic-assisted system to expand
vehicle perception coverage [25]. Chen et al. enhanced the
robustness of LiDAR against interference by instituting a
programmable minimum interval time for laser pulses at
specified power thresholds [26]. These investigations have
advanced the development of laser signal models, elucidating
the complexities within the LiDAR measurement mechanism.
Nonetheless, current simulations have yet to identify effective
technical solutions that bridge the LiDAR geometric model
with the inherent physical parameters of the power model, all
the while preserving model simplicity.

In environmental monitoring, researchers primarily investi-
gate the optical channel attenuation of laser rays to decipher
environmental parameters, resulting in numerous empirical
formulas characterizing the optical channel responses of laser
signals. Geiger et al. developed a compensation algorithm
to correct laser attenuation curves, drawing on experimental
result of laser scattering in fog [27]. Zhao et al. statis-
tically analyzed rainwater’s size and distribution in rainy
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Fig. 1. Overall schematic diagram of hierarchical LiDAR simulation framework.

scenes, subsequently establishing a laser attenuation model
that incorporated aerosol extinction coefficients [28]. Kutila et
al. considered the interference from rain and fog on laser signal
echoes, formulating a backward scattering model to delineate
laser noise distribution in aerosol environments [29]. These
methods can effectively analyze laser response changes under
static environmental parameters. Yet, real-world driving con-
ditions are inherently variable. Employing dynamic solutions
for these empirical formulas might compromise the model’s
unique solution properties

In laser imaging, researchers emphasize the reflection
effect of lasers on object surfaces, attributing point cloud
imaging distributions to surface optical properties and laser
angles. Yang et al. derived a formula for the relationship
between reflection intensity and material properties by ana-
lyzing the point cloud imaging quality of measured traffic
participants [30]. Molina et al. simulated the LiDAR imaging
process using a graphical approach and generated point cloud
data based on the LiDAR’s forward field of view angle [31].
Grollius et al. designed a target simulator based on the time
difference of the reflection, utilizing the principle of LiDAR’s
reflective perception imaging [32]. These methodologies could
significantly enhance the availability of physical models for
point cloud imaging. However, in traffic scenarios charac-
terized by large-scale interactions, the sequential analysis of
imaging patterns from individual LiDAR beams imposes a
substantial computational burden.

In summary, the emphasis of LiDAR’s geometric and phys-
ical modeling methods diverges considerably across different
application domains. As a result, the absence of cohesive link-
age between physical parameters of varied processes may lead
to model redundancy and increase complexity in autonomous
driving simulations. Moreover, since LiDAR perception is a
dynamic process, when the physical models are coupled with
the existing geometric models, the static solving paradigm
of the physical models might restrict the order of parameter
derivation in the integrated model, subsequently impacting the
dynamic generation of point clouds. In this paper, we pro-
pose a hierarchical LiDAR simulation framework to address
these challenges, which stratifies the physical and geometric
models and introduces a homology mapping approach to

correlate their respective parameters and variables. Notably,
this framework doesn’t deviate from the foundational solution
of numerous simulation approaches, but rather augments the
LiDAR geometric model with a physical layering.

III. LIDAR SENSOR SIMULATION METHOD

This work is focused on three core components: geomet-
ric measurements, physical responses, and coupled imaging.
As depicted in Fig. 1, a hierarchical framework systemati-
cally integrates multiple LiDAR responses. Firstly, within the
section of geometric measurement model, a solution based on
spherical coordinates is utilized to construct a structured laser
beam array, aiming for the emulation of LiDAR’s 3D scanning
mode. Secondly, considering actual physical responses, the
instantaneous power response model of the LiDAR system
is integrated with attenuation models of laser signals across
environmental optical channels and target reflections. This
integration aims to build a cohesive association among diverse
physical parameters. Finally, in the coupled imaging phase,
the physical variables of the LiDAR system are cohesively
linked with the geometric laser beam array. This establishes
a homology mapping relationship, ensuring the alignment
of point cloud data derivation with the perpetually shifting
environment.

