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A B S T R A C T

In this work, we design a boosted stochastic fuzzy granular hypersurface classifier (BSFGHC) to resolve the classification issue of numerical data and
non-numerical data (such as information granules) from the standpoint of granular computing. The scheme is divided into three parts: first, we present an
adaptive cluster center clustering (ACCC) algorithm to achieve cluster centers of the data and to realize the fuzzy granulation of data parallelly based on Spark,
which dramatically improves the granulation efficiency; second, we build a fuzzy granular space, design various fuzzy granular operators and measurement in
the space to construct fuzzy granular hypersurfaces, create the loss function, and employ Particle Swarm Optimization (PSO) to resolve the optimal fuzzy
granular hypersurfaces; third, we randomly divide the fuzzy granules to train multiple optimal fuzzy granular hypersurfaces and combine with the
classification accuracy of fuzzy hypersurfaces and the difficulty of fuzzy granule subset classification to form a boosted fuzzy hypersurface to predict the data
comprehensively. Experimental results and theoretical analysis demonstrate the outstanding performance of the method.
1. Introduction

1.1. Motivation

Support vector machine (SVM) is an effective classifier that avoids
the traditional process from induction to deduction and realizes effi-
cient ‘‘transduction reasoning’’ from training samples to forecast sam-
ples, which greatly simplifies the usual classification and regression
problems. Ensemble learning is a great method to improve the per-
formance of classification. Granular computing has the advantage of
knowledge discovery. If these ideas can be combined together, the
algorithm can improve the performance of classification. So, the fuzzy
granular classifier is designed in the granular space based on these
ideas.

1.2. Related work

For many years, humans have been trying to find inspiration from
human thinking and lots of laws of nature to create corresponding
computing models and apply them to life, which has prompted the
budding and development of artificial intelligence and immense data
computing intelligence [1]. In this process, the research and application
of neural networks, evolutionary computing, genetic computing, and
swarm intelligence are all very successful examples. Granular com-
puting can simulate human thinking at a higher level [2]. In recent

years, especially in responding to the challenges of big data mining,
granular computing has received extensive attention from scholars.
Granular computing is considered an emerging computing exemplar in
artificial intelligence. It separates complex problems into more straight-
forward issues, which helps researchers to analyze better and resolve
issues [3]. Granular computing was first presented by Zadeh and Lin
et al. [4,5]. In 1979, Zadeh [6] first believed that fuzzy informa-
tion granules play an essential role in human reasoning. Zhang Ba
and Zhang Ling proposed that humans can discover and analyze the
same issue from different granular perspectives, which is the most
extensive cognitive feature in human intelligence in 1992, [7]. In
1998, Yager and Filev claimed that the human ability to observe,
measure, conceptualize, and reason can be achieved by considering
information granulation [8]. In fact, Zadeh presented that granular
computing can be regarded as a novel independent research field
in the process of intelligent information in 1997 [9]. In the subse-
quent development, granularity measurement, granularity uncertainty
[10–14] and multi-granularity perspective [15–22] have been exten-
sively adopted in different fields such as rough sets, machine learning,
complex networks, data mining and knowledge engineering [23–27].

In human granule intelligence, a granule is thought to be a set of
things with indistinguishable, connected, or similar functions
[9,28–30]. Granulation of the data produces a set of granules. Things
with the same properties cannot be separated in classification problems,
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and these objects are grouped into a granule due to indistinguishability.
n social network studies, latent communities are found by analyzing
he connections between nodes, and these communities can be thought
f as primary granules in social networks. The granular structure forms
he basic computing unit in intelligent information processing based on
ranularity.

The research on many different theoretical systems, such as fuzzy
ets, rough sets, quotient spaces, shadow sets, and conceptual lattices,
as been continuously established and improved and has been rapidly
eveloped and applied. The theory of information granulation and in-
ormation granule construction based on fuzzy sets plays an indispens-
ble or intermediate bridge role in establishing and running through the
epresentation of human language knowledge and the representation of
omputer digital technology [31]. In fuzzy reasoning and fuzzy control
f complex information systems, information granulation based on
uzzy sets shows the superiority and flexibility that other models cannot 
atch. Therefore, granular computing on the basis of fuzzy sets may be-

ome an essential tool for intelligent human–computer interaction and
biquitous computing in artificial intelligence and computational intel-

ligence. It is generally believed that the structure of granular computing
n the basis of rough sets theory is a division, and the concept of divi-

sion here primarily concentrates on the point of view of set theory. The
degree to which objects in a collection belong to the group is related to
attribute granularity. To characterize the boundary (fuzzy, uncertain) 
characteristics of sets, Polish scientist Pawlak proposed rough set theory
in 1982 [32]. The critical idea is to create a division of the universe
by using indistinguishable relations (or equivalence relations), thereby
forming concept granules (or indistinguishable equivalence classes)
under different attribute granularities, and these concept granules cre-
ate an approximate space. Based on this approximation space, two 
exact sets are defined to approximate the target (the set with a fuzzy
boundary). When dealing with problems, humans can discover and
explore the same issue from various granular worlds and can flexibly 
jump between different granularities. Inspired by this phenomenon,
Zhang Bo and Zhang Ling combined the diverse granular world with
the quotient set theory in mathematics and unified them to create a
granular world system of quotient space. The quotient space theory uses
quotient sets to represent various levels of granularity and establishes
the ‘‘falsification principle’’ and ‘‘fidelity principle’’ in the world of
various granularities [33]. The shadow set originates from the fuzzy
sets, is induced by the fuzzy sets, and is isomorphic to the ternary logic;
its quantification levels are 0, 1, [0,1], respectively [31]. The fuzzy re-
lation is simplified by using these three quantization levels to transform
the classical fuzzy sets into a three-valued logic of shadow sets.

Besides those mentioned above main granular computing models, 
researchers have also proposed many other granular computing models,
such as the conceptual granular computing model created by Wille et al.
combining concept lattice and fuzzy sets theory [34], Lin’s covering
granular computing model based on covering theory [35], a granular 
computing model designed by Yao by using set theory [36] and some 
other new granular computing frameworks based on these granular
computing models, etc.

Ensemble learning is a very efficient method to enhance the ac-
curacy of machine learning. Ensemble learning is also a commonly
used algorithm in machine learning. In general, ensemble learning
usually has better performance than a single classical supervised ma-
chine learning method because ensemble learning improves the overall 
model performance by combining multiple individual learner models.
How to combine granular computing with ensemble learning and give 
full play to their respective advantages to improve machine learning 
performance has become an important research direction.

Boosting [37] is a typical sequence ensemble learning method,
which realizes implicit ensemble learning by building different indi-
vidual learners and sequentially weighting the samples in the training
dataset. The primary thought of boosting is to apply individual learners
to the training dataset repeatedly and generate a series of individ-
ual learners through a predetermined number of iterations. In 1996,
Breiman proposed the Bagging algorithm [38], which introduced ran-
dom sampling of samples into ensemble learning. In 1997, Adaboost,
which has been attracting the attention of the world, appeared [39].
The Adaboost method is very easy and competent. It employs a simple
and clear approach to determine the weight of classifiers and the weight
of instances and trains multiple classifiers in the process of continuously
updating the weight. In 1998, Ho proposed a stochastic subspace
classification ensemble [40]. In 2001, Breiman proposed the famous
random forest. The algorithm uses random sampling with replacement
to collect samples, collects the same number of instances as the initial
dataset, and then adopts these samples to train a random tree and
repeats this to train different random trees. An ensemble classifier is
composed of these random trees [41].

In addition, there are ensemble learning methods based on deep
learning. Deep learning has become an essential power in the machine-
learning community. Recently, deep learning has greatly enhanced
state of the art in speech recognition, object detection, visual ob-
ject recognition, and other fields [42–46]. Many studies have tried
to combine ensemble and deep learning, and many ensemble learn-
ing approaches on the basis of deep learning have been presented.
For instance, Deep neural decision forests proposed by Kontschieder
et al. [47] is a learning method that combines convolutional neural
networks and decision forests. Wen et al. [48] designed an ensemble
learning approach on the basis of CNN, which was used for facial
expression recognition tasks with good results. Qiu et al. presented
an ensemble learning approach on the basis of DNNs (Deep Neural
Networks), in which the output of DNNs is used as the input of the
support vector regression (SVR) that generates the final output [49].

eng et al. [50] proposed an ensemble learning method based on
eep learning, which combines recurrent neural networks, convolu-
ional neural networks, and fully connected neural networks for speech
ecognition tasks. The gsForest [51] proposed by Zhou et al. is a new

method combining DNNs and ensemble learning, which replaces the
DNN neurons with a random forest model, in which the output vector of
every random forest is used as the output vector of the next layer enter.