A. Geometric Measurement Model

The geometric measurement model serves as the foundation
for calculating the position and orientation of objects in
LiDAR measurements. Typically, the maximum measurement
range of vehicular LiDAR does not exceed 200 meters, with
a data acquisition frequency of approximately 20Hz. The
laser measurement, based on the speed of light propagation,
usually falls within the 100-200ns range [33]. Therefore, the
laser response of the measurement model can be considered
an instantaneous response, provided it remains within the
sampling frequency limit.

Within the 3D scanning modes, the position and orientation
of a target object in relation to the LiDAR sensor can be
depicted by the relative positioning and direction of the laser
collision points. As shown in Fig. 2, a geometric measurement
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Fig. 2. Schematic diagram of LiDAR geometric measurement.

model rooted in the spherical coordinate system, with the
sensor’s center as the origin, has been constructed. By utilizing
the collision information of virtual rays, a 3D coordinate
sequence is outputted, denoted as

C(si ) = {Ri , αi , βi } , and i ∈ N+. (1)

To apply the point cloud generated by the LiDAR mea-
surement model to autonomous driving algorithms, we adopt
the data encoding method employed for actual LiDAR point
clouds. Specifically, the data is stored using a Cartesian
coordinate system, with the coordinate origin at the sensor’s
center. Based on the conversion relationship between spherical
and Cartesian coordinates, C(si ) can be transformed into C(pi )

using equation (2). The encoding order starts from the x-axis,
with measurements taken counterclockwise, and then written
layer by layer from top to bottom along the z-axis.

C(pi ) =

 xi
yi
zi

 =

 Ri cos (αi ) cos (βi )

Ri sin (αi ) cos (βi )

Ri sin (βi )

 , and i ∈ N+ (2)

However, compared to Cartesian coordinates, we believe
that the spherical coordinate system model, which better
reflects the LiDAR measurement principle, is more conducive
to integration with the physical model. Therefore, our sub-
sequent signal attenuation model is primarily based on the
spherical coordinate model. It should note that the point cloud
data is converted into the standardized point cloud packet
format in the Cartesian coordinate system only when it is
applied in algorithm testing.

B. Signal Physical Response Model

In modeling LiDAR physical systems, it is imperative
to accurately capture the attenuation of the laser signal
throughout the entire measurement cycle. According to the
transmission interplay of the laser signal among the sensor,
environment, and target, we establish a multi-physical model
that is shown in Fig. 3. More specifically, it encompasses three
components as follows:

a) Instantaneous power response: we formulated a power
model that correlates the emitted laser pulse PT with
the strongest echo PR , based on system parameter at
the sensor’s transmission and reception. Using this as
a foundation, we incorporated both the optical channel
response at the transmission end and the reflection
response at the target end, guided by the spatial pulse
function H(R).

b) Optical channel response: We established a relational
model between optical channel response HC (R) and
energy attenuation rate T (R) by coordinating the con-
nection among signal power, extinction coefficient, and

environmental visibility, aiming to derive the optical
channel power attenuation for various visibility scenar-
ios.

c) Target reflection response: we integrated the object’s
surface diffuse reflection coefficient and modeled the
power interplay for different lasers in terms of their
optical incidence and reflection characteristics.

The three response mechanisms are sequentially linked by
the signal’s power transmission attenuation, effectively corre-
lating the LiDAR system parameters, environmental visibility
metrics, and target reflectivity.

1) Instantaneous Power Response: The power model of
laser signal principally characterizes the internal energy con-
sumption of the LiDAR system. Focusing on the pulse-type
LiDAR, the emitted signal power PT of a single laser beam
can be defined using the sine-squared function.

PT (t) =

 P0 sin2(
π

2τH
t) 0 ≤ t ≤ 2τH ;

0 else.
(3)

where P0 is the peak voltage of the LiDAR’s emitted pulse,
τH is the half-power pulse width.