Although many ensemble learning methods have been proposed and
verified to have good results in many specific application fields, there
are still few studies on granular ensemble learning, so it is necessary to
propose new granular ensemble learning to improve the effect.

1.3. Organization

The organization of this paper is as follows: introduction is in
the first section; next, in the second section, problems are proposed
and the flowchart of the algorithm is shown; how to convert data
to fuzzy granules is described in the third section; in the fourth and
the fifth section, stochastic fuzzy granular hypersurface classifier and
boosted stochastic fuzzy granular hypersurface classifier are designed
respectively; experimental evaluation is demonstrated and explained in
the sixth section; the final part is the conclusion.

2. Problems

There exists a classified system S = (𝑋, 𝑌 , 𝐴, 𝑉 , ℎ). Here, 𝑋 =
{𝑥1, 𝑥2,… , 𝑥𝑛} represents an instance set and 𝑥𝑖 ∈ R𝑚; 𝑦𝑖 ∈ {0, 1,… , 𝑙}
is the corresponding category of 𝑥𝑖; 𝑌 = {𝑦1, 𝑦2,… , 𝑦𝑛} is a category
set; 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑚} is a non-empty finite set of attributes. 𝑉𝑎 is
the value range of attribute 𝑎 and 𝑉 = ∪𝑎∈𝐴𝑉𝑎; 𝜏 ∶ 𝑋 × 𝐴 ⟶ 𝑉
is an information function that gives an information value to every
attribute of objects, namely ∀𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋, 𝜏(𝑥, 𝑎) ∈ 𝑉𝑎. The system
consists of two parts: learning system and prediction system. The
learning system builds a model on the basis of the training data, that
is, for the unknown instance 𝑥𝑛+1, the prediction system determines the

corresponding output 𝑦𝑛+1 according to the learned model 𝑌 = 𝐹 (𝑋).
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Fig. 1. The overflow of boosted stochastic fuzzy granular hypersurface classifier.
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The boosted stochastic fuzzy granular hypersurface classifier con-
ists of two parts: solving parameters and predicting category. In the
arameter-solving stage, the cluster centers of the dataset are first
alculated, and then the instances are randomly divided into 𝐽 subsets.
he instances of subsets are parallelized into fuzzy granular vectors. In
he parameter-solving stage, the cluster centers of the dataset are first
alculated, and then the instances are randomly divided into 𝐽 subsets,
nd the parallel fuzzy granulation is made into fuzzy granular vectors.
rain 𝐽 fuzzy granular hypersurfaces 𝑓 ′

1, 𝑓
′
2,… , 𝑓 ′

𝐽 in each fuzzy granu-
lar vector subset. Then, the fuzzy granular hypersurface classifiers are
further trained with the entire fuzzy granular vector, and the weight of
each fuzzy granular vector is corrected according to the classification
accuracy of the fuzzy granular hypersurface. After several iterations, ac-
cording to these fuzzy granular hypersurfaces and their corresponding
weights, linear superposition forms an enhanced stochastic fuzzy gran-
ular hypersurface classifier. In the prediction stage, given an instance,
fuzzy granulation is first performed on it, and then the trained model
𝐹 (𝑋) is used to calculate its category (see Fig. 1). Here, ‘‘stochastic’’
efers to two factors as follows. First, the BSFGHC needs a cluster
pproach Adaptive Cluster Center Clustering Algorithm (ACCC) as the
asis of fuzzy granulation. When ACCC is executing, initialization seed
nstances are random. Second, when solving the optimum fuzzy granu-
ar hypersurface, the initialization of parameters is also random. So, to
escribe the process, the term ‘‘stochastic’’ is employed in the title.

. Convert data to Fuzzy granules

The granularity of human ratiocination and conceptual building
s vague. The classical approach of fuzzy information granulation is
ourced from calculating the binary relation of all instances, and its
omputational complexity is high. We propose to first obtain a series
f cluster centers of the instance by clustering and then divide the
nstance set into several subsets. Next, in each instance subset, based
n these cluster centers, fuzzy granulation is performed to form fuzzy
tomic granules based on atomic attributes. On the basis of these,
uzzy atomic granules with different attributes are constructed to form
uzzy granular vectors so that the fuzzy granulation of each subset can
e executed in parallel, and the computational complexity is greatly
educed.
 e
.1. Adaptive cluster center clustering algorithm

Some classical clustering algorithms (such as k-means) require ini-
ializing the cluster centers and pre-specifying the number of cluster
enters to achieve results. These approaches rely on the initial pa-
ameters, and when the number of cluster centers is inappropriate, it
s easy to fall into a locally optimal solution. We present a random
luster center adaptive clustering algorithm, which adaptively chooses
he cluster center and the cluster number and optimizes globally. Note
hat if the standard deviation between clusters is significant, but the
tandard deviation within groups is slight, the clustering performance
s excellent. Therefore, using the objective function 𝑂(𝐶,𝑋) = 𝑙𝑜𝑔𝛿2 −
𝑜𝑔(

∑𝑘
𝑖=1 𝜎

2
𝑖 ) +

∑𝑘
𝑖=1

∑

𝑥∈𝑐𝑖 cos(𝑐𝑖, 𝑥) as the evaluation can achieve the
im (here, 𝛿 represents the standard deviation of a series of cluster
enters, 𝜎𝑖 denotes the standard deviation of the instance points in
he 𝑖th cluster, and 𝑘 expresses the number of instance clusters). The
im is to continuously adjust the cluster center to make the objective
unction increase continuously until the maximum number of iterations
ets achieved, or the objective function value for several consecutive
terations no longer changes significantly. A set of cluster centers can be
btained in each iteration, and an evaluation set consists of the cluster
enters and objective function values of each iteration. If the termina-
ion condition is reached, a series of cluster centers corresponding to
he maximum objective function value is found from this evaluation
et. That is what is asked for. The algorithm flow is listed below.

1): Remove instances with default attribute values.

2): Standardize each attribute value of the instance.

3): Initialise the maximum number of iterations as MaxIter, and the
valuation set E as an empty set, namely 𝐸 ← 𝜙 (It consists of the
luster center set and the corresponding objective function value.), and
et the current iteration number 𝑖𝑡𝑒𝑟 = 1.

4): Initialise the current cluster center set 𝐶𝑖𝑡𝑒𝑟 = 𝜙, select 𝑘 as the
umber of cluster centers and an instance 𝑥𝑗 as the cluster center
andomly, and assign the current number of cluster centers 𝑡 to 1,
.e., 𝑘 ← 1, 𝑐𝑡 ← 𝑥𝑗 , 𝐶𝑖𝑡𝑒𝑟 ← 𝐶𝑖𝑡𝑒𝑟 ∪ {𝑐𝑡}.

5): The maximum similarity between each instance and the currently

xisting cluster center can be calculated by 𝑠(𝑥𝑗 ) = max𝑐𝑖∈𝐶𝑖𝑡𝑒𝑟

{𝑐𝑜𝑠(𝑐𝑖, 𝑥𝑗 )},
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Table 1
Adaptive cluster center clustering algorithm.

Input: the instance set 𝑋,

the maximum iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟,
the threshold value 𝜖 and 𝑁

Output: the optimal cluster center set 𝐶∗

1: Remove instances with missing attribute values.
2: Normalize instance attribute values to [0, 1].
3: 𝐸 ← 𝜙\\Set the evaluation set (consists of the cluster center set

and the objective function value) to the empty set.
4: 𝑖𝑡𝑒𝑟 ← 0\\Initialize the current iteration to zero.
5: WHILE (𝑖𝑡𝑒𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑒𝑟) AND (||𝑂(𝐶𝑖𝑡𝑒𝑟 , 𝑋) − 𝑂(𝐶𝑖𝑡𝑒𝑟+𝑁 , 𝑋)||2 > 𝜖)
6: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1.\\Update the current iteration 𝑖𝑡𝑒𝑟
7: 𝐶𝑖𝑡𝑒𝑟 ← 𝜙\\The empty set is assigned to the current cluster center set.
8: 𝑡 ← 1\\Assign 1 to the cluster center number.
9: 𝑐𝑡 ← 𝑅𝑎𝑛𝑑𝑆𝑒𝑙𝑒𝑐𝑡(𝑋, 1)\\Select an instance randomly as a cluster center.
10: 𝑘 ← 𝑅𝑎𝑛𝑑𝐺𝑒𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑁𝑢𝑚();\\Select a random number 𝑘 as the cluster

center count.
11: 𝐶𝑖𝑡𝑒𝑟 ← 𝐶𝑖𝑡𝑒𝑟 ∪ {𝑐𝑡}
12: WHILE 𝑡 ≤ 𝑘
13: ∀𝑗 ∈ |𝑋|, 𝑠(𝑥𝑗 ) = max

𝑐𝑖∈𝐶𝑖𝑡𝑒𝑟
{𝑐𝑜𝑠(𝑐𝑖 , 𝑥𝑗 )};

14: 𝑝(𝑥𝑗 ) = 1 − 𝑠(𝑥𝑗 )2
∑𝑛

𝑖=1 𝑠(𝑥𝑖 )2
, 𝑗 = 1, 2,… , 𝑛.\\ the selected probability of 𝑥𝑗 as next

cluster center.
15: p=GenProb();\\Give a probability randomly.
16: IF 𝑝(𝑥𝑗 ) > 𝑝 THEN {𝑡 ← 𝑡 + 1; 𝑐𝑡 ← 𝑥𝑗 ;𝐶𝑖𝑡𝑒𝑟 ← 𝐶𝑖𝑡𝑒𝑟 ∪ {𝑐𝑡}; }
17: END WHILE\\ 𝑘 ≤ 𝐾
18: 𝐸 ← 𝐸 ∪ {(𝐶𝑖𝑡𝑒𝑟 , 𝑂(𝐶𝑖𝑡𝑒𝑟 , 𝑋))}\\Update the evaluation set.
19: END WHILE
20: 𝐶∗ = argmax

𝐶𝑗∈𝐸
{𝑂(𝐶𝑗 , 𝑋)}\\Select the cluster center set with regard to

the maximum objective function value in the evaluation set 𝐸.
w
o
∀
𝑥

𝑔

and the probability of being chosen as the next cluster center for each
instance can be 𝑝(𝑥𝑗 ) = 1 − 𝑠(𝑥𝑗 )2

∑𝑛
𝑖=1 𝑠(𝑥𝑖)

2 , 𝑗 = 1, 2,… , 𝑛.

(6): If 𝑥𝑗 is chosen, then 𝑡 ← 𝑡 + 1, 𝑐𝑡 ← 𝑥𝑗 , 𝐶𝑖𝑡𝑒𝑟 ← 𝐶𝑖𝑡𝑒𝑟 ∪ {𝑐𝑡}.

(7): If 𝑡 ≤ 𝑘, go to (5); otherwise go to (8).

(8): Calculate the objective function 𝑂(𝐶𝑖𝑡𝑒𝑟, 𝑋) of this iteration and
update the evaluation set 𝐸 ← 𝐸 ∪ {(𝐶𝑖𝑡𝑒𝑟, 𝑂(𝐶𝑖𝑡𝑒𝑟, 𝑋))}.

9): Modify the current iteration count 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1.

10): If the number of iterations 𝑖𝑡𝑒𝑟 > 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 or ∀𝑁 ∈ (1, 𝑎𝑏),
𝑂(𝐶𝑎, 𝑋) − 𝑂(𝐶𝑏, 𝑋)‖2 < 𝜖 go to (11) (where 𝑏 + 𝑁 < 𝑎 and 𝜖 is a

small positive number), otherwise go to (4).

(11): In the evaluation set 𝐸, according to the objective function
value in each iteration, the optimal cluster center can be selected,
i.e., 𝐶∗ = arg max1≤𝑖𝑡𝑒𝑟≤𝑀𝑎𝑥𝐼𝑡𝑒𝑟 𝑂(𝐶𝑖𝑡𝑒𝑟, 𝑋), 𝐶∗ = {𝑐1, 𝑐2,… , 𝑐

|𝐶∗
|

} (where
| ⋅ | expresses the number of elements in the set).

The adaptive clustering principle of global optimization mentioned
above has been given. Table 1 gives the pseudo-code of this principle
s follows.

.2. Parallel Fuzzy granulation

On data granulation, the classical method is to serially calculate
he similarity between each instance and the rest of the instances to
onstruct a similarity matrix, which does not have parallel granulation
onditions. If the cluster center is obtained by clustering first, the
imilarity between each instance in the subset and each cluster center
ill be easy to compute. Therefore, parallel granulation can be imple-
ented. Further, the scheme can reduce computational complexity. We

an adopt the Spark framework to execute the parallel fuzzy granula-
ion based on the principle below. Suppose that 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑘} the

set of cluster centers. For ∀𝑥𝑖 ∈ 𝑋, ∀𝑎𝑡 ∈ 𝐴 and ∀𝑐𝑗 ∈ 𝐶∗, the similarity
between the instance 𝑥𝑖 and the cluster center 𝑐𝑗 is computed by
ℎ(𝑥𝑖, 𝑐𝑗 , 𝑎𝑡) = 1 − |𝜏(𝑥𝑖, 𝑎𝑡) − 𝜏(𝑐𝑗 , 𝑎𝑡)| (1)
where 0 ≤ 𝜏(𝑥𝑖, 𝑎𝑡) ≤ 1, 0 ≤ 𝜏(𝑐𝑗 , 𝑎𝑡) ≤ 1. Obviously, 0 ≤ ℎ(𝑥𝑖, 𝑐𝑗 , 𝑎𝑡) ≤ 1.
The instance 𝑥𝑖 and the cluster center 𝑐𝑗 induce a fuzzy granule on the
attribute 𝑎𝑡 which is written by

𝑔(𝑥𝑖, 𝑎𝑡) =
ℎ(𝑥𝑖, 𝑐1, 𝑎𝑡)

𝑐1
+

𝑠(𝑥𝑖, 𝑐2, 𝑎𝑡)
𝑐2

+⋯ +
ℎ(𝑥𝑖, 𝑐𝑘, 𝑎𝑡)

𝑐𝑘
(2)

It is also written as follows:

𝑔(𝑥𝑖, 𝑎𝑡) = ∫𝑐𝑗∈𝐶

ℎ(𝑥𝑖, 𝑐𝑗 , 𝑎𝑡)
𝑐𝑗

(3)

Where ‘‘∫ ’’ is not an integral operation but a union of sets, and ‘‘-
’’ represents a separator. In other words, the fuzzy granule 𝑔(𝑥𝑖, 𝑎𝑡)
expresses the similarity set between the instance 𝑥𝑖 and the cluster
centers on the attribute 𝑎𝑡. Its module can be computed by

|𝑔(𝑥𝑖, 𝑎𝑡)| =
𝑘
∑

𝑗=1
ℎ(𝑥𝑖, 𝑐𝑗 , 𝑎𝑡) (4)

Four operators of fuzzy granules are designed as follows. ∀𝑒, 𝑓 ∈ 𝑅, the
operator ∪ and ∩ can be computed by

𝑒 ∪ 𝑓 = 𝜆𝑒𝑓 + (1 − 𝜆)(𝑒 + 𝑓 − 𝑒𝑓 ) (5)

𝑒 ∩ 𝑓 = (𝑒𝑓 )1−𝛾 (𝑒 − 𝑒𝑓 )𝛾 (6)

here 𝜆, 𝛾 ∈ [0, 1] are parameters. Next, according to the two operators,
ther operators of fuzzy granules can be computed. For ∀𝑥, 𝑥′ ∈ 𝑋,
𝑎 ∈ 𝐴, the operations on two fuzzy granules induced by the instance
and 𝑥′ respectively are written as below:

(𝑥, 𝑎) ∨ 𝑔(𝑥′, 𝑎) = ∫𝑐𝑗∈𝐶

ℎ(𝑥, 𝑐𝑗 , 𝑎) ∪ ℎ(𝑥′, 𝑐𝑗 , 𝑎)
𝑐𝑗

(7)

𝑔(𝑥, 𝑎) ∧ 𝑔(𝑥′, 𝑎) = ∫𝑐𝑗∈𝐶

ℎ(𝑥, 𝑐𝑗 , 𝑎) ∩ ℎ(𝑥′, 𝑐𝑗 , 𝑎)
𝑐𝑗

(8)

𝑔(𝑥, 𝑎) − 𝑔(𝑥′, 𝑎) = ∫𝑐𝑗∈𝐶

ℎ(𝑥, 𝑐𝑗 , 𝑎) − ℎ(𝑥′, 𝑐𝑗 , 𝑎)
𝑐𝑗

(9)

𝑔(𝑥, 𝑎)⊕ 𝑔(𝑥′, 𝑎) = 𝑔(𝑥, 𝑎) ∨ 𝑔(𝑥′, 𝑎) − 𝑔(𝑥, 𝑎) ∧ 𝑔(𝑥′, 𝑎) (10)
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The distance between the two fuzzy granules can be computed by

𝑑(𝑔(𝑥, 𝑎), 𝑔(𝑥′, 𝑎)) = 1
|𝐶|

∑

𝑐𝑗∈𝐶

|𝑔(𝑥, 𝑎)⊕ 𝑔(𝑥′, 𝑎)|
|𝑔(𝑥, 𝑎) ∨ 𝑔(𝑥′, 𝑎)|

(11)

or ∀𝑇 ⊆ 𝐴 and 𝑇 = {𝑎1, 𝑎2,… , 𝑎
|𝑇 |} with |𝑇 | ≤ |𝐴|, the fuzzy granular

ector formed by 𝑥 on 𝑇 is written by

(𝑥, 𝑇 )