In LiDAR systems, peak power P0 values typically reach
80W, corresponding to a pulse energy of approximately 1.6µJ.
Notably, this emitted laser power often dictates the maxi-
mum detectable range of the sensor in practical applications.
Building on this and considering the non-elastic scattering
interactions of the laser with ambient aerosol particles, Hah-
ner et al. [34] proposed that the received signal power can be
calculated as the convolution between the emitted signal power
PT (R) and the spatial pulse response H(R) of the optical
channel and the target. Thus, a characteristic relationship
between the coupled signal power and distance is derived as

PR (R) =
cηAR

2

∫ 2R
c

0
PT (R)H

(
R −

ct
2

)
dt (4)

where c is the speed of light, AR represents the aperture area
of the sensor’s optical receiver, and η represents the optical
loss of the receiver. The received signal power PR(R) of a
laser signal, over a single pulse signal cycle and at a distance
R, can be defined.

However, this model depicts a continuous process. To ensure
high dynamic response, vehicular LiDAR typically discerns
only the strongest echo or the last echo of a single laser
pulse to determine distance. Therefore, this model has certain
limitations. Inspired by the laser emission pulse modeling
method in [24], we incorporate the energy formula of the
classical Dirac-type laser pulses to define the instantaneous
power PT δ(R) of the emitted laser signal below.

PT δ (t) = E pδ (t) (5)

where δ(t) is a unit pulse signal and E p is the total energy of
a single-pulse laser.

Combining this with the emission power spectrum in (3),
the energy of a single-pulse laser can be calculated as

E p = P0τH (6)
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Fig. 3. Coupling modeling of multiple physical responses for LiDAR signals.

Therefore, by combining (4), (5), and (6), and taking
the strongest echo power of LiDAR as our analysis target,
a complete pulse power model relationship can be defined
here.

PR (R) =
cηAR

2

∫ 2R
c

0
P0τH δ (t)H

(
R −

ct
2

)
dt

=
cηAR

2
P0τH H (R) . (7)

In this context, the spatial pulse response H(R) of the laser
stands for the LiDAR’s power relationship with environmental
targets. This model usually divides into two components:
the channel attenuation response HC (R), reflecting the sig-
nal’s attenuation in the air, and the target reflection response
HT (R), indicating reflectivity upon laser-target interaction.
Thus, H(R) is further detailed as

H(R) = HC (R)HT (R) (8)

2) Optical Channel Response: The channel attenuation
response HC (R) is primarily caused by the concentration of
atmospheric aerosol particles. In environmental monitoring,
measuring the return power of pulses at different wavelengths
can quantify the extinction coefficient γext in the air, such
as in Raman LiDAR and high-spectral-resolution LiDAR
measurements [16]. Based on this principle, we model HC (R)

according to a simplified model of the signal power and
aerosol conditions, as

HC (R) =
T 2 (R)

R2 ξ (9)

where ξ denotes the incomplete coverage ratio between the
optical emission path and the receiving area.

Given that most vehicular LiDAR employ coaxial emission/
reception optics, ξ is typically defined as a distance-
independent constant and is designated as 1. Furthermore,
T (R) represents the energy attenuation rate related to the laser
wavelength. Based on the Beer-Lambert law [35], T (R) is

expressed as an exponential function representing the integral
of the extinction coefficient γext over the optical path distance
R, defined as:

TR = exp
(

−

∫ R

0
γext dr

)
(10)

where γext represents the transmission losses of laser signal
attributable to aerosol particles along the optical path. Based
on this, HC (R) can be further deducted as

HC (R) = exp
(

−2
∫ R

0
γext dr

)
/R2

=
(
exp

(
−2γext R

))
/R2. (11)

However, researchers and engineers in the automotive indus-
try prefer readily accessible environmental parameters [36]
rather than the characteristics of aerosols. Therefore, we adopt
the classic Kim model [37], widely utilized in environmental
science, to correlate visibility parameters critical for traffic
safety with the γext , as follows.

γext =
3.91

V
(

λ

λ0
)−α (12)

where V represents atmospheric visibility. λ0 represents the
reference wavelength of basis laser, typically set at 550 nm,
and λ is the wavelength of the vehicular LiDAR, typically
set at 905 nm. α represents the aerosol scale coefficient.
According to the distribution of environmental visibility V ,
α is usually determined using the empirical formula as

α =


0.16V + 0.34 1km ≤ V < 6km;

V − 0.5 0.5 km ≤ V < 1km;

0 0.1 km ≤ V < 0.5 km.

(13)

In subsequent model calculations, when the visibility is
less than 0.1km, the corresponding measurement distance
will sharply decrease, as shown in Fig. 8 (Section IV). The
echoes in the environment may become confused with echoes
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from measurement targets, resulting in difficult-to-distinguish
measurement noise [38]. This relationship is challenging to
comprehensively describe in the non-elastic scattering model
of (7). Therefore, we only simulate the visibility range from
0.1 km to 6 km. The extended model for the optical channel
attenuation response is given as

HC (R, V )

=



R−2 exp
(

(1.08)−V −9.27R
V

)
1 km ≤ V < 6km;

R−2 exp
(

(1.65)−V −10.05R
V

)
0.5 km ≤ V < 1km;

R−2 exp
(

−7.82R
V

)
0.1 km ≤ V < 0.5 km.

(14)

3) Target Reflection Response: The target reflection
response, denoted as HT (R), primarily describes the power
loss due to the reflection of laser after colliding with the target
object. In the field of optical imaging, the imaging quality of
LiDAR is related to the illuminated surface area SAT and the
reflectance ρS of the laser on the object surface [39]. The
reflective response function HT (R) of the target object at a
distance R0 from the LiDAR can be defined as

HT (R) =
SAT

ST (R0)
ρSδ (R − R0) . (15)

where ST (R0) represents the beam cross-section of the laser
at R0. In the virtual environment, R0 can be determined by
the geometric relationship between the objects and sensor.

In traffic scenes, the illuminated surface of the measured
target objects (such as vehicles and pedestrians) is equal to the
cross-section of the laser beam, i.e., SAT = ST (R0). Therefore,
the target reflection response HT (R) on a vehicle LiDAR can
be simplified as

HT (R) = ρSδ(R − R0). (16)

Moreover, when laser illuminates the surface of an object,
it is reflected in different directions. The reflectivity ρS
represents the proportion of reflected laser from the target
that can be received by the LiDAR receiver. Typically, the
reflective surface of traffic objects is presumed to be Lamber-
tian, characterized by predominantly diffuse reflection [40].
The Blinn-Phong diffuse reflection model encapsulates the
computation formula for laser reflection as

ρS = Qd(P̂ − Ĉ) · N̂ (17)

where Qd represents the diffuse reflection coefficients, P̂ is
the normalized position vector of the target object, Ĉ is the
normalized LiDAR position vector, and N̂ is the normalized
normal vector of the collision point on the surface.

Regarding Qd , we consider the observation results of the
Fresnel term in Physically based Rendering (PBR) in optical
rendering [35] and summarize the Qd of common materials
in traffic scenes, as shown in Table I.

TABLE I
THE REFLECTANCE OF COMMON MATERIALS IN TRAFFIC SCENES

Fig. 4. Schematic diagram of the homology mapping method.

Fig. 5. Virtual traffic scenarios and model details.

C. Coupled Imaging Approach

Based on the previous discussion on a geometric-based
LiDAR measurement model, a physical model has incorpo-
rated multiple physical components such as power, aerosol
attenuation, and reflectance. However, the integration of the
measurement model and the physical model remains a chal-
lenge. Inspired by the approach of visual shader rendering
in computer simulation, we propose a homology mapper for
layer-wise modeling of LiDAR perception.

As shown in Fig. 4, we divide LiDAR perception into
three layers: 1) the beam layer, which involves the analytical
distribution of laser beams based on the measurement model;
2) the response layer, which encompasses the attenuation
mapping influenced by environmental parameters on LiDAR
measurements; and 3) the scene layer, which represents the
three-dimensional reflection relationships formed by the envi-
ronment, objects, and intersected laser rays.