=
𝑔(𝑥, 𝑎1)

𝑎1
+

𝑔(𝑥, 𝑎2)
𝑎2

+ ⋅ ⋅ ⋅ +
𝑔(𝑥, 𝑎

|𝑇 |)
𝑎
|𝑇 |

= ∫𝑎𝑡∈𝑇
𝑔(𝑥, 𝑎𝑡)

𝑎𝑡
= ∫𝑎𝑡∈𝑇 ∫𝑐𝑗∈𝐶

ℎ(𝑥, 𝑐𝑗 , 𝑎𝑡)
𝑐𝑗

(12)

ts module is computed by

𝐺(𝑥, 𝑇 )| =
|𝑇 |
∑

𝑡=1
|𝑔(𝑥, 𝑎𝑡)| (13)

he operations on two fuzzy granular vectors are calculated as follows:

(𝑥, 𝑇 ) ∨ 𝐺(𝑥′, 𝑇 ) = ∫𝑎𝑡∈𝑇
𝑔(𝑥, 𝑎𝑡) ∨ 𝑔(𝑥′, 𝑎𝑡)

𝑎𝑡
(14)

𝐺(𝑥, 𝑇 ) ∧ 𝐺(𝑥′, 𝑇 ) = ∫𝑎𝑡∈𝑇
𝑔(𝑥, 𝑎𝑡) ∧ 𝑔(𝑥′, 𝑎𝑡)

𝑎𝑡
(15)

𝐺(𝑥, 𝑇 ) − 𝐺(𝑥′, 𝑇 ) = ∫𝑎𝑡∈𝑇
𝑔(𝑥, 𝑎𝑡) − 𝑔(𝑥′, 𝑎𝑡)

𝑎𝑡
(16)

𝐺(𝑥, 𝑇 )⊕𝐺(𝑥′, 𝑇 ) = ∫𝑎𝑡∈𝑇
𝑔(𝑥, 𝑎𝑡)⊕ 𝑔(𝑥′, 𝑎𝑡)

𝑎𝑡
(17)

Similar to the distance between two fuzzy granules, the distance on two
fuzzy granular vectors is defined by

𝑑(𝐺(𝑥, 𝑇 ), 𝐺(𝑥′, 𝑇 )) = 1
|𝑇 | ∗ |𝐶|

∑

𝑎∈𝑇

|𝐺(𝑥, 𝑎)⊕𝐺(𝑥′, 𝑎)|
|𝐺(𝑥, 𝑎) ∨ 𝐺(𝑥′, 𝑎)|

. (18)

heorem 1. For ∀𝑥1, 𝑥2 ∈ 𝑋, ∀𝑇 ⊆ 𝐴, ∀𝑎 ∈ 𝑇 , and ∀ the cluster 𝑐𝑗 ∈ 𝐶,
he distance of the two fuzzy granular vector assures

≤ 𝑑(𝐺(𝑥1, 𝑇 ), 𝐺(𝑥2, 𝑇 )) ≤ 1. (19)

roof. According as the definition of fuzzy granules, we can give
(𝑥1, 𝑎) = ∫𝑐𝑗∈𝐶

ℎ(𝑥1 ,𝑐𝑡 ,𝑎)
𝑐𝑗

and 𝑔(𝑥2, 𝑎) = ∫𝑐𝑗∈𝐶
ℎ(𝑥2 ,𝑐𝑡 ,𝑎)

𝑐𝑗
. Thanks to Eq. (1),

we have 0 ≤ ℎ(𝑥1, 𝑐𝑗 , 𝑎) ≤ 1 and 0 ≤ ℎ(𝑥2, 𝑐𝑗 , 𝑎) ≤ 1. Because of
|𝑔(𝑥1, 𝑎)| =

∑

𝑐𝑗∈𝐶 ℎ(𝑥1, 𝑐𝑗 , 𝑎), 0 ≤ |𝑔(𝑥1, 𝑎)| ≤ |𝐶| is established. Simi-
larly, we can also obtain 0 ≤ |𝑔(𝑥2, 𝑎)| ≤ |𝐶|. Furthermore, according
o the definition of the fuzzy granular vector 𝐺(𝑥1, 𝑇 ) = ∫𝑎𝑡∈𝑇

𝑔(𝑥,𝑎𝑡)
𝑎𝑡

and |𝐺(𝑥1, 𝑇 )| =
∑

|𝑇 |
𝑡=1 |𝑔(𝑥1, 𝑎𝑡)|, it is easy to obtain 0 ≤ |𝐺(𝑥1, 𝑇 )| ≤

|𝑇 | ∗ |𝐶|. Similarly, we have 0 ≤ |𝐺(𝑥2, 𝑇 )| ≤ |𝑇 | ∗ |𝐶|. Because of
𝑔(𝑥1, 𝑎)⊕ 𝑔(𝑥2, 𝑎) = 𝑔(𝑥1, 𝑎) ∨ 𝑔(𝑥2, 𝑎) − 𝑔(𝑥1, 𝑎) ∧ 𝑔(𝑥2, 𝑎), we can obtain
0 ≤

∑

𝑎∈𝑇
|𝑔(𝑥1 ,𝑎)⊕𝑔(𝑥2 ,𝑎)|
|𝑔(𝑥1 ,𝑎)∨𝑔(𝑥2 ,𝑎)|

≤ |𝑇 | ∗ |𝐶|. Suppose we want to make a left-
inverse |𝑇 |−1 ∗ |𝐶|

−1 of |𝑇 | ∗ |𝐶|,so that we can solve a inequality by
left-multiplying each side to obtain 0 ≤ 1

|𝑇 |∗|𝐶|

∑

𝑎∈𝑇
|𝑔(𝑥1 ,𝑎)⊕𝑔(𝑥2 ,𝑎)|
|𝑔(𝑥1 ,𝑎)∨𝑔(𝑥2 ,𝑎)|

≤ 1,
i.e., 0 ≤ 𝑑(𝐺(𝑥1, 𝑇 ), 𝐺(𝑥2, 𝑇 )) ≤ 1. □

Theorem 2. For ∀𝑥 ∈ 𝑋, the subset 𝑇 of the attribute 𝑄 and 𝑇 satisfy
𝑄 ⊆ 𝑇 ⊆ 𝐴. Suppose we have two fuzzy granular vectors 𝐺(𝑥,𝑄) and
(𝑥, 𝑇 ), which are induced by 𝑥 and defined as 𝑄 and 𝑇 , respectively. Then
e can give |𝐺(𝑥,𝑄)| ≤ |𝐺(𝑥, 𝑇 )|.

roof. For ∀𝑎𝑡 ∈ 𝑄 and 𝐺(𝑥,𝑄) = ∫𝑎𝑡∈𝑄
𝑔(𝑥,𝑎𝑡)
𝑎𝑡

, 𝐺(𝑥, 𝑇 ) = ∫𝑎𝑡∈𝑇
𝑔(𝑥,𝑎𝑡)
𝑎𝑡

can be obtained thanks to 𝑄 ⊆ 𝑇 and 𝑎𝑡 ∈ 𝑇 . Because 𝑇 ⊆ 𝑄 ⊆ 𝐴 is
established, for 𝑎 ∈ 𝑄, we can obtain 𝑎 ∈ 𝑇 and |𝑄| ≤ |𝑇 |. In that
way, if 𝑔(𝑥, 𝑎) ∈ 𝐺(𝑥,𝑄), then 𝑔(𝑥, 𝑎) ∈ 𝐺(𝑥, 𝑇 ). In sum, the inequality

|𝐺(𝑥,𝑄)| ≤ |𝐺(𝑥, 𝑇 )| is established. □
Table 2
Metric and granulation of the instance set.
𝑋,𝐶|𝐴, 𝑌 , 𝜈 𝑎1 𝑎2 𝑎3 𝑦 𝜈

𝑥1 0.30 0.20 0.10 0.20 0.50
𝑥2 0.10 0.20 0.30 0.20 0.50
𝑥3 0.30 0.40 0.20 0.20 0.50
𝑥4 0.30 0.20 0.40 0.40 0.50

𝑐1 0.25 0.35 0.15 – –
𝑐2 0.15 0.25 0.25 – –

This is an instance of granulation exhibited in Table 2. Given an
instance set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, an attribute set 𝐴 = {𝑎1, 𝑎2, 𝑎3}, a
category set 𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4}, a cluster center set 𝐶 = {𝑐1, 𝑐2}, and
he parameter 𝜈 = 0.5, the granulation computation is as follows.