In computer image rendering, camera simulation overlays
pixel points using texture masks [36]. Similarly, based on
the spherical coordinate system, we extract the scan points
of LiDAR to form an L ×W matrix-like laser emission point
array, where L represents the number of point cloud lines and
W represents the number of point clouds in the horizontal
direction. This can be seen in the top-right part of Fig. 5,
where each point corresponds to the geometric relationship
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in the measurement model. Therefore, the point array can be
further represented below.

Px,y =
{

Rx,y, αx,y, βx,y
}
, and x ∈ L , y ∈ W. (18)

Based on the geometric properties of the point array, the
response layer is designed to couple the LiDAR measurement
model and the physical model. As the physical model involves
numerous parameters for calculation, and may lead to unre-
liable simulations, we construct a concise physical response
relationship in the response layer. In a LiDAR system, the
effectiveness of laser echo is primarily determined by the
receiver’s sensitivity threshold, which is defined as Pmin .
That is, when the laser return intensity PR (R) ≥ Pmin , the
range measurement signal of the laser can be captured by
the LiDAR system. By combining equation (7), the effective
spatial response of LiDAR can be expressed as

H (R) ≥
2Pmin

cηAR P0τH
. (19)

For a stable LiDAR system, parameters such as Pmin and
AR are usually constants. Thus, we unify these difficult-to-
measure system parameters as

Hsys =
2Pmin

cηAR P0τH
. (20)

This equation further indicates that the acceptable response
threshold is determined by the component performance of the
LiDAR. By introducing the light channel attenuation response
model and the target reflection response model, the laser
reflection power of the target at R0 can be modeled as

H(R) =
exp(−2γext R)

R2 ρSδ(R − R0). (21)

Assuming that the maximum measurement distance for a
single laser beam is Rmax , we have PR (Rmax ) = Pmin , which
means H (R)max = H (Rmax ). Furthermore, by combining
equations (19) and (20), we can establish a physical model
constraint on the maximum measurement distance in the
measurement model. This model is defined as

R2
max = HsysρS exp(−2γext Rmax ) (22)

Based on (22), in LiDAR calibration experiments [37],
Hsys for the LiDAR model can be solved by measuring
the maximum distances (R1, R2) of two targets with known
reflectance

(
ρs1 , ρs2

)
. This process is defined as

γ ′
ext =

ln
((

R2
1ρS1

)
/
(
R2

2ρS2

))
2 (R2 − R1)

, (23)

Hsys =
R2

1
ρ1 exp(−2γ ′

ext R1)
. (24)

where γ ′
ext denotes the current environmental extinction

coefficient. By combining this relationship, we can deduce
parameters for different LiDAR types. Table II displays our
measurement data for Velodyne and Ouster LiDAR products.
Based on this, we further isolate the LiDAR system parameter
Hsys through the dynamic resolution of (22).

Finally, within the scene layer, we employed computer
technology to simulate environmental parameters ρS and γext ,

TABLE II
CALIBRATION DATA OF DIFFERENT LIDAR PRODUCTS

coupling them with the laser physical model. Based on Table I,
we assigned the diffuse reflection coefficients for virtual target
details related to ρS , while utilizing virtual rendering to
simulate the environmental visibility distribution associated
with γext. In this context, fog served as our exemplar for
constructing visibility distribution.

Due to the irregular Brownian motion of aerosol particles,
the visibility distribution under real conditions is not uniform.
There are already many mature applications that can sim-
ulate fog visibility distribution in a simulated environment.
In this paper, the microscopic motion of aerosols is not our
primary focus of research. We employ mature visual fog effect
techniques for illustrative simulations. The simulated visibility
distribution is mainly based on the fractional Brownian motion
rule, which involves the summation of two-dimensional Perlin
noise, as shown in the lower-right part of Fig. 5. This simula-
tion method generates a more detailed visibility distribution
and can accurately capture the gradient of actual visibility
changes.

IV. IMPLEMENTATION AND DEPLOYMENT

A. Experimental Setup

In the experimental design section, our mathematical models
developed for LiDAR were primarily validated and applied
in a virtual simulation environment. A virtual city-themed
autonomous driving scenario was created using the Unity 3D
platform. The simulated scene includes urban roads, suburban
highways, and park roads, and incorporates highly detailed 3D
models of traffic participants such as vehicles, pedestrians, and
traffic signs, as shown in Fig. 5.