We take the instance 𝑥1 as an instance. The similarities between the
nstance 𝑥1 and the cluster center 𝑐1 and 𝑐2 respectively on the attribute
𝑎1, 𝑎2, 𝑎3 are as below:

ℎ(𝑥1, 𝑐1, 𝑎1) = 1 − |𝜏(𝑥1, 𝑎1) − 𝜏(𝑐1, 𝑎1)| = 1 − |0.30 − 0.25| = 0.95,
ℎ(𝑥1, 𝑐2, 𝑎1) = 1 − |𝜏(𝑥1, 𝑎1) − 𝜏(𝑐2, 𝑎1)| = 1 − |0.30 − 0.15| = 0.85,
ℎ(𝑥1, 𝑐1, 𝑎2) = 1 − |𝜏(𝑥1, 𝑎2) − 𝜏(𝑐1, 𝑎2)| = 1 − |0.20 − 0.35| = 0.85,
ℎ(𝑥1, 𝑐2, 𝑎2) = 1 − |𝜏(𝑥1, 𝑎2) − 𝜏(𝑐2, 𝑎2)| = 1 − |0.20 − 0.25| = 0.95,
ℎ(𝑥1, 𝑐1, 𝑎3) = 1 − |𝜏(𝑥1, 𝑎3) − 𝜏(𝑐1, 𝑎3)| = 1 − |0.10 − 0.15| = 0.95,
ℎ(𝑥1, 𝑐2, 𝑎3) = 1 − |𝜏(𝑥1, 𝑎3) − 𝜏(𝑐2, 𝑎3)| = 1 − |0.10 − 0.25| = 0.85,
According to Eq. (3), the fuzzy granules induced by 𝑥1 on the

attribute 𝑎1, 𝑎2, and 𝑎3 are as below:
𝑔(𝑥1, 𝑎1) =

0.95
𝑐1

+ 0.85
𝑐2

,
𝑔(𝑥1, 𝑎2) =

0.85
𝑐1

+ 0.95
𝑐2

,
𝑔(𝑥1, 𝑎3) =

0.95
𝑐1

+ 0.85
𝑐2

.
In the same way, we can obtain the fuzzy granules induced by the

nstance 𝑥2 on the attribute set 𝐴 as follows:
𝑔(𝑥2, 𝑎1) =

0.85
𝑐1

+ 0.95
𝑐2

,
𝑔(𝑥2, 𝑎2) =

0.85
𝑐1

+ 0.95
𝑐2

,
𝑔(𝑥2, 𝑎3) =

0.85
𝑐1

+ 0.95
𝑐2

.
According to 𝑒 ∪ 𝑓 = 𝜆𝑒𝑓 + (1 − 𝜆)(𝑒 + 𝑓 − 𝑒𝑓 ) and Eq. (7) (here,

= 0.5), we can give (see Box I). According to 𝑒 ∩ 𝑓 = (𝑒𝑓 )1−𝛾 (𝑒 − 𝑒𝑓 )𝛾

here, 𝛾 = 0.5) and Eq. (8), we have

(𝑥1, 𝑎1) ∧ 𝑔(𝑥2, 𝑎1)

=
2
∑

𝑗=1

(ℎ(𝑥1, 𝑐𝑗 , 𝑎1)ℎ(𝑥2, 𝑐𝑗 , 𝑎1))1−𝛾 (ℎ(𝑥1, 𝑐𝑗 , 𝑎1) − ℎ(𝑥1, 𝑐𝑗 , 𝑎1)ℎ(𝑥2, 𝑐𝑗 , 𝑎1))𝛾

𝑐𝑗

=
(0.95 ∗ 0.85)1−0.5(0.95 − 0.95 ∗ 0.85)0.5

𝑐1

+
(0.85 ∗ 0.95)1−0.5(0.85 − 0.85 ∗ 0.95)0.5

𝑐2

≈ 0.34
𝑐1

+ 0.34
𝑐2

𝑔(𝑥1, 𝑎1)⊕ 𝑔(𝑥2, 𝑎1)

= 𝑔(𝑥1, 𝑎1) ∨ 𝑔(𝑥2, 𝑎1) − 𝑔(𝑥1, 𝑎1) ∧ 𝑔(𝑥2, 𝑎1)

= 0.90 − 0.34
𝑐1

+ 0.90 − 0.34
𝑐2

= 0.56
𝑐1

+ 0.56
𝑐2

|𝑔(𝑥1, 𝑎1)⊕ 𝑔(𝑥2, 𝑎1)|

= |𝑔(𝑥1, 𝑎1) ∨ 𝑔(𝑥2, 𝑎1) − 𝑔(𝑥1, 𝑎1) ∧ 𝑔(𝑥2, 𝑎1)|

= |

0.56
𝑐1

+ 0.56
𝑐2

| = 1.12.

In the same way, we have
|𝑔(𝑥1, 𝑎2)⊕ 𝑔(𝑥2, 𝑎2)| = |

0.56
𝑐1

+ 0.56
𝑐2

|=1.12.
|𝑔(𝑥 , 𝑎 )⊕ 𝑔(𝑥 , 𝑎 )| = |

0.56 + 0.56
|=1.12.
1 3 2 3 𝑐1 𝑐2
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𝑔(𝑥1, 𝑎1) ∨ 𝑔(𝑥2, 𝑎1)

=
2
∑

𝑗=1

𝜆ℎ(𝑥1, 𝑐𝑗 , 𝑎1)ℎ(𝑥2, 𝑐𝑗 , 𝑎1) + (1 − 𝜆)(ℎ(𝑥1, 𝑐𝑗 , 𝑎1) + ℎ(𝑥2, 𝑐𝑗 , 𝑎1) − ℎ(𝑥1, 𝑐𝑗 , 𝑎1)ℎ(𝑥2, 𝑐𝑗 , 𝑎1))
𝑐𝑗

=
0.5 ∗ 0.95 ∗ 0.85 + (1 − 0.5)(0.95 + 0.85 − 0.95 ∗ 0.85)

𝑐1

+
0.5 ∗ 0.85 ∗ 0.95 + (1 − 0.5)(0.85 + 0.95 − 0.85 ∗ 0.95)

𝑐2

= 0.90
𝑐1

+ 0.90
𝑐2

Box I.
So far we can obtain the distance between 𝑥1 and 𝑥2 on the attribute
et 𝐴 with parameter 𝜆 = 𝛾 = 0.5 as follows:

(𝐺(𝑥1, 𝐴), 𝐺(𝑥2, 𝐴)) =
1

|𝐴| ∗ |𝐶|

∑

𝑎∈𝐴

|𝑔(𝑥1, 𝑎)⊕ 𝑔(𝑥2, 𝑎)|
|𝑔(𝑥1, 𝑎) ∨ 𝑔(𝑥2, 𝑎)|

≈ 0.62.

4. Stochastic Fuzzy granular hypersurface classifier

Recall the problem that we can suppose there are 𝑛 instances that
re nonlinearly classified. Which decision surface is the best in in-
initely decision surfaces with zero error in the space? The classification
nterval should be as large as possible for the decision surface with
ero error. We transfer the problem to fuzzy granular space to solve it.
ccording to the atom attribute, the classification system converts each

nstance into a fuzzy granule. The fuzzy granules build a fuzzy granular
ector. Then, category and fuzzy granular vector make up the fuzzy
ranular vector instance set. As well known, Support Vector Machine
SVM) is a good algorithm for classification and regression. In SVM, the
esearcher designed the decision hyperplane function y=w ⋅ 𝑥 + b to
lassify where w and b can be obtained by training samples. Inspired
y the SVM, we introduced the vectors 𝛼 and 𝛽 to construct a fuzzy

granular hypersphere equation on fuzzy granular space. Therefore, the
classification process can be converted to finding the fuzzy granular
vectors 𝛼 and 𝛽 in Eq. (20) in the fuzzy granular space. Then the
decision function (Eq. (21)) computes the category to which the fuzzy
granular vector belongs, i.e., the instance category. The computational
process follows: First, the instance is fuzzily granulated. Next, the
problem is converted into solving Eq. (20) to find the fuzzy granular
vector 𝛼 and 𝛽. A fuzzy granular hypersurface Equation (see Eq. (20))
s introduced and solves the minimum value of the loss function to
btain the maximum interval hypersurface, i.e., the optimal solution
f 𝛼 and 𝛽. Before solving the problem, we need to make the following
ssumptions:

(1) The error between prediction and ground truth satisfies Gaussian
istribution. (2)There is a linearly classified solution. It can be found
hat 𝛼 and 𝛽 make the fuzzy granular hypersurface become the fuzzy
ranular hypersurface with the most significant interval. The solution
rocess is implemented using PSO in granular space. The above process
s defined as:

efinition 1. Suppose S = (𝑋, 𝑌 , 𝐴, 𝑉 , ℎ) is a classified system. Here
= {𝑥1, 𝑥2,… , 𝑥𝑛} represents an instance set and 𝑥𝑖 ∈ R𝑚. 𝑌 =