Subsequently, the algorithm models were executed in script
form within the simulation environment. The simulated point
clouds were encapsulated in a standard format and output in
real-time using UDP transmission. These point clouds can
be read and asynchronously encapsulated in ROS to provide
perception data for the constructed autonomous driving algo-
rithms. Additionally, the encapsulated point cloud packages
can also support offline algorithm testing.

B. Metric Evaluation Methods

To intuitively evaluate the point cloud data generated by our
LiDAR model, we conducted similarity assessments between
the real point clouds and simulated point clouds of typical
objects in the KITTI public dataset [44]. In this regard, the
Chamfer distance (CD) and Earth mover’s distance (EMD) are
two widely used metrics for point cloud similarity evaluation.
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Fig. 6. Experimental equipment and calibration process.

For two registered point cloud sets, C1 and C2, their CD is
defined as

dC D

=
1

|C1|

∑
p∈C1

min
p∈C2

∥p − q∥
2
2+

1
|C2|

∑
p∈C2

min
p∈C1

∥p − q∥
2
2.

(25)

where p and q are any points in the point sets C1 and C2,
respectively. On the other hand, EMD is defined as

dE M D = min
φ:C1→C2

∑
p∈C1

∥p − φ(p)∥2. (26)

where φ : C1 → úC2 represents a one-to-one mapping
between the two-point sets. Smaller values of CD and EMD
indicate a higher degree of match and greater similarity
between the point clouds, further reflecting the suitability of
the simulated target point clouds.

C. Hardware and Pre-Trained Model

The experiment employed Velodyne VLP-16 and Ouster
OS1-128 LiDAR sensors, installed on King Long autonomous
vehicles, as depicted in Fig. 6. The calibration targets for the
LiDAR consisted of intensity calibration panels under various
reflectance conditions. The experimental scenario was set on
the internal roads of Xiamen University’s Xiang’an campus.

In the subsequent section of the applicability verification
experiments, simulated data can provide input for perception
testing in the Kinglong autonomous driving system, where
the pre-trained model of the deployed perception algorithm
is trained on the publicly available KITTI point cloud dataset.
The algorithms compared in this experiment are VoxelNet [45]
and PV-RCNN [46], both of which are mature 3D object
detection models.

V. RESULTS AND DISCUSSION

This section presents a comprehensive analysis on the
applicability and effectiveness of the proposed model and
its generated point clouds. Section V-A presents a metic-
ulous comparison between the simulated point clouds for
various traffic participants and their respective real-world data.
Section V-B investigates the fidelity of physical models in
capturing LiDAR signal attenuation and imaging nuances
within real-world environments, highlighting its applicability
in portraying authentic sensing behaviors. Section V-C offers

Fig. 7. Point cloud simulation results of LiDAR survey model.

TABLE III
SIMILARITY EVALUATION OF SIMULATED POINT

CLOUDS AT DIFFERENT DISTANCES

a quantitative analysis of point cloud quality and bench-
marks perception algorithm performance using the simulated
data. Lastly, additional testing in Section IV-D showcases the
model’s versatility in broader applications.

A. Similarity Analysis of Simulated Point Clouds

The similarity and authenticity of simulated point cloud data
were compared and validated using public datasets KITTI [46]
and Sydney urban objects dataset [47]. By adopting the
same measurement angles as those in the reference datasets,
we utilized the proposed LiDAR model to produce point cloud
data of typical traffic participants within virtual environments.
As illustrated in Fig. 7, the morphological attributes and
density of our simulated point cloud closely resemble the real-
world point cloud data. Furthermore, a quantitative analysis
was conducted on the similarity of point clouds across three
categories, selected for their equivalence with real data con-
cerning average count, bounding box volume, and occlusion
levels. The results are tabulated in Table III.