{𝑦1, 𝑦2,… , 𝑦𝑛} denotes a category set and 𝑦𝑖 ∈ {0, 1,… , 𝑙} is the output
corresponding to 𝑥𝑖. 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑚} expresses a nonempty infinite
set of the attribute. 𝑉 = ∪𝑎∈𝐴𝑉𝑎 and 𝑉𝑎 represents the value field
of the attribute 𝑎. 𝜏 ∶ 𝑋 × 𝐴 ⟶ 𝑉 is an information function
and it gives a value for each attribute of each object, namely, for
∀𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋, 𝜏(𝑥, 𝑎) ∈ 𝑉𝑎, we have a pair ⟨𝐺(𝑥𝑖, 𝐴), 𝑦𝑖⟩(𝑖 =
1, 2,… , 𝑛.) consists of a fuzzy granular vector on 𝐴 and a category.
The fuzzy granular vector instance set defined by the pairs above
is 𝐺(𝑋,𝐴) = {⟨𝐺(𝑥𝑖, 𝐴), 𝑦𝑖⟩|∀𝑥𝑖 ∈ 𝑋}. A fuzzy granular hypersphere
equation on fuzzy granular space can be defined by

𝐿(𝛼, 𝛽) = min
𝛼,𝛽

{
∑

𝑥𝑖∈𝑋
(𝑙𝑜𝑔|𝛼 ∧ 𝐺(𝐴, 𝑥𝑖) ∨ 𝛽| − 𝑦𝑖)2 + 𝜆 ⋅ |𝛼|2}. (20)

Here, 𝛼 and 𝛽 denote fuzzy granular vectors and 𝜆 represents a real
number. Let 𝛼∗ and 𝛽∗ be the optimization solution of Eq. (20), then
the classified decision function is written by

𝑓 (𝑥) = arg min
0≤𝑡≤𝑙

{|𝑙𝑜𝑔|𝛼∗ ∧ 𝐺(𝐴, 𝑥) ∨ 𝛽∗| − 𝑡|} (21)

4.1. Solving parameters

We employ PSO to solve Eq. (20). The principle is to discover
the approximate optimal solution through information sharing and
cooperation among individuals in the group. The superiority is that it is
effortless and does not have too many parameters to alter. During the
process, every particle is a fuzzy granular vector with two characteris-
tics: speed and position (speed expresses the speed of movement, and
position denotes the direction of movement). Every particle explores
the optimal solution freely in the space, registers it as the current
individual extremum, and communes the individual extremum with
other particles. Then, the optimal individual extremum discovered is
the current global optimal solution of the whole particle swarm. The
speed and position of particles are altered according to the current
individual extreme value discovered by themselves and the current
global optimal solution communicated by the whole particle swarm.

The process can be as follows:

(1): Initialize a set of random fuzzy granular vectors 𝛾1, 𝛾2,… , 𝛾𝑁
(where 𝛾𝑖 = (𝛼𝑖, 𝛽𝑖)) as random solution and their corresponding to
speed 𝑣1, 𝑣2,… , 𝑣𝑁 . Set the current iteration 𝐼𝑡𝑒𝑟 = 0 and the maximum
iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟.

(2): Compute the function value corresponding to each solution 𝐿(𝛾𝑖)
and set 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝛾𝑖, 𝑖 = 1, 2,… , 𝑁 .

(3): Select the global optimal position 𝑔𝐵𝑒𝑠𝑡 = arg min1≤𝑗≤𝑁{𝐿(𝑝𝐵𝑒𝑠𝑡𝑗 )}

(4): According to the historical optimal position of every particle and
the global optimal position, the speed and the position of each particle
can be updated as follows:

𝑣𝑖 = 𝑟0 ⋅ 𝑣𝑖 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝛾𝑖) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝐵𝑒𝑠𝑡 − 𝛾𝑖) (22)

𝛾∗𝑖 = 𝛾𝑖 (23)

𝛾𝑖 = 𝛾𝑖 + 𝑣𝑖 (24)

(5): Evaluate the fitness function value to update the optimal historical
position. If 𝐿(𝛾∗𝑖 ) > 𝐿(𝛾𝑖), then 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝛾𝑖; otherwise, 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝛾∗𝑖 .

(6): Update the current iteration 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1.
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Table 3
The algorithm of solving parameters on stochastic fuzzy granular hypersurface classifier

Input: The fuzzy granular vector set 𝐺(𝐴,𝑋) and maximum iteration 𝑀𝑎𝑥𝐼𝑡𝑒𝑟.

Output: The solution of fuzzy granular hypersurface 𝛼∗ and 𝛽∗

1: Initialize a group of fuzzy granular vectors (random solution) 𝛾1 , 𝛾2 ,… , 𝛾𝑁 .
(where 𝛾𝑖 = (𝛼𝑖 , 𝛽𝑖)) and their corresponding to speed 𝑣1 , 𝑣2 ,… , 𝑣𝑁 .
Set the current iteration 𝐼𝑡𝑒𝑟 = 0 and maximum iteration 𝑀𝑎𝑥𝐼𝑡𝑒𝑟.

2: Compute the function value corresponding to each solution 𝐿(𝛾𝑖)
and set 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝛾𝑖, 𝑖 = 1, 2,… , 𝑁

3: Select the global optimal position 𝑔𝐵𝑒𝑠𝑡 = argmin
1≤𝑗≤𝑁

{𝐿(𝑝𝐵𝑒𝑠𝑡𝑗 )}

4: According as the particle’s historical optimal position
and global optimal position, the velocity and position of each particle
are altered.
𝑣𝑖 = 𝑟0 ⋅ 𝑣𝑖 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝛾𝑖) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝐵𝑒𝑠𝑡 − 𝛾𝑖)
𝛾𝑖 = 𝛾𝑖 + 𝑣𝑖

5: Modify the historical optimal position of the particle by evaluating
the fitness value.
If 𝐿(𝛾∗𝑖 ) > 𝐿(𝛾𝑖), then 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝛾𝑖; Otherwise, 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝛾∗𝑖 .

6: Set the current iteration 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1.
7: If 𝐼𝑡𝑒𝑟 > 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 go to 8; Otherwise, go to 2.
8: Output the global optimal solution 𝑔𝐵𝑒𝑠𝑡.

(7): If 𝐼𝑡𝑒𝑟 > 𝑀𝑎𝑥𝐼𝑡𝑒𝑟, go to (8), otherwise go to (2).

(8): Output the global optimal result 𝑔𝐵𝑒𝑠𝑡.
The pseudocode on solving parameters is as follows (see Table 3).

5. Boosted stochastic Fuzzy granular hypersurface classifier

We propose integrating multiple fuzzy granular hypersurface clas-
sifiers into a robust classifier, namely the boosted stochastic fuzzy
granular hypersurface classifier. The basic idea is that the classifier’s
fuzzy granular vector that is wrongly classified will be employed to
train the next classifier. The wrongly classified fuzzy granular vector
is emphasized to train, and multiple weak classifiers (where the weak
classifier is the fuzzy granular hypersurface classifier mentioned above)
are combined into a robust classifier.

5.1. The principle

To achieve adaptive enhancement, boosted stochastic fuzzy gran-
ular hypersurface consists of fuzzy granular hypersurfaces. It is an
iterative algorithm, and a new weak classifier is added in each iteration
until the classification error rate is low enough and the program ends.
The principle is as follows. Every fuzzy granular vector is given a
weight representing its probability of being chosen into the training set
by a specific classifier. If a fuzzy granular vector has been distinguished
accurately, its probability is decreased when building the next training
set. Instead, if a fuzzy granular vector is not accurately distinguished,
its weight is enhanced. Thus, the fuzzy granular hypersurface can con-
centrate on those fuzzy granular vectors that are harder to differentiate
and more informative. Specifically, let each fuzzy granular vector have
the same weight. In every iteration, the weight of the fuzzy granular
vector is adjusted continuously according to the last classification error.
For instance, for the 𝑘th iteration, we select the fuzzy granular vectors
according to these weights and train the fuzzy granular hypersurface
classifier. Then, according to this classifier, the weight of the fuzzy
granular vector that is wrongly classified is enhanced, and that of
the fuzzy granular vectors correctly distinguished is decreased instead.
Then, the set of fuzzy granular vectors that are modified weights is
adopted to train the next fuzzy granular hypersurface. The entire pro-
cess goes on repeatedly. Each fuzzy granular hypersurface classifier is
divided according to a series of different attributes. When the algorithm
ends, on the one hand, the classification result is obtained; on the other

hand, according to the weight of each weak classifier, the importance
of the corresponding attribute set can be obtained, which provides
an essential basis for data dimensionality reduction. The process is as
follows:

(1): Compute the cluster centers of the instances.