Overall, the CD and EMD values for the real and simu-
lated point clouds were both recorded below 20, signifying a
substantial scale-based similarity between the simulated and
actual point clouds. Additionally, we discerned a tendency
for the CD and EMD values to decrease as the distance
extended. For instance, within the vehicle category (1C D =

6.09/1E M D = 5.68), those point clouds pertaining to vehicles
situated at farther distances and manifesting lower densi-
ties (Count /Volume < 11 p/m3) conserved the fundamental
physical form while attenuating detailed features, a trend
that aligns convincingly with the variations observed in real
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Fig. 8. Comparison of actual attenuation measurement and simulated results.

point clouds. These observations indicate that the simulated
point clouds exhibit heightened realism at medium to long
ranges, a characteristic we attribute to the imaging techniques
employed in our introduced physical model.

B. Quantitative Analysis of Physical Properties

To further validate the effectiveness of the proposed LiDAR
signal attenuation model, we conducted intensity experi-
ments on calibration boards with different reflectivity in
various real-world environments. As shown in Fig. 8, there
were three experimental settings: (i) clear weather conditions
(visibility > 10 km), (ii) foggy weather (0.5 km < visibility <

1 km), and (iii) slightly hazy conditions (1 km < visibility <

5 km). The calibration boards were diffuse reflectance boards
with average reflectivity values of 9.95%, 30.1%, 49.86%,
69.27%, and 89.93%, with a uniformity of +/− 0.27%.

As depicted in Fig. 8(d), under clear weather conditions,
the maximum measurement range aligned with the LiDAR’s
performance parameters, has an average error of +/- 3.03%,
which was primarily caused by the LiDAR’s scanning process.
In foggy and slightly dusty conditions, the measured values
were generally distributed along the predicted fitting curve
of the attenuation model, with an average error +/- 7.32%.
Overall, we believe that this error model exhibits authenticity
within a certain range and can be applied for laser attenuation
simulation in simulated scenarios.

The authenticity of the physical model employed in the
LiDAR framework was further substantiated. Simulations were
conducted in a virtual scene replicating the real-world condi-
tions (Visibility ∈ [1 km, 2km], glass Qd ∈ [0.17, 0.22], metal
Qd ∈ [0.57, 0.82]) concerning the vehicle’s position relative
to the LiDAR. A comparative analysis was executed between
the proposed method and the LiDAR imaging paradigms
utilized by Carla and LGSVL. As depicted in Fig. 9, the Carla
simulator, restricted to pure geometric modeling, exhibits
an excessively comprehensive point cloud. And LGSVL can
simulate point cloud sparsity through tailored SNR, but the
resulting sparsity deviates significantly from that of actual
point clouds. In contrast, the proposed method, by computing
environmental variables and material reflectivity, generates a
point cloud distribution that is more congruent with reality.

Fig. 9. Simulated point clouds under different distances.

TABLE IV
QUANTITATIVE ASSESSMENT OF SIMILARITY BETWEEN SIMULATED AND

REAL-WORLD POINT CLOUDS

To quantitatively analyze the similarity between simulated
and real-world point clouds, we assessed average counts and
sizes of car point clouds at different ranges. As Table IV
indicates, the point clouds from Carla and LGSVL present
larger sizes, possibly elevating CD and EMD. In contrast, our
simulated point clouds align more closely in both count and
size to real data, resulting in smaller CD and EMD. This
correlation is further corroborated by the actual 3D object
detection results using VoxelNet. Deviant from Carla and
LGSVL, which manifest an Average Precision (AP) surpassing
60% at longer distances, our simulated point clouds effectively
replicate the genuine fluctuations (1AP3D = 33.82) in object
detection accuracy within mid-to-long ranges, mirroring the
fidelity found in real-world point cloud data.

C. Simulation Test Verification

To validate the effectiveness of the proposed model
framework in generating point cloud data, we conducted
a quantitative analysis on the generated point cloud data
in virtual scenarios. Considering different visibility condi-
tions, we compared the simulated point cloud generated
by the measurement model with the point cloud data aug-
mented with environmental parameters. Fig. 10(a) shows the
measurement point cloud without signal attenuation, while
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Fig. 10. Simulated point clouds under different visibility.