(2): Randomly divide the instance set into several instance subsets.

(3): Get the fuzzy granular vector subset from the instance and cluster
centers.

(4): Summarize the subset of fuzzy granular vectors into the full set of
fuzzy granular vectors.

(5): Initialize weights of all fuzzy granular vectors.

(6): In the 𝑗th (𝑗 = 1, 2,… , 𝐽 ) iteration, the attributes are randomly
selected to obtain the attribute subset 𝐴𝑗 and the fuzzy granular hy-
persurface 𝑓𝑗 (𝐺(𝐴𝑗 , 𝑋)) can be learned on the fuzzy granular vector set
𝐺(𝐴𝑗 , 𝑋).

(7): Compute the classified error rate of 𝑓𝑗 (𝐺(𝐴𝑗 , 𝑋)) on the full fuzzy
granular vector set.

(8): Alter the weight of the weak classifier 𝑓𝑗 (𝐺(𝐴𝑗 , 𝑋)) according to
the classified error rate.

(9): Alter the weights of the fuzzy granular vectors according to the
weight of the weak classifier 𝑓𝑗 (𝐺(𝐴𝑗 , 𝑋)).

(10): Repeat (6) to (9) until the iteration meets the maximum iteration.

(11): Return all fuzzy granular hypersurfaces and their weights.
The algorithm is designed according to the principle above and is

demonstrated in Table 4.

5.2. Prediction

Given an instance 𝑥 and a cluster center set 𝐶∗, a set of 𝐺(𝐴𝑗 , 𝑥),
= 1, 2,… , 𝐽 on 𝑥 can be obtained. After that, calculate the category
f 𝑥 by the trained model 𝐹 (𝑥) =

∑𝐽
𝑗=1 𝜃𝑗 ⋅ 𝑓𝑗 (𝐺(𝐴𝑗 , 𝑥)) (see Table 5).

6. Experimental evaluation

This section carries out an experimental study on the boosted
stochastic fuzzy granular hypersurface classifier. Remarkably, the datase
and the experimental setup is described first. Then, several algorithms
are compared on accuracy and computational complexity. Meanwhile,
the results are demonstrated, and the analysis is also given.

The algorithms are implemented in MATLAB on the workstation
with ASUS TUF RTX3080 GPU with 64 GB DRAM. The employed
datasets are Dry Bean, Anuran Calls, and BLE RSSI from the Uni-
versity of California Irvine Machine Learning Repository. To evaluate
the performance of noise data, we construct another three datasets
on the basis of them, i.e., Dry Bean with the noise of 1%, Anuran
Calls with a noise of 1%, and BLE RSSI with a noise of 1%. These
datasets are exhibited in Table 6. 10-fold cross-validation was employed
in the experiments. Namely, data of 70% chosen arbitrarily is used
as the training set, and data of 30% left is adopted as the test set.
We implement an evaluation of the divided data. The operation is
echoed ten times. The average executed time and accuracy is as the
performance evaluation. The parallel fuzzy granulation based on Spark
proposed in the paper is compared with the serial fuzzy granulation
to evaluate the computational complexity. The result is described in
Fig. 2. We applied Back Propagation (BP), Support Vector Machine
(SVM), Long Short-Term Memory (LSTM), and BSFGHC to the datasets
above to get accuracy and the root mean square. The number of cluster
centers is an essential parameter affecting classification performance.
The relationship between the number of cluster centers, the average
accuracy, and the average root mean squared error is analyzed (see
Figs. 3–5).



Fig. 2. Comparison of time complexity.
Table 4
Boosted stochastic fuzzy granular hypersurface classified algorithm.

Input: The instance set 𝑋, The maximum iteration 𝐽 and the threshold value 𝛿

Output: Boosted stochastic fuzzy granular hypersurface classifier
1: Compute the cluster center of all instances.
2: Divide instances set into multi instances subset.
3: Get the fuzzy granular vector subset by calculating the instance and cluster center

in the instance subset.
4: Summarize the fuzzy granular vector subset to a full fuzzy granular vector set.
5: Initialize the iteration 𝑗 = 1 and the distributed weights of the fuzzy granular

vector 𝑤𝑗1 =
1
𝑛
, 𝑖 = 1, 2,… , 𝑛.

6: Select the attributes randomly to make up the attribute subset
𝐴𝑗 ⊆ 𝐴, 𝑗 = 1, 2,… , 𝐽 . and the fuzzy granular hypersurface classifiers
𝑓𝑗 (𝐺(𝐴𝑗 , 𝑥𝑖)) ∶ 𝐺 → {0, 1,… , 𝑙}, 𝑗 = 1, 2,… , 𝐽 , 𝑖 = 1, 2,… , 𝑛.
can be trained on this subset.

7: Compute the classified error of 𝑓𝑗 (𝐺(𝐴𝑗 , 𝑥)) by
𝑒𝑗 =

∑𝑁
𝑖=1 𝑤𝑗𝑖𝐼(𝑓𝑗 (𝐺(𝐴𝑗 , 𝑥𝑖)) ≠ 𝑦𝑖)

8: Update the coefficient of the fuzzy granular hypersurface by 𝜃𝑗 =
1
2
𝑙𝑛 1−𝑒𝑗

𝑒𝑗
.

9: The weights of the fuzzy granular vectors are updated as follows: 𝑤(𝑗+1)𝑖 =
𝑤𝑗𝑖

𝑧𝑗
⋅ ℎ𝑗𝑖

ℎ𝑗𝑖 =
{

𝑒−𝜃𝑗 , 𝑖𝑓 |𝑓𝑗 (𝐺(𝐴𝑗 , 𝑥𝑖)) − 𝑦𝑖| < 𝛿
𝑒𝜃𝑗 , 𝑖𝑓 |𝑓𝑗 (𝐺(𝐴𝑗 , 𝑥𝑖)) − 𝑦𝑖| ≥ 𝛿

𝑧𝑗 =
∑𝑁

𝑖=1(𝑤𝑗𝑖 ⋅ ℎ𝑗𝑖), 𝛿 is a small positive number.
10: 𝑗 = 𝑗 + 1.
11: If 𝑗 ≤ 𝐽 , repeat 6 to 10; otherwise go to 12.
12: Return the boosted stochastic fuzzy granular hypersurface classifier

𝐹 (𝑥) =
∑𝐽

𝑗=1 𝜃𝑗 ⋅ 𝑓𝑗 (𝐺(𝐴𝑗 , 𝑥)).
Table 5
Prediction algorithm.

Input: the instance 𝑥, the cluster set 𝐶∗, and parameters 𝜃𝑗 , 𝑓𝑗 (⋅), 𝑗 = 1, 2,… , 𝐽 .

Output: the category 𝑦 of the instance 𝑥.

1: Get the fuzzy granular 𝐺(𝐴𝑗 , 𝑥), 𝑗 = 1, 2,… , 𝐽 . of 𝑥 by computing the similarity
between 𝑥 and the cluster centers.
2:Calculate the category of 𝑥 by 𝐹 (𝑥) =

∑𝐽
𝑗=1 𝜃𝑗 ⋅ 𝑓𝑗 (𝐺(𝐴𝑗 , 𝑥))
The parallel fuzzy granulation approach based on Spark is as fol-
lows.

(1): Read data from HDFS datasets, create RDDs, and employ the
distributed cluster resource scheduler to allocate computing resources
to the created job tasks.

(2): Slice the original data vectorize the data object, and call the cache
operation of RDD to place the data in memory.

(3): Input cluster centers and broadcasts to each node.

(4): Compute the similarity between each instance and the cluster

center at each node.



Fig. 3. Evaluation on the dataset DryBean.
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Table 6
Datasets from UCI machine learning repository.

Dataset Number of instances Number of attributes

Dry Bean 13 611 17
Dry Bean with Noise 13 611 17
Anuran Calls 7195 22
Anuran Calls with Noise 7195 22
BLE RSSI 23 570 5
BLE RSSI with Noise 23 570 5
BLE RSSI 23 570 5
Crowdsourced Mapping 10 546 29
Motion Capture Hand Postures 78 095 38
Internet Firewall Data 65 532 12

(5): Form <key,value > in the form of <cluster center, fuzzy granule>
at each node.

(6): Implement local fuzzy granulation by ReduceByKey and broadcast
them at each node.

(7): If all instances are fuzzily granulated, go to (8); otherwise, go to
(4).

(8): Get fuzzy granular vectors by Catch.