TABLE V
QUALITY EVALUATION OF SIMULATED POINT

CLOUD UNDER DIFFERENT VISIBILITY

TABLE VI
AP3D /APBEV COMPARISON RESULTS OF DETECTION ALGORITHMS

UNDER DIFFERENT ENVIRONMENTAL CONDITIONS

Fig. 10(b), (c), and (d) depict the attenuated point clouds
under different visibility distributions.

It can be observed from Fig. 10(b), (c), and (d) that the point
clouds at intermediate distances (35-70m) and far distances
(>70m) exhibit varying degrees of sparsity due to changes
in visibility, whereas the objects at close distances (<35m)
are less affected. To quantify this variation, we performed
statistical analysis on the simulated point cloud data, as shown
in Table V. Under different visibility conditions, the average
density decrease of point clouds at intermediate distances
(35-70m) is 9.86%, 14.14%, and 17.30%, while 18.11%,
25.29%, and 29.87% for far distances.

Furthermore, we conducted tests on the simulated point
clouds using both VoxelNet and PV-RCNN point cloud detec-
tion algorithms, as shown in Fig. 11 and Table VI. Under
the no-attenuation condition, both algorithms were able to
recognize the traffic objects in the scene, with AP3D/APBEV
slightly lower than the accuracy in the KITTI dataset. This
is due to some misidentification phenomena, as shown in
Fig. 11 (b) and (c), where the algorithms mistakenly identified
buildings and traffic poles as vehicles and pedestrians. Such

Fig. 11. Comparison results of object detection algorithms.

TABLE VII
AP3D /APBEV RESULTS OF PV-RCNN UNDER THE

CONDITION OF 1∼2KM VISIBILITY

Fig. 12. Point cloud segmentation in foggy environment.

phenomena also exist in real-world scenarios, but the idealized
nature of the virtual scene’s building models may have slightly
exacerbated this issue.

When introducing visibility distributions ranging from 1km
to 2km, the detection accuracy of both algorithms generally
decreased, as observed in Fig. 11(e) and (f), with more
instances of missed detections and false detections of pedestri-
ans and vehicles. This is further supported by the quantitative
data in Table VII, which demonstrates that the attenuation
of point cloud signals has a greater impact on the detection
accuracy of various objects at medium and long distances.
Overall, our simulated point clouds are suitable for current
algorithm testing, and the attenuated point clouds can evaluate
the robustness and applicability of algorithms in challenging
environments to a certain extent.

D. Extended Application

Furthermore, the application scenarios for simulated point
clouds hold substantial potential for expansion, including
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Fig. 13. Autonomous driving positioning test in light haze environment.

point cloud semantic segmentation and map localization in
challenging simulated environments. As illustrated in Fig. 12,
assigning virtual object category information enables pixel-
level semantic segmentation labeling of simulated point
clouds. Additionally, as depicted in Fig. 13, high-precision
prior point cloud maps can be constructed in virtual environ-
ments. By simulating diverse challenging aerosol conditions,
we can conduct robustness testing and develop vehicle match-
ing and localization algorithms.

VI. CONCLUSION

This work presents a hierarchical simulation framework
to accurately model the real-world dynamics of LiDAR in
autonomous driving scenarios. By hierarchically integrating
geometric measurements and physical models within a sin-
gle framework, the proposed approach successfully solved
the challenge of multi-model coupling in LiDAR simulation.
Specifically, the homology mapping approach was deployed to
correlate the physical variables of the internal LiDAR system
and external traffic environment with the geometric model,
enabling that the point cloud data remain consistent with
dynamic environmental changes during inference generation.
Experiments demonstrate that this framework has potential to
provide high-fidelity point cloud data for autonomous driving
perception across various environments.

As mentioned in Section III, in some extreme environmental
conditions such as heavy rain, snowstorms, or dense fog,
high-density and large-scale aerosol particles can lead to
spurious peaks in the laser signal close to the echo power
at incorrect distances, resulting in unpredictable point cloud
noise. Therefore, in future work, we will focus on developing
richer physical models to better accommodate those extreme
environmental conditions. We believe that integrating these
environmental conditions will broaden the applicability of the
proposed framework.
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