(9): Write the result to HDFS.
As shown in Fig. 2, the green curve denoting the serial fuzzy granu-

lation is getting steeper, the blue curve representing the serial fuzzy
granulation with clustering changes more gently, and the red curve
expressing parallel fuzzy granulation proposed in the paper changes
most gently. In other words, as the number of instances enhances, the
time complexity of the parallel fuzzy granulation changes the least,
while that of the other two methods is greatly enhanced, especially the
traditional serial fuzzy granulation. For instance, when the number of
instances is 10187, the serial fuzzy granulation requires about 90 min,
the serial fuzzy granulation with clustering needs about 61 min, and
the parallel fuzzy granulation is achieved only within 15 min; that
is, the serial fuzzy granulation with clustering and the parallel fuzzy
granulation reduce time complexity by 32.22% and 83.33% compared
with the serial fuzzy granulation, respectively. It can be seen that
clustering and parallel processing are essential to improve the efficiency
of fuzzy granulation.
 r
Fig. 3 demonstrates the average accuracy of the classification and
the average root means squared error for BP, SVM, LSTM, and BSFGHC
using the dataset DryBean. As shown in Fig. 3(a), BP, SVM, and LSTM
achieved an average accuracy of 92.61%, 92.49%, and 92.23%, respec-
tively, while BSFGHC just got 94.28% when the number of clustering
𝐾 = 6805 (i.e., 1.80%, 1.94%, 2.22% improvement). On the dataset
with the noise of 1%, the four algorithms above were reduced by
2.48%, 2.06%, 2.29%, and 1.80%, respectively, as demonstrated in
Fig. 3(b). BSFGHC outperforms the other three algorithms. Fig. 3(c)
ndicates the four algorithms’ average root mean squared error. BP,
VM, LSTM got the average root error of 0.1272, 0.3033, and 0.1365,
ut BSFGHC reached 0.1002 when 𝐾 = 6805. That is, BSFGHC was
educed by 21.23%, 66.96%, and 26.59%, respectively. Compared with
he other three methods, the average root mean square error of BSFGHC
s the smallest in the noise dataset, as shown in Fig. 3(d).

Next, Anuran Calls is adopted as a test dataset. In this dataset,
he feature of the voice from the frog is extracted by MFCC, and
amily is an attribute of the category. As shown in Fig. 4(a), BP,
VM, and LSTM got an average accuracy of 96.58%, 97.21%, and
5.78%, respectively, while BSFGHC achieved the maximum accuracy
f 98.12% (i.e., improvement 1.59%, 0.94%, and 2.44% respectively).
n the noisy data, as exhibited in Fig. 4(b), the maximum accuracy of
SFGHC is 97.11%, which is 2.46%, 2.03%, and 3.43% higher than
hat of BP, SVM, and LSTM, respectively. On the root mean square
rror index, as exhibited in Fig. 4(c), BSFGHC got the minimum value
f 0.0052, which was 95.94%, 95.29%, and 96.09% lower than BP,
VM, and LSTM, respectively. On the noise dataset, as demonstrated
n Fig. 4(d), BSFGHC decreased by 55.39%, 49.69%, and 63.36%,
espectively, compared with BP, SVM, and LSTM.

We applied the algorithms to the dataset RSSI, and the results are
s follows. On the evaluation of accuracy, as shown in Fig. 5(a), BSFGH
mproved 1.61%, 2.35%, and 0.92% compared with BP, SVM, and
STM, respectively, when 𝐾 = 11785. On the noise data, BSFGH was
nhanced by 3.28%, 3.92%, and 2.50%, respectively, compared with
he three algorithms above. Although the four algorithms decreased,
SFGH is still better than the other three algorithms. On the root mean
quare error, as exhibited in Fig. 5(c), BSFGH achieved 0.0248, while
P, SVM, and LSTM achieved 0.0465, 0.0515, and 0.0323 respectively
i.e., 46.67%, 51.84%, and 23.22% improvement). Meanwhile, on the
oise data, BSFGH still outperforms the other three algorithms; that is,
SFGH improved by 70.99%, 76.44%, and 56.70%, respectively, on the
oot mean square error (see Fig. 5(d)).
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Fig. 4. Evaluation on the dataset Anuran Calls.
Fig. 5. Evaluation on the dataset RSSI.
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We also compared the performance of [52](EEFC),[53](RBGC),[54]
FGHC), [55](BKNC),[56](IFC-BD),[57](IGBC), SFGHC, and BSFGHC
n the Crowdsourced Mapping dataset which has 10,546 instances and
9 attributes. As demonstrated in Fig. 6, BSFGHC, SFGHC, and IFC-BD
ot an average accuracy of 93.00%, 92.74%, and 92.71%, respectively,
hile the other five approaches achieved an average accuracy under
0%; Meanwhile, BSFGHC got the accuracy of 94.8% and its perfor-
ance is higher than the other methods; in the ROC Area, BSFGHC,

FGHC, and IFC-BD got 0.984, 0.979, and 0.971 respectively, the other
ethods are under 0.97; the similar situation happens in measuring

n PRC Area. In addition, the cost time is evaluated on this dataset.
SFGHC and SFGHC need 321 s and 280 s to execute the training

rocess, while the other algorithms cost about 200 s on average. This is v
ainly because fuzzy granulation and PSO in our methods cover much
ime.

As shown in Fig. 7, the performance is compared further in the
ataset Motion Capture Hand Postures. As mentioned in Table 6, there
re 78095 instances and 38 attributes. BSFGHC, SFGHC, and IFC-BD
eached average accuracy of 93.10%, 91.04%, and 92.31%, respec-
ively. The other five algorithms got no more than 90.00%. BSFGHC
s slightly better than IFC-BD. SFGHC is slightly lower than IFC-BD
nd more higher than the other five approaches. The BSFGHC also has
he highest average recall, and it enhances by 0.85% 6.27% than IFC-
D and EEFC, respectively. In ROC Area and PRC Area, BSFGHC and
FGHC are also slightly better than the other six schemes.

To verify the performance, these algorithms mentioned above are

erified in Internet Firewall Data, as shown in Fig. 8. In the dataset,



Fig. 6. Evaluation on the dataset Crowdsourced Mapping.

Fig. 7. Evaluation on the dataset Motion Capture Hand Postures.



Fig. 8. Evaluation on the dataset Internet Firewall.
Fig. 9. Cluster Evaluation on the dataset Crowdsourced Mapping.

there are a total of 12 features, with the ‘‘action’’ feature serving as
the class label, and the classification task involves predicting one of
four classes: ‘‘allow’’, ‘‘action’’, ‘‘drop’’, or ‘‘reset-both’’. BSFGHC and
SFGHC got average accuracy of 94.10% and 93.58%, respectively. The
two algorithms perform better than the other six algorithms. BSFGHC
reached average recall of 94.15% and improved by 1.45% and 1.93%
than SFGHC and IFC-BD, respectively. When considering the ROC
Area and PRC Area metrics, BSFGHC outperforms the remaining seven
methods.
In addition, the cluster performance is compared between k-means
and ACCC. As shown in Fig. 9, the sum of squared error is sharply
decreased when the number of clusters is no more than 400. After
that, the curve dropped slowly. The sum of the squared error of ACCC
is less than that of k-means in the experiments, which expresses that
ACCC performs better than k-means. Furthermore, ACCC can also auto-
matically select the number of clusters corresponding to the minimum
sum of squared error as the optimal value. K-means is a local optimum
algorithm, and ACCC is a global optimum one.

The above analysis shows that BSFGH performs better than BP,
SVM, and LSTM in many datasets. Especially on noisy data, BSFGH
is more robust than the other three algorithms. This is due to two
aspects: On the one hand, the fuzzy granulation process contains the
idea of global comparison, defeating the interference of noise partly.
On the other hand, BSFGHC starts from the weak learning algorithm
and repeatedly learns to obtain a series of weak classifiers (also known
as basic classifiers) and then unites these weak classifiers to constitute
a robust classifier.

7. Conclusion

Classical classifiers are oriented to numerical computation and do
not involve set operations. This work proposes a boosted stochastic
fuzzy granular hypersurface classifier from a fuzzy set perspective.
First, the cluster center global optimization algorithm is presented,
which gives the number of clusters adaptively and overcomes the
disadvantage of the traditional clustering approach that the number of
cluster centers needs to be pre-specified. Second, a fuzzy granulation
method is presented, which can realize fuzzy granulation parallelly
based on cluster centers and Spark to achieve a fast transformation
from data to fuzzy granules. Third, on the basis of these, we inte-

grate multiple fuzzy granular hypersurface classifiers into a boosted
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fuzzy granular hypersurface classifier to achieve data classification. The 
proposed scheme can implement the classification of data and classify
information granules. In future, we will regard the local granulation
and the geometric structure of the data and combine the manifold idea
to improve the classification performance.
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